1
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
4
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Shim SS, Berglund K, Yu SP. Lithium: An Old Drug for New Therapeutic Strategy for Alzheimer's Disease and Related Dementia. NEURODEGENER DIS 2023; 23:1-12. [PMID: 37666228 DOI: 10.1159/000533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Although Alzheimer's disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. SUMMARY Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. KEY MESSAGES Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.
Collapse
Affiliation(s)
- Seong Sool Shim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Mental Health Service Line, Department of Veteran's Affair, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Ken Berglund
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Ping Yu
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Choi JE, Carpena NT, Lee JH, Chang SY, Lee MY, Jung JY, Chung WH. Round-window delivery of lithium chloride regenerates cochlear synapses damaged by noise-induced excitotoxic trauma via inhibition of the NMDA receptor in the rat. PLoS One 2023; 18:e0284626. [PMID: 37216352 DOI: 10.1371/journal.pone.0284626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Noise exposure can destroy the synaptic connections between hair cells and auditory nerve fibers without damaging the hair cells, and this synaptic loss could contribute to difficult hearing in noisy environments. In this study, we investigated whether delivering lithium chloride to the round-window can regenerate synaptic loss of cochlea after acoustic overexposure. Our rat animal model of noise-induced cochlear synaptopathy caused about 50% loss of synapses in the cochlear basal region without damaging hair cells. We locally delivered a single treatment of poloxamer 407 (vehicle) containing lithium chloride (either 1 mM or 2 mM) to the round-window niche 24 hours after noise exposure. Controls included animals exposed to noise who received only the vehicle. Auditory brainstem responses were measured 3 days, 1 week, and 2 weeks post-exposure treatment, and cochleas were harvested 1 week and 2 weeks post-exposure treatment for histological analysis. As documented by confocal microscopy of immunostained ribbon synapses, local delivery of 2 mM lithium chloride produced synaptic regeneration coupled with corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response wave 1. Western blot analyses revealed that 2 mM lithium chloride suppressed N-methyl-D-aspartate (NMDA) receptor expression 7 days after noise-exposure. Thus, round-window delivery of lithium chloride using poloxamer 407 reduces cochlear synaptic loss after acoustic overexposure by inhibiting NMDA receptor activity in rat model.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Nathaniel T Carpena
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - So-Young Chang
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Roberta de Souza Mendes Kawamura L, Ferreira Lima Mota I, Santos Vasconcelos A, Renata Mortari M. Challenges in the pharmacological treatment of patients under suspicion of chronic traumatic encephalopathy: A review. Brain Res 2023; 1799:148176. [PMID: 36503890 DOI: 10.1016/j.brainres.2022.148176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is caused by progressive neurodegeneration associated with repetitive head impacts. This disease is more common in professionals who practice contact sports, resulting in a concussion and subconcussive trauma. CTE is characterized by the accumulation of hyperphosphorylated tau protein in neurons, astrocytes, and frontotemporal lobe degeneration. Symptoms are usually nonspecific and overlap with other neurodegenerative diseases, such as Alzheimer's disease and frontotemporal dementia, making it difficult to provide drug treatment for patients with this comorbidity. Therefore, the objective of this article is to present an updated review of the pharmacological treatment of chronic traumatic encephalopathy and its challenges.
Collapse
Affiliation(s)
| | - Isabela Ferreira Lima Mota
- Neuropharmacology Laboratory, Institute of Biological Sciences, Department of Physiological Sciences, University of Brasilia, Brazil
| | | | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Institute of Biological Sciences, Department of Physiological Sciences, University of Brasilia, Brazil
| |
Collapse
|
9
|
Lithium Biological Action Mechanisms after Ischemic Stroke. Life (Basel) 2022; 12:life12111680. [DOI: 10.3390/life12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lithium is a source of great scientific interest because although it has such a simple structure, relatively easy-to-analyze chemistry, and well-established physical properties, the plethora of effects on biological systems—which influence numerous cellular and molecular processes through not entirely explained mechanisms of action—generate a mystery that modern science is still trying to decipher. Lithium has multiple effects on neurotransmitter-mediated receptor signaling, ion transport, signaling cascades, hormonal regulation, circadian rhythm, and gene expression. The biochemical mechanisms of lithium action appear to be multifactorial and interrelated with the functioning of several enzymes, hormones, vitamins, and growth and transformation factors. The widespread and chaotic marketing of lithium salts in potions and mineral waters, always at inadequate concentrations for various diseases, has contributed to the general disillusionment with empirical medical hypotheses about the therapeutic role of lithium. Lithium salts were first used therapeutically in 1850 to relieve the symptoms of gout, rheumatism, and kidney stones. In 1949, Cade was credited with discovering the sedative effect of lithium salts in the state of manic agitation, but frequent cases of intoxication accompanied the therapy. In the 1960s, lithium was shown to prevent manic and also depressive recurrences. This prophylactic effect was first demonstrated in an open-label study using the “mirror” method and was later (after 1970) confirmed by several placebo-controlled double-blind studies. Lithium prophylaxis was similarly effective in bipolar and also unipolar patients. In 1967, the therapeutic value of lithemia was determined, included in the range of 0.5–1.5 mEq/L. Recently, new therapeutic perspectives on lithium are connected with improved neurological outcomes after ischemic stroke. The effects of lithium on the development and maintenance of neuroprotection can be divided into two categories: short-term effects and long-term effects. Unfortunately, the existing studies do not fully explain the lithium biological action mechanisms after ischemic stroke.
Collapse
|
10
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
11
|
Singh A, Kumar T, Velagala VR, Thakre S, Joshi A. The Actions of Lithium on Glaucoma and Other Senile Neurodegenerative Diseases Through GSK-3 Inhibition: A Narrative Review. Cureus 2022; 14:e28265. [PMID: 36158406 PMCID: PMC9491486 DOI: 10.7759/cureus.28265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Glaucoma can be described as a set of progressive optic neuropathies. They cause a gradual, irreversible loss of the field of view, which concludes in complete blindness. Evidence suggests that patients who have glaucoma face a greater risk of suffering from senile dementia. Dementia is a group of conditions that occur in old age individuals. Neurodegeneration is a characteristic pathological feature of dementia, the progression of which causes a decline in cognition, which may be accompanied by memory loss. Severe dementia in old individuals usually presents as Alzheimer’s disease, which significantly contributes to a load of dementia in India. Parkinsonism is another common neurodegenerative disease that is known to occur in the elderly. The WNT (Wingless-related integration site)/β-catenin pathway is a multistep process that is responsible for the regulation of various cellular functions. Lithium can up-regulate this pathway by disrupting Glycogen synthase kinase-3β (GSK-3β). This action of Lithium can effectively counteract neuroinflammation and neurodegeneration. The current use of Lithium remains majorly confined to its use for episodes of mania in bipolar disorder (BD). However, recent literature gives insight into how Lithium can improve the visual field in glaucomatous eyes. Symptomatic improvement after lithium administration is seen as it has neuroprotective actions on the retinal ganglion cells (RGCs). Prolonged lithium use improves axonal regeneration and neuronal survival. Lithium also improves the worsening of symptoms in other dementia-related neurodegenerative diseases like Alzheimer’s and Parkinsonism. The physiological actions of Lithium can be utilized in providing effective, holistic therapy options in pathologically related senile degenerative disorders. Significantly better results can be obtained if Lithium therapy is given in conjunction with the drugs used to manage these disorders.
