1
|
Khalid M, Tariq A, Braga AAC, Alotaibi R, Ojha SC. Amplifying the photovoltaic properties of tetrathiafulvalenes based materials by incorporation of small acceptors: a density functional theory approach. Sci Rep 2024; 14:24213. [PMID: 39406831 PMCID: PMC11480422 DOI: 10.1038/s41598-024-74852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Currently, polycyclic aromatic compounds in organic solar cells (OSCs) have gained substantial consideration in research communities due to their promising characteristics. Herein, polycyclic aromatic hydrocarbons (PAHs) core-based chromophores (TTFD1-TTFD6) were designed by structural modifications of peripheral acceptor groups into TTFR. The density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations were carried out at B3LYP/6-311G (d, p) functional to explore insights for their structural, electronic, and photonic characteristics. The structural modulation unveiled notable electronic impact on the HOMO and LUMO levels across all derivatives, leading to decreased band gaps. All the designed compounds exhibited band gap ranging from 2.246 to 1.957 eV, along with wide absorption spectra of 897.071-492.274 nm. An elevated exciton dissociation rate was observed due to the lower binding energy values (Eb = 0.381 to 0.365 eV) calculated in the derivatives compared to the reference (Eb = 0.394 eV). Furthermore, data from the transition density matrix (TDM) and density of states (DOS) also corroborated the effective charge transfer process. Comparable results of Voc for reference and designed chromophores were obtained via HOMOdonor-LUMOPC71BM. The declining Voc order values was noted as TTFD5 > TTFD6 > TTFD4 > TTFD3 > TTFD2 > TTFD1 > TTFR. Interestingly, TTFD5 was found with the smallest energy gap and highest absorption value, resulting in better charge transference among all the derivatives. The results illustrated that the modification in indenofluorene based chromophores with end-capped small acceptors proved to be a significant approach in achieving favorable photovoltaic properties.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ayesha Tariq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Rajeh Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Das S, Rout Y, Poddar M, Alsaleh AZ, Misra R, D'Souza F. Novel Benzothiadiazole-based Donor-Acceptor Systems: Synthesis, Ultrafast Charge Transfer and Separation Dynamics. Chemistry 2024; 30:e202401959. [PMID: 38975973 DOI: 10.1002/chem.202401959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
Collapse
Affiliation(s)
- Somnath Das
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Madhurima Poddar
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Ajyal Z Alsaleh
- Chemistry Department, Science College, Imam Abdulrahman bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| |
Collapse
|
3
|
Han J, Xu H, Paleti SHK, Sharma A, Baran D. Understanding photochemical degradation mechanisms in photoactive layer materials for organic solar cells. Chem Soc Rev 2024; 53:7426-7454. [PMID: 38869459 DOI: 10.1039/d4cs00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Over the past decades, the field of organic solar cells (OSCs) has witnessed a significant evolution in materials chemistry, which has resulted in a remarkable enhancement of device performance, achieving efficiencies of over 19%. The photoactive layer materials in OSCs play a crucial role in light absorption, charge generation, transport and stability. To facilitate the scale-up of OSCs, it is imperative to address the photostability of these electron acceptor and donor materials, as their photochemical degradation process remains a challenge during the photo-to-electric conversion. In this review, we present an overview of the development of electron acceptor and donor materials, emphasizing the crucial aspects of their chemical stability behavior that are linked to the photostability of OSCs. Throughout each section, we highlight the photochemical degradation pathways for electron acceptor and donor materials, and their link to device degradation. We also discuss the existing interdisciplinary challenges and obstacles that impede the development of photostable materials. Finally, we offer insights into strategies aimed at enhancing photochemical stability and discuss future directions for developing photostable photo-active layers, facilitating the commercialization of OSCs.
Collapse
Affiliation(s)
- Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Han Xu
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Tang A, Cong P, Dai T, Wang Z, Zhou E. A 2-A 1-D-A 1-A 2-Type Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300175. [PMID: 37907430 DOI: 10.1002/adma.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Indexed: 11/02/2023]
Abstract
The A2-A1-D-A1-A2-type molecules consist of one electron-donating (D) core flanked by two electron-accepting units (A1 and A2) and have emerged as an essential branch of nonfullerene acceptors (NFAs). These molecules generally possess higher molecular energy levels and wider optical bandgaps compared with those of the classic A-D-A- and A-DA'D-A-type NFAs, owing to the attenuated intramolecular charge transfer effect. These characteristics make them compelling choices for the fabrication of high-voltage organic photovoltaics (OPVs), ternary OPVs, and indoor OPVs. Herein, the recent progress in the A2-A1-D-A1-A2-type NFAs are reviewed, including the molecular engineering, structure-property relationships, voltage loss (Vloss), device stability, and photovoltaic performance of binary, ternary, and indoor OPVs. Finally, the challenges and provided prospects are discussed for the further development of this type of NFAs.
Collapse
Affiliation(s)
- Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Lim S, Lee DH, Choi H, Choi Y, Lee DG, Cho SB, Ko S, Choi J, Kim Y, Park T. High-Performance Perovskite Quantum Dot Solar Cells Enabled by Incorporation with Dimensionally Engineered Organic Semiconductor. NANO-MICRO LETTERS 2022; 14:204. [PMID: 36251125 PMCID: PMC9576836 DOI: 10.1007/s40820-022-00946-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Perovskite quantum dots (PQDs) have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs. However, they exhibit low moisture stability at room humidity (20-30%) owing to many surface defect sites generated by inefficient ligand exchange process. These surface traps must be re-passivated to improve both charge transport ability and moisture stability. To address this issue, PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation. Conventional organic semiconductors are typically low-dimensional (1D and 2D) and prone to excessive self-aggregation, which limits chemical interaction with PQDs. In this work, we designed a new 3D star-shaped semiconducting material (Star-TrCN) to enhance the compatibility with PQDs. The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation. The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI3-PQDs via reduced surface trap states and suppressed moisture penetration. As a result, the resultant devices not only achieve remarkable device stability over 1000 h at 20-30% relative humidity, but also boost power conversion efficiency up to 16.0% via forming a cascade energy band structure.
