1
|
Wang Z, Chen Y, Jiang J, Zhao X, Liu W. Mapping photoisomerization dynamics on a three-state model potential energy surface in bacteriorhodopsin using femtosecond stimulated Raman spectroscopy. Chem Sci 2025:d4sc07540d. [PMID: 39886431 PMCID: PMC11775652 DOI: 10.1039/d4sc07540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025] Open
Abstract
The process of proton translocation in Halobacterium salinarum, triggered by light, is powered by the photoisomerization of all-trans-retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive. In this study, we investigate the ultrafast structural dynamics of all-trans-retinal in bR using femtosecond stimulated Raman spectroscopy. We report Raman modes at 1820 cm-1 which arise from C[double bond, length as m-dash]C stretch vibronic coupling and provide direct experimental evidence for the involvement of the I and J states with 2A- g symmetric character in the three-state model. The detection of the C[double bond, length as m-dash]C vibronic coupling mode, C[double bond, length as m-dash]N stretching mode (1700 cm-1), and hydrogen out-of-plane (HOOP) mode (954 cm-1) further supports the three-state model that elucidates the initial charge translocation along the conjugated chain accompanied by trans-to-cis photoisomerization dynamics through H(1B+ u) → I(2A- g) → J(2A- g) → K(13-cis ground state) transitions in all-trans-retinal in bR.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yu Chen
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Xin Zhao
- Department of Physics, East China Normal University Shanghai 200062 P. R. China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
2
|
Nikolaev D, Mironov VN, Metelkina EM, Shtyrov AA, Mereshchenko AS, Demidov NA, Vyazmin SY, Tennikova TB, Moskalenko SE, Bondarev SA, Zhouravleva GA, Vasin AV, Panov MS, Ryazantsev MN. Rational Design of Far-Red Archaerhodopsin-3-Based Fluorescent Genetically Encoded Voltage Indicators: from Elucidation of the Fluorescence Mechanism in Archers to Novel Red-Shifted Variants. ACS PHYSICAL CHEMISTRY AU 2024; 4:347-362. [PMID: 39069984 PMCID: PMC11274289 DOI: 10.1021/acsphyschemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 07/30/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) have found wide applications as molecular tools for visualization of changes in cell membrane potential. Among others, several classes of archaerhodopsin-3-based GEVIs have been developed and have proved themselves promising in various molecular imaging studies. To expand the application range for this type of GEVIs, new variants with absorption band maxima shifted toward the first biological window and enhanced fluorescence signal are required. Here, we integrate computational and experimental strategies to reveal structural factors that distinguish far-red bright archaerhodopsin-3-based GEVIs, Archers, obtained by directed evolution in a previous study (McIsaac et al., PNAS, 2014) and the wild-type archaerhodopsin-3 with an extremely dim fluorescence signal, aiming to use the obtained information in subsequent rational design. We found that the fluorescence can be enhanced by stabilization of a certain conformation of the protein, which, in turn, can be achieved by tuning the pK a value of two titratable residues. These findings were supported further by introducing mutations into wild-type archeorhodopsin-3 and detecting the enhancement of the fluorescence signal. Finally, we came up with a rational design and proposed previously unknown Archers variants with red-shifted absorption bands (λmax up to 640 nm) and potential-dependent bright fluorescence (quantum yield up to 0.97%).
Collapse
Affiliation(s)
- Dmitrii
M. Nikolaev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Vladimir N. Mironov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Ekaterina M. Metelkina
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey A. Shtyrov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey S. Mereshchenko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Nikita A. Demidov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Sergey Yu. Vyazmin
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Svetlana E. Moskalenko
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Vavilov
Institute of General Genetics, St. Petersburg
Branch, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Stanislav A. Bondarev
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Galina A. Zhouravleva
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Andrey V. Vasin
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Maxim S. Panov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- St.
Petersburg State Chemical Pharmaceutical University, Professor Popov str., 14, lit. A, St. Petersburg 197022, Russia
| | - Mikhail N. Ryazantsev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| |
Collapse
|
3
|
Kaziannis S, Broser M, van Stokkum IHM, Dostal J, Busse W, Munhoven A, Bernardo C, Kloz M, Hegemann P, Kennis JTM. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction. Proc Natl Acad Sci U S A 2024; 121:e2318996121. [PMID: 38478688 PMCID: PMC10962995 DOI: 10.1073/pnas.2318996121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.