Collapse
|
12
|
Hung SY, Chung HY, Luo ST, Chu YT, Chen YH, MacDonald IJ, Chien SY, Kotha P, Yang LY, Hwang LL, Dun NJ, Chuang DM, Chen YH. Electroacupuncture improves TBI dysfunction by targeting HDAC overexpression and BDNF-associated Akt/GSK-3β signaling. Front Cell Neurosci 2022; 16:880267. [PMID: 36016833 PMCID: PMC9396337 DOI: 10.3389/fncel.2022.880267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acupuncture or electroacupuncture (EA) appears to be a potential treatment in acute clinical traumatic brain injury (TBI); however, it remains uncertain whether acupuncture affects post-TBI histone deacetylase (HDAC) expression or impacts other biochemical/neurobiological events. Materials and methods We used behavioral testing, Western blot, and immunohistochemistry analysis to evaluate the cellular and molecular effects of EA at LI4 and LI11 in both weight drop-impact acceleration (WD)- and controlled cortical impact (CCI)-induced TBI models. Results Both WD- and CCI-induced TBI caused behavioral dysfunction, increased cortical levels of HDAC1 and HDAC3 isoforms, activated microglia and astrocytes, and decreased cortical levels of BDNF as well as its downstream mediators phosphorylated-Akt and phosphorylated-GSK-3β. Application of EA reversed motor, sensorimotor, and learning/memory deficits. EA also restored overexpression of HDAC1 and HDAC3, and recovered downregulation of BDNF-associated signaling in the cortex of TBI mice. Conclusion The results strongly suggest that acupuncture has multiple benefits against TBI-associated adverse behavioral and biochemical effects and that the underlying mechanisms are likely mediated by targeting HDAC overexpression and aberrant BDNF-associated Akt/GSK-3 signaling.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Iona J. MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- *Correspondence: Yi-Hung Chen,
| |
Collapse
|
13
|
Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nógrádi A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022; 12:biom12081015. [PMID: 35892326 PMCID: PMC9330237 DOI: 10.3390/biom12081015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Nicoletti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Gholam Pajenda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Research Centre for Traumatology of the Austrian Workers, 1200 Vienna, Austria;
- Department for Trauma Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-6-234-2855
| |
Collapse
|
14
|
Sahebkar A, Sathyapalan T, Guest PC, Barreto GE. Identification of difluorinated curcumin molecular targets linked to traumatic brain injury pathophysiology. Biomed Pharmacother 2022; 148:112770. [PMID: 35278853 DOI: 10.1016/j.biopha.2022.112770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 50% of the world population at some point in their lifetime. To date, there are no effective treatments as most of the damage occurs due to secondary effects through a variety of pathophysiological pathways. The phytoceutical curcumin has been traditionally used as a natural remedy for numerous conditions including diabetes, inflammatory diseases, and neurological and neurodegenerative disorders. We have carried out a system pharmacology study to identify potential targets of a difluorinated curcumin analogue (CDF) that overlap with those involved in the pathophysiological mechanisms of TBI. This resulted in identification of 312 targets which are mostly involved in G protein-coupled receptor activity and cellular signalling. These include adrenergic, serotonergic, opioid and cannabinoid receptor families, which have been implicated in regulation of pain, inflammation, mood, learning and cognition pathways. We conclude that further studies should be performed to validate curcumin as a potential novel treatment to ameliorate the effects of TBI.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Paul C Guest
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
15
|
WEI HF, ANCHIPOLOVSKY S, VERA R, LIANG G, CHUANG DM. Potential mechanisms underlying lithium treatment for Alzheimer's disease and COVID-19. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2022; 26:2201-2214. [PMID: 35363371 PMCID: PMC9173589 DOI: 10.26355/eurrev_202203_28369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Disruption of intracellular Ca2+ homeostasis plays an important role as an upstream pathology in Alzheimer's disease (AD), and correction of Ca2+ dysregulation has been increasingly proposed as a target of future effective disease-modified drugs for treating AD. Calcium dysregulation is also an upstream pathology for the COVID-19 virus SARS-CoV-2 infection and replication, leading to host cell damage. Clinically available drugs that can inhibit the disturbed intracellular Ca2+ homeostasis have been repurposed to treat COVID-19 patients. This narrative review aims at exploring the underlying mechanism by which lithium, a first line drug for the treatment of bipolar disorder, inhibits Ca2+ dysregulation and associated downstream pathology in both AD and COVID-19. It is suggested that lithium can be repurposed to treat AD patients, especially those afflicted with COVID-19.
Collapse
Affiliation(s)
- H.-F. WEI
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - S. ANCHIPOLOVSKY
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - R. VERA
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - G. LIANG
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - D.-M. CHUANG
- Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions. Int J Mol Sci 2021; 22:12697. [PMID: 34884513 PMCID: PMC8657487 DOI: 10.3390/ijms222312697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy.
