1
|
Gadi MR, Han J, Shen T, Fan S, Xiao Z, Li L. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 2024:10.1038/s41596-024-01051-6. [PMID: 39327537 DOI: 10.1038/s41596-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure-function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1-2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2-4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shuquan Fan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Zhongying Xiao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Bao S, Shen T, Shabahang MH, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024:e202411863. [PMID: 39223086 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad Hossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Du Z, Zhu Y, Lu Z, Chen R, Huang Z, Chen Y, Guang C, Mu W. Combinatorial Optimization Strategies for 3-Fucosyllactose Hyperproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14191-14198. [PMID: 38878091 DOI: 10.1021/acs.jafc.4c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
3-Fucosyllactose (3-FL), an important fucosylated human milk oligosaccharide in breast milk, offers numerous health benefits to infants. Previously, we metabolically engineered Escherichia coli BL21(DE3) for the in vivo biosynthesis of 3-FL. In this study, we initially optimized culture conditions to double 3-FL production. Competing pathway genes involved in in vivo guanosine 5'-diphosphate-fucose biosynthesis were subsequently inactivated to redirect fluxes toward 3-FL biosynthesis. Next, three promising transporters were evaluated using plasmid-based or chromosomally integrated expression to maximize extracellular 3-FL production. Additionally, through analysis of α1,3-fucosyltransferase (FutM2) structure, we identified Q126 residues as a highly mutable residue in the active site. After site-saturation mutation, the best-performing mutant, FutM2-Q126A, was obtained. Structural analysis and molecular dynamics simulations revealed that small residue replacement positively influenced helical structure generation. Finally, the best strain BD3-A produced 6.91 and 52.1 g/L of 3-FL in a shake-flask and fed-batch cultivations, respectively, highlighting its potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhen Lu
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhao C, Zhao M, Li Z, Xu W, Mu W. Engineering Escherichia coli for Highly Efficient Biosynthesis of Lacto- N-difucohexaose II through De Novo GDP-l-fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10469-10476. [PMID: 38659344 DOI: 10.1021/acs.jafc.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
5
|
Xie Y, Wu X, Fu C, Duan H, Shi J, Blamey JM, Sun J. Rational Design of an α-1,3-Fucosyltransferase for the Biosynthesis of 3-Fucosyllactose in Bacillus subtilis ATCC 6051a via De Novo GDP-l-Fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1178-1189. [PMID: 38183288 DOI: 10.1021/acs.jafc.3c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.
Collapse
Affiliation(s)
- Yukang Xie
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Cong Fu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Duan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas, 2280 Ñuñoa, Santiago, Chile
- Facultad de Química Y Biología, Universidad de Santiago de Chile, 3363 Alameda, Estación Central, Santiago, Chile
| | - Junsong Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
6
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
7
|
Magdaleno JSL, Grewal RK, Medina-Franco JL, Oliva R, Shaikh AR, Cavallo L, Chawla M. Toward α-1,3/4 fucosyltransferases targeted drug discovery: In silico uncovering of promising natural inhibitors of fucosyltransferase 6. J Cell Biochem 2023; 124:1173-1185. [PMID: 37357420 DOI: 10.1002/jcb.30440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Sialyl Lewis X (sLex ) antigen is a fucosylated cell-surface glycan that is normally involved in cell-cell interactions. The enhanced expression of sLex on cell surface glycans, which is attributed to the upregulation of fucosyltransferase 6 (FUT6), has been implicated in facilitating metastasis in human colorectal, lung, prostate, and oral cancers. The role that the upregulated FUT6 plays in the progression of tumor to malignancy, with reduced survival rates, makes it a potential target for anticancer drugs. Unfortunately, the lack of experimental structures for FUT6 has hampered the design and development of its inhibitors. In this study, we used in silico techniques to identify potential FUT6 inhibitors. We first modeled the three-dimensional structure of human FUT6 using AlphaFold. Then, we screened the natural compound libraries from the COCONUT database to sort out potential natural products (NPs) with best affinity toward the FUT6 model. As a result of these simulations, we identified three NPs for which we predicted binding affinities and interaction patterns quite similar to those we calculated for two experimentally tested FUT6 inhibitors, that is, fucose mimetic-1 and a GDP-triazole derived compound. We also performed molecular dynamics (MD) simulations for the FUT6 complexes with identified NPs, to investigate their stability. Analysis of the MD simulations showed that the identified NPs establish stable contacts with FUT6 under dynamics conditions. On these grounds, the three screened compounds appear as promising natural alternatives to experimentally tested FUT6 synthetic inhibitors, with expected comparable binding affinity. This envisages good prospects for future experimental validation toward FUT6 inhibition.
