1
|
Li Q, Li C, Zhong J, Wang Y, Yang Q, Wang B, He W, Huang J, Lin S, Qi F. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis. Metab Eng 2025; 87:49-59. [PMID: 39603333 DOI: 10.1016/j.ymben.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity Bacillus subtilis FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation-a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.
Collapse
Affiliation(s)
- Qingchen Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Chenxi Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jie Zhong
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yukun Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Qinghua Yang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Bingmei Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Shengyuan Lin
- Department of TCM, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
2
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2024:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Qiu C, Wang X, Zuo J, Li R, Gao C, Chen X, Liu J, Wei W, Wu J, Hu G, Song W, Xu N, Liu L. Systems engineering Escherichia coli for efficient production p-coumaric acid from glucose. Biotechnol Bioeng 2024; 121:2147-2162. [PMID: 38666765 DOI: 10.1002/bit.28721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
P-coumaric acid (p-CA), a pant metabolite with antioxidant and anti-inflammatory activity, is extensively utilized in biomedicine, food, and cosmetics industry. In this study, a synthetic pathway (PAL) for p-CA was designed, integrating three enzymes (AtPAL2, AtC4H, AtATR2) into a higher l-phenylalanine-producing strain Escherichia coli PHE05. However, the lower soluble expression and activity of AtC4H in the PAL pathway was a bottleneck for increasing p-CA titers. To overcome this limitation, the soluble expression of AtC4H was enhanced through N-terminal modifications. And an optimal mutant, AtC4HL373T/G211H, which exhibited a 4.3-fold higher kcat/Km value compared to the wild type, was developed. In addition, metabolic engineering strategies were employed to increase the intracellular NADPH pool. Overexpression of ppnk in engineered E. coli PHCA20 led to a 13.9-folds, 1.3-folds, and 29.1% in NADPH content, the NADPH/NADP+ ratio and p-CA titer, respectively. These optimizations significantly enhance p-CA production, in a 5-L fermenter using fed-batch fermentation, the p-CA titer, yield and productivity of engineered strain E. coli PHCA20 were 3.09 g/L, 20.01 mg/g glucose, and 49.05 mg/L/h, respectively. The results presented here provide a novel way to efficiently produce the plant metabolites using an industrial strain.
Collapse
Affiliation(s)
- Chong Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoge Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Runyang Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Egbujor MC, Olaniyan OT, Emeruwa CN, Saha S, Saso L, Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024; 56:23. [PMID: 38506925 PMCID: PMC10954862 DOI: 10.1007/s00726-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.
Collapse
Affiliation(s)
- Melford C Egbujor
- Department of Chemistry, Federal University Otuoke, Otuoke, Bayelsa, Nigeria
| | | | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
6
|
Reddi R, Chatterjee S, Matulef K, Gustafson A, Gao L, Valiyaveetil FI. A facile approach for incorporating tyrosine esters to probe ion-binding sites and backbone hydrogen bonds. J Biol Chem 2024; 300:105517. [PMID: 38042487 PMCID: PMC10790091 DOI: 10.1016/j.jbc.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Satyaki Chatterjee
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Kimberly Matulef
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Andrew Gustafson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Francis I Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA.
| |
Collapse
|
7
|
Abashkin DA, Karpov DS, Kurishev AO, Marilovtseva EV, Golimbet VE. ASCL1 Is Involved in the Pathogenesis of Schizophrenia by Regulation of Genes Related to Cell Proliferation, Neuronal Signature Formation, and Neuroplasticity. Int J Mol Sci 2023; 24:15746. [PMID: 37958729 PMCID: PMC10648210 DOI: 10.3390/ijms242115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia (SZ) is a common psychiatric neurodevelopmental disorder with a complex genetic architecture. Genome-wide association studies indicate the involvement of several transcription factors, including ASCL1, in the pathogenesis of SZ. We aimed to identify ASCL1-dependent cellular and molecular mechanisms associated with SZ. We used Capture-C, CRISPR/Cas9 systems and RNA-seq analysis to confirm the involvement of ASCL1 in SZ-associated pathogenesis, establish a mutant SH-SY5Y line with a functional ASCL1 knockout (ASCL1-del) and elucidate differentially expressed genes that may underlie ASCL1-dependent pathogenic mechanisms. Capture-C confirmed the spatial interaction of the ASCL1 promoter with SZ-associated loci. Transcriptome analysis showed that ASCL1 regulation may be through a negative feedback mechanism. ASCL1 dysfunction affects the expression of genes associated with the pathogenesis of SZ, as well as bipolar and depressive disorders. Genes differentially expressed in ASCL1-del are involved in cell mitosis, neuronal projection, neuropeptide signaling, and the formation of intercellular contacts, including the synapse. After retinoic acid (RA)-induced differentiation, ASCL1 activity is restricted to a small subset of genes involved in neuroplasticity. These data suggest that ASCL1 dysfunction promotes SZ development predominantly before the onset of neuronal differentiation by slowing cell proliferation and impeding the formation of neuronal signatures.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | | | | | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
| |
Collapse
|
8
|
Carkaci-Salli N, Bewley MC, Tekin I, Flanagan JM, Vrana KE. The A328 V/E (rs2887147) polymorphisms in human tryptophan hydroxylase 2 compromise enzyme activity. Biochem Biophys Rep 2023; 35:101527. [PMID: 37608910 PMCID: PMC10440358 DOI: 10.1016/j.bbrep.2023.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Human tryptophan hydroxylase 2 (hTPH2) is the rate-limiting enzyme for serotonin biosynthesis in the brain. A number of naturally-occurring single nucleotide polymorphisms (SNPs) have been reported for hTPH2. We investigated the activity and kinetic characteristics of the most common missense polymorphism rs2887147 (A328 V/E; 0.92% allelic frequency for the two different reported SNPs at the same site) using bacterially expressed hTPH2. The recombinant full-length enzyme A328E had no measurable enzyme activity, but A328V displayed decreased enzyme activity (Vmax). A328V also displayed substrate inhibition and decreased stability compared to the wild-type enzyme. By contrast, in constructs lacking the N-terminal 150 amino acid regulatory domain, the A328V substitution had no effect; that is, there was no substrate inhibition, enzyme stabilities (for wild-type and A328V) were dramatically increased, and Vmax values were not different (while the A328E variant remained inactive). These findings, in combination with molecular modeling, suggest that substitutions at A328 affect catalytic activity by altering the conformational freedom of the regulatory domain. The reduced activity and substrate inhibition resulting from these polymorphisms may ultimately reduce serotonin synthesis and contribute to behavioral perturbations, emotional stress, and eating disorders.
