1
|
Faheem SM, Osman HM, El-Tabl AS, Abd-El Wahed MM, Younes SM. New nano-complexes targeting protein 3S7S in breast cancer and protein 4OO6 in liver cancer investigated in cell line. Sci Rep 2024; 14:16891. [PMID: 39043786 PMCID: PMC11266623 DOI: 10.1038/s41598-024-65775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer, a lethal ailment, possesses a multitude of therapeutic alternatives to combat its presence, metal complexes have emerged as significant classes of medicinal compounds, exhibiting considerable biological efficacy, especially as anticancer agents. The utilization of cis-platin in the treatment of various cancer types, including breast cancer, has served as inspiration to devise novel nanostructured metal complexes for breast cancer therapy. Notably, homo- and hetero-octahedral bimetallic complexes of an innovative multifunctional ether ligand (comprising Mn(II), Ni(II), Cu(II), Zn(II), Hg(II), and Ag(I) ions) have been synthesized. To ascertain their structural characteristics, elemental and spectral analyses, encompassing IR, UV-Vis, 1H-NMR, mass and electron spin resonance (ESR) spectra, magnetic moments, molar conductance, thermal analysis, and electron microscopy, were employed. The molar conductance of these complexes in DMF demonstrated a non-electrolytic nature. Nanostructured forms of the complexes were identified through electron microscopic data. At ambient temperature, the ESR spectra of the solid complexes exhibited anisotropic and isotropic variants, indicative of covalent bonding. The ligand and several of its metal complexes were subjected to cytotoxicity testing against breast cancer protein 3S7S and liver cancer protein 4OO6, with the Ag(I) complex (7) evincing the most potent effect, followed by the Cu(II) with ligand (complex (2)), Cis-platin, the ligand itself, and the Cu(II)/Zn(II) complex (8). Molecular docking data unveiled the inhibitory order of several complexes.
Collapse
Affiliation(s)
- Shaima M Faheem
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Hiam M Osman
- Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Moshira M Abd-El Wahed
- Department of Pathology, Faculty of Medicine, El-Menoufia University, Shebin El-Kom, Egypt
| | - Sara M Younes
- Chemical Engineering Department, Borg El Arab Higher Institute Engineering and Technology, Alexandria, Egypt.
| |
Collapse
|
2
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
3
|
Liu X, Zhang Q, Li M, Qin S, Zhao Z, Lin B, Ding Y, Xiang Y, Li C. Horseradish peroxidase (HRP) and glucose oxidase (GOX) based dual-enzyme system: Sustainable release of H 2O 2 and its effect on the desirable ping pong bibi degradation mechanism. ENVIRONMENTAL RESEARCH 2023; 229:115979. [PMID: 37119847 DOI: 10.1016/j.envres.2023.115979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
In this study, an adaptable HRP/GOX-Glu system was established due to the trait, efficient degradation of pollutants in the catalytic process of HRP named the ping-pong bibi mechanism and a sustained release of H2O2 in-situ under the catalysis of glucose oxidase (GOX). Compared with the traditional HRP/H2O2 system, the HRP was more stable in the HRP/GOX-Glu system based on the feature of persistent releasing H2O2 in-situ. Simultaneously, the high valent iron was found out to give a greater contribution to Alizarin Green (AG) removal through ping-pong mechanism, whereas the hydroxyl radical and superoxide free radical generated by Bio-Fenton were also the main active substances for AG degradation. Furthermore, on the basis of effect evaluation of the co-existence of two different degradation mechanisms in the HRP/GOX-Glu system, the degradation pathways of AG were proposed. Moreover, the optimum reaction conditions preferentially triggering ping-pong bibi mechanism instead of Bio-Fenton were determined by single factor analysis and degradation mechanism elaboration. This study would provide a reference for how to give full play to the advantages of ping-pong bibi mechanism in the dual-enzyme system based on HRP to degrade pollutants with high efficiency.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Song Qin
- School of Art and Design, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Ziqi Zhao
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuwei Ding
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yutong Xiang
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Chengwei Li
- Hunan Land and Resources Exploration Institute, Changsha, 410001, China
| |
Collapse
|
4
|
Gopal J, Muthu M, Sivanesan I. A Comprehensive Survey on the Expediated Anti-COVID-19 Options Enabled by Metal Complexes-Tasks and Trials. Molecules 2023; 28:molecules28083354. [PMID: 37110587 PMCID: PMC10143858 DOI: 10.3390/molecules28083354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Contemporary pharmacology dating back to the late 19th/early 20th centuries has benefitted largely from the incorporation of metal complexes. Various biological attributes have been successfully realized using metal/metal complex-based drugs. Among anticancer, antimicrobial, and antiviral applications, anticancer applications have extracted the maximum benefit from the metal complex, Cisplatin. The following review has compiled the various antiviral benefits harnessed through inputs from metal complexes. As a result of exploiting the pharmacological aspects of metal complexes, the anti-COVID-19 deliverables have been summarized. The challenges ahead, the gaps in this research area, the need to improvise incorporating nanoaspects in metal complexes, and the need to test metal complex-based drugs in clinical trials have been discussed and deliberated. The pandemic shook the entire world and claimed quite a percentage of the global population. Metal complex-based drugs are already established for their antiviral property with respect to enveloped viruses and extrapolating them for COVID-19 can be an effective way to manipulate drug resistance and mutant issues that the current anti-COVID-19 drugs are facing.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Foreman MM, Alessio M, Krylov AI, Weber JM. Influence of Transition Metal Electron Configuration on the Structure of Metal-EDTA Complexes. J Phys Chem A 2023; 127:2258-2264. [PMID: 36877889 DOI: 10.1021/acs.jpca.2c07996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The vibrational spectra of cold complexes of ethylenediaminetetraacetic acid (EDTA) with transition metal dications in vacuo show how the electronic structure of the metal provides a geometric template for interaction with the functional groups of the binding pocket. The OCO stretching modes of the carboxylate groups of EDTA serve as structural probes, informing on the spin state of the ion as well as the coordination number in the complex. The results highlight the flexibility of EDTA in accepting a large range of metal cations in its binding site.