Collapse
Affiliation(s)
- Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Ravneet K Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - José L Medina-Franco
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Yang L, Zhu Y, Meng J, Zhang W, Mu W. Recent progress in fucosylated derivatives of lacto- N-tetraose and lacto- N-neotetraose. Crit Rev Food Sci Nutr 2023; 64:10384-10396. [PMID: 37341681 DOI: 10.1080/10408398.2023.2224431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Lv Y, Zhang Z, Tian S, Wang W, Li H. Therapeutic potential of fucosyltransferases in cancer and recent development of targeted inhibitors. Drug Discov Today 2023; 28:103394. [PMID: 36223858 DOI: 10.1016/j.drudis.2022.103394] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
10
|
Cao X, Wang S, Gadi MR, Liu D, Wang PG, Wan XF, Zhang J, Chen X, Pepi LE, Azadi P, Li L. Systematic synthesis of bisected N-glycans and unique recognitions by glycan-binding proteins. Chem Sci 2022; 13:7644-7656. [PMID: 35872821 PMCID: PMC9241959 DOI: 10.1039/d1sc05435j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Bisected N-glycans represent a unique class of protein N-glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N-glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting "cores". Subsequent enzymatic modular extension of the "cores" yielded a comprehensive library of biantennary N-glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N-glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc.) N-glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N-glycan recognition by GBPs, and in turn improve their applications.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | | | - Ding Liu
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Peng G. Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Xiu-Feng Wan
- MU Center for Research on Influenza Systems Biology (CRISB), University of MissouriColumbiaMOUSA,Department of Molecular Microbiology and Immunology, School of Medicine, University of MissouriColumbiaMOUSA,Bond Life Sciences Center, University of MissouriColumbiaMOUSA,Department of Electrical Engineering & Computer Science, College of Engineering, University of MissouriColumbiaMOUSA
| | | | - Xi Chen
- Department of Chemistry, University of CaliforniaOne Shields AvenueDavisCAUSA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Lei Li
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| |
Collapse
|
11
|
Li Z, Zhu Y, Ni D, Zhang W, Mu W. Occurrence, functional properties, and preparation of 3-fucosyllactose, one of the smallest human milk oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:9364-9378. [PMID: 35438024 DOI: 10.1080/10408398.2022.2064813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human milk oligosaccharides (HMOs) are receiving wide interest and high attention due to their health benefits, especially for newborns. The HMOs-fortified products are expected to mimic human milk not only in the kinds of added oligosaccharides components but also the appropriate proportion between these components, and further provide the nutrition and physiological effects of human milk to newborns as closely as possible. In comparison to intensively studied 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL) has less attention in almost all respects. Nerveless, 3-FL naturally occurs in breast milk and increases roughly over the course of lactation with a nonnegligible content, and plays an irreplaceable role in human milk and delivers functional properties to newborns. According to the safety evaluation, 3-FL shows no acute oral toxicity, genetic toxicity, and subchronic toxicity. It has been approved as generally recognized as safe (GRAS). Biological production of 3-FL can be realized by enzymatic and cell factory approaches. The α1,3- or α1,3/4-fucosyltransferase is the key enzyme for 3-FL biosynthesis. Various metabolic engineering strategies have been applied to enhance 3-FL yield using cell factory approach. In conclusion, this review gives an overview of the recent scientific literatures regarding occurrence, bioactive properties, safety evaluation, and biotechnological preparation of 3-FL.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Heine V, Pelantová H, Bojarová P, Křen V, Elling L. Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. ChemCatChem 2022. [DOI: 10.1002/cctc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Viktoria Heine
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Helena Pelantová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Pavla Bojarová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Vladimír Křen
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Lothar Elling
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering Pauwelsstr. 20 52074 Aachen GERMANY
| |
Collapse
|
13
|
Xia H, Ye J, Cao H, Liu X, Zhang Y, Liu CC. Enzymatic modular assembly of hybrid Lewis antigens. Org Biomol Chem 2021; 19:8041-8048. [PMID: 34473187 DOI: 10.1039/d1ob01579f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzymatic synthesis of hybrid Lewis antigens including KH-1 (Lewis y-Lewis x-Lactose, Ley-Lex-Lac), Lewis a-Lewis x-Lactose (Lea-Lex-Lac), and Lewis b-Lewis x-Lactose (Leb-Lex-Lac) has been achieved using a facile enzymatic modular assembly strategy. Starting from a readily available tetrasaccharide, 3 complex hybrid Lewis antigens were achieved in over 40% total yields in less than 5 linear steps of sequential enzymatic glycosylation using 6 enzyme modules. The regio-selective fucosylation was achieved by simply controlling the donor-acceptor ratio. This strategy provides an easy access to these biologically important complex hybrid Lewis antigens at preparative scales.
