1
|
Dell'Angelo D, Karamanis I, Saeb MR, Balan L, Badawi M. Tailoring van der Waals interactions in ultra-thin two dimensional metal-organic frameworks (MOFs) for photoconductive applications. Phys Chem Chem Phys 2024; 26:26022-26029. [PMID: 39373066 DOI: 10.1039/d4cp03347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The diverse structural tunability of 2-dimensional π-stacked layered metal-organic frameworks (2D MOFs) enables the control of charge carrier mobility to achieve specific photoconductive characteristics. This study demonstrates the potential of various theoretical methodologies and frameworks in establishing a correlation between structure and functionality for such purposes. Through a focus on the archetypal Ni3(HITP)2 2D MOF, we examine the impact of quantum confinement and stacking fault defects on the absorption spectra using our recently-developed Frenkel-Holstein Hamiltonian. Specifically, the relationship between optical properties and number of layer units along the π-stacking direction is discussed. We employ Marcus rate theory to evaluate vertical carrier mobility subject to inter-layer proximity and different crystal packing which affect van der Waals interactions between layers. The insights presented in this research can inform the development of guidelines for enhancing photoconductive properties in 2D MOF nanosheets.
Collapse
Affiliation(s)
| | | | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Lavinia Balan
- CEMHTI-UPR 3079 CNRS, Site Haute Température, 1D avenue de la Recherche Scientifique, 45071 Orl éans, France.
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France.
| |
Collapse
|
2
|
Moeed S, Bousbih R, Ayub AR, Jafar NNA, Aljohani M, Jabir MS, Amin MA, Zubair H, Majdi H, Waqas M, Hadia NMA, Khera RA. A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors. J Mol Graph Model 2024; 131:108792. [PMID: 38797085 DOI: 10.1016/j.jmgm.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
Collapse
Affiliation(s)
- Sidra Moeed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hasan Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University, Sakaka, 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
3
|
Manna S, Manna SS, Pathak B. Integrated Supervised and Unsupervised Machine Learning Approach to Map the Electrochemical Windows Over 4500 Solvents for Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42138-42152. [PMID: 39083029 DOI: 10.1021/acsami.4c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The compatibility between solvent electrolytes and high-voltage electrode materials represents a significant impediment to the progress of rechargeable metal-ion batteries. Rapidly identifying suitable solvent electrolytes with optimized electrochemical windows (ECWs) within an extensive search space poses a formidable challenge. In this study, we introduce a combined supervised and unsupervised (clustering) machine learning (ML) approach to discern distinct clusters of solvent electrolytes exhibiting varying ECW ranges. Through supervised machine learning, we have accurately predicted optimal solvent electrolytes with desired ECWs from a vast pool of 4882 solvents. Our ML model boasts superior accuracy compared to previously reported data from density functional theory (DFT). Besides, the exploration of the vast solvent space through K-means clustering (unsupervised approach) yields 11 optimal clusters, each encompassing different solvents characterized by diverse ECW ranges and frequencies. The expedited reduction of solvent space achieved through clustering occurs within a very short time frame and with minimal resource expenditure. Consequently, this method is highly capable of streamlining the subsequent experimental investigations for battery applications, avoiding the need for a trial-and-error approach.
Collapse
Affiliation(s)
- Souvik Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| |
Collapse
|
4
|
Pagano K, Kim JG, Luke J, Tan E, Stewart K, Sazanovich IV, Karras G, Gonev HI, Marsh AV, Kim NY, Kwon S, Kim YY, Alonso MI, Dörling B, Campoy-Quiles M, Parker AW, Clarke TM, Kim YH, Kim JS. Slow vibrational relaxation drives ultrafast formation of photoexcited polaron pair states in glycolated conjugated polymers. Nat Commun 2024; 15:6153. [PMID: 39039039 PMCID: PMC11263616 DOI: 10.1038/s41467-024-50530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
Glycol sidechains are often used to enhance the performance of organic photoconversion and electrochemical devices. Herein, we study their effects on electronic states and electronic properties. We find that polymer glycolation not only induces more disordered packing, but also results in a higher reorganisation energy due to more localised π-electron density. Transient absorption spectroscopy and femtosecond stimulated Raman spectroscopy are utilised to monitor the structural relaxation dynamics coupled to the excited state formation upon photoexcitation. Singlet excitons are initially formed, followed by polaron pair formation. The associated structural relaxation slows down in glycolated polymers (5 ps vs. 1.25 ps for alkylated), consistent with larger reorganisation energy. This slower vibrational relaxation is found to drive ultrafast formation of the polaron pair state (5 ps vs. 10 ps for alkylated). These results provide key experimental evidence demonstrating the impact of molecular structure on electronic state formation driven by strong vibrational coupling.
Collapse
Affiliation(s)
- Katia Pagano
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Jin Gwan Kim
- Department of Chemistry and Research Institute of Molecular Alchemy (RIMA) Gyeongsang National University Jinju, Gyeongnam, 660-701, Republic of Korea
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Ellasia Tan
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Katherine Stewart
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Gabriel Karras
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Hristo Ivov Gonev
- Department of Chemistry, University College London, Christopher Ingold Building, London, WC1H 0AJ, UK
| | - Adam V Marsh
- Physical Science and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Na Yeong Kim
- Department of Chemistry and Research Institute of Molecular Alchemy (RIMA) Gyeongsang National University Jinju, Gyeongnam, 660-701, Republic of Korea
| | - Sooncheol Kwon
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young Yong Kim
- Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - M Isabel Alonso
- Department of Nanostructured Materials, Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, E-08193, Bellaterra, Spain
| | - Bernhard Dörling
- Department of Nanostructured Materials, Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, E-08193, Bellaterra, Spain
| | - Mariano Campoy-Quiles
- Department of Nanostructured Materials, Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, E-08193, Bellaterra, Spain
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Tracey M Clarke
- Department of Chemistry, University College London, Christopher Ingold Building, London, WC1H 0AJ, UK
| | - Yun-Hi Kim
- Department of Chemistry and Research Institute of Molecular Alchemy (RIMA) Gyeongsang National University Jinju, Gyeongnam, 660-701, Republic of Korea.
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Tirimbò G, Baumeier B. Electronic Couplings and Conversion Dynamics between Localized and Charge Transfer Excitations from Many-Body Green's Functions Theory. J Chem Theory Comput 2024; 20:4605-4615. [PMID: 38770562 PMCID: PMC11171285 DOI: 10.1021/acs.jctc.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
We investigate the determination of electronic coupling between localized excitations (LEs) and charge-transfer (CT) excitations based on many-body Green's functions theory in the GW approximation with the Bethe-Salpeter equation (GW-BSE). Using a small molecule dimer system, we first study the influence of different diabatization methods, as well as different model choices within GW-BSE, such as the self-energy models or different levels of self-consistency, and find that these choices affect the LE-CT couplings only minimally. We then consider a large-scale low-donor morphology formed from rubrene and fullerene and evaluate the LE-CT couplings based on coupled GW-BSE-molecular mechanics calculations. For these disordered systems of bulky molecules, we observe differences in the couplings based on the Edmiston-Ruedenberg diabatization compared to the more approximate Generalize Mulliken-Hush and fragment charge difference diabatization formalisms. In a kinetic model for the conversion between LE and CT states, these differences affect the details of state populations in an intermediate time scale but not the final populations.