Collapse
Affiliation(s)
- Madison M Foreman
- JILA and Department of Chemistry, University of Colorado at Boulder, UCB 440, Boulder, Colorado 80309, United States
| | - Maristella Alessio
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado at Boulder, UCB 440, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Giap VD, Duc HT, Huong PTM, Hanh DT, Nghi DH, Duy VD, Quynh DT. Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes. J GEN APPL MICROBIOL 2023; 68:262-269. [PMID: 35781262 DOI: 10.2323/jgam.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg -1. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrapTM Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.
Collapse
Affiliation(s)
- Vu Dinh Giap
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST).,HaUI Institute of Technology, Hanoi University of Industry (HaUI)
| | - Hoang Thanh Duc
- HaUI Institute of Technology, Hanoi University of Industry (HaUI)
| | | | - Do Thi Hanh
- Department of Chemical Technology, Hanoi University of Industry (HaUI)
| | - Do Huu Nghi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST).,Institute of Natural Products Chemistry, VAST
| | | | - Dang Thu Quynh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST).,Institute of Natural Products Chemistry, VAST
| |
Collapse
|
7
|
Yadav O, Kumar M, Mittal H, Yadav K, Seidel V, Ansari A. Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 2022; 13:982484. [PMID: 36263127 PMCID: PMC9575937 DOI: 10.3389/fphar.2022.982484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent years have witnessed a growing interest in the biological activity of metal complexes of α-aminophosphonates. Here for the first time, a detailed DFT study on five α-aminophosphonate ligated mononuclear/dinuclear CuII complexes is reported using the dispersion corrected density functional (B3LYP-D2) method. The electronic structures spin densities, FMO analysis, energetic description of spin states, and theoretical reactivity behaviour using molecular electrostatic potential (MEP) maps of all five species are reported. All possible spin states of the dinuclear species were computed and their ground state S values were determined along with the computation of their magnetic coupling constants. NBO analysis was also performed to provide details on stabilization energies. A molecular docking study was performed for the five complexes against two SARS-CoV-2 coronavirus protein targets (PDB ID: 6LU7 and 7T9K). The docking results indicated that the mononuclear species had a higher binding affinity for the targets compared to the dinuclear species. Among the species investigated, species I showed the highest binding affinity with the SARS-CoV-2 Omicron protease. NPA charge analysis showed that the heteroatoms of model species III had a more nucleophilic nature. A comparative study was performed to observe any variations and/or correlations in properties among all species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Himanshi Mittal
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Kiran Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
8
|
Ali AM, Tawfik SS, Mostafa AS, Massoud MAM. Benzimidazole-Based Protein Kinase Inhibitors: Current Perspectives in Targeted Cancer Therapy. Chem Biol Drug Des 2022; 100:656-673. [PMID: 35962624 DOI: 10.1111/cbdd.14130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Targeted therapy has emerged to be the cornerstone of advanced cancer treatment, allowing for more selectivity and avoiding the common drug toxicity and resistance. Identification of potential targets having vital role in growth and survival of cancer cells got much easier with the aid of the recent advances in high throughput screening approaches. Various protein kinases came into focus as valuable targets in cancer therapy. Meanwhile, benzimidazole-based scaffolds have gained significant attention as promising protein kinase inhibitors with high potency and varied selectivity. Great diversity of these scaffolds has inspired the medicinal chemists to inspect the effect of structural changes upon inhibitory activity on the molecular level through modeling studies. The present review gathers all the considerable attempts to develop benzimidazole-based compounds; designed as protein kinase inhibitors with anticancer activity since 2015; that target aurora kinase, CDK, CK2, EGFR, FGFR, and VEGFR-2; to allow further development and progression regarding benzimidazoles.
Collapse
Affiliation(s)
- Alaa M Ali
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Shrestha J, Porter SR, Tinsley C, Arslanian AJ, Dearden DV. Prototypical Allosterism in a Simple Ditopic Ligand: Gas-Phase Topologies of Cucurbit[n]uril· n-Alkylammonium Complexes Controlled by Binding in the Second Site. J Phys Chem A 2022; 126:2950-2958. [PMID: 35536594 DOI: 10.1021/acs.jpca.2c01703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have employed mass spectrometry, ion mobility, and computational techniques to characterize complexes of n-alkylammonium ions with cucurbit[5]uril (CB[5]) and cucurbit[6]uril (CB[6]) ligands in the gas phase. Nonrotaxane structures are energetically preferred and experimentally observed for all CB[5] complexes. Pseudorotaxane structures are computationally favored and experimentally observed for [CB[6]·n-alkylammonium]+ complexes, but the addition of a second cation (proton, alkali metal ion, another alkylammonium ion, or guanidinium) on the opposite rim of CB[6] causes sufficiently unfavorable steric interactions that n-pentylammonium and longer chains no longer remain threaded through the CB[6] cavity; nonrotaxane topologies are then favored. This provides a very simple example of negative allosteric interactions and molecular structure switching in these complexes.