Collapse
Affiliation(s)
- Spyridon Kaziannis
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
- Department of Physics, University of Ioannina, IoanninaGr-45110, Greece
| | - Matthias Broser
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Jakub Dostal
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Wayne Busse
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Arno Munhoven
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Cesar Bernardo
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Peter Hegemann
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
4
|
Leighton RE, Frontiera RR. Quantifying Bacteriorhodopsin Activity as a Function of its Local Environment with a Raman-Based Assay. J Phys Chem B 2023; 127:8833-8841. [PMID: 37812499 DOI: 10.1021/acs.jpcb.3c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-driven proton pump in halophilic archaea. The bR photocycle has been well-characterized; however, these measurements almost exclusively measured purified bR, outside of its native membrane. To investigate what effect the cellular environment has on the bR photocycle, we have developed a Raman-based assay that can monitor the activity of the bR in a variety of conditions, including in its native membrane. The assay uses two continuous-wave lasers, one to initiate photochemistry and one to monitor bR activity. The excitation leads to the steady-state depletion of ground-state bR, which directly relates to the population of photocycle intermediate states. We have used this assay to monitor bR activity both in vitro and in vivo. Our in vitro measurements confirm that our assay is sensitive to bulk environmental changes reported in the literature. Our in vivo measurements show a decrease in bR activity with increasing extracellular pH for bR in its native membrane. The difference in activity with increasing pH indicates that the native membrane environment affects the function of bR. This assay opens the door to future measurements into understanding how the local environment of this transmembrane protein affects function.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Meng X, Ganapathy S, van Roemburg L, Post M, Brinks D. Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway. ACS PHYSICAL CHEMISTRY AU 2023; 3:320-333. [PMID: 37520318 PMCID: PMC10375888 DOI: 10.1021/acsphyschemau.3c00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023]
Abstract
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage of the indicator used. Engineered microbial rhodopsins form a GEVI subclass known for their high voltage sensitivity and fast response kinetics. Here we review the essential aspects of microbial rhodopsin photocycles that are critical to understanding the mechanisms of voltage sensitivity in these proteins and link them to insights from efforts to create faster, brighter and more sensitive microbial rhodopsin-based GEVIs.
Collapse
Affiliation(s)
- Xin Meng
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Srividya Ganapathy
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, United States
| | - Lars van Roemburg
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Marco Post
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Daan Brinks
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Molecular Genetics, Erasmus University
Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Roy P, Browne WR, Feringa BL, Meech SR. Ultrafast motion in a third generation photomolecular motor. Nat Commun 2023; 14:1253. [PMID: 36878920 PMCID: PMC9988961 DOI: 10.1038/s41467-023-36777-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Controlling molecular translation at the nanoscale is a key objective for development of synthetic molecular machines. Recently developed third generation photochemically driven molecular motors (3GMs), comprising pairs of overcrowded alkenes capable of cooperative unidirectional rotation offer the possibility of converting light energy into translational motion. Further development of 3GMs demands detailed understanding of their excited state dynamics. Here we use time-resolved absorption and emission to track population and coherence dynamics in a 3GM. Femtosecond stimulated Raman reveals real-time structural dynamics as the excited state evolves from a Franck-Condon bright-state through weakly-emissive dark-state to the metastable product, yielding new insight into the reaction coordinate. Solvent polarity modifies the photoconversion efficiency suggesting charge transfer character in the dark-state. The enhanced quantum yield correlates with suppression of a low-frequency flapping motion in the excited state. This detailed characterization facilitates development of 3GMs, suggesting exploitation of medium and substituent effects to modulate motor efficiency.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.,School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
7
|
Pu R, Wang Z, Zhu R, Jiang J, Weng TC, Huang Y, Liu W. Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2023; 14:809-816. [PMID: 36655842 DOI: 10.1021/acs.jpclett.2c03535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototherapy is an efficient and safe way to reduce high levels of free 4Z,15Z-bilirubin (ZZ-BR) in the serum of newborns. The success of BR phototherapy lies in photoinduced configurational and structural isomerization processes that form excretable isomers. However, the physical picture of photoinduced photoisomerization of ZZ-BR is still unclear. Here, we strategically implement tunable femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, assisted by quantum chemical calculations, to dissect the detailed primary configurational isomerization dynamics of free ZZ-BR in organic solvents. The results of this study demonstrate that upon photoexcitation, ultrafast configurational isomerization proceeds by a volume-conserving "hula twist", followed by intramolecular hydrogen-bond distortion and large-scale rotation of the two dipyrrinone halves of the ZZ-BR isomer in a few picoseconds. After that, most of the population recovers back to ZZ-BR, and a very small amount is converted into stable BR isomers via structural isomerization.