Collapse
Affiliation(s)
- Gianluca Tirimbò
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Björn Baumeier
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Kiven DE, Bine FK, Nkungli NK, Tamafo Fouegue AD, Tasheh SN, Ghogomu JN. Enhancing the charge transport and luminescence properties of ethyl 4-[( E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate through complexation: a DFT and TD-DFT study. RSC Adv 2024; 14:18646-18662. [PMID: 38863822 PMCID: PMC11166190 DOI: 10.1039/d4ra02250e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Organic light emitting diode (OLED) and organic solar cell (OSC) properties of ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and its Pt2+, Pd2+, Ni2+, Ir3+, Rh3+, and Zn2+ complexes have been theoretically studied herein. Geometry optimizations have been performed via the r2SCAN-3c composite method while single-point calculations have been carried out at the PBE0-D3(BJ)/def2-TZVP level of theory. Results have shown that complexation with selected metal ions improves hole and electron transfer rates in Pt[EMAB]2 and Rh[EMAB]2 +. Specifically, the hole transport rate of Pt[EMAB]2, (k ct(h) = 6.15 × 1014 s-1), is found to be 44 times greater than that of [EMAB], (k ct(h) = 1.42 × 1013 s-1), whereas electron transport rate of Pt[EMAB]2, (k ct(e) = 4.6 × 1013 s-1) is 4 times that of EMAB (k ct(e) = 1.1 × 1013 s-1). Charge mobility for holes and electrons are equal to 19.182 cm2 V-1 s-1 and 1.431 cm2 V-1 s-1 respectively for Pt[EMAB]2, and equal to 4.11 × 10-1 cm2 V-1 s-1 and 3.43 × 10-1 cm2 V-1 s-1 for EMAB respectively. These results show that, charge transport in EMAB can be tuned for better performance through complexation with transition metals such as Pt2+. OSC properties of the complexes were also studied by comparing their HOMO/LUMO energies with those of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT). It turned out that the energy gap of EMAB reduced significantly upon complexation from 2.904 eV to 0.56 eV in [Rh(EMAB)2]+ and to a lesser extent in the other complexes. The energy values of the HOMOs remained higher than those of PCBM while those of the LUMOs were found to be greater than that of P3HT with the exception of [Rh(EMAB)2]+. These findings show that the aforementioned species are good electron donors to PCBM. The open circuit voltage, V OC, of the compounds ranged between 0.705 × 10-19 V and 6.617 × 10-19 V, values that are good enough for practical usage in OSC applications. The UV-visible absorption spectra revealed absorption maxima well below 900 nm in all compounds, vital in the efficient functioning of solar cells. In general, this study has shown that platinoid complexation of EMAB can successfully modify both its OLED and OSC properties, making them better precursors in the electronic industry.
Collapse
Affiliation(s)
- Dinyuy Emmanuel Kiven
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Fritzgerald Kogge Bine
- Department of Fundamental and Cross-cutting Sciences, National Advanced School of Public Works P. O. Box 510 Yaounde Cameroon,
| | - Nyiang Kennet Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | | | - Stanley Numbonui Tasheh
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Julius Numbonui Ghogomu
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
- Department of Chemistry, Research Unit of Noxious Chemistry and Environmental Engineering, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
| |
Collapse
|
7
|
Athanasopoulos E, Conradie J. DFT study of the spectroscopic behaviour of different iron(II)-terpyridine derivatives with application in DSSCs. J Mol Graph Model 2024; 129:108753. [PMID: 38461758 DOI: 10.1016/j.jmgm.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV-visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.
Collapse
Affiliation(s)
- Evangelia Athanasopoulos
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| |
Collapse
|
8
|
Karuppusamy M, Panneer SVK, Varathan E, Ravva MK, Easwaramoorthi S, Subramanian V. Design of Isoindigo-Based Small-Molecule Donors for Bulk Heterojunction Organic Solar Cell Applications in Combination with Nonfullerene Acceptors. J Phys Chem A 2024; 128:4206-4224. [PMID: 38752229 DOI: 10.1021/acs.jpca.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The development of small-molecule organic solar cells with the required efficiency depends on the information obtained from molecular-level studies. In this context, 39 small-molecule donors featuring isoindigo as an acceptor moiety have been meticulously crafted for potential applications in bulk heterojunction organic solar cells. These molecules follow the D2-A-D1-A-D2 and D2-A-π-D1-π-A-D2 framework. Similar molecules considered in the previous experimental study (molecules R1 ((3E,3″E)-6,6″-(benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(1,1'-dimethyl-[3,3'-biindolinylidene]-2,2'-dione)) and R2 ((3E,3″E)-6,6″-(4,8-dimethoxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(1,1'-dimethyl-[3,3'-biindolinylidene]-2,2'-dione))) have been chosen as reference molecules. Molecules with and without π-spacers have been considered to understand the impact of the length of the π-spacer on intramolecular charge-transfer transitions and absorption properties. A detailed investigation is carried out to establish the relationship between the structure and photovoltaic parameters using density functional theory and time-dependent density functional theory methods. The newly developed molecules exhibit better electronic, excited-state, and charge transport properties than the reference molecules. Additionally, model donor-acceptor interfaces are constructed by integrating the designed donor molecules with fullerene/nonfullerene acceptors. The electronic and excited-state properties of these interfaces are rigorously evaluated. Results elucidate that the donor comprising of isoindigo-bithiophene-pyrroloindacenodithiophene (IIG-T2-PIDT) emerges as a promising candidate for bulk heterojunction solar cells based on nonfullerene acceptors. This research provides systematic design strategies for the development of small-molecule donors for organic solar cells.
Collapse
Affiliation(s)
- Masiyappan Karuppusamy
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shyam Vinod Kumar Panneer
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
| | - Elumalai Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
| | - Venkatesan Subramanian
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, Tamil Nadu, India
- Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
9
|
Stewart K, Pagano K, Tan E, Daboczi M, Rimmele M, Luke J, Eslava S, Kim JS. Understanding Effects of Alkyl Side-Chain Density on Polaron Formation Via Electrochemical Doping in Thiophene Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211184. [PMID: 37626011 DOI: 10.1002/adma.202211184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Polarons exist when charges are injected into organic semiconductors due to their strong coupling with the lattice phonons, significantly affecting electronic charge-transport properties. Understanding the formation and (de)localization of polarons is therefore critical for further developing organic semiconductors as a future electronics platform. However, there are very few studies reported in this area. In particular, there is no direct in situ monitoring of polaron formation and identification of its dependence on molecular structure and impact on electrical properties, limiting further advancement in organic electronics. Herein, how a minor modification of side-chain density in thiophene-based conjugated polymers affects the polaron formation via electrochemical doping, changing the polymers' electrical response to the surrounding dielectric environment for gas sensing, is demonstrated. It is found that the reduction in side-chain density results in a multistep polaron formation, leading to an initial formation of localized polarons in thiophene units without side chains. Reduced side-chain density also allows the formation of a high density of polarons with fewer polymer structural changes. More numerous but more localized polarons generate a stronger analyte response but without the selectivity between polar and non-polar solvents, which is different from the more delocalized polarons that show clear selectivity. The results provide important molecular understanding and design rules for the polaron formation and its impact on electrical properties.
Collapse
Affiliation(s)
- Katherine Stewart
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Katia Pagano
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Ellasia Tan
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Matyas Daboczi
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Salvador Eslava
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
10
|
Deka R, Kalita DJ. Boosting the Performance of Diketopyrrolopyrrole-Triphenylamine-Based Organic Solar Cells via π-Linker Engineering. J Phys Chem A 2024. [PMID: 38422013 DOI: 10.1021/acs.jpca.3c06439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The design and development of novel and efficient donor-π-acceptor (D-π-A) type conjugated systems has attracted substantial interest in the field of organic electronics owing to their intriguing properties. In this paper, we have designed seven new and efficient D-π-A type conjugated systems (M1-M7) by a variety of π-linkers with triphenylamine (TPA) as the electron donor and diphenyldiketopyrrolopyrrole (DPP) as the electron acceptor using density functional theory (DFT) formalism for organic solar cells (OSCs). The π-linker has been substituted between the donor and acceptor for efficient electron transfer. Here, our primary focus is on narrowing the highest occupied molecular orbital-lowest unoccupied molecular orbital gaps, electronic transition, charge transfer rate, reorganization energies, and the theoretical power conversion efficiencies (PCEs). Our study reveals that the designed compounds exhibit excellent charge transfer rates. The absorption properties of the compounds have been examined using the time-dependent density functional theory (TD-DFT) method. The TD-DFT study shows that compound M2 possesses the highest absorption maxima with a maximum bathochromic shift. For a better understanding of the electron transport process of our designed compounds, we have designed donor/acceptor (D/A) blends, and each of the developed blends (FREA/M1-M7) can encourage charge carrier separation. According to the photovoltaic performance of the D/A blends, compound FREA-M2, which has a theoretical PCE of 16.53%, is the most appealing choice for use in OSCs. We expect that by thoroughly examining the relationship between structure, characteristics, and performance, this work will serve as a roadmap for future research and development of TPA-DPP-based photovoltaic materials.