Collapse
Affiliation(s)
- Jamir Shrestha
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Savannah R Porter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Caleb Tinsley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
10
|
Dege N, Tamer Ö, Şimşek M, Avcı D, Yaman M, Başoğlu A, Atalay Y. Experimental and theoretical approaches on structural, spectroscopic (FT‐IR and UV‐Vis), nonlinear optical and molecular docking analyses for Zn (II) and Cu (II) complexes of 6‐chloropyridine‐2‐carboxylic acid. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Necmi Dege
- Department of Physics, Faculty of Arts and Sciences Ondokuz Mayıs University Samsun Turkey
| | - Ömer Tamer
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Merve Şimşek
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Davut Avcı
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Mavişe Yaman
- Department of Physics, Faculty of Arts and Sciences Ondokuz Mayıs University Samsun Turkey
| | - Adil Başoğlu
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Yusuf Atalay
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| |
Collapse
|
11
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Banerjee K, Choudhuri SK. A novel tin based hydroxamic acid complex induces apoptosis through redox imbalance and targets Stat3/JNK1/MMP axis to overcome drug resistance in cancer. Free Radic Res 2021; 55:1018-1035. [PMID: 34865583 DOI: 10.1080/10715762.2021.2013480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Undesired toxicity and emergence of multidrug resistance (MDR) are the major impediments for the successful application of organotin-based compounds against cancer. Since oxalyl-bis(N-phenyl)hydroxamic acid (OBPHA) exerts significant efficacy against cancer, we believe that derivatives of OBPHA including organotin molecule can show a promising effect against cancer. Herein, we have selected three previously characterized OBPHA derivatives viz., succinyl-bis(N-phenyl)hydroxamic acid (SBPHA), diphenyl-tin succinyl-bis(N-phenyl)hydroxamic acid (Sn-SBPHA), malonyl-bis(N-phenyl)hydroxamic acid (MBPHA) and evaluated their antiproliferative efficacy against both drug resistant (CEM/ADR5000; EAC/Dox) and sensitive (CCRF-CEM; HeLa; EAC/S) cancers. Data revealed that Sn-SBPHA selectively targets drug resistant and sensitive cancers without inducing any significant toxicity to normal cells (Chang Liver). Moreover, shortening of the backbone of SBPHA enhances the efficacy of the newly formed molecule MBPHA by targeting only drug sensitive cancers. Sn-SBPHA induces caspase3-dependent apoptosis through redox-imbalance in both drug resistant and sensitive cancer. Sn-SBPHA also reduced the activation and expression of both MMP2 and MMP9 without altering the expression status of TIMP1 and TIMP2 in drug resistant cancer. In addition, Sn-SBPHA reduced the activation of both STAT3 and JNK1, the transcriptional modulator of MMPs, in a redox-dependent manner in CEM/ADR5000 cells. Thus, Sn-SBPHA targets MMPs by modulating STAT3 and JNK1 in a redox-dependent manner. However, MBPHA and SBPHA fail to target drug resistance and both drug resistant and sensitive cancer respectively. Furthermore, Sn-SBPHA significantly increases the lifespan of doxorubicin resistant and sensitive Ehrlich Ascites Carcinoma bearing mice without inducing any significant systemic-toxicity. Therefore, Sn-SBPHA has the therapeutic potential to target and overcome MDR in cancer.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of In vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumitra Kumar Choudhuri
- Department of In vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
13
|
Petrović ĐS, Milić SSJ, Đukić MB, Radojević ID, Jelić RM, Jurišević MM, Radić GP, Gajović NM, Arsenijević NN, Jovanović IP, Marković NV, Lj. Stojković D, Jevtić VV. Synthesis, characterization, HSA/DNA binding, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with some esters of (S,S)-propylenediamine-N,N'-di-2-(3-methyl)butanoic acid. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
M. C. V, Joy F, Krishna P. M, T. P. V, Venkataraman SK, Agarwal AK, Nair Y, Kurup MRP. Novel dioxidomolybdenum complexes containing ONO chelators: Synthesis, physicochemical properties, crystal structures, Hirshfeld surface analysis, DNA binding/cleavage studies, docking, and in vitro cytotoxicity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vineetha M. C.
- Department of Applied Chemistry Cochin University of Science and Technology Kochi India
- Department of Chemistry Sree Kerala Varma College Thrissur India
| | - Francis Joy
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | - Murali Krishna P.
- Department of Chemistry Ramaiah Institute of Technology Bengaluru India
| | - Vinod T. P.