Collapse
Affiliation(s)
- Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
8
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
9
|
Filiba O, Borin VA, Schapiro I. The involvement of triplet states in the isomerization of retinaloids. Phys Chem Chem Phys 2022; 24:26223-26231. [PMID: 36278932 DOI: 10.1039/d2cp03791b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rhodopsins form a family of photoreceptor proteins which utilize the retinal chromophore for light energy conversion. Upon light absorption the retinal chromophore undergoes a photoisomerization. This reaction involves a non-radiative relaxation through a conical intersection between the singlet excited state and the ground state. In this work we studied the possible involvement of triplet states in the photoisomerization of retinaloids using the extended multistate (XMS) version of CASPT2. To this end, truncated models of three retinaloids were considered: protonated Schiff base, deprotonated Schiff base and the aldehyde form. The optimized geometries of the reactant, the product and the conical intersection were connected by a linear interpolation of internal coordinates to describe the isomerization. The energetic position of the low-lying singlet and triplet states as well as their spin-orbit coupling matrix elements (SOCME) were calculated along the isomerization profile. The SOCME values peaked in vicinity of the conical intersection for all the retinaloids. Furthermore, the magnitude of SOCME is invariant to the number of double bonds in the model. The SOCME for the protonated Schiff base is negligible (1.5 cm-1) which renders the involvement of the triplet state as improbable. However, the largest SOCME value of 30 cm-1 was found for the aldehyde form, followed by 15 cm-1 for the deprotonated Schiff base.
Collapse
Affiliation(s)
- Ofer Filiba
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Veniamin A Borin
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Igor Schapiro
- Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
10
|
Ashtari-Jafari S, Jamshidi Z, Visscher L. Efficient simulation of resonance Raman spectra with tight-binding approximations to Density Functional Theory. J Chem Phys 2022; 157:084104. [DOI: 10.1063/5.0107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations which are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark molecules like β-carotene and compared to results obtained with pure and range-separated exchange-correlation (xc) functionals. We then demonstrate the efficiency of the approach by considering a computationally challenging heme variation. Overall, we find that the vibrational frequencies and excited-state properties (energies and gradients) which are needed to simulate the spectra are reasonably accurate and suitable for interpretation of experiments. We can therefore recommend DFTB as a fast computational method to interpret resonance Raman spectra.
Collapse
Affiliation(s)
- Sahar Ashtari-Jafari
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Iran, Islamic Republic of
| | - Zahra Jamshidi
- Chemistry, Sharif University of Technology, Iran, Islamic Republic of
| | - Lucas Visscher
- Division of Theoretical Chemistry, Vrije Universiteit Amsterdam, Netherlands
| |
Collapse
|
11
|
Artes Vivancos JM, van Stokkum IHM, Saccon F, Hontani Y, Kloz M, Ruban A, van Grondelle R, Kennis JTM. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:17346-17355. [PMID: 32878439 PMCID: PMC7564077 DOI: 10.1021/jacs.0c04619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Photosynthesis
in plants starts with the capture of photons by
light-harvesting complexes (LHCs). Structural biology and spectroscopy
approaches have led to a map of the architecture and energy transfer
pathways between LHC pigments. Still, controversies remain regarding
the role of specific carotenoids in light-harvesting and photoprotection,
obligating the need for high-resolution techniques capable of identifying
excited-state signatures and molecular identities of the various pigments
in photosynthetic systems. Here we demonstrate the successful application
of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric
biological complex, trimers of LHCII. We demonstrate the application
of global and target analysis (GTA) to FSRS data and utilize it to
quantify excitation migration in LHCII trimers. This powerful combination
of techniques allows us to obtain valuable insights into structural,
electronic, and dynamic information from the carotenoids of LHCII
trimers. We report spectral and dynamical information on ground- and
excited-state vibrational modes of the different pigments, resolving
the vibrational relaxation of the carotenoids and the pathways of
energy transfer to chlorophylls. The lifetimes and spectral characteristics
obtained for the S1 state confirm that lutein 2 has a distorted conformation
in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls,
while lutein 1 is the only carotenoid whose S1 state plays a significant
energy-harvesting role. No appreciable energy transfer takes place
from lutein 1 to lutein 2, contradicting recent proposals regarding
the functions of the various carotenoids (Son et al. Chem.2019, 5 (3), 575–584). Also, our results demonstrate that FSRS can be used in combination
with GTA to simultaneously study the electronic and vibrational landscapes
in LHCs and pave the way for in-depth studies of photoprotective conformations
in photosynthetic systems.
Collapse
Affiliation(s)
- Juan M Artes Vivancos
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.,Department of Chemistry, Kennedy College of Science, University of Massachusetts-Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Yusaku Hontani
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Alexander Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Hontani Y, Broser M, Luck M, Weißenborn J, Kloz M, Hegemann P, Kennis JTM. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J Am Chem Soc 2020; 142:11464-11473. [PMID: 32475117 PMCID: PMC7315636 DOI: 10.1021/jacs.0c03229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
UV-absorbing rhodopsins are essential
for UV vision and sensing
in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins,
which bind a protonated retinal Schiff base for light absorption,
UV-absorbing rhodopsins bind an unprotonated retinal Schiff base.
