1
|
Mohammed FA, Xiao T, Wang L, Elmes RBP. Macrocyclic receptors for anion recognition. Chem Commun (Camb) 2024; 60:11812-11836. [PMID: 39323234 DOI: 10.1039/d4cc04521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Macrocyclic receptors have emerged as versatile and efficient molecular tools for the recognition and sensing of anions, playing a pivotal role in molecular recognition and supramolecular chemistry. The following review provides an overview of the recent advances in the design, synthesis, and applications of macrocyclic receptors specifically tailored for anion recognition. The unique structural features of macrocycles, such as their well-defined structures and pre-organised binding sites, contribute to their exceptional anion-binding capabilities that have led to their application across a broad range of the chemical and biological sciences.
Collapse
Affiliation(s)
- Farhad Ali Mohammed
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Leyong Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Co. Kildare, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
2
|
Taylor AJ, Wilmore JT, Beer PD. Halogen bonding BODIPY-appended pillar[5]arene for the optical sensing of dicarboxylates and a chemical warfare agent simulant. Chem Commun (Camb) 2024; 60:11916-11919. [PMID: 39222065 DOI: 10.1039/d4cc03748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A pillar[5]arene host, functionalised with halogen bonding (XB) recognition sites and BODIPY fluorophores, demonstrates strong binding and optical sensing of environmentally relevant dicarboxylates and a chemical warfare agent simulant, in organic and competitive aqueous-organic media - enabled by the unprecedented combination of fluorophore-conjugated XB interactions with the hydrophobic pillar[5]arene host cavity.
Collapse
Affiliation(s)
- Andrew J Taylor
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Jamie T Wilmore
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
3
|
Marín I, Castillo-Vallés M, Merino RI, Folcia CL, Barberá J, Ros MB, Serrano JL. Ionic Bent-Core Pillar[ n]arenes: From Liquid Crystals to Nanoaggregates and Functional Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9793-9805. [PMID: 39398374 PMCID: PMC11468781 DOI: 10.1021/acs.chemmater.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report the first examples of supramolecular systems from bent-core-based pillar[n]arenes through ionic bonds. These ionic materials have been prepared by the interaction of an amino-ended pillar[5]arene (P5N10) and three different carboxylic acids, including bent-core moieties. The bent-core units are based on ester, biphenyl, and azobenzene structures bearing two different flexible spacers between the carboxyl group and the central bent-core aromatic units. The ionic pairs segregate the molecular blocks, leading to columnar liquid crystal organizations. These ionic supramolecular compounds exhibit interesting results as proton-conductive materials. Furthermore, the introduction of azobenzene units in the bent-core structure has provided a photoresponse to the proton conduction materials. Interestingly, the amphiphilic character generated by the ionic pairs and the hydrophobic bent-core structures allows their molecular self-assembly in water solution, resulting in aggregates of appealing morphologies. The structural modifications of the bent-core units (i.e., connecting bonds at the lateral structure and spacer lengths) provide an attractive analysis on the relationship between the chemical structure and the morphology of the aggregates (fibers, chiral ribbons, nanotubes...). Additionally, the self-assembly process and evolution of the aggregates from fibers to nanotubes have been studied with several techniques.
Collapse
Affiliation(s)
- Iván Marín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Martín Castillo-Vallés
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa I. Merino
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - César L. Folcia
- Departamento
de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, E-48080 Bilbao, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Blanca Ros
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Liu J, Fu M, Yuan S, Lin C, Yuan Y. The synthesis and application of o-carborane-based macrocyclic arenes. Dalton Trans 2024; 53:15316-15323. [PMID: 39224067 DOI: 10.1039/d4dt02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Two o-carborane-hybridized macrocyclic arenes have been synthesized via Friedel-Crafts alkylation of carborane diaryl derivatives. The single-crystal X-ray diffraction analysis clearly revealed their cavity structure and intermolecular interaction force. These novel macrocycles exhibited aggregation-induced luminescence and intramolecular charge transfer properties and also significant selectivity towards nitro explosive compounds. This work provided a method for the synthesis of hybridized macrocyclic arenes.