Collapse
Affiliation(s)
| | | | - Alonso Martinez-Canabal
- Cell Biology Department, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, ON M6A 2E1, Canada;
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
17
|
Dudev T, Grauffel C, Lim C. Calcium in Signaling: Its Specificity and Vulnerabilities toward Biogenic and Abiogenic Metal Ions. J Phys Chem B 2021; 125:10419-10431. [PMID: 34515482 DOI: 10.1021/acs.jpcb.1c05154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divalent calcium ion (Ca2+) plays an indispensable role as a second messenger in a myriad of signal transduction processes. Of utmost importance for the faultless functioning of calcium-modulated signaling proteins is their binding selectivity of the native metal cation over rival biogenic/abiogenic metal ion contenders in the intra/extracellular fluids. In this Perspective, we summarize recent findings on the competition between the cognate Ca2+ and other biogenic or abiogenic divalent cations for binding to Ca2+-signaling proteins or organic cofactors. We describe the competition between the two most abundant intracellular biogenic metal ions (Mg2+ and Ca2+) for Ca2+-binding sites in signaling proteins, followed by the rivalry between native Ca2+ and "therapeutic" Li+ as well as "toxic" Pb2+. We delineate the key factors governing the rivalry between the native and non-native cations in proteins and highlight key implications for the biological performance of the respective proteins/organic cofactors.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
18
|
Grauffel C, Weng WH, Dudev T, Lim C. Trinuclear Calcium Site in the C2 Domain of PKCα/γ Is Prone to Lithium Attack. ACS OMEGA 2021; 6:20657-20666. [PMID: 34396011 PMCID: PMC8359144 DOI: 10.1021/acsomega.1c02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 05/10/2023]
Abstract
Lithium (Li+) is the first-line therapy for bipolar disorder and a candidate drug for various diseases such as amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Despite being the captivating subject of many studies, the mechanism of lithium's therapeutic action remains unclear. To date, it has been shown that Li+ competes with Mg2+ and Na+ to normalize the activity of inositol and neurotransmitter-related signaling proteins, respectively. Furthermore, Li+ may co-bind with Mg2+-loaded adenosine or guanosine triphosphate to alter the complex's susceptibility to hydrolysis and mediate cellular signaling. Bipolar disorder patients exhibit abnormally high cytosolic Ca2+ levels and protein kinase C (PKC) hyperactivity that can be downregulated by long-term Li+ treatment. However, the possibility that monovalent Li+ could displace the bulkier divalent Ca2+ and inhibit PKC activity has not been considered. Here, using density functional theory calculations combined with continuum dielectric methods, we show that Li+ may displace the native dication from the positively charged trinuclear site in the C2 domain of cytosolic PKCα/γ. This would affect the membrane-docking ability of cytosolic PKCα/γ and reduce the abnormally high membrane-associated active PKCα/γ levels, thus downregulating the PKC hyperactivity found in bipolar patients.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing
Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Lu F, Cao J, Su Q, Zhao Q, Wang H, Guan W, Zhou W. Recent Advances in Fluorescence Imaging of Traumatic Brain Injury in Animal Models. Front Mol Biosci 2021; 8:660993. [PMID: 34124151 PMCID: PMC8194861 DOI: 10.3389/fmolb.2021.660993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the top three specific neurological disorders, requiring reliable, rapid, and sensitive imaging of brain vessels, tissues, and cells for effective diagnosis and treatment. Although the use of medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) for the TBI detection is well established, the exploration of novel TBI imaging techniques is of great interest. In this review, recent advances in fluorescence imaging for the diagnosis and evaluation of TBI are summarized and discussed in three sections: imaging of cerebral vessels, imaging of brain tissues and cells, and imaging of TBI-related biomarkers. Design strategies for probes and labels used in TBI fluorescence imaging are also described in detail to inspire broader applications. Moreover, the multimodal TBI imaging platforms combining MRI and fluorescence imaging are also briefly introduced. It is hoped that this review will promote more studies on TBI fluorescence imaging, and enable its use for clinical diagnosis as early as possible, helping TBI patients get better treatment and rehabilitation.
Collapse
Affiliation(s)
- Fei Lu
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jiating Cao
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Qinglun Su
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Huihai Wang
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
20
|
|
21
|
Yazdani Nyaki H, Mahmoodi NO, Pasandideh Nadamani M. Design and synthesis of a new tripod-chromogenic sensor based on a s-triazine and thiazolidine-2,4-dione ring (TCST) for naked-eye detection of Li +. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel tripod-chromogenic sensor based on a s-triazine and thiazolidine-2,4-dione ring (TCST) was designed, synthesized, and applied as a colorimetric probe in aqueous solutions of dimethyl sulfoxide (DMSO). The probe showed a highly sensitive and selective colorimetric sensor for naked-eye detection of Li+, changing from colourless to yellow. The probe’s detection limit toward Li+ was found to be 1.2 μM. The result of the Job plot analysis showed 1:1 stoichiometry for the interaction between the tripod chemosensor and Li+ and this result was confirmed by 1H NMR titration experiments. The probe can also be used for biological activities depending on the results of microbial tests.
Collapse
Affiliation(s)
- Hadiseh Yazdani Nyaki
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Nosrat O. Mahmoodi
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Meysam Pasandideh Nadamani
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
22
|
Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021; 9:biomedicines9050473. [PMID: 33925885 PMCID: PMC8146329 DOI: 10.3390/biomedicines9050473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex, including several pathways and gene expression, such as neurotransmitter and receptors, circadian modulation, ion transport, and signal transduction processes. Recent studies have shown that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity or brain damages are other actions of lithium. Moreover, recent findings have investigated the role of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been the main common choice for the treatment of bipolar disorder. Due to the possible side effects gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their possible benefit properties through the WNT/β-catenin pathway.
Collapse
|
23
|
Pierre K, Dyson K, Dagra A, Williams E, Porche K, Lucke-Wold B. Chronic Traumatic Encephalopathy: Update on Current Clinical Diagnosis and Management. Biomedicines 2021; 9:biomedicines9040415. [PMID: 33921385 PMCID: PMC8069746 DOI: 10.3390/biomedicines9040415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy is a disease afflicting individuals exposed to repetitive neurotrauma. Unfortunately, diagnosis is made by postmortem pathologic analysis, and treatment options are primarily symptomatic. In this clinical update, we review clinical and pathologic diagnostic criteria and recommended symptomatic treatments. We also review animal models and recent discoveries from pre-clinical studies. Furthermore, we highlight the recent advances in diagnosis using diffusor tensor imaging, functional magnetic resonance imaging, positron emission tomography, and the fluid biomarkers t-tau, sTREM2, CCL11, NFL, and GFAP. We also provide an update on emerging pharmaceutical treatments, including immunotherapies and those that target tau acetylation, tau phosphorylation, and inflammation. Lastly, we highlight the current literature gaps and guide future directions to further improve clinical diagnosis and management of patients suffering from this condition.