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Maria C. Bewley
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Izel Tekin
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M. Flanagan
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kent E. Vrana
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
9
|
Sobrado P, Neira JL. Paul F. Fitzpatrick: A life of editorial duties and elucidating the mechanism of enzyme action. Arch Biochem Biophys 2023; 742:109635. [PMID: 37209767 DOI: 10.1016/j.abb.2023.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - José Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
10
|
An J, Guan J, Nie Y. Semi-Rational Design of L-Isoleucine Dioxygenase Generated Its Activity for Aromatic Amino Acid Hydroxylation. Molecules 2023; 28:3750. [PMID: 37175159 PMCID: PMC10180240 DOI: 10.3390/molecules28093750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fe (II)-and 2-ketoglutarate-dependent dioxygenases (Fe (II)/α-KG DOs) have been applied to catalyze hydroxylation of amino acids. However, the Fe (II)/α-KG DOs that have been developed and characterized are not sufficient. L-isoleucine dioxygenase (IDO) is an Fe (II)/α-KG DO that specifically catalyzes the formation of 4-hydroxyisoleucine (4-HIL) from L-isoleucine (L-Ile) and exhibits a substrate specificity toward L-aliphatic amino acids. To expand the substrate spectrum of IDO toward aromatic amino acids, in this study, we analyzed the regularity of the substrate spectrum of IDO using molecular dynamics (MD) simulation and found that the distance between Fe2+, C2 of α-KG and amino acid chain's C4 may be critical for regulating the substrate specificity of the enzyme. The mutation sites (Y143, S153 and R227) were also subjected to single point saturation mutations based on polarity pockets and residue free energy contributions. It was found that Y143D, Y143I and S153A mutants exhibited catalytic L-phenylalanine activity, while Y143I, S153A, S153Q and S153Y exhibited catalytic L-homophenylalanine activity. Consequently, this study extended the substrate spectrum of IDO with aromatic amino acids and enhanced its application property.
Collapse
Affiliation(s)
- Jianhong An
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325000, China
| | - Jiaojiao Guan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
11
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
12
|
Chen C, Tang W, Chen Q, Han M, Shang Q, Liu W. Biomimetic synthesis of hydroxytyrosol from conversion of tyrosol by mimicking tyrosine hydroxylase. J Biol Inorg Chem 2023; 28:379-391. [PMID: 37017773 DOI: 10.1007/s00775-023-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/07/2023] [Indexed: 04/06/2023]
Abstract
Hydroxytyrosol, one of the most powerful natural antioxidants, exhibits certificated benefits for human health. In this study, a biomimetic approach to synthesize hydroxytyrosol from the hydroxylation of tyrosol was established. EDTA-Fe2+ coordination complex served as an active center to simulate tyrosine hydroxylase. H2O2 and ascorbic acid were used as oxygen donor and hydrogen donor, respectively. Hydroxy radical and singlet oxygen contributed to active species. The biomimetic system displayed analogous component, structure, and activity with TyrH. Hydroxytyrosol titer of 21.59 mM, and productivity of 9985.92 mg·L-1·h-1 was achieved with 100 mM tyrosol as substrate. The proposed approach provided efficient and convenient route to quickly produce high amount of hydroxytyrosol.
Collapse
Affiliation(s)
- Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
13
|
Song F, Gu T, Zhang L, Zhang J, You S, Qi W, Su R. Rational design of tryptophan hydroxylation 1 for improving 5-Hydroxytryptophan production. Enzyme Microb Technol 2023; 165:110198. [PMID: 36736156 DOI: 10.1016/j.enzmictec.2023.110198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
5-Hydroxytryptophan (5-HTP) is a chemical precursor of serotonin, which synthesizes melatonin and serotonin in animals and regulates mood, sleep, and behavior. Tryptophan hydroxylase (TPH) uses tetrahydrobiopterin (BH4) as a cofactor to hydroxylate L-tryptophan (L-Trp) to 5-HTP, and the low catalytic activity of TPH limits the rate of hydroxylation of L-Trp. In this study, the catalytic mechanism and structural features of L-Trp-TPH1-BH4 were investigated, and the catalytic activity was improved using a rational design strategy. Then the S337A/F318Y beneficial mutation was obtained. Molecular dynamics simulations showed that the S337A/F318Y mutant formed a salt bridge with TPH1 while forming an additional hydrogen bond with the substrate indole ring, stabilizing the indole ring and enhancing the binding affinity of the variant to L-Trp. As a result, the yield of 5-HTP was increased by 2.06-fold, resulting in the production of 0.91 g/L of 5-HTP. The rational design of the TPH structure to improve the hydroxylation efficiency of L-Trp offers the prospect of green production of 5-HTP.