Collapse
Affiliation(s)
- Rinki Deka
- Department of Chemistry, University of Gauhati, Guwahati 781014, India
| | | |
Collapse
|
11
|
Chen M, Liu J, Cao Y, Liu Q. The novel non-fully-fused ring small molecule acceptors: End-capped modification investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124034. [PMID: 38367344 DOI: 10.1016/j.saa.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
End-capped modification is an efficacious strategy for developing high-performance acceptor materials. In this paper, the experimentally synthesized A-D-A'-D-A type non-fully-fused ring acceptor IDTBT-4F (R) was used as a reference molecule, and five small molecule acceptors for R1-R5 were investigated by changing R's terminal functional groups. By using DFT/B3PW91/6-31G (d,p) method, the ground-state structures of all molecules were studied. The absorption spectra of these acceptors were gained by the TD-DFT/MPW1PW91/6-31G (d,p) approach. Meanwhile, the charge density difference and transition density matrix were analyzed effectively. It can be observed that, compared to the R molecule, all developed molecules exhibited narrower energy gaps, larger absorption wavelengths, more red-shifted absorption spectra, lower excitation energies, higher dipole moment and greater electron-accepting capacity. The strategy of functional group substitution is superior to halogen substitution in improving the aforementioned parameters. Both terminal π-extension and end-group chlorination strategies can synergistically enhance molecular performance. In addition, we also calculated the electron mobility of the dimers constructed by all the molecules, among which R1 and R4 molecules designed with -COOCH3 functional group substitution and R2 molecule with terminal chlorination achieved superior electron mobility compared to R molecule due to their significant electronic coupling. Overall, the study shows that the designed molecules can be highly effective candidates for applications of organic solar cells.
Collapse
Affiliation(s)
- Minmin Chen
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Jinglin Liu
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Yajie Cao
- College of Science, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Qian Liu
- Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
12
|
Xia BH, Ma YS, Bai FQ. Density Functional Calculation and Evaluation of the Spectroscopic Properties and Luminescent Material Application Potential of the N-Heterocyclic Platinum(II) Tetracarbene Complexes. Molecules 2024; 29:524. [PMID: 38276602 PMCID: PMC10820303 DOI: 10.3390/molecules29020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
A series of reported Pt(II) carbene complexes possibly have the ability to serve as the new generation of blue emitters in luminescent devices because of their narrow emission spectra, high photoluminescence quantum yields (PLQYs), and rigid molecular skeleton. However, the combination of all carbene ligands with different multidentate structures will affect the overall planarity and horizontal dipole ratio to varying degrees, but the specific extent of this effect has not previously been analyzed in detail. In this work, density functional computation is used to study a class of platinum tetracarbene bidentate complexes with similar absorption and emission band characteristics, which is the main reason for the remarkable difference in quantum efficiency due to subtle differences in electronic states caused by different ligands. From the calculation results, the major reason, which results in significantly decrease in quantum efficiency for [Pt(cyim)2]2+, is that [Pt(cyim)2]2+ can reach the non-radiative deactivation metal-centered d-d excited state through an easier pathway compared with [Pt(meim)2]2+. The result, based on changes in the dihedral angle between ligands, can achieve the goal of improving and designing materials by adjusting the degree of the dihedral angle. (meim: bis(1,1'-dimethyl-3,3'-methylene-diimidazoline-2,2'-diylidene); cyim: bis(1,1'-dicyclohexyl-3,3'-methylene-diimidazoline-2,2'-diylidene).
Collapse
Affiliation(s)
- Bao-Hui Xia
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Yin-Si Ma
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fu-Quan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Ejaz I, Ahsan F, Asif M, Ayub K. Polaronic state of conducting oligomer as a new approach to design non-lieaner optical materials: A case study of oligofurans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123288. [PMID: 37634328 DOI: 10.1016/j.saa.2023.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The geometric, electronic and nonlinear optical properties of neutral and polaron based oligofurans are studied comparatively. We have reported the role of polaron to trigger the nonlinear optical response of oligofurans (nFu). The polaron based oligomers show excellent opto-electronic properties. The effect of polaron on nFu* chains is measured by electronic properties i.e (ionization energy, electron affinity, band gap) and global reactivity descriptors like softness, hardness and chemical potential than their neutral counterpart. An interesting trends of reactivity descriptors have been observed. Lower band gaps (EH-L = 4.66 and 4.41 eV) are observed for polaronic systems as compared to their neutral counterpart. On the other hand, the TD-DFT study further demonstrated that, as the size of chain increases, the absorption maxima (λmax) also increases with significant reduction in excitation energies (ΔE). Furthermore, the nonlinear optical response is confirmed through the linear polarizability (αo), static first order hyperpolarizability (βo) and dynamic (frequency denepndent) hyperpolarizability. Electric filed induced second harmonic generation (EFISHG) and electro-optic pockle effect (EOPE) at 532 nm and 1064 nm, commonly used lasers frequencies have also been employed. Our results showed that the maximum hyperpolarizabilities are observed for polaron based 7Fu* and 9Fu* i.e 1.3 × 104, and 3.1 × 104 au. This study concluded that these polaron based organic polymers (nFu*) are useful as an efficient NLO material with vast applications in different fields.
Collapse
Affiliation(s)
- Iqra Ejaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Faiza Ahsan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Misbah Asif
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan.
| |
Collapse
|
14
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
15
|
Le QT, Yun H, Park H, Jeong HD. Effect of annealing temperature and capping ligands on the electron mobility and electronic structure of indium oxide nanocrystal thin films: a comparative study with oleic acid, benzoic acid, and 4-aminobenzoic acid. Phys Chem Chem Phys 2023; 25:30975-30992. [PMID: 37937718 DOI: 10.1039/d3cp03842d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The effect of annealing temperature and capping ligands on the electron mobility and electronic structure of indium oxide (In2O3) nanocrystals (NCs) was investigated using oleic acid (OA), benzoic acid (BA), and 4-aminobenzoic acid (4ABA). The NCs were deposited on SiO2/Si wafers for electron mobility measurements using a field effect transistor device, and the annealing temperature (TAnn) was varied from 150 to 350 °C. At TAnn = 200 °C, the electron mobility of the BA-capped In2O3 NC thin film was greater than that of 4ABA-capped In2O3 NCs, while the opposite trend was observed at TAnn = 250 °C. This difference can be attributed, at the lower annealing temperature, to the π-π interaction in the BA-capped In2O3 NC thin film, which is hindered in the ABA-capped In2O3 NC thin film owing to its -NH2 group. At higher annealing temperature, NN bond formation in the ABA-capped In2O3 NC thin film confirmed by Raman spectroscopy plays a key role even after significant thermal decomposition of the ligands in the In2O3 NC thin films. At TAnn = 250 °C, the reorganization energy of BA- or 4ABA-capped In2O3 NCs estimated in the framework of Marcus theory was very similar to each other, indicating that the ligands decompose almost completely, as confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The electronic structure was studied by energy-resolved electrochemical impedance spectroscopy (ER-EIS) after annealing the NCs on ITO electrodes at TAnn = 150 °C, 200 °C, or 250 °C. The valence band peak was observed near -6.8 eV for the BA- or 4ABA-capped In2O3 NC films at TAnn =150 °C or 200 °C, but not at TAnn =250 °C. However, for the OA-capped In2O3 NCs, the peak near -6.8 eV was observed for all annealing conditions. Considering the exclusive perseverance of the carboxylate group in the OA-capped In2O3 NCs even at TAnn = 250 °C, as confirmed by FT-IR and TGA, one attributes the peak at -6.8 eV to an electronic state formed by the electronic interaction between the In2O3 NC and the carboxylate groups.