Thus far, the photoreaction dynamics and mechanisms of UV-absorbing
rhodopsins have remained essentially unknown. Here, we report the
complete excited- and ground-state dynamics of the UV form of histidine
kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond
stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy,
covering time scales from femtoseconds to milliseconds. We found that
energy-level ordering is inverted with respect to visible-absorbing
rhodopsins, with an optically forbidden low-lying S1 excited
state that has Ag– symmetry and a higher-lying UV-absorbing
S2 state of Bu+ symmetry. UV-photoexcitation
to the S2 state elicits a unique dual-isomerization reaction:
first, C13=C14 cis–trans isomerization occurs during S2–S1 evolution
in <100 fs. This very fast reaction features the remarkable property
that the newly formed isomer appears in the excited state rather than
in the ground state. Second, C15=N16 anti–syn isomerization occurs on the S1–S0 evolution to the ground state in 4.8 ps. We detected two
ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground
state. These isomers become protonated in 58 μs and 3.2 ms,
respectively, resulting in formation of the blue-absorbing form of
HKR1. Our results constitute a benchmark of UV-induced photochemistry
of animal and microbial rhodopsins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Meike Luck
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands.,ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
13
|
Friedrich D, Brünig FN, Nieuwkoop AJ, Netz RR, Hegemann P, Oschkinat H. Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun Biol 2020; 3:4. [PMID: 31925324 PMCID: PMC6941954 DOI: 10.1038/s42003-019-0733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site. Daniel Friedrich et al. show that reversible proton translocation occurs in the dark–state of bacteriorhodopsin, involving the retinal Schiff base and D85 exchanging protons with H2O. They find evidence of an active site proton cage and possible proton transfer via R82.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Florian N Brünig
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Andrew J Nieuwkoop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115, Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
15
|
Huang HY, Syue ML, Chen IC, Yu TY, Chu LK. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. J Phys Chem B 2019; 123:9123-9133. [PMID: 31584816 DOI: 10.1021/acs.jpcb.9b07788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalently circularized nanodiscs using circular membrane scaffold protein (MSP) serve as a suitable membrane mimetic for transmembrane proteins by providing stability and tunability in lipid compositions, providing controllable biological environments for targeted proteins. In this work, monomeric bacteriorhodopsin (mbR) was embedded in lipid nanodiscs of different lipid compositions using negatively charged lipid dioleoyl phosphatidylglycerol (DOPG) and the zwitterion lipid dioleoyl phosphatidylcholine (DOPC), and the events associated with the retinal Schiff base, including the thermal isomerization during the dark adaptation, photoisomerization, and deprotonation, were investigated. The retinal thermal isomerization from all-trans, 15-anti to the 13-cis, 15-syn configuration during the dark adaptation was accelerated in the DOPG bilayer, whereas the processes in the DOPC bilayer and in Triton X-100 micelles were similar. This observation indicated that the negatively charged lipid reduced the barrier for retinal thermal isomerization at C13═C14-C15═N in the ground electronic state. Furthermore, the broader absorption contour of mbR in the DOPC nanodisc probably indicated various retinal isomers in the light-adapted state, consistent with the observed nontwo-state dark adaptation kinetics. Moreover, the kinetics of the photoisomerization of the retinal was slightly decelerated upon increasing the content of DOPC. However, the cascading deprotonation of the protonated Schiff base is not dependent on the types of the surrounding lipids in the nanodiscs. In summary, our research deepens the understanding of the coupling between lipid membrane and the photochemistry of bR retinal Schiff base. Combined with the results of our previous works (Lee, T.-Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899-1906; Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.; Yu, T.-Y.; Chu, L.-K. J. Phys. Chem. B 2019, 123, 2032-2039), these outcomes extend our understanding of the control of photochemistry and biophysical events for other photosynthetic proteins via altering the lipid environments.
Collapse
Affiliation(s)
- Hsin-Yu Huang
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Ming-Lun Syue
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - I-Chia Chen
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica , 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan.,International Graduate Program of Molecular Science and Technology , National Taiwan University , Taipei , Taiwan
| | - Li-Kang Chu
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
16
|
First-Principles Characterization of the Elusive I Fluorescent State and the Structural Evolution of Retinal Protonated Schiff Base in Bacteriorhodopsin. J Am Chem Soc 2019; 141:18193-18203. [DOI: 10.1021/jacs.9b08941] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bera K, Kwang SY, Cassabaum AA, Rich CC, Frontiera RR. Facile Background Discrimination in Femtosecond Stimulated Raman Spectroscopy Using a Dual-Frequency Raman Pump Technique. J Phys Chem A 2019; 123:7932-7939. [DOI: 10.1021/acs.jpca.9b02473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Nass Kovacs G, Colletier JP, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper R, Gorel A, Hilpert M, Kloos M, Koglin JE, Reinstein J, Roome CM, Schlesinger R, Seaberg M, Shoeman RL, Stricker M, Boutet S, Haacke S, Heberle J, Heyne K, Domratcheva T, Barends TRM, Schlichting I. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 2019; 10:3177. [PMID: 31320619 PMCID: PMC6639342 DOI: 10.1038/s41467-019-10758-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins. Bacteriorhodopsin (bR) is a light-driven proton pump. Here the authors combine time-resolved crystallography at a free-electron laser, ultrafast spectroscopy and quantum chemistry to study the structural changes following multiphoton photoexcitation of bR and find that they occur within 300 fs not only in the light-absorbing chromophore but also in the surrounding protein.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Luise Grünbein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Yang Yang
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - David Ehrenberg
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Raphael Gasper
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jochen Reinstein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Miriam Stricker
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Stefan Haacke
- Université de Strasbourg-CNRS, UMR 7504, IPCMS, 23 Rue du Loess, 67034, Strasbourg, France
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Karsten Heyne
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Tatiana Domratcheva
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Agathangelou D, Orozco-Gonzalez Y, Del Carmen Marín M, Roy PP, Brazard J, Kandori H, Jung KH, Léonard J, Buckup T, Ferré N, Olivucci M, Haacke S. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Faraday Discuss 2019; 207:55-75. [PMID: 29388996 DOI: 10.1039/c7fd00200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.