Collapse
Affiliation(s)
- Jiayi Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Meigui Fu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shuai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Caixia Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Jothi Nayaki S, Roja A, Ravindhiran R, Sivarajan K, Arunachalam M, Dhandapani K. Pillar[ n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infect Dis 2024; 10:1080-1096. [PMID: 38546344 DOI: 10.1021/acsinfecdis.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The global surge in bacterial infections, compounded by the alarming escalation of drug-resistant strains, has evolved into a critical public health crisis. Among the challenges posed, biofilms stand out due to their formidable resistance to conventional antibiotics. This review delves into the burgeoning potential of pillar[n]arenes, distinctive macrocyclic host molecules, as promising anti-biofilm agents. The review is structured into two main sections, each dedicated to exploring distinct facets of pillar[n]arene applications. The first section scrutinizes functionalized pillar[n]arenes with a particular emphasis on cationic derivatives. This analysis reveals their significant efficacy in inhibiting biofilm formation, underscoring the pivotal role of specific chemical attributes in combating microbial communities. The second section of the review shifts its focus to inclusion complexes, elucidating how pillar[n]arenes serve as encapsulation platforms for antibiotics. This encapsulation enhances the stability of antibiotics and enables a controlled release, thereby amplifying their antibacterial activity. The examination of inclusion complexes provides valuable insights into the potential synergy between pillar[n]arenes and traditional antibiotics, offering a novel avenue for overcoming biofilm resistance. This comprehensive review highlights the escalating global threat of bacterial infections and the urgent need for innovative strategies to counteract drug-resistant biofilms. The unique properties of pillar[n]arenes, both as functionalized molecules and as inclusion complex hosts, position them as promising candidates in the quest for effective anti-biofilm agents. The exploration of their distinct mechanisms opens new avenues for research and development in the ongoing battle against bacterial infections and biofilm-related health challenges.
Collapse
Affiliation(s)
- Sekar Jothi Nayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Arivazhagan Roja
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| |
Collapse
|
6
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
7
|
Dhara SR, Saha R, Baildya N, Acharya K, Bhattacharya A, Ghosh K. New Cyanostyrylcopillar[5]arene Derivative: Synthesis, Photophysical Study, Chromogenic Detection of Aliphatic Amines, and Biofilm-Antibiofilm Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7275-7287. [PMID: 38304929 DOI: 10.1021/acsami.3c16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The synthesis, characterization, and application of a new cyanostyrylcopillar[5]arene 1 is reported. Single-crystal X-ray diffraction and other spectroscopic techniques confirm the identity of the new copillar 1. The X-ray diffraction study reveals that the copillar 1 exhibits a 1D supramolecular chain in the solid state involving π···π interactions along the crystallographic c-axis and 1D chains are further connected by interchain C-H···π interactions to establish 2D supramolecular layers within the crystallographic bc-plane. 2D supramolecular chains on further packing introduce a 3D structure with void spaces filled with hexane molecules. Through minimal deviation in the dihedral angle, the cyano-substituted ethylenic group in 1 shows a conjugation with the phenolic -OH, favoring intramolecular bond conjugation (ITBC) and colorimetrically detects the aliphatic amines over aromatic amines in CH3CN. Among the aliphatic amines, tertiary amines are differentiated from primary and secondary amines by the naked eye through color change. Both in solution and solid states, 1 displays vapor phase detection of volatile aliphatic amines. Antibacterial activity analysis shows that while 1 exhibits the antibiofilm action against Gram-positive pathogenic bacteria, Staphylococcus aureus, it promotes biofilm formation by Gram-negative pathogenic bacteria, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol 713340, India
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
8
|
Coady Z, Smith JN, Wilson KA, White NG. Stereoselective Single Step Cyclization to Give Belt-Functionalized Pillar[6]arenes. J Org Chem 2024; 89:1397-1406. [PMID: 38214497 DOI: 10.1021/acs.joc.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.
Collapse
Affiliation(s)
- Zeke Coady
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Ling L, Zhao Z, Mao L, Wang S, Ma D. Water-soluble pillar[6]arene bearing pyrene on alternating methylene bridges for direct spermine sensing. Chem Commun (Camb) 2023; 59:14161-14164. [PMID: 37955311 DOI: 10.1039/d3cc05094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
This paper describes the design and synthesis of a conjugate, which is composed of a percarboxylated water-soluble pillar[6]arene and three fluorescent pyrene chromophores on alternating methylene bridges. The optical characteristics are investigated. This conjugate is capable of encapsulating polycationic guest spermine, which results in an enhancement in the fluorescence intensity of pyrene. This host-pyrene conjugate is used for direct sensing of spermine, which shows selectivity towards a variety of biological analytes. The detection of spermine is demonstrated in live cells.