Collapse
Affiliation(s)
- Feifei Song
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Tao Gu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
14
|
Xu D, Xu Y, Zhang B, Wang Y, Han L, Sun J, Sun H. Higher dietary intake of aromatic amino acids was associated with lower risk of cardiovascular disease mortality in adult participants in NHANES III. Nutr Res 2023; 113:39-48. [PMID: 37023498 DOI: 10.1016/j.nutres.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Little is known about the associations between dietary aromatic amino acids (AAAs) intake and mortality from all causes and cardiovascular disease (CVD). Accordingly, we evaluated these associations in the adult population of the United States using data from the Third National Health and Nutrition Examination Survey. This was a cohort study. Dietary intake of AAAs (tyrosine, phenylalanine, and tryptophan) was determined from the total nutrient intake document. We hypothesized that higher dietary AAA intake would lower all-cause and CVD mortality in adults in the United States. First, we categorized participants into quintiles based on their dietary intakes of total AAAs, tyrosine, phenylalanine, and tryptophan. Then, we established 4 Cox proportional-hazards models (models 1-4) and calculated hazard ratios and 95% confidence intervals to estimate the associations between dietary intakes of total AAAs, tyrosine, phenylalanine, and tryptophan and all-cause and CVD mortality. Mortality status was primarily obtained from files linked to the National Death Index records up to December 31, 2015. After multivariate adjustment, the hazard ratios (95% confidence intervals) of CVD mortality in the highest quintiles of dietary total AAAs, tyrosine, phenylalanine, and tryptophan intake (reference: the lowest quintiles) were 0.66 (0.52-0.84), 0.65 (0.51-0.83), 0.66 (0.52-0.85) and 0.64 (0.50-0.82), respectively. In a nationally representative cohort, higher dietary intakes of total AAA and the 3 individual AAAs were independently associated with a lower risk of CVD mortality, and these associations were stronger in non-Hispanic White people than in other people.
Collapse
|
15
|
Fitzpatrick PF. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Arch Biochem Biophys 2023; 735:109518. [PMID: 36639008 DOI: 10.1016/j.abb.2023.109518] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Oshaghi M, Kourosh-Arami M, Roozbehkia M. Role of neurotransmitters in immune-mediated inflammatory disorders: a crosstalk between the nervous and immune systems. Neurol Sci 2023; 44:99-113. [PMID: 36169755 DOI: 10.1007/s10072-022-06413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of common heterogeneous disorders, characterized by an alteration of cellular homeostasis. Primarily, it has been shown that the release and diffusion of neurotransmitters from nervous tissue could result in signaling through lymphocyte cell-surface receptors and the modulation of immune function. This finding led to the idea that the neurotransmitters could serve as immunomodulators. It is now manifested that neurotransmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Increasing data indicate that there is a crosstalk between inflammation and alterations in neurotransmission. The primary goal of this review is to demonstrate how these two pathways may converge at the level of the neuron and glia to involve in IMID. We review the role of neurotransmitters in IMID. The different effects that these compounds exert on a variety of immune cells are also reviewed. Current and future developments in understanding the cross-talk between the immune and nervous systems will undoubtedly identify new ways for treating immune-mediated diseases utilizing agonists or antagonists of neurotransmitter receptors.
Collapse
Affiliation(s)
- Mojgan Oshaghi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Roozbehkia
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
18
|
Recent trends in non-noble metal-catalyzed hydroxylation reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Park J, Hong J, Seok J, Hong H, Seo H, Kim KJ. Structural studies of a novel auxiliary-domain-containing phenylalanine hydroxylase from Bacillus cereus ATCC 14579. Acta Crystallogr D Struct Biol 2022; 78:586-598. [DOI: 10.1107/s2059798322002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
Phenylalanine hydroxylase (PAH), which belongs to the aromatic amino-acid hydroxylase family, is involved in protein synthesis and pyomelanine production through the hydroxylation of phenylalanine to tyrosine. In this study, the crystal structure of PAH from Bacillus cereus ATCC 14579 (BcPAH) with an additional 280 amino acids in the C-terminal region was determined. The structure of BcPAH consists of three distinct domains: a core domain with two additional inserted α-helices and two novel auxiliary domains: BcPAH-AD1 and BcPAH-AD2. Structural homologues of BcPAH-AD1 and BcPAH-AD2 are known to be involved in mRNA regulation and protein–protein interactions, and thus it was speculated that BcPAH might utilize the auxiliary domains for interaction with its partner proteins. Furthermore, phylogenetic tree analysis revealed that the three-domain PAHs, including BcPAH, are completely distinctive from both conventional prokaryotic PAHs and eukaryotic PAHs. Finally, biochemical studies of BcPAH showed that BcPAH-AD1 might be important for the structural integrity of the enzyme and that BcPAH-AD2 is related to enzyme stability and/or activity. Investigations into the intracellular functions of the two auxiliary domains and the relationship between these functions and the activity of PAH are required.
Collapse
|
20
|
|
21
|
A biosynthetic pathway to aromatic amines that uses glycyl-tRNA as nitrogen donor. Nat Chem 2022; 14:71-77. [PMID: 34725492 PMCID: PMC8758506 DOI: 10.1038/s41557-021-00802-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
Aromatic amines in nature are typically installed with Glu or Gln as the nitrogen donor. Here we report a pathway that features glycyl-tRNA instead. During the biosynthesis of pyrroloiminoquinone-type natural products such as ammosamides, peptide-aminoacyl tRNA ligases append amino acids to the C-terminus of a ribosomally synthesized peptide. First, [Formula: see text] adds Trp in a Trp-tRNA-dependent reaction and the flavoprotein AmmC1 then carries out three hydroxylations of the indole ring of Trp. After oxidation to the corresponding ortho-hydroxy para-quinone, [Formula: see text] attaches Gly to the indole ring in a Gly-tRNA dependent fashion. Subsequent decarboxylation and hydrolysis results in an amino-substituted indole. Similar transformations are catalysed by orthologous enzymes from Bacillus halodurans. This pathway features three previously unknown biochemical processes using a ribosomally synthesized peptide as scaffold for non-ribosomal peptide extension and chemical modification to generate an amino acid-derived natural product.