Collapse
Affiliation(s)
- D Agathangelou
- University of Strasbourg, CNRS, Inst. de Physique et Chimie des Matériaux de Strasbourg, 67034 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Excited State Structural Evolution of a GFP Single-Site Mutant Tracked by Tunable Femtosecond-Stimulated Raman Spectroscopy. Molecules 2018; 23:molecules23092226. [PMID: 30200474 PMCID: PMC6225354 DOI: 10.3390/molecules23092226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Tracking vibrational motions during a photochemical or photophysical process has gained momentum, due to its sensitivity to the progression of reaction and change of environment. In this work, we implemented an advanced ultrafast vibrational technique, femtosecond-stimulated Raman spectroscopy (FSRS), to monitor the excited state structural evolution of an engineered green fluorescent protein (GFP) single-site mutant S205V. This mutation alters the original excited state proton transfer (ESPT) chain. By strategically tuning the Raman pump to different wavelengths (i.e., 801, 539, and 504 nm) to achieve pre-resonance with transient excited state electronic bands, the characteristic Raman modes of the excited protonated (A*) chromophore species and intermediate deprotonated (I*) species can be selectively monitored. The inhomogeneous distribution/population of A* species go through ESPT with a similar ~300 ps time constant, confirming that bridging a water molecule to protein residue T203 in the ESPT chain is the rate-limiting step. Some A* species undergo vibrational cooling through high-frequency motions on the ~190 ps time scale. At early times, a portion of the largely protonated A* species could also undergo vibrational cooling or return to the ground state with a ~80 ps time constant. On the photoproduct side, a ~1330 cm−1 delocalized motion is observed, with dispersive line shapes in both the Stokes and anti-Stokes FSRS with a pre-resonance Raman pump, which indicates strong vibronic coupling, as the mode could facilitate the I* species to reach a relatively stable state (e.g., the main fluorescent state) after conversion from A*. Our findings disentangle the contributions of various vibrational motions active during the ESPT reaction, and offer new structural dynamics insights into the fluorescence mechanisms of engineered GFPs and other analogous autofluorescent proteins.
Collapse
|
22
|
Kayal S, Roy K, Lakshmanna YA, Umapathy S. Probing the effect of solvation on photoexcited 2-(2′-hydroxyphenyl)benzothiazole via ultrafast Raman loss spectroscopic studies. J Chem Phys 2018; 149:044310. [DOI: 10.1063/1.5028274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Surajit Kayal
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Khokan Roy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Y. Adithya Lakshmanna
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, Standfuss J. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 2018; 361:science.aat0094. [PMID: 29903883 DOI: 10.1126/science.aat0094] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion transport across bacterial membranes. We used an x-ray laser to study the subpicosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin. A series of structural snapshots with near-atomic spatial resolution and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket before passing through a twisted geometry and emerging in the 13-cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key facet of this stereoselective and efficient photochemical reaction.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Dardan Gashi
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Petr Skopintsev
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Jaeger
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jason Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Demet Kekilli
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wenting Wu
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Thomas White
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Valerie Panneels
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gebhard Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
24
|
Inoue K, Tahara S, Kato Y, Takeuchi S, Tahara T, Kandori H. Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin. J Phys Chem B 2018; 122:6453-6461. [DOI: 10.1021/acs.jpcb.8b01279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | |
Collapse
|
25
|
Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, Tahara T. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J Phys Chem B 2018; 122:4784-4792. [DOI: 10.1021/acs.jpcb.8b01934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohtani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
26
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
27
|
Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JTM. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys Chem Chem Phys 2016; 18:24729-36. [PMID: 27550793 DOI: 10.1039/c6cp05240a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Krokinobacter rhodopsin 2 (KR2) is a recently discovered light-driven Na(+) pump that holds significant promise for application as a neural silencer in optogenetics. KR2 transports Na(+) (in NaCl solution) or H(+) (in larger cation solution, e.g. in CsCl) during its photocycle. Here, we investigate the photochemistry of KR2 with the recently developed watermarked, baseline-free femto- to submillisecond transient stimulated Raman spectroscopy (TSRS), which enables us to investigate retinal chromophore dynamics in real time with high spectral resolution over a large time range. We propose a new photocycle from femtoseconds to submilliseconds: J (formed in ∼200 fs) → K (∼3 ps) → K/L1 (∼20 ps) → K/L2 (∼30 ns) → L/M (∼20 μs). KR2 binds a Na(+) ion that is not transported on the extracellular side, of which the function is unclear. We demonstrate with TSRS that for the D102N mutant in NaCl (with Na(+) unbound, Na(+) transport) and for WT KR2 in CsCl (with Na(+) unbound, H(+) transport), the extracellular Na(+) binding significantly influences the intermediate K/L/M state equilibrium on the photocycle, while the identity of the transported ion, Na(+) or H(+), does not affect the photocycle. Our findings will contribute to further elucidation of the molecular mechanisms of KR2.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|
29
|
Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem Soc Rev 2016; 45:2263-90. [PMID: 26848784 DOI: 10.1039/c5cs00763a] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Collapse
Affiliation(s)
- Natalie L Gruenke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Yang Y, Heyne K, Mathies RA, Dasgupta J. Non-Bonded Interactions Drive the Sub-Picosecond Bilin Photoisomerization in the P(fr) State of Phytochrome Cph1. Chemphyschem 2015; 17:369-74. [PMID: 26630441 DOI: 10.1002/cphc.201501073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 01/26/2023]
Abstract
Phytochromes are protein-based photoreceptors harboring a bilin-based photoswitch in the active site. The timescale of photosignaling via C15 =C16 E-to-Z photoisomerization has been ambiguous in the far-red-absorbing Pfr state. Here we present a unified view of the structural events in phytochrome Cph1 post excitation with femtosecond precision, obtained via stimulated Raman and polarization-resolved transient IR spectroscopy. We demonstrate that photoproduct formation occurs within 700 fs, determined by a two-step partitioning process initiated by a planarization on the electronic excited state with a 300 fs time scale. The ultrafast isomerization timescale for Pfr -to-Pr conversion highlights the active role of the nonbonding methyl-methyl clash initiating the reaction in the excited state. We envision that our results will motivate the synthesis of new artificial photoswitches with precisely tuned non-bonded interactions for ultrafast response.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - Richard A Mathies
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India.
| |
Collapse
|
31
|
Kurihara M, Sudo Y. Microbial rhodopsins: wide distribution, rich diversity and great potential. Biophys Physicobiol 2015; 12:121-9. [PMID: 27493861 PMCID: PMC4736836 DOI: 10.2142/biophysico.12.0_121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 02/04/2023] Open
Abstract
One of the major topics in biophysics and physicobiology is to understand and utilize biological functions using various advanced techniques. Taking advantage of the photoreactivity of the seven-transmembrane rhodopsin protein family has been actively investigated by a variety of methods. Rhodopsins serve as models for membrane-embedded proteins, for photoactive proteins and as a fundamental tool for optogenetics, a new technology to control biological activity with light. In this review, we summarize progress of microbial rhodopsin research from the viewpoint of distribution, diversity and potential.
Collapse
Affiliation(s)
- Marie Kurihara
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
32
|
Mahyad B, Janfaza S, Hosseini ES. Bio-nano hybrid materials based on bacteriorhodopsin: Potential applications and future strategies. Adv Colloid Interface Sci 2015; 225:194-202. [PMID: 26506028 DOI: 10.1016/j.cis.2015.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
Abstract
This review presents an overview of recent progress in the development of bio-nano hybrid materials based on the photoactive protein bacteriorhodopsin (bR). The interfacing of bR with various nanostructures including colloidal nanoparticles (such as quantum dots and Ag NPs) and nanoparticulate thin films (such as TiO2 NPs and ZnO NPs,) has developed novel functional materials. Applications of these materials are comprehensively reviewed in two parts: bioelectronics and solar energy conversion. Finally, some perspectives on possible future strategies in bR-based nanostructured devices are presented.
Collapse
Affiliation(s)
- Baharak Mahyad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Sajjad Janfaza
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran.