Collapse
Affiliation(s)
- Li Ling
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zizhen Zhao
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Lijun Mao
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Shuyi Wang
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
10
|
Yang X, Qiao S, Zhao W, Li S, Qiao Y, Jiang Y, Zhou Y, Li Y. Homogeneous Electrochemiluminescence for Highly Sensitive Determination of Demethylase FTO Based on Target-Regulated DNAzyme Cleavage and Host-Guest Interaction. Anal Chem 2023. [PMID: 37486003 DOI: 10.1021/acs.analchem.3c01661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fat mass and obesity-associated protein (FTO) is the first reported N6-methyladenosine (m6A) RNA demethylase. The dysregulation of FTO demethylation is strongly associated with various human cancers in a m6A-dependent manner. Herein, a homogeneous electrochemiluminescence (ECL) method for the determination of FTO was proposed based on the target-regulated DNAzyme cleavage. Moreover, the ECL signal was highly enhanced by host-guest interaction between β-cyclodextrin (β-CD) and tri-n-propylamine (TPrA). The m6A caged DNAzyme 17E-Me acted as a padlock, while the FTO served as the corresponding key. As the key, FTO could specifically remove m6A modification, restoring the cleavage activity of DNAzyme 17E. With the assistance of the Zn2+ cofactor, the substrate strand was cleaved at a specific site, and the ECL indicator of Ru(phen)32+ was discharged to produce an ECL signal. On the contrary, 17E-Me was blocked and no cleavage reaction occurred without the key. For the ECL detection, the electrode modification of β-CD@AuNPs concentrated Ru(phen)32+ species through electrostatic adsorption and gathered TPrA molecules through host-guest interaction with β-CD, which resulted in an intense ECL response. The results demonstrated the ECL intensity linearly correlated with the logarithm of the FTO concentration (from 0.0001 to 100 nM) with a low detection limit (30 fM). The IC50 value for FTO inhibitors rhein and meclofenamic acid were 35.6 μM and 20.3 μM, respectively. The strategy was further validated for FTO detection in MCF-7 cell lysates and Hela cell lysates. This work reveals that this strategy is promising for developing homogeneous ECL method for detection of FTO and screening of the demethylase inhibitors.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, P. R. China
| | - Shuai Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wei Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yaqian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
11
|
Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes. J Am Chem Soc 2023. [PMID: 37411034 DOI: 10.1021/jacs.3c02919] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Swirepik O, Smith JN, White NG. Balancing on a Knife's Edge: Studies on the Synthesis of Pillar[6]arene Derivatives. J Org Chem 2023. [PMID: 37339270 DOI: 10.1021/acs.joc.3c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Pillar[6]arenes are established as crucial building blocks in supramolecular chemistry; however, they can be difficult to synthesize, particularly in the absence of large solubilizing substituents. In this work, we explore variability in literature syntheses of pillar[6]arene derivatives and suggest that the outcome is dependent on whether oligomeric intermediates stay in solution long enough for the thermodynamically favorable macrocyclization to occur. We demonstrate that in a previously capricious BF3·OEt2-mediated procedure, ≤5 mol % of a Brønsted acid can slow down the reaction to favor macrocycle formation.
Collapse
Affiliation(s)
- Oscar Swirepik
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
13
|
Zhang Y, Wang Y, Chen T, Han Y, Yan C, Wang J, Lu B, Ma L, Ding Y, Yao Y. Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I and II photodynamic cancer therapy. Chem Commun (Camb) 2023. [PMID: 37314502 DOI: 10.1039/d3cc01929b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
14
|
Fang Y, Xu W, Yang L, Qu H, Wang W, Zhang S, Li H. Electricity-Wettability Controlled Fast Transmission of Dopamine in Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205488. [PMID: 36617514 DOI: 10.1002/smll.202205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Achieving fast transmembrane transmission of molecules in organisms is a challenging problem. Inspired by the transport of Dopmine (DA) in organisms, the DA transporter (DAT) binds to DA in a way that has a ring recognition (the recognition group is the tryptophan group). Herein, D-Tryptophan-pillar[5]arene (D-Trp-P5) functionalized conical nanochannel is constructed to achieve fast transmission of DA. The D-Trp-P5 functionalized nanochannel enables specific wettability recognition of DA molecules and has great cycle stability. With the controlling of voltage to wettability, the transport flux of DA is up to 499.73 nmol cm-2 h-1 at -6 V, 16.88 times higher than that under positive voltages. In response to these results, a high-throughput DA transport device based on controlled electricity-wettability is provided.
Collapse
Affiliation(s)
- Yuan Fang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiwei Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Haonan Qu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenqian Wang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyun Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
15
|
Kato K, Kaneda T, Ohtani S, Ogoshi T. Per-Arylation of Pillar[ n]arenes: An Effective Tool to Modify the Properties of Macrocycles. J Am Chem Soc 2023; 145:6905-6913. [PMID: 36929722 DOI: 10.1021/jacs.3c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
16
|
Bruns CJ, Wang W, Hirose K. Editorial: Advances in mechanically bonded molecules. Front Chem 2022; 10:1095082. [PMID: 36561142 PMCID: PMC9763993 DOI: 10.3389/fchem.2022.1095082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Carson J. Bruns
- University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Carson J. Bruns, ; Wei Wang, ; Keiji Hirose,
| | - Wei Wang
- East China Normal University, Shanghai, China,*Correspondence: Carson J. Bruns, ; Wei Wang, ; Keiji Hirose,
| | - Keiji Hirose
- Osaka University, Osaka, Japan,*Correspondence: Carson J. Bruns, ; Wei Wang, ; Keiji Hirose,
| |
Collapse
|
17
|
Ma L, Tang R, Zhou Y, Bei J, Wang Y, Chen T, Ou C, Han Y, Yan CG, Yao Y. Pillar[5]arene-based [1]rotaxanes with salicylaldimine as the stopper: synthesis, characterization and application in the fluorescence turn-on sensing of Zn 2+ in water. Chem Commun (Camb) 2022; 58:8978-8981. [PMID: 35861323 DOI: 10.1039/d2cc02893j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two pillar[5]arene-based [1]rotaxanes with salicylaldimine as the stopper were synthesized and characterized fully, and could be further applied in the fluorescence turn-on sensing of Zn2+ in water.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Youjun Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
18
|
De Simone NA, Chvojka M, Lapešová J, Martínez-Crespo L, Slávik P, Sokolov J, Butler SJ, Valkenier H, Šindelář V. Monofunctionalized Fluorinated Bambusurils and Their Conjugates for Anion Transport and Extraction. J Org Chem 2022; 87:9829-9838. [PMID: 35862261 DOI: 10.1021/acs.joc.2c00870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bambusurils are macrocyclic molecules that are known for their high binding affinity and selectivity toward anions. Here, we present the preparation of two bambusurils bearing fluorinated substituents and one carboxylic function. These monofunctionalized bambusurils were conjugated with crown ether and cholesterol units. The resulting conjugates were successfully tested in liquid-liquid extraction of inorganic salts and chloride/bicarbonate transport across lipid bilayers.