Collapse
Affiliation(s)
- Quang Trung Le
- Department of Chemistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Hyeok Yun
- Department of Chemistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Hyeonbeom Park
- Department of Chemistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Hyun-Dam Jeong
- Department of Chemistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
16
|
Unge M, Aspåker H, Nilsson F, Pierre M, Hedenqvist MS. Coarse-Grained Model for Prediction of Hole Mobility in Polyethylene. J Chem Theory Comput 2023; 19:7882-7894. [PMID: 37842881 PMCID: PMC10653082 DOI: 10.1021/acs.jctc.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 10/17/2023]
Abstract
Electrical conductivity measurements of polyethylene indicate that the semicrystalline structure and morphology influence the conductivity. To include this effect in atomistic charge transport simulations, models that explicitly or implicitly take morphology into account are required. In the literature, charge transport simulations of amorphous polyethylene have been successfully performed using short oligomers to represent the polymer. However, a more realistic representation of the polymer structure is desired, requiring the development of fast and efficient charge transport algorithms that can handle large molecular systems through coarse-graining. Here, such a model for charge transport simulations in polyethylene is presented. Quantum chemistry calculations were used to define six segmentation rules on how to divide a polymer chain into shorter segments representing localized molecular orbitals. Applying the rules to amorphous systems yields distributions of segments with mode and median segment lengths relatively close to the persistence length of polyethylene. In an initial test, the segments of an amorphous polyethylene were used as hopping sites in kinetic Monte Carlo (KMC) simulations, which yielded simulated hole mobilities that were within the experimental range. The activation energy of the simulated system was lower compared to the experimental values reported in the literature. A conclusion may be that the experimental result can only be explained by a model containing chemical defects that generate deep traps.
Collapse
Affiliation(s)
- Mikael Unge
- NKT
HV Cables, Technology Consulting, SE-721 78 Västerås, Sweden
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Hannes Aspåker
- NKT
HV Cables, Technology Consulting, SE-721 78 Västerås, Sweden
| | - Fritjof Nilsson
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FSCN
Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Max Pierre
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
17
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
18
|
Kakuta T, Miyazaki R, Shinjo Y, Ueno Y, Yamagishi TA. Acceptor-Induced Fluorescence of Phenolic Polymers Based on Triphenylamine Derivatives. Chempluschem 2023; 88:e202300269. [PMID: 37583032 DOI: 10.1002/cplu.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Conductive polymers facilitate the electrical current flow through the transfer of electrons and holes. They show promise for novel photo-functional materials in photovoltaics. However, substantial electrostatic interactions between electron donors and acceptors induce polymer aggregation, limiting moldability and conductivity. In this study, robust donor polymers with high heat resistance were synthesized by bonding triphenylamine (TPA) derivatives and formaldehyde to phenolic groups. Resulting TPA-based phenolic polymers exhibited flexible structures and fluorescence due to charge transfer with acceptor molecules. Furthermore, TPA-based phenolic polymers' capacity to distinguish acceptor molecule sizes correlated with their molecular weight, reflecting upon donor-acceptor interactions. This novel optical trait in phenolic polymers holds potential for electronic components and conductive materials.
Collapse
Affiliation(s)
- Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Rise Miyazaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yukiyo Shinjo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yukiko Ueno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
19
|
Jin R, Zhang X, Xin J, Xiao W. Molecular design of D-π-A-π-D small molecule donor materials with narrow energy gap for organic solar cells applications. J Mol Model 2023; 29:273. [PMID: 37542668 DOI: 10.1007/s00894-023-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
CONTEXT Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. METHODS All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China.
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China.
| | - Xinhao Zhang
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Wenmin Xiao
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
20
|
Aloufi F, Halawani RF, Jamoussi B, Hajri AK, Zahi N. Quantum Modification of Indacenodithieno[3,2- b]thiophene-Based Non-fullerene Acceptor Molecules for Organic Solar Cells of High Efficiency. ACS OMEGA 2023; 8:21425-21437. [PMID: 37360427 PMCID: PMC10286251 DOI: 10.1021/acsomega.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
In order to enhance the efficacy of organic solar cells, six new three-dimensional small donor molecules (IT-SM1 to IT-SM6) have been computationally designed by modifying the peripheral acceptors of the reference molecule (IT-SMR). The frontier molecular orbitals revealed that IT-SM2 to IT-SM5 had a smaller band gap (Egap) than IT-SMR. They also had smaller excitation energies (Ex) and exhibited a bathochromic shift in their absorption maxima (λmax) when compared to IT-SMR. In both the gas and chloroform phases, IT-SM2 had the largest dipole moment. IT-SM2 also had the best electron mobility, while IT-SM6 had the best hole mobility owing to their smallest reorganization energy for electron (0.1127 eV) and hole (0.0907 eV) mobility, respectively. The analyzed donor molecules' open-circuit voltage (VOC) indicated that all of these proposed molecules had greater VOC and fill factor (FF) values than the IT-SMR molecule. In accordance with the evidence of this work, the altered molecules can seem to be quite proficient for usage by experimentalists and have prospective use in future in the manufacture of organic solar cells with improved photovoltaic properties.
Collapse
Affiliation(s)
- Fahed
A. Aloufi
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riyadh F. Halawani
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Science, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nesrine Zahi
- Applied
College, Huraymila, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
- Thermal
and Energetic Systems Studies Laboratory (LESTE), National Engineering
School of Monastir (ENIM), University of
Monastir, Monastir 5000, Tunisia
| |
Collapse
|
21
|
Dai Y, Zerbini A, Casado J, Negri F. Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character. Molecules 2023; 28:4642. [PMID: 37375198 DOI: 10.3390/molecules28124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The charged forms of π-conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum-chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| | - Andrea Zerbini
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Fabrizia Negri
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
22
|
Hussain A, Kanwal F, Irfan A, Hassan M, Zhang J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS OMEGA 2023; 8:15638-15649. [PMID: 37151492 PMCID: PMC10157659 DOI: 10.1021/acsomega.3c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
We have expounded the unique molecular design architecture for efficient thermally activated delayed fluorescence (TADF) materials based on a donor-linker-acceptor-linker-donor (D-L-A-L-D) framework, which can be employed as predecessors of organic light-emitting diode (OLED) devices. Different from traditional donor-acceptor-type (D-A-type) TADF scaffolds, the D-L-A-L-D structural design avoids direct coupling amid the D and A fragments allowing the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) to be spatially separated. It results in a reduced overlap between HOMOs and LUMOs, thus realizing fairly a slight singlet-triplet energy gap (ΔE ST) and higher photoluminescence quantum yield (Φ). We revealed that manipulating a linker between D and A fragments in intramolecular charge transfer compounds is an auspicious approach for realizing small ΔE ST. Herein, we report a group of organic electroluminescent D-L-A-L-D-type molecules with different electron-donating and electron-accepting moieties using density functional theory calculations and time-dependent density functional theory calculations. Two types of linkers, the π-conjugated phenylene (-C6H4-) and aliphatic alkyl chains or σ-spacer (-CH2- and -CH2-CH2-), were exploited between D and A fragments. In principle, the conjugation in D-π-A-π-D-type molecules and hyperconjugation in D-σ-A-σ-D type molecules encourage the spatial separation of the HOMO-LUMO causing a reduction in the ΔE ST. All the designed molecules show a blue-shift in the emission wavelengths (λem) over the directly linked parent molecules except DPA-DPS-C6H4 and BTPA-DPS-C6H4 which show a red-shift. Violet-blue to green-yellow (376-566 nm) λem was observed from all of the investigated molecules. Other important properties that affect the efficiency of emission quantum yields like frontier molecular orbital analysis, natural population analysis, electron excitation analysis, exciton binding energies, ionization potentials, electronic affinities, and reorganization energies of the designed molecules were also inspected. We are confident that our work will effectively give a straightforward and distinctive approach to building incredibly effective TADF-OLEDs and a new perspective on their structural design.