Collapse
|
22
|
Yao Y, Shi L, Xiao W, Guo S, Liu S, Li H, Zhang S. Phenylalanine hydroxylase (PAH) plays a positive role during WSSV and Vibrio parahaemolyticus infection in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:515-525. [PMID: 34952194 DOI: 10.1016/j.fsi.2021.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Phenylalanine hydroxylase (PAH) is involved in immune defence reactions by providing the starting material, tyrosine, to synthesise catecholamines and melanin. PAH is an important metabolic enzyme of aromatic amino acids and the rate-limiting enzyme in the hydroxylation of amino acid phenylalanine to tyrosine. In the present study, a PAH gene, LvPAH, was cloned and identified from Litopenaeus vannamei. The open reading frame (ORF) of LvPAH was 1383 bp, encoding a protein of 460 amino acids comprised of an ACT domain and a Biopterin_H domain. LvPAH was constitutively expressed in healthy L. vannamei, with the highest expression levels in the eyestalk and the lowest in the hepatopancreas. Both white spot syndrome virus (WSSV) and Vibrio parahaemolyticus infection upregulated LvPAH expression in hemocytes, hepatopancreas and gills of L. vannamei. Inhibition of LvPAH resulted in a significantly lower survival rate of L. vannamei after WSSV infection than the control group, consistent with the observation that WSSV viral load was significantly higher in LvPAH-silenced L. vannamei. After a V. parahaemolyticus challenge, there was no significant difference between the survival rate of LvPAH-silenced and the control L. vannamei. However, the load of V. parahaemolyticus in LvPAH-silenced L. vannamei was significantly higher than the control population for L. vannamei. The effect of LvPAH on L. vannamei from a neuroendocrinological perspective was assessed by measuring l-DOPA, dopamine (DA) and noradrenaline (NE) levels in the hemocytes after the knockdown of LvPAH. The results showed that phenoloxidase (PO), l-DOPA and DA levels in the hemolymph of LvPAH-silenced L. vannamei were significantly decreased starting from 24hpi. In contrast, the NE levels in the hemolymph of shrimp decreased significantly at first and then increased. The results suggest that LvPAH may play an important role in antiviral and bacterial immunity in L. vannamei.
Collapse
Affiliation(s)
- Yuanmao Yao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Wei Xiao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Sixin Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Saiya Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haoyang Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
| |
Collapse
|
23
|
Williams A, Pathmanathan JS, Stephens TG, Su X, Chiles EN, Conetta D, Putnam HM, Bhattacharya D. Multi-omic characterization of the thermal stress phenome in the stony coral Montipora capitata. PeerJ 2021; 9:e12335. [PMID: 34824906 PMCID: PMC8590396 DOI: 10.7717/peerj.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background Corals, which form the foundation of biodiverse reef ecosystems, are under threat from warming oceans. Reefs provide essential ecological services, including food, income from tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied the coral thermal stress response using network methods to analyze transcriptomic and polar metabolomic data generated from the Hawaiian rice coral Montipora capitata. Coral nubbins were exposed to ambient or thermal stress conditions over a 5-week period, coinciding with a mass spawning event of this species. The major goal of our study was to expand the inventory of thermal stress-related genes and metabolites present in M. capitata and to study gene-metabolite interactions. These interactions provide the foundation for functional or genetic analysis of key coral genes as well as provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to analyze the accumulation of sex hormones prior to and during mass spawning to understand how thermal stress may impact reproductive success in M. capitata. Methods M. capitata was exposed to thermal stress during its spawning cycle over the course of 5 weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and Gene Integration) to investigate molecular transitions and biochemical reactions. Results Our results reveal the complexity of the thermal stress phenome in M. capitata, which includes many genes involved in redox regulation, biomineralization, and reproduction. The size and number of modules in the gene co-expression networks expanded from the initial stress response to the onset of bleaching. The later stages involved the suppression of metabolite transport by the coral host, including a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment results in the activation of animal redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was provided by the downregulation of CYP-like genes and the irregular production of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are key components of the coral animal thermal stress phenome. Mass spawning was highly attenuated under thermal stress, suggesting that global climate change may negatively impact reproductive behavior in this species.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, United States
| | - Jananan S Pathmanathan
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Xiaoyang Su
- Department of Medicine, Division of Endocrinology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States.,Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University,New Brunswick, United States
| | - Eric N Chiles
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University,New Brunswick, United States
| | - Dennis Conetta
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
24
|
Affiliation(s)
- Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
25
|
Opalade AA, Parham JD, Day VW, Jackson TA. Characterization and chemical reactivity of room-temperature-stable Mn III-alkylperoxo complexes. Chem Sci 2021; 12:12564-12575. [PMID: 34703542 PMCID: PMC8494025 DOI: 10.1039/d1sc01976g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
While alkylperoxomanganese(iii) (MnIII-OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S- ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII-OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII-OOR complexes using a new amide-containing N5 - ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OO t Bu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with t BuOOH and CmOOH, respectively. Both of the new MnIII-OOR complexes are stable at room-temperature (t 1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII-OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII-OOR complexes by O-O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O-O bond. These studies reveal that both the stability and chemical reactivity of MnIII-OOR complexes can be tuned by the local coordination sphere.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Victor W Day