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
33
|
Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet. APPLIED SCIENCES-BASEL 2015. [DOI: 10.3390/app5020048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Houk AL, Zheldakov IL, Tommey TA, Elles CG. Two-Photon Excitation of trans-Stilbene: Spectroscopy and Dynamics of Electronically Excited States above S1. J Phys Chem B 2014; 119:9335-44. [DOI: 10.1021/jp509959n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amanda L. Houk
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Igor L. Zheldakov
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tyler A. Tommey
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
35
|
Johnson PJM, Halpin A, Morizumi T, Brown LS, Prokhorenko VI, Ernst OP, Dwayne Miller RJ. The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Phys Chem Chem Phys 2014; 16:21310-20. [PMID: 25178090 DOI: 10.1039/c4cp01826e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocycle and vibrational dynamics of bacteriorhodopsin in a lipid nanodisc microenvironment have been studied by steady-state and time-resolved spectroscopies. Linear absorption and circular dichroism indicate that the nanodiscs do not perturb the structure of the retinal binding pocket, while transient absorption and flash photolysis measurements show that the photocycle which underlies proton pumping is unchanged from that in the native purple membranes. Vibrational dynamics during the initial photointermediate formation are subsequently studied by ultrafast broadband transient absorption spectroscopy, where the low scattering afforded by the lipid nanodisc microenvironment allows for unambiguous assignment of ground and excited state nuclear dynamics through Fourier filtering of frequency regions of interest and subsequent time domain analysis of the retrieved vibrational dynamics. Canonical ground state oscillations corresponding to high frequency ethylenic and C-C stretches, methyl rocks, and hydrogen out-of-plane wags are retrieved, while large amplitude, short dephasing time vibrations are recovered predominantly in the frequency region associated with out-of-plane dynamics and low frequency torsional modes implicated in isomerization.
Collapse
Affiliation(s)
- Philip J M Johnson
- Institute for Optical Sciences & Departments of Chemistry & Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Creelman M, Kumauchi M, Hoff WD, Mathies RA. Chromophore Dynamics in the PYP Photocycle from Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2014; 118:659-67. [DOI: 10.1021/jp408584v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mark Creelman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard A. Mathies
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Ren H, Lai Z, Biggs JD, Wang J, Mukamel S. Two-dimensional stimulated resonance Raman spectroscopy study of the Trp-cage peptide folding. Phys Chem Chem Phys 2013; 15:19457-64. [PMID: 24126634 PMCID: PMC3859311 DOI: 10.1039/c3cp51347e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined molecular dynamics (MD) and ab initio simulation study of the ultrafast broadband ultraviolet (UV) stimulated resonance Raman (SRR) spectra of the Trp-cage mini protein. Characteristic two dimensional (2D) SRR features of various folding states are identified. Structural fluctuations erode the cross peaks and the correlation between diagonal peaks is a good indicator of the α-helix formation.
Collapse
Affiliation(s)
- Hao Ren
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
38
|
Chai S, Yu J, Han YC, Cong SL. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:39-44. [PMID: 23831976 DOI: 10.1016/j.saa.2013.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.
Collapse
Affiliation(s)
- Shuo Chai
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | |
Collapse
|
39
|
Balasubramanian S, Wang P, Schaller RD, Rajh T, Rozhkova EA. High-performance bioassisted nanophotocatalyst for hydrogen production. NANO LETTERS 2013; 13:3365-3371. [PMID: 23808953 DOI: 10.1021/nl4016655] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanophotocatalysis is one of the potentially efficient ways of capturing and storing solar energy. Biological energy systems that are intrinsically nanoscaled can be employed as building blocks for engineering nanobio-photocatalysts with tunable properties. Here, we report upon the application of light harvesting proton pump bacteriorhodopsin (bR) assembled on Pt/TiO2 nanocatalyst for visible light-driven hydrogen generation. The hybrid system produces 5275 μmole of H2 (μmole protein)(-1) h(-1) at pH 7 in the presence of methanol as a sacrificial electron donor under white light. Photoelectrochemical and transient absorption studies indicate efficient charge transfer between bR protein molecules and TiO2 nanoparticles.
Collapse
Affiliation(s)
- Shankar Balasubramanian
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | | | | | | | |
Collapse
|
40
|
Ren H, Biggs JD, Mukamel S. Two-Dimensional Stimulated Ultraviolet Resonance Raman Spectra of Tyrosine and Tryptophan; A Simulation Study. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2013; 44:544-559. [PMID: 23585708 PMCID: PMC3622277 DOI: 10.1002/jrs.4210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report an ab-initio simulation study of the ultrafast broad bandwidth ultraviolet (UV) stimulated resonance Raman spectra (SRRS) of L-tyrosine, L-tryptophan and trans-L-tryptophan-L-tyrosine (WY) dipeptide. Two-pulse one-dimensional (1D) SRRS and three-pulse 2D SRRS that reveal inter- and intra-residue vibrational coorelations are simulated using electronically resonant or preresonant pulse configurations that select the Raman signal and discriminate against excited state pathways. Multimode effects are incorporated via the cumulant expansion. The 2D SRRS technique is more sensitive to residue couplings than spontaneous Raman.