Collapse
Affiliation(s)
- Hui Xia
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Jinfeng Ye
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianwei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
14
|
Xu Z, Deng Y, Zhang Z, Ma W, Li W, Wen L, Li T. Diversity-Oriented Chemoenzymatic Synthesis of Sulfated and Nonsulfated Core 2 O-GalNAc Glycans. J Org Chem 2021; 86:10819-10828. [PMID: 34254798 DOI: 10.1021/acs.joc.1c01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A diversity-oriented chemoenzymatic approach for the collective preparation of sulfated core 2 O-GalNAc glycans and their nonsulfated counterparts was described. A sulfated trisaccharide and a nonsulfated trisaccharide were chemically synthesized by combining flexible protected group manipulations and sequential one-pot glycosylations. The divergent enzymatic extension of these two trisaccharides, using a panel of robust glycosyltransferases that can recognize sulfated substrates and differentiating the branches with specifically designed glycosylation sequences to achieve regioselective sialylation, provided 36 structurally well-defined O-GalNAc glycans.
Collapse
Affiliation(s)
- Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Wang S, Chen C, Gadi MR, Saikam V, Liu D, Zhu H, Bollag R, Liu K, Chen X, Wang F, Wang PG, Ling P, Guan W, Li L. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat Commun 2021; 12:3573. [PMID: 34117223 PMCID: PMC8196059 DOI: 10.1038/s41467-021-23428-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
O-GalNAc glycans (or mucin O-glycans) play pivotal roles in diverse biological and pathological processes, including tumor growth and progression. Structurally defined O-GalNAc glycans are essential for functional studies but synthetic challenges and their inherent structural diversity and complexity have limited access to these compounds. Herein, we report an efficient and robust chemoenzymatic modular assembly (CEMA) strategy to construct structurally diverse O-GalNAc glycans. The key to this strategy is the convergent assembly of O-GalNAc cores 1-4 and 6 from three chemical building blocks, followed by enzymatic diversification of the cores by 13 well-tailored enzyme modules. A total of 83 O-GalNAc glycans presenting various natural glycan epitopes are obtained and used to generate a unique synthetic mucin O-glycan microarray. Binding specificities of glycan-binding proteins (GBPs) including plant lectins and selected anti-glycan antibodies towards these O-GalNAc glycans are revealed by this microarray, promoting their applicability in functional O-glycomics. Serum samples from colorectal cancer patients and healthy controls are assayed using the array reveal higher bindings towards less common cores 3, 4, and 6 than abundant cores 1 and 2, providing insights into O-GalNAc glycan structure-activity relationships.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China
| | | | - Varma Saikam
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China.
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China.
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Ni Z, Wu J, Li Z, Yuan L, Wang Y, Chen X, Yao J. Enhanced bioproduction of fucosylated oligosaccharide 3-fucosyllactose in engineered Escherichia coli with an improved de novo pathway. Biosci Biotechnol Biochem 2021; 85:1772-1781. [PMID: 33904902 DOI: 10.1093/bbb/zbab074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023]
Abstract
3-fucosyllactose (3-FL) and 2'-fucosyllactose (2'-FL), are two important fucosylated oligosaccharides in human milk. Extensive studies on 2'-FL enabled its official approval for use in infant formula. However, development of 3-FL has been somewhat sluggish due to its low content in human milk and poor yield in enlarged production. Here, an α-1,3-fucosyltransferase mutant was introduced into an engineered Escherichia coli (E. coli) capable of producing GDP-L-fucose, leading to a promising 3-FL titer in a 5.0-L bioreactor. To increase the availability of cofactors (NADPH and GTP) for optimized 3-FL production, zwf, pntAB, and gsk genes were successively overexpressed, finally resulting in a higher 3-FL level with a titer of 35.72 g/L and a yield of 0.82 mol 3-FL/mol lactose. Unexpectedly, the deletion of pfkA gene led to a much lower performance of 3-FL production than the control strain. Still, our strategy achieved the highest 3-FL level in E. coli to date.
Collapse
Affiliation(s)
- Zhijian Ni
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.,Science Island Branch of Graduate School , University of Science & Technology of China, Hefei, P. R. China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.,Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, P. R. China.,Wuhan Zhongke Optics Valley Green Biotechnology Co. Ltd., Wuhan, China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.,Science Island Branch of Graduate School , University of Science & Technology of China, Hefei, P. R. China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yu Wang
- Wuhan Zhongke Optics Valley Green Biotechnology Co. Ltd., Wuhan, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.,Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, P. R. China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.,Science Island Branch of Graduate School , University of Science & Technology of China, Hefei, P. R. China
| |
Collapse
|
17
|
Chen C, Wang S, Gadi MR, Zhu H, Liu F, Liu CC, Li L, Wang F, Ling P, Cao H. Enzymatic modular synthesis and microarray assay of poly-N-acetyllactosamine derivatives. Chem Commun (Camb) 2020; 56:7549-7552. [PMID: 32579622 DOI: 10.1039/d0cc03268a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile enzymatic modular assembly strategy for the preparative-scale synthesis of poly-N-acetyllactosamine (poly-LacNAc) glycans with varied lengths and designed sialylation and/or fucosylation patterns is described. These glycans were printed as a microarray to investigate their interactions with a panel of glycan binding proteins (GBPs). Binding affinities revealed that the avidity of GBPs could be largely affected by the length and the patterns of sialylation and fucosylation.