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry, Center for Environmentally Beneficial Catalysis 1567 Irving Hill Road Lawrence KS 66045 USA +1-785-864-3968
| |
Collapse
|
26
|
Sheng Y, Abelson CS, Prakash J, Draksharapu A, Young VG, Que L. Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Sheng
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Chase S. Abelson
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Jai Prakash
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | | | - Victor G. Young
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
27
|
Sheng Y, Abelson CS, Prakash J, Draksharapu A, Young VG, Que L. Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex. Angew Chem Int Ed Engl 2021; 60:20991-20998. [PMID: 34292639 PMCID: PMC8429247 DOI: 10.1002/anie.202108309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/09/2022]
Abstract
In this study, a methyl group on the classic tetramethylcyclam (TMC) ligand framework is replaced with a benzylic group to form the metastable [FeIV (Osyn )(Bn3MC)]2+ (2-syn; Bn3MC=1-benzyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) species at -40 °C. The decay of 2-syn with time at 25 °C allows the unprecedented monitoring of the steps involved in the intramolecular hydroxylation of the ligand phenyl ring to form the major FeIII -OAr product 3. At the same time, the FeII (Bn3MC)2+ (1) precursor to 2-syn is re-generated in a 1:2 molar ratio relative to 3, accounting for the first time for all the electrons involved and all the Fe species derived from 2-syn as shown in the following balanced equation: 3 [FeIV (O)(LPh )]2+ (2-syn)→2 [FeIII (LOAr )]2+ (3)+[FeII (LPh )]2+ (1)+H2 O. This system thus serves as a paradigm for aryl hydroxylation by FeIV =O oxidants described thus far. It is also observed that 2-syn can be intercepted by certain hydrocarbon substrates, thereby providing a means to assess the relative energetics of aliphatic and aromatic C-H hydroxylation in this system.
Collapse
Affiliation(s)
- Yuan Sheng
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chase S Abelson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jai Prakash
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Apparao Draksharapu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
28
|
Buglak AA, Telegina TA, Vechtomova YL, Kritsky MS. Autoxidation and photooxidation of tetrahydrobiopterin: a theoretical study. Free Radic Res 2021; 55:499-509. [PMID: 33283562 DOI: 10.1080/10715762.2020.1860213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023]
Abstract
Pterins are naturally occurring pigments and enzyme cofactors widespread in living organisms. Tetrahydrobiopterin (H4Bip) is a coenzyme of aromatic amino acid hydroxylases, NO-synthases, and alkylglycerol monooxygenases. This coenzyme is prone to oxidation in the presence of molecular oxygen, a so-called autoxidation. The reactions participating in H4Bip autoxidation are well known. However, our study is an attempt to evaluate theoretically the feasibility of reactions participating in autoxidation. To do so, we have calculated the Gibbs free energy of elementary reactions between H4Bip, its derivatives, molecular oxygen, and reactive oxygen species (ROS). In the last few years, we have established the photosensitized oxidation of H4Bip experimentally. Thus, we have also evaluated the feasibility of H4Bip photooxidation reactions, which may occur according to both type-I and type-II photosensitized oxidation. We calculated Fukui indices for H4Bip and found particular atoms in the molecule that interact with nucleophiles (for example, singlet oxygen 1O2) and radicals (in particular, molecular oxygen 3O2). Therefore, we evaluated the probability of H4Bip autoxidation reactions, photooxidation reactions, and the reactivity of particular atoms in H4Bip molecule using the theoretical methods of quantum chemistry.
Collapse
Affiliation(s)
- Andrey A Buglak
- Physical Faculty, St. Petersburg State University, St. Petersburg, Russia
| | - Taisiya A Telegina
- Physical Faculty, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of ecological and evolutionary biochemistry, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yulia L Vechtomova
- Laboratory of ecological and evolutionary biochemistry, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Kritsky
- Laboratory of ecological and evolutionary biochemistry, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
30
|
Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, Liu A. A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by a de novo crystal structural and spectroscopic study. Chem Sci 2021; 12:3984-3998. [PMID: 34163669 PMCID: PMC8179489 DOI: 10.1039/d0sc06369j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
SfmD is a heme-dependent enzyme in the biosynthetic pathway of saframycin A. Here, we present a 1.78 Å resolution de novo crystal structure of SfmD, which unveils a novel heme cofactor attached to the protein with an unusual Hx n HxxxC motif (n ∼ 38). This heme cofactor is unique in two respects. It contains a single thioether bond in a cysteine-vinyl link with Cys317, and the ferric heme has two axial protein ligands, i.e., His274 and His313. We demonstrated that SfmD heme is catalytically active and can utilize dioxygen and ascorbate for a single-oxygen insertion into 3-methyl-l-tyrosine. Catalytic assays using ascorbate derivatives revealed the functional groups of ascorbate essential to its function as a cosubstrate. Abolishing the thioether linkage through mutation of Cys317 resulted in catalytically inactive SfmD variants. EPR and optical data revealed that the heme center undergoes a substantial conformational change with one axial histidine ligand dissociating from the iron ion in response to substrate 3-methyl-l-tyrosine binding or chemical reduction by a reducing agent, such as the cosubstrate ascorbate. The labile axial ligand was identified as His274 through redox-linked structural determinations. Together, identifying an unusual heme cofactor with a previously unknown heme-binding motif for a monooxygenase activity and the structural similarity of SfmD to the members of the heme-based tryptophan dioxygenase superfamily will broaden understanding of heme chemistry.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Karinel Nieves-Merced