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | | | - Anil K. Agarwal
- Discovery Chemistry Syngene International Limited Bengaluru India
| | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India
| | - M. R. Prathapachandra Kurup
- Department of Applied Chemistry Cochin University of Science and Technology Kochi India
- Department of Chemistry, School of Physical Sciences Central University of Kerala Periye, Kasaragod India
| |
Collapse
|
15
|
Rapone I, Taresco V, Lisio VD, Piozzi A, Francolini I. Silver- and Zinc-Decorated Polyurethane Ionomers with Tunable Hard/Soft Phase Segregation. Int J Mol Sci 2021; 22:6134. [PMID: 34200185 PMCID: PMC8200980 DOI: 10.3390/ijms22116134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Segmented polyurethane ionomers find prominent applications in the biomedical field since they can combine the good mechanical and biostability properties of polyurethanes (PUs) with the strong hydrophilicity features of ionomers. In this work, PU ionomers were prepared from a carboxylated diol, poly(tetrahydrofuran) (soft phase) and a small library of diisocyanates (hard phase), either aliphatic or aromatic. The synthesized PUs were characterized to investigate the effect of ionic groups and the nature of diisocyanate upon the structure-property relationship. Results showed how the polymer hard/soft phase segregation was affected by both the concentration of ionic groups and the type of diisocyanate. Specifically, PUs obtained with aliphatic diisocyanates possessed a hard/soft phase segregation stronger than PUs with aromatic diisocyanates, as well as greater bulk and surface hydrophilicity. In contrast, a higher content of ionic groups per polymer repeat unit promoted phase mixing. The neutralization of polymer ionic groups with silver or zinc further increased the hard/soft phase segregation and provided polymers with antimicrobial properties. In particular, the Zinc/PU hybrid systems possessed activity only against the Gram-positive Staphylococcus epidermidis while Silver/PU systems were active also against the Gram-negative Pseudomonas aeruginosa. The herein-obtained polyurethanes could find promising applications as antimicrobial coatings for different kinds of surfaces including medical devices, fabric for wound dressings and other textiles.
Collapse
Affiliation(s)
- Irene Rapone
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (I.R.); (V.D.L.); (A.P.)
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Valerio Di Lisio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (I.R.); (V.D.L.); (A.P.)
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (I.R.); (V.D.L.); (A.P.)
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (I.R.); (V.D.L.); (A.P.)
| |
Collapse
|
16
|
Poladian Q, Şahin O, Karakurt T, İlhan-Ceylan B, Kurt Y. A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ghamari Kargar P, Noorian M, Chamani E, Bagherzade G, Kiani Z. Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (Fe 3O 4@NFC@ONSM-Ni). RSC Adv 2021; 11:17413-17430. [PMID: 35479678 PMCID: PMC9032764 DOI: 10.1039/d1ra01256h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
A heterogeneous, magnetically recoverable nanocomposite, Fe3O4@NFC@ONSM-Ni(ii) was prepared by immobilization of a novel Ni(ii) Schiff base complex on Fe3O4@NFC nanoparticles followed by treatment with melamine. This trinuclear catalyst has been characterized using several analytical techniques including FT-IR, TEM, Fe-SEM, EDX, DLS, ICP, TGA, VSM, and XRD. It was used as an efficient catalyst for one-pot solvent-free synthesis of 1,4-dihydropyridine and poly-hydro quinoline derivatives through Hantzsch reaction. This catalyst showed remarkable advantage over previously reported catalysts due to suitable conditions, short reaction time, high efficiency and lower catalyst load and timely recovery of the magnetic catalyst. Moreover, the effects of Fe3O4@NFC@ONSM-Ni(ii) nanoparticles on the in vitro proliferation of human leukemia cell line (k562) and human breast cancer cells (MDA-MB-231) were investigated. The results of MTT and Hochest assays suggested that the nanoparticles could effectively inhibit the proliferation of these cancer cells in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175- 615 Iran +98 56 32345192 +98 56 32345192
| | - Maryam Noorian
- Student Research Committee, Birjand University of Medical Sciences Birjand Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Birjand University of Medical Sciences Birjand Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175- 615 Iran +98 56 32345192 +98 56 32345192
| | - Zahra Kiani
- Department of Pharmacology, Birjand University of Medical Sciences Birjand Iran +985632381920
| |
Collapse
|
18
|
|
19
|
Sohrabi M, Saeedi M, Larijani B, Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur J Med Chem 2021; 216:113308. [PMID: 33713976 DOI: 10.1016/j.ejmech.2021.113308] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Unique structure, characteristic reactivity, and facile synthesis of metal complexes have made them efficient ligands in drug development research. Among them, rhodium complexes have a limited history and there are a few discussions about their biological activities documented in the literature. However, investigation of kinetically inert rhodium complexes has recently attracted lots of attention and especially there are various evidences on their anti-cancer activity. It seems that they can be investigated as a versatile surrogates or candidates for the existing drugs which do not affect selectively or suffer from various side effects. In recent years, there has been an increasing interest in the use of mononuclear rhodium (III) organometallo drugs due to its versatile structurally important aspects to inhibit various enzymes. It has been demonstrated that organometallic Rh complexes profiting from both organic and inorganic aspects have shown more potent biological activities than classical inorganic compartments. In this respect, smart design, use of the appropriate organic ligands, and efficient and user-friendly synthesis of organometallic Rh complexes have played crucial roles in the inducing desirable biological activities. In this review, we focused on the recent advances published on the bioactivity of Rh (III/II/I) complexes especially inhibitory activity, from 2013 till now. Accordingly, considering the structure-activity relationship (SAR), the effect of oxidation state (+1, +2, and +3) and geometry (dimer or monomer complexes with coordination number of 4 and 6) of Rh complexes as well as various ligands on in vitro and in vivo studies was comprehensively discussed.