Collapse
Affiliation(s)
| | - Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Jana Lapešová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Luis Martínez-Crespo
- Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Petr Slávik
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Jan Sokolov
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough LE11 3TU, U.K
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| |
Collapse
|
19
|
Kwon TW, Song B, Nam KW, Stoddart JF. Mechanochemical Enhancement of the Structural Stability of Pseudorotaxane Intermediates in the Synthesis of Rotaxanes. J Am Chem Soc 2022; 144:12595-12601. [PMID: 35797453 DOI: 10.1021/jacs.2c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanochemical syntheses of rotaxanes have attracted considerable attention of late because of the superior reaction rates and higher yields associated with their production compared with analogous reactions carried out in solution. Previous investigators, however, have focused on the demonstration of the mechanochemical syntheses of rotaxanes per se, rather than on studying the solid-phase host-guest molecular interplay related to their rapid formation and high yields. In this investigation, we attribute the lower yields of rotaxanes prepared in solution to the limited concentration and a desolvation energy penalty that must be compensated for by host-guest interactions during complexation that precedes the templation leading to rotaxane formation. It follows that, if the desolvation energy can be removed and higher concentrations can be attained, even weak host-guest interactions can drive the complexation of host and guest molecules efficiently. In order to test this hypothesis, we chose two host-guest pairs of permethylated pillar[5]arene/1,6-diaminohexane and permethylated pillar[5]arene/2,2'-(ethylenedioxy)bis(ethylamine) for the simple reason that they exhibit extremely low binding constants (2.7 ± 0.4 M-1 when 1,6-diaminohexane is the guest and <0.1 M-1 when 2,2'-(ethylenedioxy)bis(ethylamine) is the guest in CDCl3; i.e., ostensibly no pseudorotaxane formation is observed). We argue that the amount of pseudorotaxanes formed in the solid state is responsive to mechanical treatments or otherwise and changes in temperature during stoppering reactions. Compared to the amount of pseudorotaxanes that can be obtained in solution, large quantities of pseudorotaxanes are formed in the solid state because of concentration and desolvation effects. This mechanochemical enhancement of pseudorotaxane formation is referred to as a self-correction in the current investigation. Rotaxanes based on permethylated pillar[5]arene/1,6-diaminohexane and permethylated pillar[5]arene/2,2'-(ethylenedioxy)bis(ethylamine) have been synthesized in much higher yields compared to those obtained in solution, aided and abetted by self-correction effects during mechanical treatments and heating at a mild temperature of 50 °C.
Collapse
Affiliation(s)
- Tae-Woo Kwon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kwan Woo Nam
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
20
|
|
21
|
|
22
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
23
|
Ma L, Han Y, Yan C, Chen T, Wang Y, Yao Y. Construction and Property Investigation of Serial Pillar[5]arene-Based [1]Rotaxanes. Front Chem 2022; 10:908773. [PMID: 35747345 PMCID: PMC9210957 DOI: 10.3389/fchem.2022.908773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/16/2023] Open
Abstract
Although the construction and application of pillar[5]arene-based [1]rotaxanes have been extensively studied, the types of stoppers for them are limited. In this work, we designed and prepared three series of pillar[5]arene-based [1]rotaxanes (P5[1]Rs) with pentanedione derivatives, azobenzene derivatives, and salicylaldehyde derivatives as the stoppers, respectively. The obtained P5[1]Rs were fully characterized by NMR (1H, 13C, and 2D), mass spectra, and single-crystal X-ray analysis. We found that the synergic C-H···π, C-H···O interactions and N-H···O, O-H···N hydrogen bonding are the key to the stability of [1]rotaxanes. This work not only enriched the diversity of pillar[n]arene family but also gave a big boost to the pillar[n]arene-based mechanically interlocked molecules.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| |
Collapse
|
24
|