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Stanton McHardy
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| |
Collapse
|
31
|
Phenylketonuria monitoring in human blood serum by mosses extract/ZnO@Au nanoarrays-loaded filter paper as a novel electrochemical biosensor. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Xu Y, Li Y, Li L, Zhang L, Ding Z, Shi G. Reductase-catalyzed tetrahydrobiopterin regeneration alleviates the anti-competitive inhibition of tyrosine hydroxylation by 7,8-dihydrobiopterin. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01958e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Tyrosine hydroxylation by tyrosine hydroxylase is a significant reaction for preparing many nutraceutical and pharmaceutical chemicals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Youran Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Leyun Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
33
|
Dunham NP, Arnold FH. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catal 2020; 10:12239-12255. [PMID: 33282461 PMCID: PMC7710332 DOI: 10.1021/acscatal.0c03606] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron is an especially important redox-active cofactor in biology because of its ability to mediate reactions with atmospheric O2. Iron-dependent oxygenases exploit this earth-abundant transition metal for the insertion of oxygen atoms into organic compounds. Throughout the astounding diversity of transformations catalyzed by these enzymes, the protein framework directs reactive intermediates toward the precise formation of products, which, in many cases, necessitates the cleavage of strong C-H bonds. In recent years, members of several iron-dependent oxygenase families have been engineered for new-to-nature transformations that offer advantages over conventional synthetic methods. In this Perspective, we first explore what is known about the reactivity of heme-dependent cytochrome P450 oxygenases and nonheme iron-dependent oxygenases bearing the 2-His-1-carboxylate facial triad by reviewing mechanistic studies with an emphasis on how the protein scaffold maximizes the catalytic potential of the iron-heme and iron cofactors. We then review how these cofactors have been repurposed for abiological transformations by engineering the protein frameworks of these enzymes. Finally, we discuss contemporary challenges associated with engineering these platforms and comment on their roles in biocatalysis moving forward.
Collapse
Affiliation(s)
- Noah P. Dunham
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
34
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
35
|
Li J, Liao HJ, Tang Y, Huang JL, Cha L, Lin TS, Lee JL, Kurnikov IV, Kurnikova MG, Chang WC, Chan NL, Guo Y. Epoxidation Catalyzed by the Nonheme Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, AsqJ: Mechanistic Elucidation of Oxygen Atom Transfer by a Ferryl Intermediate. J Am Chem Soc 2020; 142:6268-6284. [PMID: 32131594 PMCID: PMC7343540 DOI: 10.1021/jacs.0c00484] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ. The native substrate and analogues with different para substituents ranging from electron-donating groups (e.g., methoxy) to electron-withdrawing groups (e.g., trifluoromethyl) were used to probe the mechanism. The results derived from transient-state enzyme kinetics, Mössbauer spectroscopy, reaction product analysis, X-ray crystallography, density functional theory calculations, and molecular dynamic simulations collectively revealed the following mechanistic insights: (1) The rapid O2 addition to the AsqJ Fe(II) center occurs with the iron-bound 2OG adopting an online-binding mode in which the C1 carboxylate group of 2OG is trans to the proximal histidine (His134) of the 2-His-1-carboxylate facial triad, instead of assuming the offline-binding mode with the C1 carboxylate group trans to the distal histidine (His211); (2) The decay rate constant of the ferryl intermediate is not strongly affected by the nature of the para substituents of the substrate during the OAT step, a reactivity behavior that is drastically different from nonheme Fe(IV)-oxo synthetic model complexes; (3) The OAT step most likely proceeds through a stepwise process with the initial formation of a C(benzylic)-O bond to generate an Fe-alkoxide species, which is observed in the AsqJ crystal structure. The subsequent C3-O bond formation completes the epoxide installation.
Collapse
Affiliation(s)
- Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jhih-Liang Huang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Justin L. Lee
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Igor V. Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maria G. Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
36
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
37
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
38
|
Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway. Appl Microbiol Biotechnol 2020; 104:2481-2488. [PMID: 32006050 DOI: 10.1007/s00253-020-10371-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/01/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
5-Hydroxytryptophan (5-HTP) is the precursor of the neurotransmitter serotonin and has been used for the treatment of various diseases such as depression, insomnia, chronic headaches, and binge eating associated obesity. The production of 5-HTP had been achieved in our previous report, by the development of a recombinant strain containing two plasmids for biosynthesis of L-tryptophan (L-trp) and subsequent hydroxylation. In this study, the L-trp biosynthetic pathway was further integrated into the E. coli genome, and the promoter strength of 3-deoxy-7-phosphoheptulonate synthase, which catalyzes the first step of L-trp biosynthesis, was engineered to increase the production of L-trp. Hence, the 5-HTP production could be manipulated by the regulation of copy number of L-trp hydroxylation plasmid. Finally, the 5-HTP production was increased to 1.61 g/L in the shaking flasks, which was 24% improvement comparing to the original producing strain, while the content of residual L-trp was successfully reduced from 1.66 to 0.2 g/L, which is beneficial for the downstream separation and purification. Our work shall promote feasible progresses for the industrial production of 5-HTP.