Collapse
Affiliation(s)
- Kevin Pierre
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Kyle Dyson
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Abeer Dagra
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Eric Williams
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
- Correspondence:
| |
Collapse
|
24
|
Vallée A, Vallée JN, Lecarpentier Y. Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 2021; 11:204. [PMID: 33828076 PMCID: PMC8027628 DOI: 10.1038/s41398-021-01329-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized b-y recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and the glutamatergic pathway play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for a new treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective clinical trials could focus on lithium and its different and multiple interactions in OCD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150, Suresnes, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne, 80054, Amiens, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100, Meaux, France
| |
Collapse
|
25
|
Taler M, Aronovich R, Henry Hornfeld S, Dar S, Sasson E, Weizman A, Hochman E. Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord 2021; 23:55-65. [PMID: 32558151 DOI: 10.1111/bdi.12962] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recent evidence has associated mood disorders with blood-brain barrier (BBB)/ neurovascular unit (NVU) dysfunction, and reduction in blood vessels coverage by the water channel aquaporin-4 (AQP4) immunoreactive astrocytes. Lithium is an established treatment for mood disorders, yet, its mechanism of action is partially understood. We investigated the effects of lithium on BBB integrity and NVU-related protein expression in chronic mild stress (CMS) rat model of depressive-like behavior. METHODS Male Wistar rats were exposed for 5 weeks to unpredictable mild stressors with daily co-administration of lithium chloride to half of the stressed and unstressed groups. Sucrose preference and open field tests were conducted to validate the depressive-like phenotype, and dynamic contrast-enhanced MRI analysis was utilized to assess BBB integrity in brain regions relevant to the pathophysiology of depression. Hippocampal AQP4 and claudin-5 expression were studied using immunofluorescence, western blot, and enzyme-linked immunosorbent assays. RESULTS Lithium administration to the stressed rats prevented the reductions in sucrose preference and distance traveled in the open field, and normalized the stress-induced hippocampal BBB hyperpermeability, whereas lithium administration to the unstressed rats increased hippocampal BBB permeability. Additionally, lithium treatment attenuated the decrease in hippocampal AQP4 to glial fibrillary acidic protein immunoreactivity ratio in the stressed rats and upregulated hippocampal claudin-5 and BDNF proteins expression. CONCLUSIONS Our findings suggest that lithium administration in a rat CMS model of depressive-like behavior is associated with attenuation of stressed-induced hippocampal BBB/NVU disruption. These protective effects may be relevant to the mode of action of lithium in depression.
Collapse
Affiliation(s)
- Michal Taler
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Ramona Aronovich
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Shay Henry Hornfeld
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Shira Dar
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | | | - Abraham Weizman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel.,Geha Mental Health Center, Petah Tikva, Israel
| | - Eldar Hochman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel.,Geha Mental Health Center, Petah Tikva, Israel
| |
Collapse
|
26
|
Ala M, Mohammad Jafari R, Nematian H, Ganjedanesh MR, Naderi A, Akbariani M, Sanatkar M, Satarian L, Aghsaei Fard M, Dehpour AR. Neuroprotective Effect of Intravitreal Single-Dose Lithium Chloride after Optic Nerve Injury in Rats. Curr Eye Res 2020; 46:558-567. [PMID: 32885675 DOI: 10.1080/02713683.2020.1808999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Lithium is an old drug to control bipolar disorder. Moreover, it presents neuroprotective effects and supports neuronal plasticity. The aim of this study was to evaluate neuroprotective effect of intravitreal lithium after optic nerve injury. METHODS Three dosages of lithium chloride, including 2 pmol, 200 pmol, and 2 nmol, were injected intravitreally after rat optic nerve injury. Proteins expression were assessed by western blot. Nitric oxide (NO) metabolites were measured by Griess test. Visual evoked potential (VEP) and optical coherence tomography (OCT) measurement were performed after trauma induction, in addition to H & E and TUJ1 staining of ganglion cells. RESULTS Western blot depicted lithium can significantly increase antiapoptotic Bcl-2 protein level and reduce p-ERK, Toll-like receptor 4 (TLR4) and proapoptotic proteins such as Bax level in retinal tissue and Griess test reflected that NO metabolites level decreased in lithium treated eyes (P < .05). While, OCT showed no significant changes (P = .36 and P = .43 comparing treated group with trauma) in retinal ganglion cell layer thickness after lithium injection, VEP P2 wave amplitude increased significantly (P < .01) in lithium-treated eyes and its latency reduced (P < .05 for N1 wave and P < .01 for P2 wave). Tuj1 antibody-labeled retinal ganglion cells analyzing showed that the number of retinal ganglion cells were significantly higher in lithium treated eyes compared to untreated eyes with optic nerve injury. CONCLUSION It seems intravitreally lithium has optic nerve neuroprotective effects by various mechanisms like overexpression of antiapoptotic proteins, suppressing proinflammatory molecules and proapoptotic factors, and decreasing nitric oxide.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Nematian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganjedanesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Naderi
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mostafa Akbariani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sanatkar
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Leila Satarian
- Eye Group, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoud Aghsaei Fard
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Breen PW, Krishnan V. Recent Preclinical Insights Into the Treatment of Chronic Traumatic Encephalopathy. Front Neurosci 2020; 14:616. [PMID: 32774238 PMCID: PMC7381336 DOI: 10.3389/fnins.2020.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with significant mortality and morbidity. The central pathophysiological mechanisms by which repetitive cranial injury results in the neurodegeneration of CTE are poorly understood. Current well-established working models emphasize a central role for trauma-induced excessive phosphorylation and accumulation of insoluble tangles of Tau protein. In this review, we summarize recent data from preclinical animal models of CTE where a series of candidate treatments have been carefully evaluated, including kinase inhibitors, antibody therapy, and anti-inflammatory therapies. We discuss the overall translational potential of these approaches and provide recommendations for future bench-to-bedside treatment strategies.