Vincent SP, Chen W. Copillar[5]arene Chemistry: Synthesis and Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1738369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractResearch on pillar[n]arenes has witnessed a very quick expansion. This emerging class of functionalized macrocyclic oligoarenes not only offers host–guest properties due to the presence of the central cavity, but also presents a wide variety of covalent functionalization possibilities. This short review focuses on copillararenes, a subfamily of pillar[n]arenes. In copillararenes, at least one of the hydroquinone units bears different functional groups compared to the others. After having defined the particular features of copillararenes, this short review compares the different synthetic strategies allowing their construction. Some key applications and future perspectives are also described. 1 Introduction2 General Features of Pillar[5]arenes3 Synthesis of Functionalized Copillar[4+1]arenes4 Concluding Remarks
Collapse
Affiliation(s)
| | - Wenzhang Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University
- Department of Chemistry, UNamur, NARILIS
| |
Collapse
|
25
|
Kim S, Park IH, Lee E, Jung JH, Lee SS. Metallosupramolecules of Pillar[5]arene with Two Flexible Thiopyridyl Arms: A Heterochiral Cyclic Dimer and Organic Guest-Assisted Homochiral Poly-Pseudo-Rotaxanes. Inorg Chem 2022; 61:7069-7074. [PMID: 35482519 DOI: 10.1021/acs.inorgchem.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a cyclic dimer complex (1) and a poly-pseudo-rotaxane (2) of a racemic A1/A2-thiopyridyl pillar[5]arene (rac-L) with different chirality is reported. A one-pot reaction of rac-L with HgCl2 afforded a heterochiral cyclic dimer complex, [Hg2(pR-L)(pS-L)Cl4]·8CH2Cl2 (1), in which two Hg2+ atoms and one (pR-L)/(pS-L) enantiomeric pair form a [2:2] metallacycle via a metal coordination-based cyclization. Interestingly, the same reaction in the presence of the linear dinitrile guest, CN(CH2)8CN (G), yielded a one-dimensional poly-pseudo-rotaxane, {[Hg(G@pR-L)Cl2][Hg(G@pS-L)Cl2]}n (2), probably due to the rigidified ligand structure resulting from the dinitrile guest (G) threading. In 2, pR-L and pS-L generate two separated homochiral poly-pseudo-rotaxanes in a crystal. Both products are new members of the pillararene-derivative family. This study improves our understanding of self-assembly in nature and leads to this approach being an engineering tool for the construction of mechanically interlocked supramolecules.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
26
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
27
|
A multiple-function fluorescent pillar[5]arene: Fe3+/ Ag+ detection and light-harvesting system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Shi C, Li H, Shi XF, Zhao L, Qiu H. Chiral pillar[5]arene-functionalized silica microspheres: synthesis, characterization and enantiomer separation. Chem Commun (Camb) 2022; 58:3362-3365. [DOI: 10.1039/d1cc06978k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral pillar[5]arene-functionalized silica microspheres were prepared and characterized for the first time, which can be used as a new kind of chiral stationary phases for effective enantioseparation under reversed-phase and...
Collapse
|
29
|
Gattuso G, Crisafulli D, Milone M, Mancuso F, Pisagatti I, Notti A, Parisi MF. Proton Transfer Mediated Recognition of Amines by Ionizable Macrocyclic Receptors. Chem Commun (Camb) 2022; 58:10743-10756. [DOI: 10.1039/d2cc04047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonium ion/carboxylate ion pairing is a key interaction ubiquitous in biological systems, but amine recognition by ionizable molecular receptors, mediated by host-to-guest proton transfer, has too often been overlooked as...
Collapse
|
30
|
Khamphaijun K, Namnouad P, Docker A, Ruengsuk A, Tantirungrotechai J, Díaz-Torres R, Harding DJ, Bunchuay T. Neutral Isocyanide-Templated Assembly of Pillar[5]arene [2] and [3]Pseudorotaxanes. Chem Commun (Camb) 2022; 58:7253-7256. [DOI: 10.1039/d2cc02255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprecedented pillar[5]arene–isocyanide pseudorotaxane inclusion complexes are reported. Extensive 1H-NMR experiments reveal remarkably strong binding affinities of alkyl diisocyanide guests (Ka >105 M-1 in CDCl3) by pillar[5]arenes. Characterised by multinuclear 1H...