Collapse
Affiliation(s)
- Congcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang HH, Fang JL, Wang HK, Sun CY, Tsai TW, Huang YT, Kuo CY, Wang YJ, Liao CC, Yu CC. Substrate Characterization of Bacteroides fragilis α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chih-Yuan Sun
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Cheng-Yu Kuo
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Jyun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Chun Liao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
19
|
Weinborn V, Li Y, Shah IM, Yu H, Dallas DC, German JB, Mills DA, Chen X, Barile D. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int Dairy J 2019; 102. [PMID: 32089591 DOI: 10.1016/j.idairyj.2019.104583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of mothers' milk is associated with reduced incidence and severity of enteric infections, leading to reduced morbidity in breastfed infants. Fucosylated and sialylated human milk oligosaccharides (HMO) are important for both direct antimicrobial action - likely via a decoy effect - and indirect antimicrobial action through commensal growth enhancement. Bovine milk oligosaccharides (BMO) are a potential source of HMO-mimics as BMO resemble HMO; however, they have simpler and less fucosylated structures. BMO isolated at large scales from bovine whey permeate were modified by the addition of fucose and/or sialic acid to generate HMO-like glycans using high-yield and cost-effective one-pot multienzyme approaches. Quadrupole time-of-flight LC/MS analysis revealed that 22 oligosaccharides were synthesized and 9 had identical composition to known HMO. Preliminary anti-adherence activity assays indicated that fucosylated BMO decreased the uptake of enterohemorrhagic Escherichia coli O157:H7 by human intestinal epithelial Caco-2 cells more effectively than native BMO.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
20
|
Tsai TW, Fang JL, Liang CY, Wang CJ, Huang YT, Wang YJ, Li JY, Yu CC. Exploring the Synthetic Application of Helicobacter pylori α1,3/4-Fucosyltransferase FucTIII toward the Syntheses of Fucosylated Human Milk Glycans and Lewis Antigens. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Choi YH, Park BS, Seo JH, Kim BG. Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and β-galactosidase modification. Biotechnol Bioeng 2019; 116:3324-3332. [PMID: 31478191 DOI: 10.1002/bit.27160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
Abstract
3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2'-fucosyllactose (2'-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2'-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2'-FL, and lower digestibility of 3-FL than 2'-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km . We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L-fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D-lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L-1 ·hr-1 and the specific 3-FL yield of 0.5 g/g dry cell weight.
Collapse
Affiliation(s)
- Yun Hee Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Bum Seok Park
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Byung-Gee Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 2019; 37:667-697. [DOI: 10.1016/j.biotechadv.2019.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
|
23
|
Bai J, Wu Z, Sugiarto G, Gadi MR, Yu H, Li Y, Xiao C, Ngo A, Zhao B, Chen X, Guan W. Biochemical characterization of Helicobacter pylori α1-3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res 2019; 480:1-6. [PMID: 31132553 DOI: 10.1016/j.carres.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Fucosylated human milk oligosaccharides (HMOs) have important biological functions. Enzymatic synthesis of such compounds requires robust fucosyltransferases. A C-terminal 66-amino acid truncated version of Helicobacter pylori α1-3-fucosyltransferase (Hp3FT) is a good candidate. Hp3FT was biochemically characterized to identify optimal conditions for enzymatic synthesis of fucosides. While N-acetyllactosamine (LacNAc) and lactose were both suitable acceptors, the former is preferred. At a low guanosine 5'-diphospho-β-L-fucose (GDP-Fuc) to acceptor ratio, Hp3FT selectively fucosylated LacNAc. Based on these enzymatic characteristics, diverse fucosylated HMOs, including 3-fucosyllactose (3-FL), lacto-N-fucopentaose (LNFP) III, lacto-N-neofucopentaose (LNnFP) V, lacto-N-neodifucohexaose (LNnDFH) II, difuco- and trifuco-para-lacto-N-neohexaose (DF-paraLNnH and TF-para-LNnH), were synthesized enzymatically by varying the ratio of the donor and acceptor as well as controlling the order of multiple glycosyltransferase-catalyzed reactions.
Collapse
Affiliation(s)
- Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhigang Wu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Cong Xiao
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Alice Ngo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
24
|
|
25
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
26
|
Yu J, Shin J, Park M, Seydametova E, Jung SM, Seo JH, Kweon DH. Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli. Metab Eng 2018; 48:269-278. [DOI: 10.1016/j.ymben.2018.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/12/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
|
27
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Yan Zhang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Tian Gao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Naazneen Khan
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Ajit Varki
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Fengshan Wang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Hongzhi Cao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
28
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018; 57:9003-9007. [PMID: 29802667 DOI: 10.1002/anie.201804373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Indexed: 12/27/2022]
Abstract
O-Mannose glycans account up to 30 % of total O-glycans in the brain. Previous synthesis and functional studies have only focused on the core M3 O-mannose glycans of α-dystroglycan, which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 core M1 and core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of five judiciously designed core structures, and the diversity-oriented modification of the core structures with three enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed four steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies, and brain proteins were also explored by using a printed O-mannose glycan array.