Collapse
Affiliation(s)
- Patrick W Breen
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX United States
| |
Collapse
|
28
|
Saito M, Smiley JF, Hui M, Masiello K, Betz J, Ilina M, Saito M, Wilson DA. Neonatal Ethanol Disturbs the Normal Maturation of Parvalbumin Interneurons Surrounded by Subsets of Perineuronal Nets in the Cerebral Cortex: Partial Reversal by Lithium. Cereb Cortex 2020; 29:1383-1397. [PMID: 29462278 DOI: 10.1093/cercor/bhy034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Reduction in parvalbumin-positive (PV+) interneurons is observed in adult mice exposed to ethanol at postnatal day 7 (P7), a late gestation fetal alcohol spectrum disorder model. To evaluate whether PV+ cells are lost, or PV expression is reduced, we quantified PV+ and associated perineuronal net (PNN)+ cell densities in barrel cortex. While PNN+ cell density was not reduced by P7 ethanol, PV cell density decreased by 25% at P90 with no decrease at P14. PNN+ cells in controls were virtually all PV+, whereas more than 20% lacked PV in ethanol-treated adult animals. P7 ethanol caused immediate apoptosis in 10% of GFP+ cells in G42 mice, which express GFP in a subset of PV+ cells, and GFP+ cell density decreased by 60% at P90 without reduction at P14. The ethanol effect on PV+ cell density was attenuated by lithium treatment at P7 or at P14-28. Thus, reduced PV+ cell density may be caused by disrupted cell maturation, in addition to acute apoptosis. This effect may be regionally specific: in the dentate gyrus, P7 ethanol reduced PV+ cell density by 70% at P14 and both PV+ and PNN+ cell densities by 50% at P90, and delayed lithium did not alleviate ethanol's effect.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Maria Hui
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kurt Masiello
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Judith Betz
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria Ilina
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mitsuo Saito
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Donald A Wilson
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Park J, Cheon W, Kim K. Effects of Long-Term Endurance Exercise and Lithium Treatment on Neuroprotective Factors in Hippocampus of Obese Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093317. [PMID: 32397675 PMCID: PMC7246857 DOI: 10.3390/ijerph17093317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023]
Abstract
To investigate the effects of long-term lithium treatment and low intensity endurance exercise on brain-derived neurotrophic factor (BDNF) expression and glycogen synthase kinase 3 beta (GSK3β) activity in the hippocampus of obese rats. Fifty 10-week-old male Sprague-Dawley rats were selected. There was a control group of 10 rats (chow control group) while the other forty rats were fed on a high-fat diet for eight weeks to induce obesity. Rats were then assigned into four random groups. The rats were given 10 mg/kg lithium chloride (LiCl) dissolved in 1 mL sterile distilled water once a day, 5 times a week. The rats did 20 min of treadmill walking with an exercise intensity of 40% maximal oxygen uptake (VO2 max) (12 m/min, slope 0%). This was performed for 20 min a day, 3 days a week. Twelve weeks of lithium treatment or endurance exercise significantly reduced body weight and body fat mass in obese rats, without showing additive effects when the treatments were given in parallel or significant toxic responses in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in blood and kidney and liver tissues. BDNF expression in the hippocampus was significantly increased both in exercise and lithium groups with synergistic effects found in the group where both exercise and lithium treatments were given in parallel. On the other hand, the decrease in GSK3β activity was shown only in the lithium treatment group, without showing additive effects when the treatments were given in parallel. Lithium and low-intensity endurance exercise for 12 weeks increased the expression of BDNF, a neuroprotective factor in the hippocampus of obese mice. Lithium treatment alone inhibited the activity of GSK3β. This can be interpreted as a positive indication of applicability of the two factors in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jusik Park
- Department of Taekwondo, College of Physical Education, Keimyung University, Daegu 42601, Korea;
| | - Wookwang Cheon
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea;
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-580-5256
| |
Collapse
|
30
|
Fine JM, Kosyakovsky J, Baillargeon AM, Tokarev JV, Cooner JM, Svitak AL, Faltesek KA, Frey WH, Hanson LR. Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav 2020; 10:e01536. [PMID: 31960628 PMCID: PMC7066355 DOI: 10.1002/brb3.1536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Intranasal deferoxamine (IN DFO) has been shown to decrease memory loss and have beneficial impacts across several models of neurologic disease and injury, including rodent models of Alzheimer's and Parkinson's disease. METHODS In order to assess the mechanism of DFO, determine its ability to improve memory from baseline in the absence of a diseased state, and assess targeting ability of intranasal delivery, we treated healthy mice with IN DFO (2.4 mg) or intraperitoneal (IP) DFO and compared behavioral and biochemical changes with saline-treated controls. Mice were treated 5 days/week for 4 weeks and subjected to behavioral tests 30 min after dosing. RESULTS We found that IN DFO, but not IP DFO, significantly enhanced working memory in the radial arm water maze, suggesting that IN administration is more efficacious as a targeted delivery route to the brain. Moreover, the ability of DFO to improve memory from baseline in healthy mice suggests a non-disease-specific mechanism of memory improvement. IN DFO treatment was accompanied by decreased GSK-3β activity and increased HIF-1α activity. CONCLUSIONS These pathways are suspected in DFO's ability to improve memory and perhaps represent a component of the common mechanism through which DFO enacts beneficial change in models of neurologic disease and injury.
Collapse
Affiliation(s)
- Jared M Fine
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob Kosyakovsky
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - Julian V Tokarev
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob M Cooner
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Aleta L Svitak
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - William H Frey
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Leah R Hanson
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| |
Collapse
|
31
|
Dudev T, Mazmanian K, Weng WH, Grauffel C, Lim C. Free and Bound Therapeutic Lithium in Brain Signaling. Acc Chem Res 2019; 52:2960-2970. [PMID: 31556294 DOI: 10.1021/acs.accounts.9b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lithium, a first-line therapy for bipolar disorder, is effective in preventing suicide and new depressive/manic episodes. Yet, how this beguilingly simple monocation with only two electrons could yield such profound therapeutic effects remains unclear. An in-depth understanding of lithium's mechanisms of actions would help one to develop better treatments limiting its adverse side effects and repurpose lithium for treating traumatic brain injury and chronic neurodegenerative diseases. In this Account, we begin with a comparison of the physicochemical properties of Li+ and its key native rivals, Na+ and Mg2+, to provide physical grounds for their competition in protein binding sites. Next, we review the abnormal signaling pathways and proteins found in bipolar patients, who generally have abnormally high intracellular Na+ and Ca2+ concentrations, high G-protein levels, and hyperactive phosphatidylinositol signaling and glycogen synthase kinase-3β (GSK3β) activity. We briefly summarize experimental findings on how lithium, at therapeutic doses, modulates these abnormal signaling pathways and proteins. Following this survey, we address the following aspects of lithium's therapeutic actions: (1) Can Li+ displace Na+ from the allosteric Na+-binding sites in neurotransmitter transporters and G-protein coupled receptors (GPCRs); if so, how would this affect the host protein's function? (2) Why are certain Mg2+-dependent enzymes targeted by Li+? (3) How does Li+ binding to Mg2+-bound ATP/GTP (denoted as NTP) in solution affect the cofactor's conformation and subsequent recognition by the host protein? (4) How do NTP-Mg-Li complexes modulate the properties of the respective cellular receptors and