Collapse
|
31
|
Wu Y, Qin H, Shen J, Li H, Shan X, Xie M, Liao X. Pillararene-containing polymers with tunable fluorescence properties based on host-guest interactions. Chem Commun (Camb) 2021; 58:581-584. [PMID: 34918016 DOI: 10.1039/d1cc05962a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Linear polymers containing pillar[5]arenes as the pendant groups were designed and synthesized via a ring-opening metathesis polymerization. Such polymers could form supramolecular brush polymers and exhibited tunable fluorescence properties based on the host-guest interactions.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hongyu Qin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Jun Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hequn Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China. .,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
32
|
Zhou Y, Tang H, Li ZH, Xu L, Wang L, Cao D. Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem Commun (Camb) 2021; 57:13114-13117. [PMID: 34766614 DOI: 10.1039/d1cc05153a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two functionalized pillar[5]arenes (H1 and H2) with significant AIE properties were synthesized. H2 is an excellent probe to selectively detect specific alkanediamines owing to its multiple binding sites, which result in the enhancement of emission based on the AIE mechanism and the induced-fit mechanism, and provides a new strategy to develop probes with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yibin Zhou
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhao-Hui Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Linxian Xu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
33
|
Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent Applications of Pillar[ n]arene-Based Host-Guest Recognition in Chemosensing and Imaging. ACS Sens 2021; 6:3882-3897. [PMID: 34665606 DOI: 10.1021/acssensors.1c01510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillar[n]arene is a novel kind of synthetic supramolecular macrocyclic host characterized by its particular pillar-shaped structure consisting of an electron-rich cavity and two finely adjustable rims. Benefiting from its rigid structure, facile synthesis, ease of functionalization, and outstanding host-guest chemistry, pillar[n]arene shows great potential for diverse applications. Significantly, the host-guest recognition of pillar[n]arene provides a novel approach for chemosensing and imaging. Herein, this Review critically and comprehensively reviews the applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. The sensing and imaging mechanisms as well as the unique roles and advantages of pillar[n]arene-based host-guest recognition are summarized. In addition, preparations of hybrid materials based on pillar[n]arene and inorganic materials are also introduced comprehensively in the light of chemosensing and imaging. Finally, current challenges and perspectives on pillar[n]arene-based host-guest recognition in chemosensing and imaging are outlined.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jiangshan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zejia Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kui Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
34
|
Yang L, Cheng M, Quan J, Zhang S, Liu L, Johnson RP, Zhang F, Li H. Construction of A High‐Flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Lu Liu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | | | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
35
|
Yang L, Cheng M, Quan J, Zhang S, Liu L, Johnson RP, Zhang F, Li H. Construction of A High-Flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angew Chem Int Ed Engl 2021; 60:24443-24449. [PMID: 34528744 DOI: 10.1002/anie.202110273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
Inspired by the nuclear pore complex (NPC), herein we have established a biomimetic high-flux protein delivery system via the ingenious introduction of pillar[5]arene-based host-guest system into one side of artificial hour-glass shaped nanochannel. With a transport flux of 660 lysozymes per minute, the system provides efficient high-flux protein transport at a rate which is significantly higher than that of an unmodified nanochannel and conventional bilateral symmetrical modified nanochannels. In view of these promising results, the use of artificial nanochannel to improve protein transport not only presents a new potential chemical model for biological research and better understanding of protein transport behavior in the living systems, but also provides a high-flux protein transporter device, which may have applications in the design of protein drug release systems, protein separation systems and microfluidics in the near future.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lu Liu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
36
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorg Chem 2021; 117:105415. [PMID: 34673453 DOI: 10.1016/j.bioorg.2021.105415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Timur A Mukhametzyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
37
|
Chen JF, Yin X, Zhang K, Zhao Z, Zhang S, Zhang N, Wang N, Chen P. Pillar[5]arene-Based Dual Chiral Organoboranes with Allowed Host-Guest Chemistry and Circularly Polarized Luminescence. J Org Chem 2021; 86:12654-12663. [PMID: 34449233 DOI: 10.1021/acs.joc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We first describe two examples of highly luminescent organoboranes (NP5BN1 and NP5BN2) with dual chirality that were achieved by molecular functionalization of planar chiral pillar[5]arenes with naphthyls. Sufficiently strong steric effects are imposed by triarylamine (Ar3N) and triarylborane (Ar3B) moieties and further enhanced by the proximity of the chiral building blocks, leading to the isolation of multiple enantiomers via chiral high-performance liquid chromatography. The intramolecular charge transfer from N-donor to B-acceptor across both chiral subunits enabled the circularly polarized luminescence and thermally robust colorimetric responses in their emissions. Furthermore, their remarkable host-guest chemistry was allowed at no expense in the pursuit of advanced chiroptical properties using pillar[5]arene-based supramolecular scaffolds.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhenhui Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China.,College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
38
|
Shin M, Kim S, Lee E, Jung JH, Park IH, Lee SS. Pillar[5]- bis-trithiacrown: Influence of Host-Guest Interactions on the Formation of Coordination Networks. Inorg Chem 2021; 60:5804-5811. [PMID: 33797229 DOI: 10.1021/acs.inorgchem.1c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pillar[5]-bis-trithiacrown (L) capable of metal binding and organic guest threading simultaneously has been employed, and the influence of dinitrile guests [CN(CH2)nCN (n = 2-6: abbreviated C2-C6)] on the coordination behaviors has been investigated. When the ditopic ligand L was reacted with HgCl2 in the presence of the C2-C6 guests, the shorter guests C2 and C3 afforded a two-dimensional coordination polymer [Hg7Cl14(C2@L)2]n (1) and a one-dimensional coordination polymer [(Hg3Cl6)2(C3@L)2]n (2), respectively. In 1 and 2, each dinitrile guest threads into the pillararene cavity to form a C2@L or C3@L unit via the host-guest interaction. Further linking of these units by exocyclic Hg-S bonds and anion coordination lead to the formation of coordination products with different dimensionalities. While the use of the longer guests C4-C6 under the same reactions yielded a discrete dimercury(II) complex 3, [Hg2Cl4(CH3CN@L)] which contains one acetonitrile solvent molecule because the longer dinitriles do not serve as effective guests. In the NMR and UV-vis studies, the association constants (log K1:1) for the host-guest interactions of L with the dinitrile guests are C2 (4.75) > C3 (4.17) ≫ C4 (2.85) > C5 (2.45) > C6 (too small), indicating that the shorter guests C2 or C3 interact more strongly than longer ones due to the confined interior space of L. Taken collectively, the C2 and C3 guests with proper size-matching promote the formation of coordination polymers and vice versa, suggesting that the guest size could be a controlling factor.