Collapse
Affiliation(s)
- Aftab Hussain
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- . Tel.: +923426224761
| | - Farah Kanwal
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mehboob Hassan
- Department
of Chemistry, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jingping Zhang
- Faculty
of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Iqbal M, Hussain A, Naz A, Hussain R, Yar M, Ayub K, Shah Gilani MRH, Imran M, Assiri MA. Tailoring the solar cell efficiency of Y-series based non-fullerene acceptors through end cap modification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122322. [PMID: 36652802 DOI: 10.1016/j.saa.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Y-series-based non-fullerene acceptors (NFAs) have achieved significant deliberation by chemists and physicists because the promising optical and photochemical properties associated with high-performance OSCs can be further tuned through end-capped modification. In this work, such modifications of Y-series benzothiadiazole-based NFAs were accomplished theoretically to propose new acceptors for photovoltaic cells (PVCs). The recently synthesized Y-series non-fullerene acceptor m-BTP-PhC6 was taken as a reference acceptor. We designed five new acceptors (BTP1-BTP5) through the structural modification at both ends of acceptor groups and evaluated their performance by applying DFT and TD-DFT. The newly engineered molecules exhibited a narrower bandgap (Eg) than the reference (R) resulting in better intramolecular charge transfer (ICT). Further, the designed acceptors expressed the maximum absorption in the region of 600-800 nm revealing a redshift in their absorption spectrum. Low excitation energy and low exciton binding energy were noted for designed acceptors confirming them as better candidates for high PCE of solar cells. Low reorganizational energy for the mobility of holes and electrons was also observed for the designed molecules, indicating improved charge transfer properties. The newly tailored acceptor BTP4 was found to be the promising candidate among all acceptors because of lower bandgap, lower exciton binding energy, reorganizational energy, and redshift of the absorption spectrum. The complex analysis of BTP4 with donor polymer PTB7-Th and PM6 was executed at the same DFT level. Furthermore, FMOs studies showed relatively rich electron density in the acceptor groups of LUMO as compared to the reference molecule. The overall theoretical results of this study showed that the designed acceptors played a productive and effective role in uplifting the efficiency of fullerene-free energy devices.
Collapse
Affiliation(s)
- Muniba Iqbal
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Asma Naz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Education, DG Khan Campus, Pakistan
| | - Muhammad Yar
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan
| | - M Rehan H Shah Gilani
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O.Box 9004, Abha 61514, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O.Box 9004, Abha 61514, Saudi Arabia
| |
Collapse
|
24
|
Azaid A, Abram T, Alaqarbeh M, Raftani M, Kacimi R, Sbai A, Lakhlifi T, Bouachrine M. Design new organic material based on triphenylamine (TPA) with D-π-A-π-D structure used as an electron donor for organic solar cells: A DFT approach. J Mol Graph Model 2023; 122:108470. [PMID: 37116334 DOI: 10.1016/j.jmgm.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023]
Abstract
Because of the increasing scarcity of fossil fuels and the growing need for energy, it has become necessary to research new renewable energy resources. In this study, five new high-performance materials (TP-FA1F-TP - TP-FA5F-TP) of the D-π-A-π-D configuration based on triphenylamine (TPA) were theoretically investigated by applying DFT and TD-DFT methods for future application as heterojunction organic solar cells (BHJ). The influence of the modification of the acceptor (A) of the parent molecule TP-FTzF-TP on the structural, electronic, photovoltaic and optical properties of the TP-FA1F-TP - TP-FA5F-TP organic molecules was investigated in detail. TP-FA1F-TP - TP-FA5F-TP showed Egap in the interval of 1.44-2.01 eV with λabs in the range of 536-774 nm, open-circuit voltage (Voc) values varied between 0.3 and 0.56 V and power conversion efficiencies (PCE) ranging from (3-6) %. Our results also show that the donor molecules suggested in this research exhibit an improved performance compared to the recently synthesized TP-FTzF-TP, such as a lowest HOMO energy, a smaller Egap, and a greater absorption spectrum, and can lead to higher performance. Indeed, this theoretical research could lead to the future synthesis of better compounds as active substances used in BHJ.
Collapse
Affiliation(s)
- Ahmed Azaid
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tayeb Abram
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381, Jordan.
| | - Marzouk Raftani
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Rchid Kacimi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco; EST Khenifra, University Sultan Moulay Sliman, Morocco.
| |
Collapse
|
25
|
Wei Z, Chen Y, Wang J, Yang T, Zhao Z, Zhu S. De Novo Synthesis of α-Oligo(arylfuran)s and Its Application in OLED as Hole-Transporting Material. Chemistry 2023; 29:e202203444. [PMID: 36517415 DOI: 10.1002/chem.202203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Tuning the photophysical properties of π-conjugated oligomers by functionalization of skeleton, to achieve an optically and electronically advantageous building block for organic semiconductor materials is a vital yet challenging task. In this work, a series of structurally well-defined polyaryl-functionalized α-oligofurans, in which aryl groups are introduced precisely into each of the furan units, are rapidly and efficiently synthesized by de novo metal-free synthesis of α-bi(arylfuran) monomers for the first time. This new synthetic strategy nicely circumvents the cumbersome substituent introduction process in the later stage by the preinstallation of the desired aryl groups in the starting material. The characterization of α-oligo(arylfuran)s demonstrates that photoelectric properties of coplanar α-oligo(arylfuran)s can be tuned through varying aryl groups with different electrical properties. These novel α-oligo(arylfuran)s have good hole transport capacity and can function as hole-transporting layers in organic light-emitting diodes, which is indicative of significant breakthrough in the application of α-oligofurans materials in OLEDs. And our findings offer an avenue for the ingenious use of α-oligo(arylfuran)s as p-type organic semiconductors for OLEDs.
Collapse
Affiliation(s)
- Zhuwen Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jianghui Wang
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Tao Yang
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
26
|
Kathiravan A, Kumar MD, Nagalakshmi Gayathri M, Noel Joseph J, Jaccob M. Role of anchoring groups on the light harvesting and optoelectronic properties of triphenylamine derivatives: insights from theory. J Mol Model 2023; 29:79. [PMID: 36856937 DOI: 10.1007/s00894-023-05475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND In the present work, DFT and time-dependent DFT calculations were performed to investigate the role of anchoring groups on the photophysical properties and reveal structure-property correlations of triphenylamine (TPA) derivatives. The selected anchoring groups are tetrazole, acrylamide, hydantoin, and rhodanine. RESULTS Our results show that the different anchoring groups employed alter the planarity, intramolecular charge transfer properties, and HOMO-LUMO gap and hence influence the optoelectronic properties of the dyes. Although all molecules fulfill the basic requirements with suitable energy levels, band gap, absorption, and charge transfer properties, the dye with rhodanine acceptor (TPA4) was the most promising candidate due to its lowest HOMO-LUMO gap, red-shifted highest λmax absorption value, better ICT pattern, low total reorganization energy, and good electron injection properties. Overall, it is anticipated that the results of this investigation will point to new avenues for the experimental fabrication of remarkably effective metal-free organic dyes for solar cell applications.
Collapse
Affiliation(s)
- Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600 062, India
| | - Madhu Deepan Kumar
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu, 600 034, India
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirapalli, Tamil Nadu, 621 112, India
| | - M Nagalakshmi Gayathri
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - J Noel Joseph
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - Madhavan Jaccob
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu, 600 034, India.
| |
Collapse
|
27
|
Rashid EU, Hadia NMA, Shawky AM, Ijaz N, Essid M, Iqbal J, Alatawi NS, Ans M, Khera RA. Quantum modeling of dimethoxyl-indaceno dithiophene based acceptors for the development of semiconducting acceptors with outstanding photovoltaic potential. RSC Adv 2023; 13:4641-4655. [PMID: 36760314 PMCID: PMC9900428 DOI: 10.1039/d2ra07957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In the current DFT study, seven dimethoxyl-indaceno dithiophene based semiconducting acceptor molecules (ID1-ID7) are designed computationally by modifying the parent molecule (IDR). Here, based on a DFT exploration at a carefully selected level of theory, we have compiled a list of the optoelectronic properties of ID1-ID7 and IDR. In light of these results, all newly designed molecules, except ID5 have shown a bathochromic shift in their highest absorbance (λ max). ID1-ID4, ID6 and ID7 molecules have smaller band gap (E gap) and excitation energy (E x). IP of ID5 is the smallest and EA of ID1 is the largest among all others. Compared to the parent molecule, ID1-ID3 have increased electron mobility, with ID1 being the most improved in hole mobility. ID4 had the best light harvesting efficiency in this investigation, due to its strongest oscillator. The acceptor molecules' open-circuit voltages (V OC) were computed after being linked to the PTB7-Th donor molecule. Fill factor (FF) and normalized V OC of ID1-ID7 were calculated and compared to the parent molecule. Based on the outcomes of this study, the modified acceptors may be further scrutinised for empirical usage in the production of organic solar cells with enhanced photovoltaic capabilities.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Nashra Ijaz
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU)P.O. Box 9004AbhaSaudi Arabia,Université de Carthage, Faculté des Sciences de Bizerte, LR13ES08 Laboratoire de Chimie des MatériauxZarzouna Bizerte7021Tunisia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Naifa S. Alatawi
- Physics Department, Faculty of Science, University of TabukTabuk 71421Saudi Arabia
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
28
|
Chi HY, Xi GQ, Zhao XM, Qu SJ, Liu X, Ji Y, Song MX, Zhang YL, Qin ZK, Zhang HJ. Theoretical study on a series of Blue-Green Ir(III) complexes used in OLED. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2157343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hao-Yuan Chi
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
- Jilin Meteorological Observation and Protection Center, Jilin Meteorological Service, Changchun, People’s Republic of China
| | - Guo-Qing Xi
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
- Infovision Optoelectronics (Kunshan) Co., Ltd, Kunshan, People’s Republic of China
| | - Xue-Ming Zhao
- Jilin Meteorological Observation and Protection Center, Jilin Meteorological Service, Changchun, People’s Republic of China
| | - Shao-Jun Qu
- Jilin Meteorological Observation and Protection Center, Jilin Meteorological Service, Changchun, People’s Republic of China
| | - Xiang Liu
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
| | - Ye Ji
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
| | - Ming-Xing Song
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
| | - Yong-Ling Zhang
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
| | - Zheng-Kun Qin
- College of Information Technology, Jilin Normal University, Siping, People’s Republic of China
| | - Hong-Jie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| |
Collapse
|
29
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
30
|
Matsuo K, Okumura R, Hayashi H, Aratani N, Jinnai S, Ie Y, Saeki A, Yamada H. Phosphaacene as a structural analogue of thienoacenes for organic semiconductors. Chem Commun (Camb) 2022; 58:13576-13579. [PMID: 36408733 DOI: 10.1039/d2cc05122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An air-stable λ3-phosphinine-containing polycyclic aromatic compound without steric protection was synthesized and its charge transport properties were evaluated, which revealed moderate hole mobility. This research is the first experimental demonstration of the organic electronic applications of low-coordinate phosphorus compounds.