Collapse
Affiliation(s)
- Hao Ren
- Department of Chemistry, University of California, Irvine, CA 92697
| | | | | |
Collapse
|
41
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
42
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
43
|
Reissig L, Iwata T, Kikukawa T, Demura M, Kamo N, Kandori H, Sudo Y. Influence of Halide Binding on the Hydrogen Bonding Network in the Active Site of Salinibacter Sensory Rhodopsin I. Biochemistry 2012; 51:8802-13. [DOI: 10.1021/bi3009592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Louisa Reissig
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
- Center for Fostering
Young and
Innovative Researchers, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
| | - Yuki Sudo
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
| |
Collapse
|
44
|
All-Optical Reversible Logic Gates with Optically Controlled Bacteriorhodopsin Protein-Coated Microresonators. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/727206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present designs of all-optical reversible gates, namely, Feynman, Toffoli, Peres, and Feynman double gates, with optically controlled microresonators. To demonstrate the applicability, a bacteriorhodopsin protein-coated silica microcavity in contact between two tapered single-mode fibers has been used as an all-optical switch. Low-power control signals (<200 μW) at 532 nm and at 405 nm control the conformational states of the protein to switch a near infrared signal laser beam at 1310 or 1550 nm. This configuration has been used as a template to design four-port tunable resonant coupler logic gates. The proposed designs are general and can be implemented in both fiber-optic and integrated-optic formats and with any other coated photosensitive material. Advantages of directed logic, high Q-factor, tunability, compactness, low-power control signals, high fan-out, and flexibility of cascading switches in 2D/3D architectures to form circuits make the designs promising for practical applications.
Collapse
|
45
|
Kloz M, Grondelle RV, Kennis JT. Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Liu W, Han F, Smith C, Fang C. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:10535-50. [PMID: 22671279 DOI: 10.1021/jp3020707] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proton transfer reaction plays an essential role in a myriad of chemical and biological processes, and to reveal the choreography of the proton motion intra- and intermolecularly, a spectroscopic technique capable of capturing molecular structural snapshots on the intrinsic time scale of proton transfer motions is needed. The photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) serves as a paradigm case to dissect excited state proton transfer (ESPT) events in aqueous solution, triggered precisely by photoexcitation. We have used femtosecond stimulated Raman spectroscopy (FSRS) to yield novel insights into the ultrafast conformational dynamics of photoexcited HPTS in complex with water and acetate molecules. Marker bands attributed to the deprotonated form of HPTS (1139 cm(-1), ∼220 fs rise) appear earlier and faster than the monomer acetic acid peak (864 cm(-1), ∼530 fs rise), indicating that water molecules actively participate in the ESPT chain. Several key low-frequency modes at 106, 150, 195, and 321 cm(-1) have been identified to facilitate ESPT at different stages from 300 fs, 1 ps, to 6 ps and beyond, having distinctive dynamics contributing through hydrogen bonds with 0, 1, and more intervening water molecules. The time-resolved FSRS spectroscopy renders a direct approach to observe the reactive coupling between the vibrational degrees of freedom of photoexcited HPTS in action, therefore revealing the anharmonicity matrix both within HPTS and between HPTS and the neighboring acceptor molecules. The observed excited state conformational dynamics are along the ESPT multidimensional reaction coordinate and are responsible for the photoacidity of HPTS in aqueous solution.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | | |
Collapse
|
47
|
Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Wand A, Friedman N, Sheves M, Ruhman S. Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J Phys Chem B 2012; 116:10444-52. [DOI: 10.1021/jp2125284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| |
Collapse
|
49
|
Yabushita A, Kobayashi T, Tsuda M. Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin under Photoexcitation. J Phys Chem B 2012; 116:1920-6. [DOI: 10.1021/jp209356s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Yabushita
- Department
of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Takayoshi Kobayashi
- Department
of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
- CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama
332-0012, Japan
- Department
of Applied Physics
and Chemistry and Institute for Laser Science, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu,
Tokyo 182-8585, Japan
- Institute
of Laser Engineering, Osaka University,
2-6 Yamada-oka, Suita, Osaka 565-0971,
Japan
| | - Motoyuki Tsuda
- Kagawa School of
Pharmaceutical
Sciences, Tokushima Bunri University, 1314-1
Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
50
|
Challa JR, Du Y, McCamant DW. Femtosecond stimulated Raman spectroscopy using a scanning multichannel technique. APPLIED SPECTROSCOPY 2012; 66:227-232. [PMID: 22449287 DOI: 10.1366/11-06457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A scanning multichannel technique (SMT) has been implemented in femtosecond stimulated Raman spectroscopy (FSRS). By combining several FSRS spectra detected at slightly different positions of the spectrograph via SMT, we have eliminated the systematic noise patterns ("fixed pattern noise") due to the variation in sensitivity and noise characteristics of the individual charge-coupled device (CCD) pixels. In nonresonant FSRS, solvent subtraction can effectively remove the systematic noise pattern even without SMT. However, in the case of resonant FSRS, we show that a similar solvent subtraction procedure is ineffective at removing the noise patterns without SMT. Application of SMT results in averaged FSRS spectra with improved signal-to-noise ratios that approach the shot-noise limit.
Collapse
Affiliation(s)
- J Reddy Challa
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, New York 14627, USA
| | | | | |
Collapse
|