Collapse
Affiliation(s)
- Seyeong Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyuntae Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yelim Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Geon Lee
- Department of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Republic of Korea
| | - Sung Beom Cho
- Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seonkyung Ko
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Younghoon Kim
- Department of Chemistry, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
6
|
Usman Khan M, Hussain R, Yaqoob J, Fayyaz ur Rehman M, Adnan Asghar M, Demir Kanmazalp S, Assiri MA, Imran M, Lu C, Safwan Akram M. Theoretical design and prediction of novel fluorene-based non-fullerene acceptors for environmentally friendly organic solar cell. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
8
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
9
|
|
10
|
Xu S, Wang W, Liu H, Yu X, Qin F, Luo H, Zhou Y, Li Z. A New Diazabenzo[k]fluoranthene-based D-A Conjugated Polymer Donor for Efficient Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200276. [PMID: 35567333 DOI: 10.1002/marc.202200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Indexed: 11/08/2022]
Abstract
The development of wide-bandgap polymer donors having complementary absorption and compatible energy levels with near-infared (NIR) absorbing nonfullerene acceptors is highly important for realizing high-performance organic solar cells (OSCs). Herein, a new thiophene-fused diazabenzo[k]fluoranthene derivative has been successfully synthesized as the electron-deficient unit to construct an efficient donor-acceptor (D-A) type alternating copolymer donor, namely PABF-Cl, using the chlorinated benzo[1,2-b:4,5-b']dithiophene as the copolymerization unit. PABF-Cl exhibits a wide optical bandgap of 1.93 eV, a deep highest occupied molecular level of -5.36 eV, and efficient hole transport. As a result, OSCs with the best power conversion efficiency of 11.8% has been successfully obtained by using PABF-Cl as the donor to blend with a NIR absorbing BTP-eC9 acceptor. Our work thus provides a new design of electron-deficient unit for constructing high performance D-A type polymer donors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaoheng Xu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongtao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fei Qin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao Luo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Azzouzi M, Gallop NP, Eisner F, Yan J, Zheng X, Cha H, He Q, Fei Z, Heeney M, Bakulin AA, Nelson J. Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. ENERGY & ENVIRONMENTAL SCIENCE 2022; 15:1256-1270. [PMID: 35419090 PMCID: PMC8924960 DOI: 10.1039/d1ee02788c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Achieving the simultaneous increases in the open circuit voltage (V oc), short circuit current (J sc) and fill factor (FF) necessary to further increase the power conversion efficiency (PCE) of organic photovoltaics (OPV) requires a unified understanding of how molecular and device parameters affect all three characteristics. In this contribution, we introduce a framework that for the first time combines different models that have been used separately to describe the different steps of the charge generation and collection processes in OPV devices: a semi-classical rate model for charge recombination processes in OPV devices, zero-dimensional kinetic models for the photogeneration process and exciton dissociation and one-dimensional semiconductor device models. Using this unified multi-scale model in conjunction with experimental techniques (time-resolved absorption spectroscopy, steady-state and transient optoelectronic measurements) that probe the various steps involved in charge generation we can shed light on how the energy offsets in a series of polymer: non-fullerene devices affect the charge carrier generation, collection, and recombination properties of the devices. We find that changing the energy levels of the donor significantly affects not only the transition rates between local-exciton (LE) and charge-transfer (CT) states, but also significantly changes the transition rates between CT and charge-separated (CS) states, challenging the commonly accepted picture of charge generation and recombination. These results show that in order to obtain an accurate picture of charge generation in OPV devices, a variety of different experimental techniques under different conditions in conjunction with a comprehensive model of processes occurring at different time-scales are required.
Collapse
Affiliation(s)
- Mohammed Azzouzi
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Nathaniel P Gallop
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Flurin Eisner
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Jun Yan
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Xijia Zheng
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Department of Hydrogen & Renewable Energy, Kyungpook National University Daegu 41566 Republic of Korea
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Zhuping Fei
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University Tianjin 300072 P. R. China
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Jenny Nelson
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| |
Collapse
|
12
|
Brock SE, Yehorova D, Boardman BM. Synthesis and properties of fluorene based small molecule acceptors containing aromatic malononitrile functionalities. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Yasa M, Toppare L. Thieno[3,4‐c]pyrrole‐4,6‐dione‐based conjugated polymers for non‐fullerene organic solar cells. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mustafa Yasa
- Department of Polymer Science and Technology Middle East Technical University Ankara 06800 Turkey
| | - Levent Toppare
- Department of Chemistry Middle East Technical University Ankara 06800 Turkey
- Department of Polymer Science and Technology Middle East Technical University Ankara 06800 Turkey
- The Center for Solar Energy Research and Application (GUNAM) Middle East Technical University Ankara 06800 Turkey
- Department of Biotechnology Middle East Technical University Ankara 06800 Turkey
| |
Collapse
|
14
|
Ghosh AB, Basak S, Bandyopadhyay A. Polymer Based Functional Materials: A New Generation Photo‐active Candidate for Electrochemical Application. ELECTROANAL 2022. [DOI: 10.1002/elan.202100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abhisek Brata Ghosh
- Department of Polymer Science and Technology University of Calcutta 92 A.P.C. Road Kolkata 700009 India
| | - Sayan Basak
- Department of Polymer Science and Technology University of Calcutta 92 A.P.C. Road Kolkata 700009 India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology University of Calcutta 92 A.P.C. Road Kolkata 700009 India
| |
Collapse
|
15
|
Wu J, Cha H, Du T, Dong Y, Xu W, Lin C, Durrant JR. A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101833. [PMID: 34773315 PMCID: PMC11469080 DOI: 10.1002/adma.202101833] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The charge carrier dynamics in organic solar cells and organic-inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin-film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub-bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells.