Collapse
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Yan Zhang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Tian Gao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
29
|
Wang S, Zhang Q, Chen C, Guo Y, Gadi MR, Yu J, Westerlind U, Liu Y, Cao X, Wang PG, Li L. Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans. Angew Chem Int Ed Engl 2018; 57:9268-9273. [PMID: 29732660 DOI: 10.1002/anie.201803536] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 02/01/2023]
Abstract
O Mannosylation is a vital protein modification involved in brain and muscle development whereas the biological relevance of O-mannosyl glycans has remained largely unknown owing to the lack of structurally defined glycoforms. An efficient scaffold synthesis/enzymatic extension (SSEE) strategy was developed to prepare such structures by combining gram-scale convergent chemical syntheses of three scaffolds and strictly controlled sequential enzymatic extension catalyzed by glycosyltransferases. In total, 45 O-mannosyl glycans were obtained, covering the majority of identified mammalian structures. Subsequent glycan microarray analysis revealed fine specificities of glycan-binding proteins and specific antisera.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Qing Zhang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - CongCong Chen
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Yuxi Guo
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Yunpeng Liu
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuefeng Cao
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Peng G Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Lei Li
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
30
|
Wang S, Zhang Q, Chen C, Guo Y, Gadi MR, Yu J, Westerlind U, Liu Y, Cao X, Wang PG, Li L. Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Qing Zhang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - CongCong Chen
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Yuxi Guo
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 901 87 Umeå Sweden
| | - Yunpeng Liu
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Xuefeng Cao
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Peng G. Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Lei Li
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| |
Collapse
|
31
|
Yu H, Li Y, Wu Z, Li L, Zeng J, Zhao C, Wu Y, Tasnima N, Wang J, Liu H, Gadi MR, Guan W, Wang PG, Chen X. H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem Commun (Camb) 2018; 53:11012-11015. [PMID: 28936496 DOI: 10.1039/c7cc05403c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helicobacter pylori α1-3/4-fucosyltransferase (Hp3/4FT) was expressed in Escherichia coli at a level of 30 mg L-1 culture and used as a diverse catalyst in a one-pot multienzyme (OPME) system for high-yield production of l-fucose-containing carbohydrates including Lewis antigens such as Lewis a, b, and x, O-sulfated Lewis x, and sialyl Lewis x and human milk fucosides such as 3-fucosyllactose (3-FL), lacto-N-fucopentaose (LNFP) III, and lacto-N-difuco-hexaose (LNDFH) II and III. Noticeably, while difucosylation of tetrasaccharides was readily achieved using an excess amount of donor, the synthesis of LNFP III was achieved by Hp3/4FT-catalyzed selective fucosylation of the N-acetyllactosamine (LacNAc) component in lacto-N-neotetraose (LNnT).
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang D, Yang K, Liu J, Xu Y, Wang Y, Wang R, Liu B, Feng L. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng 2017; 41:23-38. [DOI: 10.1016/j.ymben.2017.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/14/2017] [Accepted: 03/08/2017] [Indexed: 01/20/2023]
|
33
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
34
|
Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 2016; 235:61-83. [DOI: 10.1016/j.jbiotec.2016.03.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
|
35
|
Xiao Z, Guo Y, Liu Y, Li L, Zhang Q, Wen L, Wang X, Kondengaden SM, Wu Z, Zhou J, Cao X, Li X, Ma C, Wang PG. Chemoenzymatic Synthesis of a Library of Human Milk Oligosaccharides. J Org Chem 2016; 81:5851-65. [PMID: 27305319 PMCID: PMC5953189 DOI: 10.1021/acs.joc.6b00478] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) are a family of diverse unconjugated glycans that exist in human milk as one of the major components. Characterization, quantification, and biofunctional studies of HMOs remain a great challenge due to their diversity and complexity. The accessibility of a homogeneous HMO library is essential to solve these issues which have beset academia for several decades. In this study, an efficient chemoenzymatic strategy, namely core synthesis/enzymatic extension (CSEE), for rapid production of diverse HMOs was reported. On the basis of 3 versatile building blocks, 3 core structures were chemically synthesized via consistent use of oligosaccharyl thioether and oligosaccharyl bromide as glycosylation donors in a convergent fragment coupling strategy. Each of these core structures was then extended to up to 11 HMOs by 4 robust glycosyltransferases. A library of 31 HMOs were chemoenzymatically synthesized and characterized by MS and NMR. CSEE indeed provides a practical approach to harvest structurally defined HMOs for various applications.