signal-transducing proteins? We show that Li+ may displace Na+ from allosteric Na+-binding sites in certain GPCRs and stabilize inactive conformations, preventing these receptors from relaying signal to the respective G-proteins. It may also displace Mg2+ in enzymes containing highly cationic Mg2+-binding sites such as GSK3β, but not in enzymes containing Mg2+-binding sites with low or zero charge. We further show that Li+ binding to Mg2+-NTP in water does not alter the NTP conformation, which is locked by all three phosphates binding to Mg2+. However, bound lithium in the form of [NTP-Mg-Li]2- dianions can activate or inhibit the host protein depending on the NTP-binding pocket's shape, which determines the metal-binding mode: The ATP-binding pocket's shape in the P2X receptor is complementary to the native ATP-Mg solution conformation and nicely fits [ATP-Mg-Li]2-. However, since the ATP βγ phosphates bind Li+, bimetallic [ATP-Mg-Li]2- may be more resistant to hydrolysis than the native cofactor, enabling ATP to reside longer in the binding site and elicit a prolonged P2X response. In contrast, the elongated GTP-binding pockets in G-proteins allow only two GTP phosphates to bind Mg2+, so the GTP conformation is no longer "triply-locked". Consequently, Li+ binding to GTP-Mg can significantly alter the native cofactor's structure, lowering the activated G-protein level, thus attenuating hyperactive G-protein-mediated signaling in bipolar patients. In summary, we have presented a larger "connected" picture of lithium's diverse effects based on its competition as a free monocation with native cations or as a phosphate-bound polyanionic complex modulating the host protein function.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
32
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
33
|
Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, Dianat M. Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci 2019; 228:285-294. [PMID: 31063733 DOI: 10.1016/j.lfs.2019.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
AIMS Oxidative stress and apoptosis have major roles in the progression of traumatic brain injury (TBI)-associated motor and cognitive deficits. The present study was aimed to elucidate the putative effects of chrysin, a natural flavonoid compound, against TBI-induced motor and cognitive dysfunctions and possible involved mechanisms. MAIN METHODS Chrysin (25, 50 or 100 mg/kg) was orally administered to rats starting immediately following TBI induction by Marmarou's weight-drop technique and continuously for 3 or 14 days. Neurological functions, motor coordination, learning and memory performances, histological changes, cell apoptosis, expression of pro- and anti-apoptotic proteins, and oxidative status were assayed at scheduled time points after experimental TBI. KEY FINDINGS The results indicated that treatment with chrysin improved learning and memory disabilities in passive avoidance task, and ameliorated motor coordination impairment in rotarod test after TBI. These beneficial effects were accompanied by increased the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), decreased malondialdehyde (MDA) content, prevented neuronal loss, diminished apoptotic index, elevated the expression of anti-apoptotic Bcl-2 protein, and reduced the expression of pro-apoptotic Bax protein in the cerebral cortex and hippocampus tissues. SIGNIFICANCE Our findings suggest that both anti-oxidative and anti-apoptotic properties of chrysin (especially in the dose of 100 mg/kg) are possible mechanisms that improve cognitive/motor deficits and prevent neuronal cell death after TBI.
Collapse
Affiliation(s)
- Masome Rashno
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
34
|
|
35
|
Rubenstein R, Sharma DR, Chang B, Oumata N, Cam M, Vaucelle L, Lindberg MF, Chiu A, Wisniewski T, Wang KKW, Meijer L. Novel Mouse Tauopathy Model for Repetitive Mild Traumatic Brain Injury: Evaluation of Long-Term Effects on Cognition and Biomarker Levels After Therapeutic Inhibition of Tau Phosphorylation. Front Neurol 2019; 10:124. [PMID: 30915013 PMCID: PMC6421297 DOI: 10.3389/fneur.2019.00124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for a group of neurodegenerative diseases termed tauopathies, which includes Alzheimer's disease and chronic traumatic encephalopathy (CTE). Although TBI is stratified by impact severity as either mild (m), moderate or severe, mTBI is the most common and the most difficult to diagnose. Tauopathies are pathologically related by the accumulation of hyperphosphorylated tau (P-tau) and increased total tau (T-tau). Here we describe: (i) a novel human tau-expressing transgenic mouse model, TghTau/PS1, to study repetitive mild closed head injury (rmCHI), (ii) quantitative comparison of T-tau and P-tau from brain and plasma in TghTau/PS1 mice over a 12 month period following rmCHI (and sham), (iii) the usefulness of P-tau as an early- and late-stage blood-based biochemical biomarker for rmCHI, (iii) the influence of kinase-targeted therapeutic intervention on rmCHI-associated cognitive deficits using a combination of lithium chloride (LiCl) and R-roscovitine (ros), and (iv) correlation of behavioral and cognitive changes with concentrations of the brain and blood-based T-tau and P-tau. Compared to sham-treated mice, behavior changes and cognitive deficits of rmCHI-treated TghTau/PS1 mice correlated with increases in both cortex and plasma T-tau and P-tau levels over 12 months. In addition, T-tau, but more predominantly P-tau, levels were significantly reduced in the cortex and plasma by LiCl + ros approaching the biomarker levels in sham and drug-treated sham mice (the drugs had only modest effects on the T-tau and P-tau levels in sham mice) throughout the 12 month study period. Furthermore, although we also observed a reversal of the abnormal behavior and cognitive deficits in the drug-treated rmCHI mice (compared to the untreated rmCHI mice) throughout the time course, these drug-treated effects were most pronounced up until 10 and 12 months where the abnormal behavior and cognition deficits began to gradually increase. These studies describe: (a) a translational relevant animal model for TBI-linked tauopathies, and (b) utilization of T-tau and P-tau as rmCHI biomarkers in plasma to monitor novel therapeutic strategies and treatment regimens for these neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Deep R Sharma
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Binggong Chang
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy, Roscoff, France
| | - Morgane Cam
- ManRos Therapeutics, Centre de Perharidy, Roscoff, France
| | - Lise Vaucelle
- ManRos Therapeutics, Centre de Perharidy, Roscoff, France
| | | | - Allen Chiu
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, FL, United States
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff, France
| |
Collapse
|
36
|
Farr SA, Niehoff ML, Kumar VB, Roby DA, Morley JE. Inhibition of Glycogen Synthase Kinase 3β as a Treatment for the Prevention of Cognitive Deficits after a Traumatic Brain Injury. J Neurotrauma 2019; 36:1869-1875. [PMID: 30704365 DOI: 10.1089/neu.2018.5999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) has many long-term consequences, including impairment in memory and changes in mood. Glycogen synthase kinase 3β (GSK-3β) in its phosphorylated form (p-GSK-3β) is considered to be a major contributor to memory problems that occur post-TBI. We have developed an antisense that targets the GSK-3β (GAO) gene. Using a model of closed-head concussive TBI, we subjected mice to TBI and injected GAO or a random antisense (RAO) 15 min post-injury. One week post-injury, mice were tested in object recognition with 24 h delay. At 4 weeks post- injury, mice were tested with a T-maze foot shock avoidance memory test and a second object recognition test with 24 h delay using different objects. Mice that received GAO show improved memory in both object recognition and T-maze compared with RAO- treated mice that were subjected to TBI. Next, we verified that GAO blocked the surge in phosphorylated GSK-3β post-TBI. Mice were subjected to TBI and injected with antisense 15 min post-TBI with GAO or RAO. Mice were euthanized at 4 and 72 h post-TBI. Analysis of p-ser9GSK-3β, p-tyr216GSK-3β, and phospho-tau (p-tau)404 showed that mice that received a TBI+RAO had significantly higher p-ser9GSK-3β, p-tyr216GSK-3β, and p-tau404 levels than the mice that received TBI+GAO and the Sham+RAO mice. The current finding suggests that inhibiting GSK-3β increase after TBI with an antisense directed at GSK-3β prevents learning and memory impairments.
