1
|
Yang M, Kim Y, Youn SY, Jeong H, Shirbhate ME, Uhm C, Kim G, Nam KT, Cha SS, Kim KM, Yoon J. Conversion of albumin into a BODIPY-like photosensitizer by a flick reaction, tumor accumulation and photodynamic therapy. Biomaterials 2025; 313:122792. [PMID: 39226652 DOI: 10.1016/j.biomaterials.2024.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Yujin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - So-Yeon Youn
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; TODD PHARM, Ewha Womans University, Seoul, 03760, South Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, South Korea
| | | | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, South Korea
| | - Gyoungmi Kim
- Research Center for Biomaterials, KYTECBIO, Ewhayeodae-gil 52, Seoul, 03760, South Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, South Korea.
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; TODD PHARM, Ewha Womans University, Seoul, 03760, South Korea.
| | - Kwan Mook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
2
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
3
|
Yin L, Zhao B, Zhou J, Huang Y, Ma H, Zhou T, Mou J, Min P, Chen J, Ge G, Qian X, Luo X, Yang Y. A Carbon-Caged Rhodamine Generating Nitrosoperoxycarbonate for Photoimmunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402949. [PMID: 38644342 DOI: 10.1002/anie.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Zhou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Chen D, Shao J, Zhang T, Xu K, Liang C, Cai Y, Guo Y, Chen P, Mou XZ, Dong X. Aromaticity Tuning of Heavy-Atom-Free Photosensitizers for Singlet Fission-Enhanced Immunogenic Photodynamic Oncotherapy. NANO LETTERS 2024. [PMID: 38857313 DOI: 10.1021/acs.nanolett.4c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Kang Xu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
| | - Xiao-Zhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Bag SK, Pal A, Jana S, Thakur A. Recent Advances on Diarylethene-Based Photoswitching Materials: Applications in Bioimaging, Controlled Singlet Oxygen Generation for Photodynamic Therapy and Catalysis. Chem Asian J 2024; 19:e202400238. [PMID: 38578057 DOI: 10.1002/asia.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Photoswitching materials have emerged as a promising class of compounds that possess manifold interesting properties rendering their widespread use from photoswitches, regulators to optoelectronic devices, security technologies and biochemical assays. Diarylethenes (DAE) constitute one such category of photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs in different areas of chemical and biological sciences, like biomarkers, controlled generation of singlet oxygen, photo-dynamic therapy, chemosensing, catalysis, etc. In all the cases, the photoswitchability of DAE is the principal regulating factor along with its emission properties according to the appended groups. Previous reviews on applications of DAE-based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or in the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in bioimaging of cells, regulating singlet oxygen generation for photodynamic therapy and catalysis of organic reactions, and their future prospects. A tabular presentation of the photophysical properties of DAE derivatives adds to the basic understanding of this subject at a glance. We hope that this cumulative collection of contemporary research on DAE, as presented in this review, will enhance the knowledge of the readers about synthetic design anticipating their properties well in advance, and will certainly motivate researchers to generate new DAE architectures with superior chemical and biological properties in future.
Collapse
Affiliation(s)
- Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Subhendu Jana
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
6
|
Hu J, Pang J, Chen L, Li Y, Gan N, Pan Q, Wu D. Photoresponsive Azobenzene Nanocluster-Modified Liposomes: Mechanism Analysis Combining Experiments and Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9761-9774. [PMID: 38663878 DOI: 10.1021/acs.langmuir.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.