Collapse
Affiliation(s)
| | | | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qing Zhang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xuan Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shukkoor Muhammed Kondengaden
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Zhou
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xuefeng Cao
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xu Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
36
|
Zhao C, Wu Y, Yu H, Shah IM, Li Y, Zeng J, Liu B, Mills DA, Chen X. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongates α1-2-fucosyltransferase. Chem Commun (Camb) 2016; 52:3899-902. [PMID: 26864394 PMCID: PMC4775349 DOI: 10.1039/c5cc10646j] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel α1-2-fucosyltransferase from Thermosynechococcus elongatus BP-1 (Te2FT) with high fucosyltransferase activity and low donor hydrolysis activity was discovered and characterized. It was used in an efficient one-pot multienzyme (OPME) fucosylation system for the high-yield synthesis of human blood group H antigens containing β1-3-linked galactosides and an important human milk oligosaccharide (HMOS) lacto-N-fucopentaose I (LNFP I) on preparative and gram scales. LNFP I was shown to be selectively consumed by Bifidobacterium longum subsp. infantis but not Bifidobacterium animalis subsp. lactis and is a potential prebiotic.
Collapse
Affiliation(s)
- Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Yijing Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Ishita M. Shah
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - David A. Mills
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| |
Collapse
|
37
|
Choi YH, Kim JH, Park BS, Kim BG. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase fromHelicobacter pylorito enhance its catalytic efficiency. Biotechnol Bioeng 2016; 113:1666-75. [DOI: 10.1002/bit.25944] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Yun Hee Choi
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Institute of Molecular Biology and Genetics; Seoul National University; Seoul South Korea
| | - Jong Hoon Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Institute of Molecular Biology and Genetics; Seoul National University; Seoul South Korea
| | - Bum Seok Park
- School of Chemical and Biological Engineering; Seoul National University; Seoul South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Institute of Molecular Biology and Genetics; Seoul National University; Seoul South Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul South Korea
- Institute of Bioengineering; Seoul National University; 151-742 Seoul South Korea
| |
Collapse
|
38
|
Li L, Liu Y, Ma C, Qu J, Calderon AD, Wu B, Wei N, Wang X, Guo Y, Xiao Z, Song J, Sugiarto G, Li Y, Yu H, Chen X, Wang PG. Efficient Chemoenzymatic Synthesis of an N-glycan Isomer Library. Chem Sci 2015; 6:5652-5661. [PMID: 26417422 PMCID: PMC4583208 DOI: 10.1039/c5sc02025e] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantification, characterization and biofunctional studies of N-glycans on proteins remain challenging tasks due to complexity, diversity and low abundance of these glycans. The availability of structurally defined N-glycans (especially isomers) libraries is essential to help on solving these tasks. We reported herein an efficient chemoenzymatic strategy, namely Core Synthesis/Enzymatic Extension (CSEE), for rapid production of diverse N-glycans. Starting with 5 chemically prepared building blocks, 8 N-glycan core structures containing one or two terminal N-acetyl-D-glucosamine (GlcNAc) residue(s) were chemically synthesized via consistent use of oligosaccharyl thioethers as glycosylation donors in the convergent fragment coupling strategy. Each of these core structures was then extended to 5 to 15 N-glycan sequences by enzymatic reactions catalyzed by 4 robust glycosyltransferases. Success in synthesizing N-glycans with Neu5Gc and core-fucosylation further expanded the ability of enzymatic extension. High performance liquid chromatography with an amide column enabled rapid and efficient purification (>98% purity) of N-glycans in milligram scales. A total of 73 N-glycans (63 isomers) were successfully prepared and characterized by MS2 and NMR. The CSEE strategy provides a practical approach for "mass production" of structurally defined N-glycans, which are important standards and probes for Glycoscience.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Jingyao Qu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Angie D Calderon
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Baolin Wu
- Chemily, LLC, 58 Edgewood Ave NE, Atlanta, GA 30303
| | - Na Wei
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Xuan Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Zhongying Xiao
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Go Sugiarto
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| |
Collapse
|
39
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
40
|
Seelhorst K, Piernitzki T, Lunau N, Meier C, Hahn U. Synthesis and analysis of potential α1,3-fucosyltransferase inhibitors. Bioorg Med Chem 2014; 22:6430-7. [PMID: 25438767 DOI: 10.1016/j.bmc.2014.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Fucosyltransferases catalyze the transfer of l-fucose from an activated GDP-β-l-fucose to various acceptor molecules such as N-acetyllactosamine. Frequently fucosylation is the final step within the glycosylation machinery, and the resulting glycans are involved in various cellular processes such as cell-cell recognition, adhesion and inflammation or tumor metastasis. The selective blocking of these interactions would thus be a potential promising therapeutic strategy. The syntheses and analyses of various potential α1,3-fucosyltransferase inhibitors derived from GDP-β-l-fucose containing a triazole linker unit is summarized and the observed inhibitory effect was compared with that of small molecules such as GDP or fucose. To examine their specificity and selectivity, all inhibitors were tested with human α1,3-fucosyltransferase IX and Helicobacter pylori α1,3-fucosyltransferase, which is to date the only α1,3-fucosyltransferase with a known high resolution structure. Specific inhibitors which inhibit either H. pylori α1,3-fucosyltransferase or human fucosyltransferase IX with Ki values in the micromolar range were identified. In that regard, acetylated GDP-galactose derivative Ac-3 turned out to inhibit H. pylori α1,3-fucosyltransferase but not human fucosyltransferase IX, whereas GDP-6-amino-β-l-fucose 17 showed an appreciably better inhibitory effect on fucosyltransferase IX activity than on that of H. pylori fucosyltransferase.