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Joshi A, Gupta R, Sharma D, Singh M. A Mo(VI) based coordination polymer as an antiproliferative agent against cancer cells. Dalton Trans 2021; 50:1253-1260. [PMID: 33410831 DOI: 10.1039/d0dt03865b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions being an important part of biological systems are of great interest in the designing of new drugs. Molybdenum is an essential trace element for humans, animals, and plants and naturally present in many enzymes hence its complexes can be expected to serve as potential candidates for biomedical applications. A novel molybdenum-based coordination polymer, [Mo2(μ2-O)O4(2-pyc)2(H2O)], is synthesized by a hydrothermal route and structurally characterized by using single crystal X-Ray diffraction. The structure consists of molybdenum octahedra connected by a bridging oxo ligand and 2-pyc forming a one-dimensional coordination polymer. This Mo coordination polymer was found to show a considerable inhibitory effect with IC50 values of 22.63 μmol L-1, 28.19 μmol L-1, and 20.97 μmol L-1, against HepG2 (human liver cancer), A549 (human lung cancer), and MCF-7 (human breast cancer) cell lines respectively. This is the first attempt at exploring the molybdenum-based coordination polymer for antitumor applications. The cell cytotoxicity analysis revealed that the anti-tumor potential of the compound is governed by arresting of the A549, HepG2, and MCF-7 cancer cells in the S phase of the cell cycle. UV-Visible absorption spectroscopy further revealed the binding interaction between the Mo coordination polymer and ctDNA and the binding constant was found to be 5.9 × 103 L mol-1, which is in agreement with those of well-known groove binders. This binding interaction in turn induces apoptosis and necrosis pathways leading to the death of the cancer cells.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Ruby Gupta
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| |
Collapse
|
21
|
Saikia G, Talukdar H, Ahmed K, Gour NK, Islam NS. Tantalum( v) peroxido complexes as phosphatase inhibitors: a comparative study vis-a-vis peroxidovanadates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01005k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peroxido Ta(v) complexes are found to be more effective as inhibitors of wheat thylakoid acid phosphatase vis-à-vis their V containing analogues. In addition, these compounds showed unique resistance towards degradation in the presence of catalase.
Collapse
Affiliation(s)
- Gangutri Saikia
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Hiya Talukdar
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Kabirun Ahmed
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | | | | |
Collapse
|
22
|
Structures, kinetic and synergistic mechanisms studies of urease inhibition of copper(II) complex based on MOSs. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
24
|
Hammud HH, Holman KT, Al-Noaimi M, Sheikh NS, Ghannoum AM, Bouhadir KH, Masoud MS, Karnati RK. Structures of selected transition metal complexes with 9-(2-hydroxyethyl)adenine: Potentiometric complexation and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Yuan Q, Cao W, Wang XB. Cryogenic and temperature-dependent photoelectron spectroscopy of metal complexes. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1719699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
26
|
|
27
|
MacPherson DS, Fung K, Cook BE, Francesconi LC, Zeglis BM. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans 2019; 48:14547-14565. [PMID: 31556418 PMCID: PMC6829947 DOI: 10.1039/c9dt03039e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metallic radionuclides have been instrumental in the field of nuclear imaging for over half a century. While recent years have played witness to a dramatic rise in the use of radiometals as labels for chelator-bearing biomolecules, imaging agents based solely on coordination compounds of radiometals have long played a critical role in the discipline as well. In this work, we seek to provide a brief overview of metal complex-based radiopharmaceuticals for positron emission tomography (PET) and single photon emission computed tomography (SPECT). More specifically, we have focused on imaging agents in which the metal complex itself rather than a pendant biomolecule or targeting moiety is responsible for the in vivo behavior of the tracer. This family of compounds contains metal complexes based on an array of different nuclides as well as probes that have been used for the imaging of a variety of pathologies, including infection, inflammation, cancer, and heart disease. Indeed, two of the defining traits of transition metal complexes-modularity and redox chemistry-have both been creatively leveraged in the development of imaging agents. In light of our audience, particular attention is paid to structure and mechanism, though clinical data is addressed as well. Ultimately, it is our hope that this review will not only educate readers about some of the seminal work performed in this space over the last 30 years but also spur renewed interest in the creation of radiopharmaceuticals based on small metal complexes.