Collapse
Affiliation(s)
- Mingyeong Shin
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
39
|
Quan J, Zhu F, Dhinakaran MK, Yang Y, Johnson RP, Li H. A Visible-Light-Regulated Chloride Transport Channel Inspired by Rhodopsin. Angew Chem Int Ed Engl 2021; 60:2892-2897. [PMID: 33145896 DOI: 10.1002/anie.202012984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Indexed: 01/16/2023]
Abstract
Inspired by the light-regulating capabilities of naturally occurring rhodopsin, we have constructed a visible-light-regulated Cl- -transport membrane channel based on a supramolecular host-guest interaction. A natural retinal chromophore, capable of a visible-light response, is used as the guest and grafted into the artificial channel. Upon introduction of an ethyl-urea-derived pillar[6]arene (Urea-P6) host, threading or de-threading of the retinal and selective bonding of Cl- can be utilized to regulate ion transport. Based on the visible-light responsiveness of the host-guest interaction, Cl- transport can be regulated by visible light between ON and OFF states. Visible-light-regulated Cl- transport as a chemical model permits to understand comparable biological ion-selective transport behaviors. Furthermore, this result also supplies a smart visible-light-responsive Cl- transporter, which may have applications in natural photoelectric conversion and photo-controlled delivery systems.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
40
|
Quan J, Zhu F, Dhinakaran MK, Yang Y, Johnson RP, Li H. A Visible‐Light‐Regulated Chloride Transport Channel Inspired by Rhodopsin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | | | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
41
|
Chen W, Mohy Ei Dine T, Vincent SP. Synthesis of functionalized copillar[4+1]arenes and rotaxane as heteromultivalent scaffolds. Chem Commun (Camb) 2021; 57:492-495. [PMID: 33326542 DOI: 10.1039/d0cc07684h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, novel copillar[4+1]arenes were used as central heteromultivalent scaffolds via orthogonal couplings with a series of biologically relevant molecules such as carbohydrates, α-amino acids, biotin and phenylboronic acid. Further modifications by introducing maleimides or cyclooctyne groups provided molecular probes adapted to copper-free click chemistry. An octa-azidated fluorescent rotaxane bearing two distinct ligands was also generated in a fully controlled manner.
Collapse
Affiliation(s)
- Wenzhang Chen
- Faculty of Science, University of Namur, Rue de Bruxelles, 61, Namur, Belgium.
| | | | - Stéphane P Vincent
- Faculty of Science, University of Namur, Rue de Bruxelles, 61, Namur, Belgium.
| |
Collapse
|
42
|
Mekapothula S, Wonanke ADD, Addicoat MA, Wallis JD, Boocock DJ, Cave GWV. A supramolecular cavitand for selective chromatographic separation of peptides using LC-MS/MS: a combined in silico and experimental approach. NEW J CHEM 2021. [DOI: 10.1039/d0nj03555f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chromatographic separation of proteomic standards via a silica immobilized pillararene cavitand has been designed in silico using host–guest binding energy studies and realized experimentally to selectively interact with peptides.
Collapse
Affiliation(s)
| | | | | | - John D. Wallis
- School of Science and Technology
- Nottingham Trent University
- Nottingham
- UK
| | - David J. Boocock
- School of Science and Technology
- Nottingham Trent University
- Nottingham
- UK
| | - Gareth W. V. Cave
- School of Science and Technology
- Nottingham Trent University
- Nottingham
- UK
| |
Collapse
|
43
|
Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Notti A, Pisagatti I, Nastasi F, Patanè S, Parisi MF, Gattuso G. Stimuli-Responsive Internally Ion-Paired Supramolecular Polymer Based on a Bis-pillar[5]arene Dicarboxylic Acid Monomer. J Org Chem 2020; 86:1676-1684. [PMID: 33369427 PMCID: PMC7871325 DOI: 10.1021/acs.joc.0c02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
A novel
bis-pillar[5]arene dicarboxylic acid self-assembles in
the presence of 1,12-diaminododecane to yield overall neutral, internally
ion-paired supramolecular polymers. Their aggregation, binding mode,
and morphology can be tuned by external stimuli such as solvent polarity,
concentration, and base treatment.