Collapse
Affiliation(s)
- Katrin Seelhorst
- Biochemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Tomas Piernitzki
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Nathalie Lunau
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Ulrich Hahn
- Biochemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
41
|
Scheibe C, Wedepohl S, Riese SB, Dernedde J, Seitz O. Carbohydrate-PNA and aptamer-PNA conjugates for the spatial screening of lectins and lectin assemblies. Chembiochem 2013; 14:236-50. [PMID: 23292704 DOI: 10.1002/cbic.201200618] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 11/06/2022]
Abstract
Nucleic acid architectures offer intriguing opportunities for the interrogation of structural properties of protein receptors. In this study, we performed a DNA-programmed spatial screening to characterize two functionally distinct receptor systems: 1) structurally well-defined Ricinus communis agglutinin (RCA(120)), and 2) rather ill-defined assemblies of L-selectin on nanoparticles and leukocytes. A robust synthesis route that allowed the attachment both of carbohydrate ligands-such as N-acetyllactosamine (LacNAc), sialyl-Lewis-X (sLe(X)), and mannose-and of a DNA aptamer to PNAs was developed. A systematically assembled series of different PNA-DNA complexes served as multivalent scaffolds to control the spatial alignments of appended lectin ligands. The spatial screening of the binding sites of RCA(120) was in agreement with the crystal structure analysis. The study revealed that two appropriately presented LacNAc ligands suffice to provide unprecedented RCA(120) affinity (K(D) = 4 μM). In addition, a potential secondary binding site was identified. Less dramatic binding enhancements were obtained when the more flexible L-selectin assemblies were probed. This study involved the bivalent display both of the weak-affinity sLe(X) ligand and of a high-affinity DNA aptamer. Bivalent presentation led to rather modest (sixfold or less) enhancements of binding when the self-assemblies were targeted against L-selectin on gold nanoparticles. Spatial screening of L-selectin on the surfaces of leukocytes showed higher affinity enhancements (25-fold). This and the distance-activity relationships indicated that leukocytes permit dense clustering of L-selectin.
Collapse
Affiliation(s)
- Christian Scheibe
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Zheng T, Jiang H, Gros M, del Amo DS, Sundaram S, Lauvau G, Marlow F, Liu Y, Stanley P, Wu P. Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew Chem Int Ed Engl 2011; 50:4113-8. [PMID: 21472942 DOI: 10.1002/anie.201100265] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Indexed: 01/03/2023]
Affiliation(s)
- Tianqing Zheng
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng T, Jiang H, Gros M, Soriano del Amo D, Sundaram S, Lauvau G, Marlow F, Liu Y, Stanley P, Wu P. Tracking N-Acetyllactosamine on Cell-Surface Glycans In Vivo. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Naruchi K, Nishimura SI. Membrane-Bound Stable Glycosyltransferases: Highly Oriented Protein Immobilization by a C-Terminal Cationic Amphipathic Peptide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Naruchi K, Nishimura SI. Membrane-Bound Stable Glycosyltransferases: Highly Oriented Protein Immobilization by a C-Terminal Cationic Amphipathic Peptide. Angew Chem Int Ed Engl 2011; 50:1328-31. [DOI: 10.1002/anie.201007153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Indexed: 11/05/2022]
|
46
|
Sugiarto G, Lau K, Yu H, Vuong S, Thon V, Li Y, Huang S, Chen X. Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 2010; 21:387-96. [PMID: 20978012 DOI: 10.1093/glycob/cwq172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami™ B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.