Collapse
Affiliation(s)
- Kyohei Matsuo
- Division of Materials Science, Nara Institution of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Rina Okumura
- Division of Materials Science, Nara Institution of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institution of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Naoki Aratani
- Division of Materials Science, Nara Institution of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Seihou Jinnai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institution of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
31
|
Azaid A, Raftani M, Alaqarbeh M, Kacimi R, Abram T, Khaddam Y, Nebbach D, Sbai A, Lakhlifi T, Bouachrine M. New organic dye-sensitized solar cells based on the D-A-π-A structure for efficient DSSCs: DFT/TD-DFT investigations. RSC Adv 2022; 12:30626-30638. [PMID: 36337973 PMCID: PMC9597288 DOI: 10.1039/d2ra05297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Global energy consumption has increased due to population growth and economic development. Solar energy is one of the most important renewable energy sources for human consumption. In this research, four novel organic dyes (D2-D5) of the D-A-π-A structure based on triphenylamine (TPA) were studied theoretically using DFT and TD-DFT techniques for future usage as dye-sensitized solar cells (DSSCs). The effects of modifying the π-spacer of the reference molecule D1 on the structural, electronic, photovoltaic, and optical characteristics of the D2-D5 dyes were studied in detail. D2-D5 exhibited band gaps (E gap) in the range from 1.89 to 2.10 eV with λ abs in the range of 508 to 563 nm. The results obtained show that modifying the π-spacer of the dye D1 increased its hole injection and reinforced the intramolecular charge-transfer (ICT) impact, which resulted in a red-shifted ICT absorption with a greater molar extinction coefficient. The theoretically calculated open-circuit voltage (V oc) values ranged from 0.69 to 1.06 eV, while the light-harvesting efficiency (LHE) values varied from 0.95 to 0.99. Indeed, this theoretical research could guide chemists to synthesize effective dyes for DSSCs.
Collapse
Affiliation(s)
- Ahmed Azaid
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Marzouk Raftani
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | | | - Rchid Kacimi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Tayeb Abram
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Youness Khaddam
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Diae Nebbach
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail Meknes Morocco
- Superior School of Technology - Khenifra (EST-Khenifra), University of Sultan My Slimane PB 170 Khenifra 54000 Morocco
| |
Collapse
|
32
|
Rashid EU, Hadia NMA, Alaysuy O, Iqbal J, Hessien MM, Mersal GAM, Mehmood RF, Shawky AM, Khan MI, Khera RA. Quantum chemical modification of indaceno dithiophene-based small acceptor molecules with enhanced photovoltaic aspects for highly efficient organic solar cells. RSC Adv 2022; 12:28608-28622. [PMID: 36320510 PMCID: PMC9539724 DOI: 10.1039/d2ra05239c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
In this computational work, with the aim of boosting the ultimate efficiency of organic photovoltaic cells, seven small acceptors (IDST1-IDST7) were proposed by altering the terminal-acceptors of reference molecule IDSTR. The optoelectronic characteristics of the IDSTR and IDST1-IDST7 molecules were investigated using the MPW1PW91/6-31G(d,p) level of theory, and solvent-state computations were examined using time-dependent density functional theory (TD-DFT) simulation. Nearly all the investigated photovoltaic aspects of the newly proposed molecules were found to be better than those of the IDSTR molecule e.g. in comparison to IDSTR, IDST1-IDST7 exhibit a narrower bandgap (E gap), lower first excitation energy (E x), and a significant red-shift in the absorbance maxima (λ max). According to the findings, IDST3 has the lowest E x (1.61 eV), the greatest λ max (770 nm), and the shortest E gap (2.09 eV). IDST1-IDST7 molecules have higher electron mobility because their RE of electrons is less than that of IDSTR. Hole mobility of IDST2-IDST7 is higher than that of the reference owing to their lower RE for hole mobility than IDSTR. By coupling with the PTB7-Th donor, the open circuit voltage (V OC) of the investigated acceptor molecules (IDSTR and IDST1-IDST7) was calculated and investigation revealed that IDST4-IDST6 molecules showed higher V OC and fill factor (FF) values than IDSTR molecules. Accordingly, the modified molecules can be seriously evaluated for actual use in the fabrication of OSCs with enhanced photovoltaic and optoelectronic characteristics in light of the findings of this study.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk71474TabukSaudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan,Department of Chemistry, College of Science, University of Bahrain ZallaqBahrain
| | - M. M. Hessien
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of EducationTownshipLahore 54770Pakistan
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | | | | |
Collapse
|
33
|
Dhiman A, Paras, Ramachandran C. Opto-electronic properties of isomers of azobispyridine. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Xie JM, Leng Y, Dong K, Cui XY, Yang XK, Min CG, Liu CX, Ren AM. Effect of double bond on electronic and optical properties of coelenteramide: A time-dependent density functional theory investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Song M, Zhang H, Liu X, Ji Y, Guo X, Yang J, Qin Z, Bai F, Zhang H. Theoretical study of the high intersystem spin crossing (ISC) ability of a series of iridium complexes with low efficiency roll‐off properties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming‐Xing Song
- College of Information Technology Jilin Normal University Siping China
| | - Hai‐Han Zhang
- College of Information Technology Jilin Normal University Siping China
| | - Xu‐Hui Liu
- College of Information Technology Jilin Normal University Siping China
| | - Ye Ji
- College of Information Technology Jilin Normal University Siping China
| | - Xi‐Lian Guo
- College of Information Technology Jilin Normal University Siping China
| | - Jia‐Yu Yang
- College of Information Technology Jilin Normal University Siping China
| | - Zheng‐Kun Qin
- College of Information Technology Jilin Normal University Siping China
| | - Fu‐Quan Bai
- Institute of Theoretical Chemistry Jilin University Changchun China
| | - Hong‐Jie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| |
Collapse
|
36
|
Spirothienoquinoline-based acceptor molecular systems for organic solar cell applications: DFT investigation. J Mol Model 2022; 28:244. [PMID: 35927594 DOI: 10.1007/s00894-022-05226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
In this research, eight three-dimensional benzothiadiazole and spirothienoquinoline-based donor molecules of the A-D-A-D-A configuration were formulated by introducing new acceptor groups (A1-A4) to the terminal sites of recently synthesized potent donor molecule (tBuSAF-Th-BT-Th-tBuSAF). Frontier molecular orbital analysis, reorganization energies, the density of states analysis, transition density matrix analysis, dipole moment, open-circuit voltage, and some photophysical properties were all assessed using CAMB3LYP/LanL2DZ. The optoelectronic properties of freshly proposed compounds were compared to the reference molecule (SQR). Due to the existence of robust electron-attracting acceptor moiety, SQM3 and SQM7 had the greatest maximum absorption of all other investigated molecules, with the values of 534 and 536 nm, respectively. The maximum dipole moment, narrow bandgap (3.81 eV and 3.66 eV), and HOMO energies (- 5.92 eV, 5.95 eV) are also found in SQM3 and SQM7, respectively. The SQM3 molecule also possesses the least reorganization energy for hole mobility (0.007237 eV) than all other considered molecules. The open-circuit voltage of all the molecules considered to be donors, was calculated with respect to PC61BM and it is estimated that except SQM7 and SQM3 all other newly developed molecules have improved open-circuit voltage. The findings show that most of the designed donor molecules can perform better experimentally and should be employed for practical implementations in the future.