Collapse
Affiliation(s)
- Jiaying Wu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- Department of Hydrogen & Renewable EnergyKyungpook National UniversityDaegu41566South Korea
| | - Tian Du
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Weidong Xu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Chieh‐Ting Lin
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - James R. Durrant
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- SPECIFIC IKCCollege of EngineeringSwansea UniversityBay Campus, Fabian WaySwanseaWalesSA1 8ENUK
| |
Collapse
|
16
|
Dai T, Nie Q, Lei P, Zhang B, Zhou J, Tang A, Wang H, Zeng Q, Zhou E. Effects of Halogenation on the Benzotriazole Unit of Non-Fullerene Acceptors in Organic Solar Cells with High Voltages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58994-59005. [PMID: 34851613 DOI: 10.1021/acsami.1c14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-fullerene acceptors (NFAs) can be simply divided into three categories: A-D-A, A-DA'D-A, and A2-A1-D-A1-A2 according to their chemical structures. Benefiting from the easily modified 1,1-dicyanomethylene-3-indanone end groups, the halogenation on the first two types of materials has been proved to be very effective to modulate their optoelectronic properties and improve their photovoltaic performance. Hence, in this work, we systematically investigate the effect of halogenation on the classic NFA molecule of BTA3, which has the linear A2-A1-D-A1-A2-type backbone. After fluorination and chlorination, F-BTA3 and Cl-BTA3 have similar optical band gaps but lower energy levels than BTA3. When blending with a linear copolymer PE25 composed of benzodifuran and chlorinated benzotriazole (BTA) according to "Same-A-Strategy", the corresponding VOC of the halogenated NFAs gradually decreases (1.13 V for F-BTA3 and 1.09 V for Cl-BTA3), compared with that of the BTA3-based device (VOC = 1.22 V). This tendency mainly comes from the lower lowest unoccupied molecular orbital energy levels due to the strong electron-withdrawing ability of halogen atoms and the larger nonradiative energy loss. However, the power conversion efficiencies of the halogenated materials are slightly improved, from 9.08% for PE25: BTA3 to 10.45% for PE25: F-BTA3 and 10.75% for PE25: Cl-BTA, with the nonhalogenated solvent tetrahydrofuran as the processing solvent. The improved photovoltaic performance of F-BTA3 and Cl-BTA3 should come from the higher carrier mobility, weaker bimolecular recombination, and higher fluorescence quenching rate. This study illustrates that halogenation on the A1 unit is a promising strategy for developing novel and effective A2-A1-D-A1-A2-type NFAs.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingling Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Helin Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Fu H, Fan Q, Gao W, Oh J, Li Y, Lin F, Qi F, Yang C, Marks TJ, Jen AKY. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1140-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Radford CL, Kelly TL. Controlling solid-state structure and film morphology in non-fullerene organic photovoltaic devices. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic solar cells (OSCs) have long promised to provide renewable energy in a scalable, cost-effective way; however, for years, their relatively low efficiency has been a significant barrier to commercialization. Recent progress on cell efficiency means that OSCs are now much more competitive with other established technologies. These key advancements have come from better understanding and controlling the molecular structure, solid-state packing, and film morphology of the light absorbing layer. This focused review will explore the different ways that the solid-state structure and film morphology of the light absorbing layer can be controlled. It will examine the key features of an efficient light absorbing layer and present guiding principles for creating efficient OSCs. The future directions and remaining research questions of this field will be briefly discussed.
Collapse
Affiliation(s)
- Chase L. Radford
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Timothy L. Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
19
|
|
20
|
Ghosh T, Mondal M, Vijayaraghavan RK. Multifarious Impact of Rhodanine Acceptor Group on the Optical Properties of Some Semiconductor Probes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tapan Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Madalasa Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
21
|
Khalid M, Khan MU, -Razia ET, Shafiq Z, Alam MM, Imran M, Akram MS. Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci Rep 2021; 11:19931. [PMID: 34620948 PMCID: PMC8497501 DOI: 10.1038/s41598-021-99254-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
The global need for renewable sources of energy has compelled researchers to explore new sources and improve the efficiency of the existing technologies. Solar energy is considered to be one of the best options to resolve climate and energy crises because of its long-term stability and pollution free energy production. Herein, we have synthesized a small acceptor compound (TPDR) and have utilized for rational designing of non-fullerene chromophores (TPD1-TPD6) using end-capped manipulation in A2-A1-D-A1-A2 configuration. The quantum chemical study (DFT/TD-DFT) was used to characterize the effect of end group redistribution through frontier molecular orbital (FMO), optical absorption, reorganization energy, open circuit voltage (Voc), photovoltaic properties and intermolecular charge transfer for the designed compounds. FMO data exhibited that TPD5 had the least ΔE (1.71 eV) with highest maximum absorption (λmax) among all compounds due to the four cyano groups as the end-capped acceptor moieties. The reorganization energies of TPD1-TPD6 hinted at credible electron transportation due to the lower values of λe than λh. Furthermore, open circuit voltage (Voc) values showed similar amplitude for all compounds including parent chromophore, except TPD4 and TPD5 compounds. These designed compounds with unique end group acceptors have the potential to be used as novel fabrication materials for energy devices.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Eisha-Tul -Razia
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
22
|
Li Y, Huang X, Ding K, Sheriff HKM, Ye L, Liu H, Li CZ, Ade H, Forrest SR. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat Commun 2021; 12:5419. [PMID: 34521842 PMCID: PMC8440764 DOI: 10.1038/s41467-021-25718-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.