Collapse
Affiliation(s)
- Susan A Farr
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michael L Niehoff
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Vijaya B Kumar
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Deborah A Roby
- 2 Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John E Morley
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. SCIENCE CHINA-LIFE SCIENCES 2019; 63:552-562. [DOI: 10.1007/s11427-018-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
|
38
|
Pikard JL, Oliver D, Saraceno J, Groll D. Lithium: contributor to movement disorder sensitivity after anoxic brain injury? SAGE Open Med Case Rep 2019; 7:2050313X18823101. [PMID: 30675359 PMCID: PMC6330727 DOI: 10.1177/2050313x18823101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Although lithium-induced dystonia has been well documented in the literature, conflicting evidence discusses whether a patient may be susceptible to adverse effects from the drug after an anoxic brain injury. More recent literature discusses that lithium may, in fact, be neuroprotective. This case report presents a 35-year-old male who, after an anoxic brain injury after a suicide attempt, developed lithium-induced dystonia with characteristic symptoms of sustained muscle contractions, repetitive movements, and postures, which was not markedly improved with benztropine or benzodiazepines. It is postulated that because this patient received a depot neuroleptic with a subsequent anoxic brain injury, he may have become more sensitive to lithium and its rare complications.
Collapse
Affiliation(s)
| | - Dijana Oliver
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Justin Saraceno
- Providence Care Mental Health Services, Kingston, ON, Canada
| | - Dianne Groll
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| |
Collapse
|
39
|
Hostiuc S, Perlea P, Marinescu M, Dogaroiu C, Drima E. GSK-3 Inhibitors and Tooth Repair: An Ethical Analysis. Front Pharmacol 2019; 9:1495. [PMID: 30666199 PMCID: PMC6330321 DOI: 10.3389/fphar.2018.01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Tideglusib®, a GSK-3 inhibitor, was initially tested for the treatment of Alzheimer’s disease. However, a recent report has suggested its potential off-label use for the treatment of dental cavities. Even if this effect is not yet confirmed, this off-label use can have significant public/dental health consequences, mainly because of the large number of patients with cavities. The purpose of this mini-review is to perform an ethical analysis of the use of Tideglusib in dentistry. The ethical analysis identified three main areas in which ethical breaches could be significant: 1) respect for the autonomy of the patient, 2) issues raised by horizontal shifts in the translational research process, and 3) the conflict between dental beneficence and general non-maleficence. In conclusion, the use of Tideglusib in dentistry should respect the same strict ethical and regulatory criteria from clinical medicine. A translation of the potential risks should be done only after large-scale, phase-III/IV clinical trials, explicitly designed to test the usefulness of this drug in dental medicine.
Collapse
Affiliation(s)
- Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Paula Perlea
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Marinescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Dogaroiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Eduard Drima
- University of Medicine and Pharmacy, Galaţi, Romania
| |
Collapse
|
40
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
41
|
Abstract
Programmable nucleases can introduce precise changes to genomic DNA through homology-directed repair (HDR). Unfortunately, HDR is largely restricted to mitotic cells, and is typically accompanied by an excess of stochastic insertions and deletions (indels). Here we present an in vivo base editing strategy that addresses these limitations. We use nuclease-free base editing to install a S33F mutation in β-catenin that blocks β-catenin phosphorylation, impedes β-catenin degradation, and upregulates Wnt signaling. In vitro, base editing installs the S33F mutation with a 200-fold higher editing:indel ratio than HDR. In post-mitotic cells in mouse inner ear, injection of base editor protein:RNA:lipid installs this mutation, resulting in Wnt activation that induces mitosis of cochlear supporting cells and cellular reprogramming. In contrast, injection of HDR agents does not induce Wnt upregulation. These results establish a strategy for modifying posttranslational states in signaling pathways, and an approach to precision editing in post-mitotic tissues. Base editing allows the precise introduction of point mutations into cellular DNA without requiring double-stranded DNA breaks or homology-directed repair, which is inefficient in postmitotic cells. Here the authors demonstrate in vivo base editing of post-mitotic somatic cells in the postnatal mouse inner ear with physiological outcomes.
Collapse
|
42
|
Dudev T, Grauffel C, Hsu STD, Lim C. How Native and Non-Native Cations Bind and Modulate the Properties of GTP/ATP. J Chem Theory Comput 2018; 14:3311-3320. [PMID: 29768917 DOI: 10.1021/acs.jctc.8b00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adenosine triphosphate (ATP) and guanosine triphosphate (GTP) exist in physiological solution mostly bound to cations. Interestingly, their cellular Mg2+-bound forms have been shown to bind Li+, a first-line drug for bipolar disorder. However, solution structures of NTP/NDP (N = A or G) bound to Li+ and/or Mg2+ have not been solved, thus precluding knowledge of how the native Mg2+-bound cofactor conformation changes upon binding non-native Li+ and/or switching its environment from aqueous solution to proteins. Using well-calibrated methods that reproduce experimental structural and thermodynamic parameters of several Mg2+/Li+-nucleotide complexes, we show that the native NTP/NDP-Mg2+ cofactor adopts a "folded" conformation in water that remains unperturbed upon Li+ binding. We further show that the ATP-binding pockets of receptors such as P2X are complementary in shape to the "folded" ATP-Mg2+ solution structure, whereas the elongated GTP-binding pockets found in G-proteins necessitate the GTP-Mg2+ cofactor to undergo a conformational change from its "folded" conformation in solution to an extended one upon G-protein binding. Implications of the findings on how Li+, in its bound state, can manifest its therapeutic effects are discussed.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy , Sofia University , Sofia 1164 , Bulgaria
| | - Cédric Grauffel
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan.,Department of Chemistry , National Tsing Hua University , Hsinchu 300 , Taiwan
| |
Collapse
|
43
|
Pronin AV, Gogoleva IV, Torshin IY, Gromovа OA. [Neurotrophic effects of lithium stimulate the reduction of ischemic and neurodegenerative brain damage]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:99-108. [PMID: 27166488 DOI: 10.17116/jnevro20161162199-108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For over 60 years, high doses of lithium (hundreds of milligrams of elemental lithium) have being used to treat bipolar disorder. However, only during the past 20 years the relevant basic and clinical studies have shown that neuroprotective and neurotrophic effects of lithium are possible in much smaller doses ( hundreds of micrograms of elemental lithium). These data indicate a significant potential for the clinical applications of lithium-based drugs in modern neurology for the purposes of prevention and treatment of neurodegenerative and ischemic pathologies. Pharmacological and molecular biology studies indicated that the inhibition of glycogen synthase kinase-syntentase-3 (GSK-3) and induction of brain-derived neurotrophic factors are the main mechanisms of neurotropic actions of lithium. Also, by inhibiting the NMDA receptors, lithium regulates the calcium homeostasis and inhibits the activation of calcium-dependent apotosis. These and other molecular mechanisms of lithium action protect neurons from ischemia and neurodegeneration thus contributing to a significant reduction of neurological deficit in various models of stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- A V Pronin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I V Gogoleva
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I Yu Torshin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - O A Gromovа
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| |
Collapse
|
44
|
Dudev T, Mazmanian K, Lim C. Competition between Li + and Na + in sodium transporters and receptors: Which Na +-Binding sites are "therapeutic" Li + targets? Chem Sci 2018; 9:4093-4103. [PMID: 29780538 PMCID: PMC5944251 DOI: 10.1039/c7sc05284g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Li+ (turquoise), the better charge acceptor, can displace Na+ (purple) bound by only one or two aa residues in buried sites. Thus, Li+ can displace Na+ bound by Asp– and Ser in the A2AAR/β1AR receptor and enhance the metal site's stability, thus prohibiting structural distortions induced by agonist binding, leading to lower cytosolic levels of activated G-proteins, which are hyperactive in bipolar disorder patients.