Collapse
|
37
|
Zaar F, Olsson S, Emanuelsson R, Strømme M, Sjödin M. Characterization of a porphyrin-functionalized conducting polymer: A first step towards sustainable electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Paul D, Sarkar U. Designing of PC
31
BM based acceptors for dye‐sensitized solar cell. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Debolina Paul
- Department of Physics Assam University Silchar India
| | - Utpal Sarkar
- Department of Physics Assam University Silchar India
| |
Collapse
|
39
|
Solo P, Arockia doss M. Synthesis, Single-Crystal XRD, Spectral and Computational Analysis of 2-(3,4-Dimethoxyphenyl)-1H-Phenanthro[9,10-d] Imidazole as Electron-Transport and NLO Material. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2096650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Peter Solo
- Department of Chemistry, St. Joseph University, Dimapur, India
- Department of Chemistry, St. Joseph’s College Autonomous, Jakhama, India
| | - M. Arockia doss
- Department of Chemistry, St. Joseph University, Dimapur, India
| |
Collapse
|
40
|
Anisotropic Charge Transfer Mobility Properties of Systems with Large Conjugation Core and Peripheral Phenyl Rings. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Wu CC, Li EY, Chou PT. Reducing the internal reorganization energy via symmetry controlled π-electron delocalization. Chem Sci 2022; 13:7181-7189. [PMID: 35799804 PMCID: PMC9214956 DOI: 10.1039/d2sc01851a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
The magnitude of the reorganization energy is closely related to the nonradiative relaxation rate, which affects the photoemission quantum efficiency, particularly for the emission with a lower energy gap toward the near IR (NIR) region. In this study, we explore the relationship between the reorganization energy and the molecular geometry, and hence the transition density by computational methods using two popular models of NIR luminescent materials: (1) linearly conjugated cyanine dyes and (2) electron donor-acceptor (D-A) composites with various degrees of charge transfer (CT) character. We find that in some cases, reorganization energies can be significantly reduced to 50% despite slight structural modifications. Detailed analyses indicate that the reflection symmetry plays an important role in linear cyanine systems. As for electron donor-acceptor systems, both the donor strength and the substitution position affect the relative magnitude of reorganization energies. If CT is dominant and creates large spatial separation between HOMO and LUMO density distributions, the reorganization energy is effectively increased due to the large electron density variation between S0 and S1 states. Mixing a certain degree of local excitation (LE) with CT in the S1 state reduces the reorganization energy. The principles proposed in this study are also translated into various pathways of canonically equivalent π-conjugation resonances to represent intramolecular π-delocalization, the concept of which may be applicable, in a facile manner, to improve the emission efficiency especially in the NIR region.
Collapse
Affiliation(s)
- Chi-Chi Wu
- Department of Chemistry, National Taiwan Normal University No. 88, Section 4, Tingchow Road Taipei 116 Taiwan
| | - Elise Y Li
- Department of Chemistry, National Taiwan Normal University No. 88, Section 4, Tingchow Road Taipei 116 Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 106 Taiwan
| |
Collapse
|
42
|
Conradie J. DFT Study of bis(1,10-phenanthroline)copper complexes: Molecular and electronic structure, redox and spectroscopic properties and application to Solar Cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Chutia T, Kalita DJ. Theoretical investigation of fused N-methyl-dithieno-pyrrole derivatives in the context of acceptor-donor-acceptor approach. RSC Adv 2022; 12:14422-14434. [PMID: 35702239 PMCID: PMC9096627 DOI: 10.1039/d2ra01820a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this work we have theoretically investigated the optoelectronic properties of a series of acceptor-donor-acceptor type molecules by employing density functional theory formalism. We have used 1,1-dicyano-methylene-3-indanone as the acceptor unit and a fused N-methyl-dithieno-pyrrole as the donor unit. We have calculated the values of dihedral angle, inter-ring bond length, bond length alteration parameters, HOMO-LUMO gap, ionization potential, electron affinity, partial density of states, reorganization energies for holes and electrons, charge transfer rate for holes and electrons of the seven types of compounds designed via molecular engineering. Calculated IP and EA values manifest that PBDB-C2 shows excellent charge transportation compared to others. Absorption spectra of the designed compounds have been studied using the time-dependent density functional theory method. From the calculation of reorganization energy it is confirmed that our designed molecules behave more likely as donor materials. Our calculated results also reveal that compounds with electron donating substituents at the acceptor units show higher value of λ max. Absorption spectra of donor/acceptor blends show similar trends with the isolated compounds. Observed lower exciton binding energy values for all the compounds indicate facile charge carrier separation at the donor/acceptor interface. Moreover, the negative values of Gibb's free energy change also indicate the ease of exciton dissociation of all the designed compounds. The photovoltaic characteristics of the studied compounds infer that all the designed compounds have the potential to become suitable candidate for the fabrication of organic semiconductors. However, PBDB-C2 and PBDB-C4 with the highest PCE of 18.25% can become the best candidate for application in photovoltaics.
Collapse
Affiliation(s)
- Tridip Chutia
- Department of Chemistry, Gauhati University Guwahati-781014 India
| | | |
Collapse
|
44
|
Shahzadi A, Iqbal J, Akram SJ, Rasool A, El-Badry YA, Khera RA. Symmetrical end-capped molecular engineering of star-shaped triphenylamine-based derivatives having remarkable photovoltaic properties for efficient organic solar cells. J Mol Model 2022; 28:132. [PMID: 35501509 DOI: 10.1007/s00894-022-05106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
In the present research work, four novel triphenylamine (TPA)-based acceptor molecules have been architectured to step up the solar efficiency of organic solar cells. The four designed molecules abbreviated as T1-T4 have a common TPA donor core and different strong electron pulling peripheral acceptor groups connected through thiophene spacers. Computational simulations of T1-T4 were performed to compute and compare their optoelectronic properties with well-known reference molecule S(TPA-DPP) designated as R in the current project. For geometric optimizations of designed molecules, MPW1PW91 functional along with a basis set of 6-31G (d, p) was enforced. Assessment of the optoelectronic features of newly reported 3-D molecules (T1-T4) has been executed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) computations. Transition density matrix (TDM) and density of state (DOS) evaluations were performed for the investigation of exciton dynamics and electronic contribution between two states. All the derived molecules exhibited admirable photovoltaic features when compared to that of the reference molecule. Amidst all these newly modified molecules, T3 manifested itself as the finest candidate having the least energy band gap (1.84 eV) and the highest λmax (865 nm) in dichloromethane solvent. Also, T1 molecule has the lowest hole reorganization energy (0.0036 eV) value. These designed candidates (T1-T4) confirm that peripheral acceptor tempering is an effectual approach for the attainment of the desirable optoelectronic properties.