Collapse
Affiliation(s)
- Yongxi Li
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaheng Huang
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kan Ding
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hafiz K M Sheriff
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China
| | - Haoran Liu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephen R Forrest
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Baisinger L, Andrés Castán JM, Simón Marqués P, Londi G, Göhler C, Deibel C, Beljonne D, Cabanetos C, Blanchard P, Benduhn J, Spoltore D, Leo K. Reducing Non-Radiative Voltage Losses by Methylation of Push-Pull Molecular Donors in Organic Solar Cells. CHEMSUSCHEM 2021; 14:3622-3631. [PMID: 34111333 PMCID: PMC8518810 DOI: 10.1002/cssc.202100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Indexed: 05/11/2023]
Abstract
Organic solar cells are approaching power conversion efficiencies of other thin-film technologies. However, in order to become truly market competitive, the still substantial voltage losses need to be reduced. Here, the synthesis and characterization of four novel arylamine-based push-pull molecular donors was described, two of them exhibiting a methyl group at the para-position of the external phenyl ring of the arylamine block. Assessing the charge-transfer state properties and the effects of methylation on the open-circuit voltage of the device showed that devices based on methylated versions of the molecular donors exhibited reduced voltage losses due to decreased non-radiative recombination. Modelling suggested that methylation resulted in a tighter interaction between donor and acceptor molecules, turning into a larger oscillator strength to the charge-transfer states, thereby ensuing reduced non-radiative decay rates.
Collapse
Affiliation(s)
- Lukasz Baisinger
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | | | - Pablo Simón Marqués
- UNIV AngersCNRS, MOLTECH-AnjouSFR MATRIX2 bd Lavoisier49045ANGERS CedexFrance
| | - Giacomo Londi
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsPlace du Parc, 207000MonsBelgium
| | - Clemens Göhler
- Institut für PhysikTechnische Universität ChemnitzReichenhainer Str. 7009126ChemnitzGermany
| | - Carsten Deibel
- Institut für PhysikTechnische Universität ChemnitzReichenhainer Str. 7009126ChemnitzGermany
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsPlace du Parc, 207000MonsBelgium
| | - Clément Cabanetos
- UNIV AngersCNRS, MOLTECH-AnjouSFR MATRIX2 bd Lavoisier49045ANGERS CedexFrance
| | - Philippe Blanchard
- UNIV AngersCNRS, MOLTECH-AnjouSFR MATRIX2 bd Lavoisier49045ANGERS CedexFrance
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
24
|
Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Joseph S, Ravva MK, Davis BA, Thomas S, Kalarikkal N. Theoretical Study on Understanding the Effects of Core Structure and Energy Level Tuning on Efficiency of Nonfullerene Acceptors in Organic Solar Cells. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saju Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala 686560 India
| | - Mahesh Kumar Ravva
- Department of Chemistry SRM University‐AP Amaravati Andhra Pradesh 522020 India
| | - Binny A Davis
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam Kerala 686560 India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala 686560 India
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala 686560 India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala 686560 India
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam Kerala 686560 India
| |
Collapse
|
26
|
Liu F, Zhou L, Liu W, Zhou Z, Yue Q, Zheng W, Sun R, Liu W, Xu S, Fan H, Feng L, Yi Y, Zhang W, Zhu X. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100830. [PMID: 34048104 DOI: 10.1002/adma.202100830] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The trade-off between the open-circuit voltage (Voc ) and short-circuit current density (Jsc ) has become the core of current organic photovoltaic research, and realizing the minimum energy offsets that can guarantee effective charge generation is strongly desired for high-performance systems. Herein, a high-performance ternary solar cell with a power conversion efficiency of over 18% using a large-bandgap polymer donor, PM6, and a small-bandgap alloy acceptor containing two structurally similar nonfullerene acceptors (Y6 and AQx-3) is reported. This system can take full advantage of solar irradiation and forms a favorable morphology. By varying the ratio of the two acceptors, delicate regulation of the energy levels of the alloy acceptor is achieved, thereby affecting the charge dynamics in the devices. The optimal ternary device exhibits more efficient hole transfer and exciton separation than the PM6:AQx-3-based system and reduced energy loss compared with the PM6:Y6-based system, contributing to better performance. Such a "two-in-one" alloy strategy, which synergizes two highly compatible acceptors, provides a promising path for boosting the photovoltaic performance of devices.
Collapse
Affiliation(s)
- Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenrui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zichun Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qihui Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenyu Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ri Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wuyue Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Designing of benzodithiophene acridine based Donor materials with favorable photovoltaic parameters for efficient organic solar cell. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113238] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Huang Y, Elder DL, Kwiram AL, Jenekhe SA, Jen AKY, Dalton LR, Luscombe CK. Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904239. [PMID: 31576634 DOI: 10.1002/adma.201904239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Research at the University of Washington regarding organic semiconductors is reviewed, covering four major topics: electro-optics, organic light emitting diodes, organic field-effect transistors, and organic solar cells. Underlying principles of materials design are demonstrated along with efforts toward unlocking the full potential of organic semiconductors. Finally, opinions on future research directions are presented, with a focus on commercial competency, environmental sustainability, and scalability of organic-semiconductor-based devices.