Collapse
Affiliation(s)
- Anna Notti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ilenia Pisagatti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Melchiorre F Parisi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Gattuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
45
|
Liang H, Hua B, Xu F, Gan LS, Shao L, Huang F. Acid/Base-Tunable Unimolecular Chirality Switching of a Pillar[5]azacrown Pseudo[1]Catenane. J Am Chem Soc 2020; 142:19772-19778. [DOI: 10.1021/jacs.0c10570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haozhong Liang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Fan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
46
|
Recent developments for the investigation of chiral properties and applications of pillar[5]arenes in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Shin M, Seo S, Park IH, Lee E, Habata Y, Lee SS. Metallosupramolecules of pillar[5]-bis-trithiacrown including a mercury(ii) iodide ion-triplet complex. Chem Commun (Camb) 2020; 56:10135-10138. [PMID: 32766638 DOI: 10.1039/d0cc03902k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of pillar[5]-bis-trithiacrown (L) and mercury(ii) halides afforded a monomer complex (Cl--form), a 1-D coordination polymer (Br--form) and a supramolecular ion-triplet complex [(I·Hg·I)@L] (I--form). In the ion-triplet complex, the host encapsulates the (I--Hg2+-I-) entity via Hg2+π and C-HI- interactions, reflecting geometrical complementarity.
Collapse
Affiliation(s)
- Mingyeong Shin
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Guo H, Ye J, Zhang Z, Wang Y, Yuan X, Ou C, Ding Y, Yan C, Wang J, Yao Y. Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorg Chem 2020; 59:11915-11919. [PMID: 32815726 DOI: 10.1021/acs.inorgchem.0c01752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanically interlocked molecules are a class of smart supramolecular species because of their interesting topological structure and application in various areas, such as biology and nanoscience. In this work, we used "multicomponent reaction" to fabricate a new [2]rotaxane based on pillar[5]arene from different small-sized molecules. The molecular structure of the obtained [2]rotaxane R was confirmed by 1H and 13C NMR, high-resolution electrospray ionization mass spectrometry, two-dimensional nuclear Overhauser effect spectroscopy, and density functional theory studies. Interestingly, the [2]rotaxane-based organometallic cross-linked catalyst (Pd@R) was easily constructed via the coordination between triazole groups and Pd(NO3)2. Pd@R proved to be a good catalyst for the Suzuki-Miyaura coupling reaction with excellent stability and repeatability.
Collapse
Affiliation(s)
- Hao Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China.,School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Junmei Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
49
|
Ruengsuk A, Khamphaijun K, Pananusorn P, Docker A, Tantirungrotechai J, Sukwattanasinitt M, Harding DJ, Bunchuay T. Pertosylated pillar[5]arene: self-template assisted synthesis and supramolecular polymer formation. Chem Commun (Camb) 2020; 56:8739-8742. [PMID: 32633280 DOI: 10.1039/d0cc04005c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of decatosylate pillar[5]arene 1 is reported in excellent yield (>70%). The high yield is attributed to a self-template effect of the pendant tosylate arms. The X-ray crystal structure shows the formation of a linear supramolecular polymer, stabilised by intermolecular pillar[5]arene-tosylate inclusion complexes. These polymeric arrays persist in solution and form rod-like microfibril nanostructures evidenced by SEM.
Collapse
Affiliation(s)
- Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Korawit Khamphaijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Puttipong Pananusorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Andrew Docker
- Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford, OX1 3TA, USA
| | - Jonggol Tantirungrotechai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
50
|
Liu C, Li C, Pang C, Li M, Li H, Li P, Fan L, Liu H, Tian W. Supramolecular Drug-Drug Complex Vesicles Enable Sequential Drug Release for Enhanced Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27940-27950. [PMID: 32449351 DOI: 10.1021/acsami.0c04565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Drug-drug self-delivery systems serving as both carriers and cargos have been explored as advanced combination chemotherapy strategies to overcome the limitations of the traditional single-drug chemotherapy. However, most known drug-drug self-delivery systems may cause a rapid increase in drug concentration when the single covalent bond is broken, thus leading to high toxicity to organs and low therapeutic efficiency against tumors. To address the above problem, in this study, a novel supramolecular drug-drug complex (SDDC) simultaneously containing both covalent and noncovalent bonds was proposed to realize the sequential release of two drugs in tumor cells for enhanced combination therapy. The SDDC could self-assemble into uniform bilayer supramolecular vesicles (SVs) with a remarkable drug loading capacity and stable drug transport. Notably, the SVs with controlled sequential release ability in tumor cells exhibited a superior synergistic effect and significantly improved therapeutic efficiency with reduced toxicity in in vivo antitumor activity and histological analyses in comparison to either individual free drugs or a mixture of two free drugs. Therefore, by combining the advantages of noncovalent interactions with the dynamic nature and stable covalent bonds, this study opens a new way for cancer therapy.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Cui Pang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Muqiong Li
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Huixin Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengxiang Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|