Collapse
|
39
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C-H and C=C Bonds by a Mononuclear Nonheme High-Spin Iron(III)-Alkylperoxo Species. Angew Chem Int Ed Engl 2019; 58:12534-12539. [PMID: 31246329 DOI: 10.1002/anie.201906978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The reactivity of a mononuclear high-spin iron(III)-alkylperoxo intermediate [FeIII (t-BuLUrea )(OOCm)(OH2 )]2+ (2), generated from [FeII (t-BuLUrea )(H2 O)(OTf)](OTf) (1) [t-BuLUrea =1,1'-(((pyridin-2-ylmethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C-H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C-H bonds of aliphatic substrates with high chemo- and stereoselectivity in the presence of 2,6-lutidine. While 2 itself is a sluggish oxidant, 2,6-lutidine assists the heterolytic O-O bond cleavage of the metal-bound alkylperoxo, giving rise to a reactive metal-based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Satadal Paul
- Darjeeling Polytechnic, Kurseong, Darjeeling, 734203, India
| | - Teresa Corona
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
40
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Satadal Paul
- Darjeeling Polytechnic Kurseong Darjeeling 734203 India
| | - Teresa Corona
- Humboldt-Universität zu BerlinDepartment of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
41
|
Grüschow S, Sadler JC, Sharratt PJ, Goss RJM. Phenylalanine meta-Hydroxylase: A Single Residue Mediates Mechanistic Control of Aromatic Amino Acid Hydroxylation. Chembiochem 2019; 21:417-422. [PMID: 31318464 PMCID: PMC7027792 DOI: 10.1002/cbic.201900320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Indexed: 01/31/2023]
Abstract
The rare nonproteinogenic amino acid, meta‐l‐tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta‐hydroxylation is unknown. Herein, we report the analysis of 3‐hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild‐type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta‐hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3‐position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme‐catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2‐hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta‐l‐tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.
Collapse
Affiliation(s)
- Sabine Grüschow
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Joanna C Sadler
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Peter J Sharratt
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| |
Collapse
|
42
|
Pawlak K, Lech K, Vei A, Burch S, Zieschang S, Jaquet S, Yu F, Harwood E, Morsey B, Fox HS, Ciborowski P. Secreted Metabolome of Human Macrophages Exposed to Methamphetamine. Anal Chem 2019; 91:9190-9197. [PMID: 31265257 DOI: 10.1021/acs.analchem.9b01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophages comprise a major component of the human innate immune system that is involved in maintaining homeostasis and responding to infections or other insults. Besides cytokines and chemokines, macrophages presumably influence the surrounding environment by secreting various types of metabolites. Characterization of secreted metabolites under normal and pathological conditions is critical for understanding the complex innate immune system. To investigate the secreted metabolome, we developed a novel workflow consisting of one Reverse Phase (RP) C18 column linked in tandem with a Cogent cholesterol-modified RP C18. This system was used to compare the secreted metabolomes of human monocyte-derived macrophages (hMDM) under normal conditions to those exposed to methamphetamine (Meth). This new experimental approach allowed us to measure 92 metabolites, identify 11 of them as differentially expressed, separate and identify three hydroxymethamphetamine (OHMA) isomers, and identify a new, yet unknown metabolite with a m/z of 192. This study is the first of its kind to address the secreted metabolomic response of hMDM to an insult by Meth. Besides the discovery of novel metabolites secreted by macrophages, we provide a novel methodology to investigate metabolomic profiling.
Collapse
Affiliation(s)
- Katarzyna Pawlak
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States.,Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Katarzyna Lech
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States.,Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Akou Vei
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Sydney Burch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Fang Yu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Emma Harwood
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| |
Collapse
|
43
|
Ipson BR, Green RA, Wilson JT, Watson JN, Faull KF, Fisher AL. Tyrosine aminotransferase is involved in the oxidative stress response by metabolizing meta-tyrosine in Caenorhabditis elegans. J Biol Chem 2019; 294:9536-9554. [PMID: 31043480 PMCID: PMC6579467 DOI: 10.1074/jbc.ra118.004426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Under oxidative stress conditions, hydroxyl radicals can oxidize the phenyl ring of phenylalanine, producing the abnormal tyrosine isomer meta-tyrosine (m-tyrosine). m-Tyrosine levels are commonly used as a biomarker of oxidative stress, and its accumulation has recently been reported to adversely affect cells, suggesting a direct role for m-tyrosine in oxidative stress effects. We found that the Caenorhabditis elegans ortholog of tyrosine aminotransferase (TATN-1)-the first enzyme involved in the metabolic degradation of tyrosine-is up-regulated in response to oxidative stress and directly activated by the oxidative stress-responsive transcription factor SKN-1. Worms deficient in tyrosine aminotransferase activity displayed increased sensitivity to multiple sources of oxidative stress. Biochemical assays revealed that m-tyrosine is a substrate for TATN-1-mediated deamination, suggesting that TATN-1 also metabolizes m-tyrosine. Consistent with a toxic effect of m-tyrosine and a protective function of TATN-1, tatn-1 mutant worms exhibited delayed development, marked reduction in fertility, and shortened lifespan when exposed to m-tyrosine. A forward genetic screen identified a mutation in the previously uncharacterized gene F01D4.5-homologous with human transcription factor 20 (TCF20) and retinoic acid-induced 1 (RAI1)-that suppresses the adverse phenotypes observed in m-tyrosine-treated tatn-1 mutant worms. RNA-Seq analysis of F01D4.5 mutant worms disclosed a significant reduction in the expression of specific isoforms of genes encoding ribosomal proteins, suggesting that alterations in protein synthesis or ribosome structure could diminish the adverse effects of m-tyrosine. Our findings uncover a critical role for tyrosine aminotransferase in the oxidative stress response via m-tyrosine metabolism.