Collapse
Affiliation(s)
- Aneeza Shahzadi
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan. .,Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Alvina Rasool
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Yaser A El-Badry
- Department of Chemistry, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
45
|
Rashid EU, Iqbal J, Khan MI, El-Badry YA, Ayub K, Khera RA. Synergistic end-capped engineering on non-fused thiophene ring-based acceptors to enhance the photovoltaic properties of organic solar cells. RSC Adv 2022; 12:12321-12334. [PMID: 35480353 PMCID: PMC9036051 DOI: 10.1039/d2ra00851c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a series of non-fused thiophene ring-based small molecular acceptors (4T1-4T7) of A-D-A type are developed by the replacement of the end-groups of the 4TR molecule. The optoelectronic characteristics of the 4TR and 4T1-4T7 molecules are investigated employing the MPW1PW91 functional with the 6-31G (d,p) basis set, and solvent-state computations are studied using the TD-SCF. All the parameters estimated in this research are improved to a substantial level for the developed molecules as compared to the 4TR molecule, e.g. all the newly developed molecules have shown a red shift in their maximum absorption (λ max) and a reduced bandgap compared to the 4TR molecule, with ranges of 646 nm to 692 nm (in chlorobenzene solvent) and 2.34 eV to 2.47 eV, respectively. The reorganization energies of electron and hole mobility for almost all developed molecules are smaller than those for the 4TR molecule, with ranges of 0.00766-0.01034 eV and 0.01324-0.01447 eV, respectively. Hence, all the modified chromophores exhibit better charge capabilities than the 4TR molecule. The charge mobility of almost all the developed molecules is improved because of their reduced reorganization energies. The 4T2 molecule has minimum RE values for both electrons (0.00766) and holes (0.01324). The V OC values of all acceptor molecules are calculated with respect to the PTB7-Th donor. An elevation in V OC and FF values is exhibited by the 4T5 and 4T7 molecules. As a result, these end-capped engineered molecules should be proposed for the future manufacturing of highly efficient organic solar cells.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
- Punjab Bio-energy Institute, University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Imran Khan
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Yaser A El-Badry
- Department of Chemistry, Faculty of Science, Taif University Khurma, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus KPK 22060 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
46
|
Santander-Nelli M, Boza B, Salas F, Zambrano D, Rosales L, Dreyse P. Theoretical Approach for the Luminescent Properties of Ir(III) Complexes to Produce Red-Green-Blue LEC Devices. Molecules 2022; 27:2623. [PMID: 35565982 PMCID: PMC9104581 DOI: 10.3390/molecules27092623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
With an appropriate mixture of cyclometalating and ancillary ligands, based on simple structures (commercial or easily synthesized), it has been possible to design a family of eight new Ir(III) complexes (1A, 1B, 2B, 2C, 3B, 3C, 3D and 3E) useful as luminescent materials in LEC devices. These complexes involved the use of phenylpyridines or fluorophenylpyridines as cyclometalating ligands and bipyridine or phenanthroline-type structures as ancillary ligands. The emitting properties have been evaluated from a theoretical approach through Density Functional Theory and Time-Dependent Density Functional Theory calculations, determining geometric parameters, frontier orbital energies, absorption and emission energies, injection and transport parameters of holes and electrons, and parameters associated with the radiative and non-radiative decays. With these complexes it was possible to obtain a wide range of emission colours, from deep red to blue (701-440 nm). Considering all the calculated parameters between all the complexes, it was identified that 1B was the best red, 2B was the best green, and 3D was the best blue emitter. Thus, with the mixture of these complexes, a dual host-guest system with 3D-1B and an RGB (red-green-blue) system with 3D-2B-1B are proposed, to produce white LECs.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago 9390015, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Bastián Boza
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla, Valparaíso 2390123, Chile; (B.B.); (F.S.)
| | - Felipe Salas
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla, Valparaíso 2390123, Chile; (B.B.); (F.S.)
| | - David Zambrano
- Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla, Valparaíso 2390123, Chile; (D.Z.); (L.R.)
| | - Luis Rosales
- Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla, Valparaíso 2390123, Chile; (D.Z.); (L.R.)
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla, Valparaíso 2390123, Chile; (B.B.); (F.S.)
| |
Collapse
|
47
|
Roohi H, Mohtamadifar N. The role of the donor group and electron-accepting substitutions inserted in π-linkers in tuning the optoelectronic properties of D-π-A dye-sensitized solar cells: a DFT/TDDFT study. RSC Adv 2022; 12:11557-11573. [PMID: 35425060 PMCID: PMC9006569 DOI: 10.1039/d2ra00906d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
The design of low-cost and high-efficiency sensitizers is one of the most important factors in the expansion of dye-sensitized solar cells (DSSCs). To obtain effective sensitizer dyes for applications in dye-sensitized solar cells, a series of metal-free organic dyes with the D–π–A–A arrangement and with different donor and acceptor groups have been designed by using computational methodologies based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We have designed JK-POZ(1–3) and JK-PTZ(1–3) D–π–A–A organic dyes by modifying the donor and π-linker units of the JK-201 reference dye. Computational calculations of the structural, photochemical properties and electrochemical properties, as well as the key parameters related to the short-circuit current density and open-circuit voltage, including light-harvesting efficiency (LHE), singlet excited state lifetime (τ), reorganization energies (λtotal), electronic injection-free energy (ΔGinject) and regeneration driving forces (ΔGreg) of dyes were calculated and analyzed. Moreover, charge transfer parameters, such as the amount of charge transfer (qCT), the charge transfer distance (DCT), and dipole moment changes (μCT), were investigated. The results show that ΔGreg, λmax, λtotal and τ of JK-POZ-3 and JK-PTZ-3 dyes are superior to those of JK-201, indicating that novel JK-POZ-3 and JK-PTZ-3 dyes could be promising candidates for improving the efficiency of the DSSCs devices. A series of metal-free organic dyes with the D–π–A–A arrangement and with different donor and acceptor groups have been designed theoretically.![]()
Collapse
Affiliation(s)
- Hossein Roohi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan Rasht Iran +98 131 3233262
| | - Nafiseh Mohtamadifar
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan Rasht Iran +98 131 3233262
| |
Collapse
|
48
|
Cachaneski-Lopes JP, Batagin-Neto A. Effects of Mechanical Deformation on the Opto-Electronic Responses, Reactivity, and Performance of Conjugated Polymers: A DFT Study. Polymers (Basel) 2022; 14:polym14071354. [PMID: 35406228 PMCID: PMC9002523 DOI: 10.3390/polym14071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
The development of polymers for optoelectronic applications is an important research area; however, a deeper understanding of the effects induced by mechanical deformations on their intrinsic properties is needed to expand their applicability and improve their durability. Despite the number of recent studies on the mechanochemistry of organic materials, the basic knowledge and applicability of such concepts in these materials are far from those for their inorganic counterparts. To bring light to this, here we employ molecular modeling techniques to evaluate the effects of mechanical deformations on the structural, optoelectronic, and reactivity properties of traditional semiconducting polymers, such as polyaniline (PANI), polythiophene (PT), poly (p-phenylene vinylene) (PPV), and polypyrrole (PPy). For this purpose, density functional theory (DFT)-based calculations were conducted for the distinct systems at varied stretching levels in order to identify the influence of structural deformations on the electronic structure of the systems. In general, it is noticed that the elongation process leads to an increase in electronic gaps, hypsochromic effects in the optical absorption spectrum, and small changes in local reactivities. Such changes can influence the performance of polymer-based devices, allowing us to establish significant structure deformation response relationships.
Collapse
Affiliation(s)
| | - Augusto Batagin-Neto
- POSMAT, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil;
- Institute of Science and Engineering, São Paulo State University (UNESP), Itapeva 18409-010, SP, Brazil
- Correspondence: ; Tel.: +55-(15)-3524-9100 (ext. 9159)
| |
Collapse
|
49
|
Cao K, Yin S, Wang Y. Insightful understanding of charge transfer processes in metalated phthalocyanines. Phys Chem Chem Phys 2022; 24:7635-7641. [DOI: 10.1039/d2cp00680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marcus electron transfer theory coupling with quantum-mechanics (QM) calculations was applied to study the hole mobilities of a series of metalated phthalocyanine molecular crystals. The effect of metal on the...
Collapse
|
50
|
Sammut D, Bugeja N, Szaciłowski K, Magri DC. Molecular engineering of fluorescent bichromophore 1,3,5-triaryl-Δ 2-pyrazoline and 4-amino-1,8-naphthalimide molecular logic gates. NEW J CHEM 2022. [DOI: 10.1039/d2nj02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissive bichromophoric solvatochromatic molecules are introduced as a new platform for the development of fluorescent molecular logic gates.
Collapse
Affiliation(s)
- Darlene Sammut
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Nathalie Bugeja
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Konrad Szaciłowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków, Poland
| | - David C. Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|