Collapse
Affiliation(s)
- Douglas S MacPherson
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10028, USA.
| | | | | | | | | |
Collapse
|
28
|
Kokhan O, Marzolf DR. Detection and quantification of transition metal leaching in metal affinity chromatography with hydroxynaphthol blue. Anal Biochem 2019; 582:113347. [PMID: 31251926 DOI: 10.1016/j.ab.2019.113347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
The widespread use of immobilized metal-affinity chromatography (IMAC) for fast and efficient purification of recombinant proteins has brought potentially toxic transition elements into common laboratory usage. However, there are few studies on the leaching of metal from the affinity resin, such as nickel-nitrilotriacetic acid (Ni-NTA), with possible deleterious impact on the biological activity. This is of particular importance when reducing or chelating eluants stronger than imidazole are used. We present a detailed study of hydroxynaphthol blue (HNB) as an indicator of several divalent metal cations, but with emphasis on Ni2+, clarifying and correcting many errors and ambiguities in the older literature on this dye compound. The assay is simple and sensitive and many metals, notably Ni2+, Zn2+, Cu2+, Pb2+, Fe2+, Co2+, and Al3+, can be readily detected and quantified at concentrations down to 15-50 nM (1-5 ppb) at neutral pH and in most commonly used buffers using spectroscopic equipment available in typical biochemistry research labs. Using this method, we show that significant amounts of Ni2+ (up to 20 mM) are co-purified with a target protein (cytochrome bc1 complex) when histidine is used to elute from Ni-NTA resin.
Collapse
Affiliation(s)
- Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA, 22807, USA.
| | - Daniel R Marzolf
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA, 22807, USA
| |
Collapse
|
29
|
Taghizadeh A, Asli MD, Jamaat PR. Theoretical study of first row transitional metals effects on stabilization of verdoheme analogues. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heme catabolism is an important physiological process that converts heme to biliverdin in the presence of heme oxygenase which has an essential role in destroying unwanted heme. Verdohemes, the green iron (II) complexes of the 5-oxaporphyrin macrocycle are produced by oxidative destruction of heme. The main goal of this study is clarification of the central metal effect on stabilization of metal 5-oxaporphyrin molecules. To investigate the role of central metal on geometric and electronic properties of five coordinated verdoheme analogues, the first row transitional metals, including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, as the central metal of five-coordinated metal 5-oxaporphyrins were systematically calculated without any symmetry constraint by using the B3LYP as DFT method and the 6-31G basis set in gas and solvent phases. According to the results, the stabilization energy of metal 5-oxaporphyrins increases with atomic mass in the solvent phase more than in the gas phase. By reviewing the properties such as the computed frontier orbital energy, HOMO and LUMO gap energy [Formula: see text], hardness [Formula: see text], chemical potential [Formula: see text], softness (s) and electrophilicity [Formula: see text], the pharmaceutical use of this compound can be discussed.
Collapse
Affiliation(s)
- Afsaneh Taghizadeh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Daghighi Asli
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
30
|
Shakya B, Shahi N, Ahmad F, Yadav PN, Pokharel YR. 2-Pyridineformamide N(4)-ring incorporated thiosemicarbazones inhibit MCF-7 cells by inhibiting JNK pathway. Bioorg Med Chem Lett 2019; 29:1677-1681. [DOI: 10.1016/j.bmcl.2019.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/22/2023]
|
31
|
Menteşe E, Emirik M, Sökmen BB. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg Chem 2019; 86:151-158. [DOI: 10.1016/j.bioorg.2019.01.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/27/2019] [Indexed: 11/28/2022]
|
32
|
Abstract
Cutting-edge practices in bioinorganic chemistry are pivotal for enhancing the layout of compounds to lessen poisonous facet effect and recognize their mechanism of action. A powerful anticancer agent should own inherent, inhibitory property and also delivery, dosage and residence time in vivo. Organic function and conformation of mutated gene may be altered by way of binding of metal ions. Upswing of activities counting on the structural data, intending in enhancing and growing different forms of metal based compounds, continuous seek of extra metal based compounds have been synthesized via revamping the prevailing chemical shape via ligand substitution. The prevailing paper addresses the trendy development in the design of novel antitumor agents primarily based on transition metal complex via highlighting the near dating among their structural alternatives and cytotoxic ability.
Collapse
Affiliation(s)
- G. Sridevi
- Department of Chemistry. Sriram Engineering College, Chennai-602024, India, 2R&D Centre, Bharathiar University, Coimbatore-641046, India
| | - S. Arul Antony
- PG and Research Department of Chemistry, Presidency College, Chennai-600005, India
| | - R. Angayarkani
- Department of Chemistry. Sriram Engineering College, Chennai-602024, India
| |
Collapse
|
33
|
Yuan Q, Kong XT, Hou GL, Jiang L, Wang XB. Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)]2− complexes (M = Ca, V–Zn): electronic structures and intrinsic redox properties. Faraday Discuss 2019; 217:383-395. [DOI: 10.1039/c8fd00175h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A systematic photoelectron spectroscopy and theoretical study of divalent transition metal EDTA complexes illustrating the intrinsic correlations of redox properties in the gas and solution phases.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- State Key Laboratory of Molecular Reaction Dynamics