Collapse
Affiliation(s)
- Brett R Ipson
- From the Department of Cell Systems and Anatomy
- the Center for Healthy Aging, and
| | - Rebecca A Green
- the Ludwig Institute for Cancer Research, San Diego, La Jolla, California 92093
| | | | | | - Kym F Faull
- the Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Alfred L Fisher
- the Center for Healthy Aging, and
- the Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Geriatric Research, Education and Clinical Center (GRECC), South Texas Veterans Affairs Healthcare System, San Antonio, Texas 78229
| |
Collapse
|
44
|
Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, Liu A. Biocatalytic Carbon-Hydrogen and Carbon-Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme. ACS Catal 2019; 9:4764-4776. [PMID: 31355048 DOI: 10.1021/acscatal.9b00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LmbB2 is a peroxygenase-like enzyme that hydroxylates L-tyrosine to L-3,4-dihydroxyphenylalanine (DOPA) in the presence of hydrogen peroxide. However, its heme cofactor is ligated by a proximal histidine, not cysteine. We show that LmbB2 can oxidize L-tyrosine analogs with ring-deactivated substituents such as 3-nitro-, fluoro-, chloro-, iodo-L-tyrosine. We also found that the 4-hydroxyl group of the substrate is essential for reacting with the heme-based oxidant and activating the aromatic C-H bond. The most interesting observation of this study was obtained with 3-fluoro-L-tyrosine as a substrate and mechanistic probe. The LmbB2-mediated catalytic reaction yielded two hydroxylated products with comparable populations, i.e., oxidative C-H bond cleavage at C5 to generate 3-fluoro-5-hydroxyl-L-tyrosine and oxygenation at C3 concomitant with a carbon-fluorine bond cleavage to yield DOPA and fluoride. An iron protein-mediated hydroxylation on both C-H and C-F bonds with multiple turnovers is unprecedented. Thus, this finding reveals a significant potential of biocatalysis in C-H/C-X bond (X = halogen) cleavage. Further 18O-labeling results suggest that the source of oxygen for hydroxylation is a peroxide, and that a commonly expected oxidation by a high-valent iron intermediate followed by hydrolysis is not supported for the C-F bond cleavage. Instead, the C-F bond cleavage is proposed to be initiated by a nucleophilic aromatic substitution mediated by the iron-hydroperoxo species. Based on the experimental results, two mechanisms are proposed to explain how LmbB2 hydroxylates the substrate and cleaves C-H/C-F bond. This study broadens the understanding of heme enzyme catalysis and sheds light on enzymatic applications in medicinal and environmental fields.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Daniel J. Wherritt
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Keri L. Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
45
|
Santa Maria KC, Chan AN, O'Neill EM, Li B. Targeted Rediscovery and Biosynthesis of the Farnesyl-Transferase Inhibitor Pepticinnamin E. Chembiochem 2019; 20:1387-1393. [PMID: 30694017 PMCID: PMC6750724 DOI: 10.1002/cbic.201900025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 11/08/2022]
Abstract
The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.
Collapse
Affiliation(s)
- Kevin C Santa Maria
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Erinn M O'Neill
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| |
Collapse
|
46
|
Buglak AA, Telegina TA. A theoretical study of 5,6,7,8-tetrahydro-6-hydroxymethylpterin: insight into intrinsic photoreceptor properties of 6-substituted tetrahydropterins. Photochem Photobiol Sci 2019; 18:516-523. [PMID: 30543247 DOI: 10.1039/c8pp00322j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrahydropterins are essential biological cofactors, which play a crucial role in DNA and RNA syntheses, NO synthesis, hydroxylation of aromatic amino acids, etc. In the last few years, it has been shown that 6-substituted "unconjugated" tetrahydropterins can also play a photoreceptor chromophoric role in plants and cyanobacteria. However, the nature of the initial light signal transduction act in which H4pterins participate is unknown. Our quantum chemical calculations have shown the possibility of the fast internal conversion of excited states of H4pterins. The potential energy surface scan along the 1ππ* state shows no energy barrier leading to 1ππ*/S0 conical intersection, this explains the absence of fluorescence for H4pterins. Other trajectories of the internal conversion relate to the stretching vibrations of the N-H bonds of the pyrimidine ring for the Rydberg state. The presence of several trajectories of nonradiative quenching of the photoexcited singlet states provides the photostability of the molecule. It was demonstrated for the first time that the nature of the excited states of H4pterins is similar to the nature of the excited states of guanine.
Collapse
Affiliation(s)
- A A Buglak
- St Petersburg State University, St. Peterburg, Russia.
| | - T A Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Khan CA, Meisburger SP, Ando N, Fitzpatrick PF. The phenylketonuria-associated substitution R68S converts phenylalanine hydroxylase to a constitutively active enzyme but reduces its stability. J Biol Chem 2019; 294:4359-4367. [PMID: 30674554 DOI: 10.1074/jbc.ra118.006477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Indexed: 11/06/2022] Open
Abstract
The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ∼200-fold, so that the resting form of R68S PheH is ∼70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37 °C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability.
Collapse
Affiliation(s)
- Crystal A Khan
- From the Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, Texas 78229 and
| | - Steve P Meisburger
- the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Nozomi Ando
- the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Paul F Fitzpatrick
- From the Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, Texas 78229 and
| |
Collapse
|
48
|
Schnepel C, Kemker I, Sewald N. One-Pot Synthesis of d-Halotryptophans by Dynamic Stereoinversion Using a Specific l-Amino Acid Oxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Schnepel
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| |
Collapse
|
49
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an FeIV
O or an FeIII
OOH Intermediate From Iron(II) and H2
O2
: Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| |
Collapse
|
50
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an Fe IV O or an Fe III OOH Intermediate From Iron(II) and H 2 O 2 : Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018; 58:854-858. [PMID: 30485630 DOI: 10.1002/anie.201812724] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 11/06/2022]
Abstract
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2 O2 from the usual formation of FeIII species towards the selective generation of an FeIV -oxo intermediate. The FeIV -oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable-temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O-O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII -H2 O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O-O cleavage immediately followed by a proton-coupled electron transfer (PCET) that leads to the formation of the FeIV -oxo and release of water through a concerted mechanism.
Collapse
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| |
Collapse
|