Collapse
Affiliation(s)
- Yunping Huang
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Delwin L Elder
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alvin L Kwiram
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samson A Jenekhe
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alex K Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Larry R Dalton
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
29
|
A comparative study of PffBT4T-2OD/EH-IDTBR and PffBT4T-2OD/PC71BM organic photovoltaic heterojunctions. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Woon KL, Chong ZX, Ariffin A, Chan CS. Relating molecular descriptors to frontier orbital energy levels, singlet and triplet excited states of fused tricyclics using machine learning. J Mol Graph Model 2021; 105:107891. [PMID: 33765526 DOI: 10.1016/j.jmgm.2021.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Fused tricyclic organic compounds are an important class of organic electronic materials. In designing molecules for organic electronics, knowing what chemical structure that be used to tune the molecular property is one of the keys that can help to improve the material performance. In this research, we applied machine learning and data analytic approaches in addressing this problem. The energy states (Lowest Unoccupied Molecular Orbital (HOMO), Highest Occupied Molecular Orbitals (LUMO), singlet (Es) and triplet (ET) energy) of more than 10 thousand fused tricyclics are calculated. Corresponding descriptors are also generated. We find that the Coulomb matrix is a poorer descriptor than high-level descriptors in a multilayer perceptron neural network. Correlations as high as 0.95 is obtained using a multilayer perceptron neural network with Mean Absolute Error as low as 0.08 eV. The descriptors that are important in tuning the energy levels are revealed using the Random Forest algorithm. Correlations of such descriptors are also plotted. We found that the higher the number of tertiary amines, the deeper are the HOMO and LUMO levels. The presence of NN in the aromatic rings can be used to tune the ES. However, there is no single dominant descriptor that can be correlated with the ET. A collection of descriptors is found to give a far better correlation with ET. This research demonstrated that machine learning and data analytics in guiding how certain chemical substructures correlate with the molecule energy states.
Collapse
Affiliation(s)
- Kai Lin Woon
- Low Dimensional Material Research Centre, Department of Physics, University Malaya, Kuala Lumpur, Malaysia.
| | - Zhao Xian Chong
- Low Dimensional Material Research Centre, Department of Physics, University Malaya, Kuala Lumpur, Malaysia
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - Chee Seng Chan
- Center of Image and Signal Processing, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Lee T, Song CE, Lee SK, Shin WS, Lim E. Alkyl-Side-Chain Engineering of Nonfused Nonfullerene Acceptors with Simultaneously Improved Material Solubility and Device Performance for Organic Solar Cells. ACS OMEGA 2021; 6:4562-4573. [PMID: 33644564 PMCID: PMC7905825 DOI: 10.1021/acsomega.0c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Two nonfullerene small molecules, TBTT-BORH and TBTT-ORH, which have the same thiophene-benzothiadiazole-thiophene (TBTT) core flanked with butyloctyl (BO)- and octyl (O)-substituted rhodanines (RHs) at both ends, respectively, are developed as electron acceptors for organic solar cells (OSCs). The difference between the alkyl groups introduced into TBTT-BORH and TBTT-ORH strongly influence the intermolecular aggregation in the film state. Differential scanning calorimetry and UV-vis absorption studies reveal that TBTT-ORH exhibited stronger molecular aggregation behavior than TBTT-BORH. On the contrary, the material solubility is greatly improved by the introduction of a BO group in TBTT-BORH, and the inevitably low molecular interaction and packing ability of the as-cast TBTT-BORH film can be effectively increased by a solvent-vapor annealing (SVA) treatment. OSCs based on the two acceptors and PTB7-Th as a polymer donor are fabricated owing to their complementary absorption and sufficient energy-level offsets. The best power conversion efficiency of 8.33% is obtained with the SVA-treated TBTT-BORH device, where, together with a high open-circuit voltage of 1.02 V, the charge-carrier mobility and the short-circuit current density were greatly improved by the SVA treatment to levels comparable to those of the TBTT-ORH device because of the suppressed charge recombination and improved film morphology. In this work, the simultaneous improvement of both material solubility and device performance is achieved through alkyl side-chain engineering to balance the trade-offs among material solubility/crystallinity/device performance.
Collapse
Affiliation(s)
- Taeho Lee
- Department
of Chemistry, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic
of Korea
| | - Chang Eun Song
- Energy
Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
| | - Sang Kyu Lee
- Energy
Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
| | - Won Suk Shin
- Energy
Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
| | - Eunhee Lim
- Department
of Applied Chemistry, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
32
|
Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AKY. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J Am Chem Soc 2021; 143:2665-2670. [DOI: 10.1021/jacs.0c12527] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, P.R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Alex K.-Y. Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
33
|
Influence of end-capped group on structural and electronic properties of the At-π-Ac-π-At small molecule donor for high-performance organic solar cells. Struct Chem 2021. [DOI: 10.1007/s11224-020-01620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Khan MU, Hussain R, Mehboob MY, Khalid M, Ehsan MA, Rehman A, Janjua MRSA. First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118938. [PMID: 32971344 DOI: 10.1016/j.saa.2020.118938] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Chrysene core containing fused ring acceptor materials have remarkable efficiency for high performance organic solar cells. Therefore, present study has been carried out with the aim to design chrysene based novel Z-shaped electron acceptor molecules (Z1-Z6) from famous Z-shaped photovoltaic material FCIC (R) for organic photovoltaic applications. End-capped engineering at two electron-accepting end groups 1,1-dicyanomethylene-3-indanone of FCIC is made with highly efficient end-capped acceptor moieties and impact of end-capped modifications on structure-property relationship, photovoltaic and electronic properties of newly designed molecules (Z1-Z6) has been studied in detail through DFT and TDDFT calculations. The efficiencies of the designed molecules are evaluated through energy gaps, exciton binding energy along with transition density matrix (TDM) analysis, reorganizational energy of electron and hole, absorption maxima and open circuit voltage of investigated molecules. The designed molecules exhibit red-shift and intense absorption in near-infrared region (683-749 nm) of UV-Vis-NIR absorption spectrum with narrowing of HOMO-LUMO energy gap from 2.31 eV in R to 1.95 in eV in Z5. Moreover, reduction in reorganization energy of electron from 0.0071 (R) to 0.0049 (Z5), and enhancement in open circuit voltage from 1.08 V in R to 1.20 V in Z5 are also observed. Twisted Z-shape of designed molecules prevents self-aggregation that facilitates miscibility of donor and acceptor. Low values of binding energy, excitation energy, and reorganizational energy (electron and hole) suggest that novel designed molecules offer high charge mobilities as compared to FCIC. Our findings indicate that these novel designed molecules can display better photovoltaic parameters and are suitable candidates if used in organic solar cells.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan.
| | | | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Rehman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
35
|
Zhu M, Yu X, Huang J, Xia H, Zhu J, Peng W, Tan H, Zhu W. Simple-structure small molecular acceptors based on a benzodithiophenedione core: synthesis, optoelectronic and photovoltaic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj04136c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorine-free simple-structure acceptor presents matched energy levels and higher charge mobilities, thus enhanced photovoltaic properties.
Collapse
Affiliation(s)
- Mengbing Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xiankang Yu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jingwei Huang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Xia
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianing Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Wenhong Peng
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hua Tan
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
36
|
Ali A, Rafiq MI, Zhou B, Tang W. Evaluating the nature of the vertical excited states of fused-ring electron acceptors using TD-DFT and density-based charge transfer. Phys Chem Chem Phys 2021; 23:15282-15291. [PMID: 34250997 DOI: 10.1039/d1cp01917a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acceptor-donor-acceptor structured fused-ring electron acceptors (FREAs) are the most efficient electron acceptors used in organic solar cells. We use density functional theory (DFT), its time-dependent version (TD-DFT), and an intra-molecular charge transfer index to evaluate the nature of the excited states of FREAs. Typically, several efficient electronic transitions contribute to the absorption spectra of FREAs. An investigation of every efficient electronic transition of each FREA is performed based on the electronic density variation in the donor and acceptor moieties of the molecules upon absorbing solar photons. Not all these transitions are equivalent for light-to-electricity conversion. The first transition contributes the most to the absorption spectra. This transition is intense and extremely efficient for light-to-electricity conversion, giving a higher value of intra-molecular charge transfer. For certain effective transitions of FREAs, the phenyl rings in the donor unit behave as the electron-donating units, such as IDT-NTI-2EH, BTCN-M, and MeIC. The foremost finding of the present research work is that the furthermost strong electronic transitions are not essentially the most effective ones for the conversion of sunlight into electricity.
Collapse
Affiliation(s)
- Amjad Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Muhammad Imran Rafiq
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Baojing Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
37
|
Balambiga B, Dheepika R, Devibala P, Imran PM, Nagarajan S. Picene and PTCDI based solution processable ambipolar OFETs. Sci Rep 2020; 10:22029. [PMID: 33328502 PMCID: PMC7744517 DOI: 10.1038/s41598-020-78356-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Facile and efficient solution-processed bottom gate top contact organic field-effect transistor was fabricated by employing the active layer of picene (donor, D) and N,N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (acceptor, A). Balanced hole (0.12 cm2/Vs) and electron (0.10 cm2/Vs) mobility with Ion/off of 104 ratio were obtained for 1:1 ratio of D/A blend. On increasing the ratio of either D or A, the charge carrier mobility and Ion/off ratio improved than that of the pristine molecules. Maximum hole (µmax,h) and electron mobilities (µmax,e) were achieved up to 0.44 cm2/Vs for 3:1 and 0.25 cm2/Vs for 1:3, (D/A) respectively. This improvement is due to the donor phase function as the trap center for minority holes and decreased trap density of the dielectric layer, and vice versa. High ionization potential (- 5.71 eV) of 3:1 and lower electron affinity of (- 3.09 eV) of 1:3 supports the fine tuning of frontier molecular orbitals in the blend. The additional peak formed for the blends at high negative potential of - 1.3 V in cyclic voltammetry supports the molecular level electronic interactions of D and A. Thermal studies supported the high thermal stability of D/A blends and SEM analysis of thin films indicated their efficient molecular packing. Quasi-π-π stacking owing to the large π conjugated plane and the crystallinity of the films are well proved by GIXRD. DFT calculations also supported the electronic distribution of the molecules. The electron density of states (DOS) of pristine D and A molecules specifies the non-negligible interaction coupling among the molecules. This D/A pair has unlimited prospective for plentiful electronic applications in non-volatile memory devices, inverters and logic circuits.
Collapse
Affiliation(s)
- Balu Balambiga
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Ramachandran Dheepika
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Paneerselvam Devibala
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| |
Collapse
|
38
|
Feng J, Wang H, Rujisamphan N, Li Y. Theoretical Design of Dithienopicenocarbazole-Based Molecules by Molecular Engineering of Terminal Units Toward Promising Non-fullerene Acceptors. Front Chem 2020; 8:580252. [PMID: 33251182 PMCID: PMC7674677 DOI: 10.3389/fchem.2020.580252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Dithienopicenocarbazole (DTPC), as the kernel module in A-D-A non-fullerene acceptors (NFA), has been reported for its ultra-narrow bandgap, high power conversion efficiency, and extremely low energy loss. To further improve the photovoltaic performance of DTPC-based acceptors, molecular engineering of end-capped groups could be an effective method according to previous research. In this article, a class of acceptors were designed via bringing terminal units with an enhanced electron-withdrawing ability to the DTPC central core. Their geometrical structures, frontier molecular orbitals, absorption spectrum, and intramolecular charge transfer and energy loss have been systematically investigated on the basis of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Surprisingly, NFA 4 highlights the dominance for its increased open circuit voltages while NFA 2, 7, and 8 exhibit great potential for their enhanced charge transfer and lower energy loss, corresponding to a higher short-circuit current density. Our results also manifest that proper modifications of the terminal acceptor with extensions of π-conjugation might bring improved outcomes for overall properties. Such a measure could become a feasible strategy for the synthesis of new acceptors, thereby facilitating the advancement of organic solar cells.