Collapse
Affiliation(s)
- Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang L, Lau K, Cheng J, Yu H, Li Y, Sugiarto G, Huang S, Ding L, Thon V, Wang PG, Chen X. Helicobacter hepaticus Hh0072 gene encodes a novel alpha1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 2010; 20:1077-88. [PMID: 20466652 DOI: 10.1093/glycob/cwq068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lewis x (Le(x)) and sialyl Lewis x (SLe(x))-containing glycans play important roles in numerous physiological and pathological processes. The key enzyme for the final step formation of these Lewis antigens is alpha1-3-fucosyltransferase. Here we report molecular cloning and functional expression of a novel Helicobacter hepaticus alpha1-3-fucosyltransferase (HhFT1) which shows activity towards both non-sialylated and sialylated Type II oligosaccharide acceptor substrates. It is a promising catalyst for enzymatic and chemoenzymatic synthesis of Le(x), sialyl Le(x) and their derivatives. Unlike all other alpha1-3/4-fucosyltransferases characterized so far which belong to Carbohydrate Active Enzyme (CAZy, http://www.cazy.org/) glycosyltransferase family GT10, the HhFT1 shares protein sequence homology with alpha1-2-fucosyltransferases and belongs to CAZy glycosyltransferase family GT11. The HhFT1 is thus the first alpha1-3-fucosyltransferase identified in the GT11 family.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ito T, Sadamoto R, Naruchi K, Togame H, Takemoto H, Kondo H, Nishimura SI. Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A. Biochemistry 2010; 49:2604-14. [PMID: 20178374 DOI: 10.1021/bi100094g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant glycosyltransferases are potential biocatalysts for the construction of a compound library of oligosaccharides, glycosphingolipids, glycopeptides, and various artificial glycoconjugates on the basis of combined chemical and enzymatic synthetic procedures. The structurally defined glycan-related compound library is a key resource both in the basic studies of their functional roles in various biological processes and in the discovery research of new diagnostic biomarkers and therapeutic reagents. Therefore, it is clear that the immobilization of extremely unstable membrane-bound glycosyltransferases on some suitable supporting materials should enhance the operational stability and activity of recombinant enzymes and makes facile separation of products and recycling use of enzymes possible. Until now, however, it seems that no standardized protocol preventing a significant loss of enzyme activity is available due to the lack of a general method of site-selective anchoring between glycosyltransferases and scaffold materials through a stable covalent bond. Here we communicate a versatile and efficient method for the immobilization of recombinant glycosyltransferases onto commercially available solid supports by means of transpeptidase reaction by Staphylococcus aureus sortase A. This protocol allowed for the first time highly specific conjugation at the designated C-terminal signal peptide moiety of recombinant human beta1,4-galactosyltransferase or recombinant Helicobacter pylori alpha1,3-fucosyltransferase with simple aliphatic amino groups displayed on the surface of solid materials. Site-specifically immobilized enzymes exhibited the desired sugar transfer activity, an improved stability, and a practical reusability required for rapid and large-scale synthesis of glycoconjugates. Considering that most mammalian enzymes responsible for the posttranslational modifications, including the protein kinase family, as well as glycosyltransferases are unstable and highly oriented membrane proteins, the merit of our strategy based on "site-specific" transpeptidation is evident because the reaction proceeds only at an engineered C-terminus without any conformational influence around the active sites of both enzymes as well as heptad repeats of rHFucT required to maintain native secondary and quaternary structures during the dimerization on cell surfaces.
Collapse
Affiliation(s)
- Takaomi Ito
- Graduate School of Life Science and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Pohl MA, Romero-Gallo J, Guruge JL, Tse DB, Gordon JI, Blaser MJ. Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice. ACTA ACUST UNITED AC 2009; 206:3061-72. [PMID: 20008521 PMCID: PMC2806470 DOI: 10.1084/jem.20090683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Variation of surface antigen expression is a mechanism used by microbes to adapt to and persist within their host habitats. Helicobacter pylori, a persistent bacterial colonizer of the human stomach, can alter its surface Lewis (Le) antigen expression. We examined H. pylori colonization in mice to test the hypothesis that host phenotype selects for H. pylori (Le) phenotypes. When wild-type and Leb-expressing transgenic FVB/N mice were challenged with H. pylori strain HP1, expressing Lex and Ley, we found that bacterial populations recovered after 8 mo from Leb-transgenic, but not wild-type, mice expressed Leb. Changes in Le phenotype were linked to variation of a putative galactosyltransferase gene (β-(1,3)galT); mutagenesis and complementation revealed its essential role in type I antigen expression. These studies indicate that H. pylori evolves to resemble the host's gastric Le phenotype, and reveal a bacterial genetic locus that is subject to host-driven selection pressure.
Collapse
Affiliation(s)
- Mary Ann Pohl
- Department of Medicine, New York University School of Medicine and Veteran's Administration Medical Center, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc Natl Acad Sci U S A 2009; 106:16096-101. [PMID: 19805264 DOI: 10.1073/pnas.0908248106] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lewis X (Le(x))-containing glycans play important roles in numerous cellular processes. However, the absence of robust, facile, and cost-effective methods for the synthesis of Le(x) and its structurally related analogs has severely hampered the elucidation of the specific functions of these glycan epitopes. Here we demonstrate that chemically defined guanidine 5'-diphosphate-beta-l-fucose (GDP-fucose), the universal fucosyl donor, the Le(x) trisaccharide, and their C-5 substituted derivatives can be synthesized on preparative scales, using a chemoenzymatic approach. This method exploits l-fucokinase/GDP-fucose pyrophosphorylase (FKP), a bifunctional enzyme isolated from Bacteroides fragilis 9343, which converts l-fucose into GDP-fucose via a fucose-1-phosphate (Fuc-1-P) intermediate. Combining the activities of FKP and a Helicobacter pylori alpha1,3 fucosyltransferase, we prepared a library of Le(x) trisaccharide glycans bearing a wide variety of functional groups at the fucose C-5 position. These neoglycoconjugates will be invaluable tools for studying Le(x)-mediated biological processes.
Collapse
|