| | - Xiang-Tao Kong
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Gao-Lei Hou
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xue-Bin Wang
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
34
|
Devi PP, Chipem FA, Singh CB, Lonibala R. Complexation of 2-amino-3-(4-hydroxyphenyl)-N′-[(2-hydroxyphenyl) methylene] propane hydrazide with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) ions: Structural characterization, DFT, DNA binding and antimicrobial studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Bharti S, Choudhary M, Mohan B, Sharma SR, Ahmad K. Syntheses, crystal structures, DFT, molecular docking and inhibition studies of jack been urease by nickel (II) and copper (II) Schiff base complexes. INORG NANO-MET CHEM 2018. [DOI: 10.1080/24701556.2018.1503679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sulakshna Bharti
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Bharti Mohan
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - S. R. Sharma
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - K. Ahmad
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
36
|
Suwa M, Imamura N, Awano P, Nakata E, Takashima H. Photoinduced electron-transfer reactions of tris(2,2′-bipyridine)ruthenium(II)-based carbonic anhydrase inhibitors tethering plural binding sites. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mikiko Suwa
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Narumi Imamura
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Pirika Awano
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Eiji Nakata
- Institute of Advanced Energy; Kyoto University; Kyoto Japan
| | - Hiroshi Takashima
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| |
Collapse
|
37
|
Hosseini-Yazdi SA, Samadzadeh-Aghdam P, Ghadari R. Synthesis and experimental/theoretical evaluations on redox potentials and electronic absorption spectra for copper symmetric bis(thiosemicarbazone) complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Mohan B, Modi K, Patel C, Bhatia P, Kumar A, Sharma HK. Design and synthesis of two armed molecular receptor for recognition of Gd3+metal ion and its computational study. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Krunal Modi
- J. Heyrovsky Institute of physical Chemistry; Academy of Sciences of the Czech Republic; Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Chirag Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences; Gujarat University; Ahmedabad Gujarat 380009 India
| | - Pankaj Bhatia
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Ashwani Kumar
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | | |
Collapse
|
39
|
Sarkar K, Dastidar P. Exfoliated Nanosheets of a Cu II Coordination Polymer Modulate Enzyme Activity of α-Chymotrypsin. Chemistry 2018; 24:11297-11302. [PMID: 29888818 DOI: 10.1002/chem.201802376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Indexed: 12/20/2022]
Abstract
A 2D coordination polymer derived from 5-azidoisophthalic acid (AIA) and Cu(NO3 )2 was designed with the aim of modulating the activity of a digestive enzyme α-chymotrypsin (ChT). The coordination polymer namely {[Cu0.5 (μ-AIA)0.5 (H2 O)]⋅2 H2 O}α (CP1) was successfully synthesized and fully characterized by single-crystal X-ray diffraction (SXRD). An exfoliated nanosheet (ENS) of CP1 was readily produced by overnight stirring of hand-ground CP1 crystals dispersed in DMSO. ENS(CP1) was demonstrated to be acting as an inhibitor of ChT; as much as ≈97 % inhibition of ChT was achieved with 100 μm of ENS(CP1) using N-succinyl-l-phenylalanine-p-nitroanilide (SPNA) as substrate. Enzyme kinetics data revealed that the inhibition of ChT followed a competitive pathway. An enzyme assay under varying ionic strength and varying concentration of free histidine revealed that the active site His-57 participated in coordination with the CuII metal center of ENS(CP1) thereby preventing the substrate (SPNA) from binding with the enzyme resulting in efficient inhibition.
Collapse
Affiliation(s)
- Koushik Sarkar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
40
|
|
41
|
Huisman M, Kodanko JP, Arora K, Herroon M, Alnaed M, Endicott J, Podgorski I, Kodanko JJ. Affinity-Enhanced Luminescent Re(I)- and Ru(II)-Based Inhibitors of the Cysteine Protease Cathepsin L. Inorg Chem 2018; 57:7881-7891. [PMID: 29882662 DOI: 10.1021/acs.inorgchem.8b00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new Re(I)- and Ru(II)-based inhibitors were synthesized with the formulas [Re(phen)(CO)3(1)](OTf) (7; phen = 1,10-phenanthroline, OTf = trifluoromethanesulfonate) and [Ru(bpy)2(2)](Cl)2 (8; bpy = 2,2'-bipyridine), where 1 and 2 are the analogues of CLIK-148, an epoxysuccinyl-based cysteine cathepsin L inhibitor (CTSL). Compounds 7 and 8 were characterized using various spectroscopic techniques and elemental analysis; 7 and 8 both show exceptionally long excited state lifetimes. Re(I)-based complex 7 inhibits CTSL in the low nanomolar range, affording a greater than 16-fold enhancement of potency relative to the free inhibitor 1 with a second-order rate constant of 211000 ± 42000 M-1 s-1. Irreversible ligation of 7 to papain, a model of CTSL, was analyzed with mass spectroscopy, and the major peak shown at 24283 au corresponds to that of papain-1-Re(CO)3(phen). Compound 7 was well tolerated by DU-145 prostate cancer cells, with toxicity evident only at high concentrations. Treatment of DU-145 cells with 7 followed by imaging via confocal microscopy showed substantial intracellular fluorescence that can be blocked by the known CTSL inhibitor CLIK-148, consistent with the ability of 7 to label CTSL in living cells. Overall this study reveals that a Re(I) complex can be attached to an enzyme inhibitor and enhance potency and selectivity for a medicinally important target, while at the same time allowing new avenues for tracking and quantification due to long excited state lifetimes and non-native element composition.