Collapse
Affiliation(s)
- Jie Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Hongshuai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | | | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| |
Collapse
|
39
|
Bristow H, Jacoutot P, Scaccabarozzi AD, Babics M, Moser M, Wadsworth A, Anthopoulos TD, Bakulin A, McCulloch I, Gasparini N. Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48836-48844. [PMID: 33054156 DOI: 10.1021/acsami.0c14016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is well established that for organic photodetectors (OPDs) to compete with their inorganic counterparts, low dark currents at reverse bias must be achieved. Here, two rhodanine-terminated nonfullerene acceptors O-FBR and O-IDTBR are shown to deliver low dark currents at -2 V of 0.17 and 0.84 nA cm-2, respectively, when combined with the synthetically scalable polymer PTQ10 in OPD. These low dark currents contribute to the excellent sensitivity to low light of the detectors, reaching values of 0.57 μW cm-2 for PTQ10:O-FBR-based OPD and 2.12 μW cm-2 for PTQ10:O-IDTBR-based OPD. In both cases, this sensitivity exceeds that of a commercially available silicon photodiode. The responsivity of the PTQ10:O-FBR-based OPD of 0.34 AW-1 under a reverse bias of -2 V also exceeds that of a silicon photodiode. Meanwhile, the responsivity of the PTQ10:O-IDTBR of 0.03 AW-1 is limited by the energetic offset of the blend. The OPDs deliver high specific detectivities of 9.6 × 1012 Jones and 3.3 × 1011 Jones for O-FBR- and O-IDTBR-based blends, respectively. Both active layers are blade-coated in air, making them suitable for high-throughput methods. Finally, all three of the materials can be synthesized at low cost and on a large scale, making these blends good candidates for commercial OPD applications.
Collapse
Affiliation(s)
- Helen Bristow
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Polina Jacoutot
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Maxime Babics
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Maximilian Moser
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Andrew Wadsworth
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| |
Collapse
|
40
|
Ahmed S, Kalita DJ. End-capped group manipulation of non-fullerene acceptors for efficient organic photovoltaic solar cells: a DFT study. Phys Chem Chem Phys 2020; 22:23586-23596. [PMID: 33057497 DOI: 10.1039/d0cp03814h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A series of acceptors, S1-S5, has been designed based on the acceptor-π-donor-π-acceptor (A-π-D-π-A) architecture by incorporating a phenothiazine unit as the central donor unit. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods have been employed to study the effect of various end-capped groups on the geometric, electronic, optical and charge transport properties of the designed acceptor molecules. The results reveal that on increasing the electron-withdrawing nature of the end-capped groups, the performance of the acceptor molecules increases. It is also observed that on increasing the flexibility of the end-capped groups, the planarity of the molecules gets destroyed and, as a result, the performance of the acceptor molecules decreases. The investigated molecules exhibit high electron affinity (EA) and low reorganization energy for electrons (λ-), indicating the electron acceptor nature of the designed molecules. The absorption properties of the molecules manifest that compounds S2-S4 possess high values of the maximum wavelength (λmax) of absorption. We have also studied the properties of a D/A active layer by considering PffBT4T-2OD as the electron donor and arranging PffBT4T-2OD/S1-S5 molecules in a face to face manner. Properties of the D/A blend indicate that molecules S2-S4 have capacity to promote charge carrier separation at the D/A active layer. Our results provide guidelines for further designing of acceptors to enhance the performance of organic solar cells (OSCs).
Collapse
Affiliation(s)
- Shahnaz Ahmed
- Department of Chemistry, Gauhati University, Guwahati-781014, India.
| | | |
Collapse
|
41
|
He K, Kumar P, Abd-Ellah M, Liu H, Li X, Zhang Z, Wang J, Li Y. Alkyloxime Side Chain Enabled Polythiophene Donors for Efficient Organic Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keqiang He
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Marwa Abd-Ellah
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Zhifang Zhang
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
42
|
Li P, Liang Q, Hong EYH, Chan CY, Cheng YH, Leung MY, Chan MY, Low KH, Wu H, Yam VWW. Boron(iii) β-diketonate-based small molecules for functional non-fullerene polymer solar cells and organic resistive memory devices. Chem Sci 2020; 11:11601-11612. [PMID: 34094407 PMCID: PMC8162878 DOI: 10.1039/d0sc04047a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
A class of acceptor-donor-acceptor chromophoric small-molecule non-fullerene acceptors, 1-4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from -3.65 to -3.72 eV) and relatively high electron mobility (7.49 × 10-4 cm2 V-1 s-1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.
Collapse
Affiliation(s)
- Panpan Li
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Quanbin Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chin-Yiu Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kam-Hung Low
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
43
|
Wang X, Tang A, Yang J, Du M, Li J, Li G, Guo Q, Zhou E. Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9840-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001763. [PMID: 32754970 DOI: 10.1002/adma.202001763] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors require an energetic offset in order to photogenerate free charge carriers efficiently, owing to their inability to effectively screen charges. This is vitally important in order to achieve high power conversion efficiencies in organic solar cells. Early heterojunction-based solar cells were limited to relatively modest efficiencies (<4%) owing to limitations such as poor exciton dissociation, limited photon harvesting, and high recombination losses. The development of the bulk heterojunction (BHJ) has significantly overcome these issues, resulting in dramatic improvements in organic photovoltaic performance, now exceeding 18% power conversion efficiencies. Here, the design and engineering strategies used to develop the optimal bulk heterojunction for solar-cell, photodetector, and photocatalytic applications are discussed. Additionally, the thermodynamic driving forces in the creation and stability of the bulk heterojunction are presented, along with underlying photophysics in these blends. Finally, new opportunities to apply the knowledge accrued from BHJ solar cells to generate free charges for use in promising new applications are discussed.