Sodium (Na+) acts as an indispensable allosteric regulator of the activities of biologically important neurotransmitter transporters and G-protein coupled receptors (GPCRs), which comprise well-known drug targets for psychiatric disorders and addictive behavior. How selective these allosteric Na+-binding sites are for the cognate cation over abiogenic Li+, a first-line drug to treat bipolar disorder, is unclear. Here, we reveal how properties of the host protein and its binding cavity affect the outcome of the competition between Li+ and Na+ for allosteric binding sites in sodium transporters and receptors. We show that rigid Na+-sites that are crowded with multiple protein ligands are well-protected against Li+ attack, but their flexible counterparts or buried Na+-sites containing only one or two protein ligands are vulnerable to Li+ substitution. These findings suggest a novel possible mode of Li+ therapeutic action: By displacing Na+ bound by ≤2 protein ligands in buried GPCR sites and stabilizing the receptor's inactive state, Li+ could prohibit conformational changes to an active state, leading to lower cytosolic levels of activated guanine nucleotide-binding proteins, which are hyperactive/overexpressed in bipolar disorder patients.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy , Sofia University , Sofia 1164 , Bulgaria .
| | - Karine Mazmanian
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan . .,Chemical Biology and Molecular Biophysics Program , Taiwan International Graduate Program , Academia Sinica , Taipei 11529 , Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan . .,Department of Chemistry , National Tsing Hua University , Hsinchu 300 , Taiwan
| |
Collapse
|
45
|
Mohammad Jafari R, Ghahremani MH, Rahimi N, Shadboorestan A, Rashidian A, Esmaeili J, Ejtemaei Mehr S, Dehpour AR. The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Brain Res Bull 2018; 137:1-9. [DOI: 10.1016/j.brainresbull.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
|
46
|
Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 2018; 28:21-30. [PMID: 29396300 PMCID: PMC5835563 DOI: 10.1016/j.ebiom.2018.01.021] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology. Cerebrovascular dysfunction (CVD) is emerging as a key element in the development of neurodegeneration after TBI. We propose that TBI initiates CVD, accelerating Aβ/tau deposition and leading to neurodegeneration and dementias. Clarifying this connection will support the development of novel biomarkers and therapeutic approaches for both TBI and AD.
Collapse
|
47
|
Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model. Mediators Inflamm 2017; 2017:6490652. [PMID: 29200666 PMCID: PMC5671739 DOI: 10.1155/2017/6490652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or Streptococcus pneumoniae suspension at a concentration of 5 × 109 CFU/mL. Eighteen hours after induction, all animals received ceftriaxone. The animals received saline or lithium (47.5 mg/kg) or tamoxifen (1 mg/kg) as adjuvant treatment, and they were separated into six groups: control/saline, control/lithium, control/tamoxifen, meningitis/saline, meningitis/lithium, and meningitis/tamoxifen. Ten days after meningitis induction, animals were subjected to open-field habituation and the step-down inhibitory avoidance tasks. Immediately after these tasks, the animals were killed and their hippocampus was removed to evaluate the expression of BDNF, NGF, and GDNF. In the meningitis group, treatment with lithium and tamoxifen resulted in improvement in memory. Meningitis group showed decreased expression of BDNF and GDNF in the hippocampus while lithium reestablished the neurotrophin expression. Lithium was able to prevent memory impairment and reestablishes hippocampal neurotrophin expression in experimental pneumococcal meningitis.
Collapse
|
48
|
Abstract
Lithium has been used for the management of psychiatric illnesses for over 50 years and it continues to be regarded as a first-line agent for the treatment and prevention of bipolar disorder. Lithium possesses a narrow therapeutic index and comparatively minor alterations in plasma concentrations can have significant clinical sequelae. Several drug classes have been implicated in the development of lithium toxicity over the years, including diuretics and non-steroidal anti-inflammatory compounds, but much of the anecdotal and experimental evidence supporting these interactions is dated, and many newer medications and medication classes have been introduced during the intervening years. This review is intended to provide an update on the accumulated evidence documenting potential interactions with lithium, with a focus on pharmacokinetic insights gained within the last two decades. The clinical relevance and ramifications of these interactions are discussed.
Collapse
Affiliation(s)
- Patrick R Finley
- School of Pharmacy, University of California at San Francisco, 3333 California Street, Box 0613, San Francisco, CA, 94143-0613, USA.
| |
Collapse
|
49
|
Mateen BA, Hill CS, Biddie SC, Menon DK. DNA Methylation: Basic Biology and Application to Traumatic Brain Injury. J Neurotrauma 2017; 34:2379-2388. [DOI: 10.1089/neu.2017.5007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bilal A. Mateen
- Division of Medicine, University College London, London, United Kingdom
| | - Ciaran S. Hill
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Simon C. Biddie
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Traumatic Brain Injury and Mood Stabilizers: Recent Cumulative Evidence. World Neurosurg 2017; 105:983-984. [PMID: 28739518 DOI: 10.1016/j.wneu.2017.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|