Collapse
Affiliation(s)
- Matthew Huisman
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Jacob P Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Karan Arora
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States
| | - Marim Alnaed
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - John Endicott
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| | - Jeremy J Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
42
|
Affiliation(s)
- Ladislav Habala
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | | |
Collapse
|
43
|
Syntheses, structures, and inhibition studies of Jack bean urease by copper(II) complexes derived from a tridentate hydrazone ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Das M, Kumar Kundu B, Tiwari R, Mandal P, Nayak D, Ganguly R, Mukhopadhyay S. Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Guo S, Wang T, Xin J, Hu Q, Ren S, Sheng G, Pan L, Zhang C, Li K, You Z. Syntheses, crystal structures, and Jack bean urease inhibitory activities of copper(II) complexes derived from 4-tert-butyl-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1390569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sihan Guo
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Tianrui Wang
- School of Life Sciences, Shandong University of Technology, Zibo, P. R. China
| | - Jiajin Xin
- School of Life Sciences, Shandong University of Technology, Zibo, P. R. China
| | - Qiqige Hu
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Shanfa Ren
- School of Life Sciences, Shandong University of Technology, Zibo, P. R. China
| | - Guihua Sheng
- School of Life Sciences, Shandong University of Technology, Zibo, P. R. China
| | - Lin Pan
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Chenglu Zhang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Kun Li
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P. R. China
| |
Collapse
|
46
|
Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:178-191. [DOI: 10.1016/j.jphotobiol.2017.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
47
|
Kalyakina AS, Utochnikova VV, Bushmarinov IS, Le-Deygen IM, Volz D, Weis P, Schepers U, Kuzmina NP, Bräse S. Lanthanide Fluorobenzoates as Bio-Probes: a Quest for the Optimal Ligand Fluorination Degree. Chemistry 2017; 23:14944-14953. [PMID: 28833886 DOI: 10.1002/chem.201703543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Indexed: 12/25/2022]
Abstract
The thorough study of fluorinated benzoates of lanthanides (Eu, Tb, Nd, Er, Yb, Gd, La, Lu) is reported. Their composition in single crystal and powder state revealed two predominant structural motifs. An in-depth luminescence study has been performed on the reported fluorobenzoates, showing, that terbium and europium complexes in solid state possess high luminescence intensity with the quantum yield of up to 69 %. High solubility in most organic solvents, as well as in water, combined with the high luminescence intensity in water solution and non-toxicity allowed the testing of europium complexes as bioprobes in cellulo. Among all tested fluorobenzoates, europium 2-fluorobenzoate dihydrate combined the best luminescent properties, thermodynamic stability, aqueous solubility, and non-toxicity, and was shown to be a viable bio-marker.
Collapse
Affiliation(s)
- Alena S Kalyakina
- Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation
| | - Valentina V Utochnikova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation.,P. N. Lebedev Physical Institute, Leninsky prosp. 53, 119991, Moscow, Russian Federation
| | - Ivan S Bushmarinov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, INEOS, 119991, Moscow, Russian Federation
| | - Irina M Le-Deygen
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation
| | - Daniel Volz
- Cynora GmbH, Werner-von-Siemens-Straße 2-6, 76646, Bruchsal, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Natalia P Kuzmina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
48
|
Bremer PT, Pellett S, Carolan JP, Tepp WH, Eubanks LM, Allen KN, Johnson EA, Janda KD. Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. J Am Chem Soc 2017; 139:7264-7272. [PMID: 28475321 PMCID: PMC5612488 DOI: 10.1021/jacs.7b01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) causes a debilitating and potentially fatal illness known as botulism. The toxin is also a bioterrorism threat, yet no pharmacological antagonist to counteract its effects has reached clinical approval. Existing strategies to negate BoNT/A intoxication have looked to antibodies, peptides, or organic small molecules as potential therapeutics. In this work, a departure from the traditional drug discovery mindset was pursued, in which the enzyme's susceptibility to metal ions was exploited. A screen of a series of metal salts showed marked inhibitory activity of group 11 and 12 metals against the BoNT/A light chain (LC) protease. Enzyme kinetics revealed that copper (I) and (II) cations displayed noncompetitive inhibition of the LC (Ki ≈ 1 μM), while mercury (II) cations were 10-fold more potent. Crystallographic and mutagenesis studies elucidated a key binding interaction between Cys165 on BoNT/A LC and the inhibitory metals. As potential copper prodrugs, ligand-copper complexes were examined in a cell-based model and were found to prevent BoNT/A cleavage of the endogenous protein substrate, SNAP-25, even at low μM concentrations of complexes. Further investigation of the complexes suggested a bioreductive mechanism causing intracellular release of copper, which directly inhibited the BoNT/A protease. In vivo experiments demonstrated that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could delay BoNT/A-mediated lethality in a rodent model, indicating their potential for treating the harmful effects of BoNT/A intoxication. Our studies illustrate that metals can be therapeutically viable enzyme inhibitors; moreover, enzymes that share homology with BoNT LCs may be similarly targeted with metals.
Collapse
Affiliation(s)
- Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - James P. Carolan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Galini M, Salehi M, Kubicki M, Amiri A, Khaleghian A. Structural characterization and electrochemical studies of Co(II), Zn(II), Ni(II) and Cu(II) Schiff base complexes derived from 2-((E)-(2-methoxyphenylimino)methyl)-4-bromophenol; Evaluation of antioxidant and antibacterial properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Sharma S, Chauhan M, Jamsheera A, Tabassum S, Arjmand F. Chiral transition metal complexes: Synthetic approach and biological applications. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|