Collapse
Affiliation(s)
- Andrew Wadsworth
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Zeinab Hamid
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
45
|
Lin F, Jiang K, Kaminsky W, Zhu Z, Jen AKY. A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. J Am Chem Soc 2020; 142:15246-15251. [DOI: 10.1021/jacs.0c07083] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Alex K.-Y. Jen
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
46
|
Khan MU, Mehboob MY, Hussain R, Fatima R, Tahir MS, Khalid M, Braga AAC. Molecular designing of high‐performance 3D star‐shaped electron acceptors containing a truxene core for nonfullerene organic solar cells. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muhammad Usman Khan
- Department of Chemistry University of Okara Okara Pakistan
- Department of Applied Chemistry Government College University Faisalabad Pakistan
| | | | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Rafia Fatima
- Department of Chemistry University of Lahore Lahore Pakistan
| | - Muhammad Suleman Tahir
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | | |
Collapse
|
47
|
Zhang Z, Nie X, Wang F, Chen G, Huang WQ, Xia L, Zhang WJ, Hao ZY, Hong CY, Wang LH, You YZ. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun 2020; 11:3654. [PMID: 32694628 PMCID: PMC7374721 DOI: 10.1038/s41467-020-17474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclic polymers have a number of unique physical properties compared with those of their linear counterparts. However, the methods for the synthesis of cyclic polymers are very limited, and some multicyclic polymers are still not accessible now. Here, we found that the five-membered cyclic structure and electron withdrawing groups make methylene in rhodanine highly active to aldehyde via highly efficient Knoevenagel reaction. Also, rhodanine can act as an initiator for anionic ring-opening polymerization of thiirane to produce cyclic polythioethers. Therefore, rhodanine can serve as both an initiator for ring-opening polymerization and a monomer in Knoevenagel polymerization. Via rhodanine-based Knoevenagel reaction, we can easily incorporate rhodanine moieties in the backbone, side chain, branched chain, etc, and correspondingly could produce cyclic structures in the backbone, side chain, branched chain, etc, via rhodanine-based anionic ring-opening polymerization. This rhodanine chemistry would provide easy access to a wide variety of complex multicyclic polymers.
Collapse
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Fei Wang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wei-Qiang Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Zong-Yao Hao
- The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
48
|
Ren M, Zhang G, Chen Z, Xiao J, Jiao X, Zou Y, Yip HL, Cao Y. High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13077-13086. [PMID: 32079401 DOI: 10.1021/acsami.9b23011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ternary blending of light-harvesting materials has been proven to be a potential strategy to improve the efficiency of solution-processed organic solar cells (OSCs). However, the optimization of a ternary system is usually more complicated than that of a binary one as the morphology of conventional ternary blend films is very difficult to control, thus undermining the potential of ternary OSCs. Herein, we report a general strategy for better control of the morphology of ternary blend films composed of a polymer donor and two nonfullerene small-molecule acceptors for high-performance OSCs using the sequential layer-by-layer (LbL) deposition method. The resulting LbL films form a bicontinuous interpenetrating network structure with high crystallinity of both the donor and acceptor materials, showing efficient charge generation, transport, and collection properties. In addition, the power conversion efficiencies (PCEs) of the ternary LbL OSCs are less sensitive to the blending ratio of the third component acceptor, providing more room to optimize the device performance. As a result, optimal PCEs of over 11, 13, and 16% were achieved for the LbL OSCs composed of PffBT4T-2OD/IEICO-4F:FBR, PBDB-T-SF/IT-4F:FBR, and PM6/Y6:FBR, respectively. Our work provides useful and general guidelines for the development of more efficient ternary OSCs with better controlled morphology.
Collapse
Affiliation(s)
- Minrun Ren
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
- Innovation Center of Print Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, P. R. China
| | - Zhen Chen
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Jingyang Xiao
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
- Innovation Center of Print Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Device, Institute of Polymer Optoelectronic Materials and Device, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
49
|
Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem 2020; 4:66-77. [PMID: 37128048 DOI: 10.1038/s41570-019-0152-9] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Organic semiconductors are solution-processable, lightweight and flexible and are increasingly being used as the active layer in a wide range of new technologies. The versatility of synthetic organic chemistry enables the materials to be tuned such that they can be incorporated into biological sensors, wearable electronics, photovoltaics and flexible displays. These devices can be improved by improving their material components, not only by developing the synthetic chemistry but also by improving the analytical and computational techniques that enable us to understand the factors that govern material properties. Judicious molecular design provides control of the semiconductor frontier molecular orbital energy distribution and guides the hierarchical assembly of organic semiconductors into functional films where we can manipulate the properties and motion of charges and excited states. This Review describes how molecular design plays an integral role in developing organic semiconductors for electronic devices in present and emerging technologies.
Collapse
Affiliation(s)
- Hugo Bronstein
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christian B Nielsen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Bob C Schroeder
- Department of Chemistry, University College London, London, UK
| | - Iain McCulloch
- Department of Chemistry, Imperial College London, London, UK.
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, Saudi Arabia.
| |
Collapse
|
50
|
Ma L, Zhang S, Wang J, Xu Y, Hou J. Recent advances in non-fullerene organic solar cells: from lab to fab. Chem Commun (Camb) 2020; 56:14337-14352. [DOI: 10.1039/d0cc05528j] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The key factors for OSC materials toward application mainly include high performance, thickness tolerance, low cost, simple fabrication processing, high stability, and an environmentally-friendly nature.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Jingwen Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Ye Xu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|