Collapse
Affiliation(s)
- Jie Hu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jingtao Pang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lijuan Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Na Gan
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | | |
Collapse
|
7
|
Wang W, Yang W, Zhang Z, Dai J, Xu Y, Zhang J. Amplifying dual-visible-light photoswitching in aqueous media via confinement promoted triplet-triplet energy transfer. Chem Sci 2024; 15:5539-5547. [PMID: 38638239 PMCID: PMC11023046 DOI: 10.1039/d4sc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Achieving visible-light photochromism is a long-term goal of chemists keen to exploit the opportunities of molecular photoswitches in multi-disciplinary research studies. Triplet-sensitization offers a flexible approach to building diverse visible-light photoswitches using existing photochromic scaffolds, circumventing the need for sophisticated molecular design and synthesis. Unfortunately, distance-dependence and environment-sensitivity of triplet-excited species remain as key challenges that severely impair sensitization efficiency and limit their practical availability. We present herein a nature-inspired nanoconfinement strategy in which a triplet-sensitized visible-light photoswitch/sensitizer system is assembled into nanoconfined micelles (d ∼ 40 nm). A ca. 10-fold efficiency increase of triplet-triplet energy transfer for photochromism as well as an amplified fluorescence on/off contrast upon bi-directional visible-light excitation (470/560 nm) was achieved in full aqueous media. By virtue of this, the hybrid photoswitchable system is successfully applied for both flash information encryption and multiple dynamic cell imaging assays, further proving its versatility in materials and life science.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Weixin Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
8
|
Zhu HJ, Si DH, Guo H, Chen Z, Cao R, Huang YB. Oxygen-tolerant CO 2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy. Nat Commun 2024; 15:1479. [PMID: 38368417 PMCID: PMC10874412 DOI: 10.1038/s41467-024-45959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
The direct use of flue gas for the electrochemical CO2 reduction reaction is desirable but severely limited by the thermodynamically favorable oxygen reduction reaction. Herein, a photonicswitching unit 1,2-Bis(5'-formyl-2'-methylthien-3'-yl)cyclopentene (DAE) is integrated into a cobalt porphyrin-based covalent organic framework for highly efficient CO2 electrocatalysis under aerobic environment. The DAE moiety in the material can reversibly modulate the O2 activation capacity and electronic conductivity by the framework ring-closing/opening reactions under UV/Vis irradiation. The DAE-based covalent organic framework with ring-closing type shows a high CO Faradaic efficiency of 90.5% with CO partial current density of -20.1 mA cm-2 at -1.0 V vs. reversible hydrogen electrode by co-feeding CO2 and 5% O2. This work presents an oxygen passivation strategy to realize efficient CO2 electroreduction performance by co-feeding of CO2 and O2, which would inspire to design electrocatalysts for the practical CO2 source such as flue gas from power plants or air.
Collapse
Affiliation(s)
- Hong-Jing Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Hui Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Ziao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China.
- University of Chinese Academy of Science, 100049, Beijing, PR China.
| |
Collapse
|
9
|
Jiang X, Yi L, Li C, Wang H, Xiong W, Li Y, Zhou Z, Shen J. Mitochondrial Disruption Nanosystem Simultaneously Depressed Programmed Death Ligand-1 and Transforming Growth Factor-β to Overcome Photodynamic Immunotherapy Resistance. ACS NANO 2024; 18:3331-3348. [PMID: 38227812 DOI: 10.1021/acsnano.3c10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-β (TGF-β) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-β simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-β, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-β codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
10
|
Zhu W, Liu S, Wang Z, Shi C, Zhang Q, Wu Z, Li G, Zhu D. An AIE Metal Iridium Complex: Photophysical Properties and Singlet Oxygen Generation Capacity. Molecules 2023; 28:7914. [PMID: 38067643 PMCID: PMC10708252 DOI: 10.3390/molecules28237914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Photodynamic therapy (PDT) has garnered significant attention in the fields of cancer treatment and drug-resistant bacteria eradication due to its non-invasive nature and spatiotemporal controllability. Iridium complexes have captivated researchers owing to their tunable structure, exceptional optical properties, and substantial Stokes displacement. However, most of these complexes suffer from aggregation-induced quenching, leading to diminished luminous efficiency. In contrast to conventional photosensitizers, photosensitizers exhibiting aggregation-induced luminescence (AIE) properties retain the ability to generate a large number of reactive oxygen species when aggregated. To overcome these limitations, we designed and synthesized a novel iridium complex named Ir-TPA in this study. It incorporates quinoline triphenylamine cyclomethylated ligands that confer AIE characteristics for Ir-TPA. We systematically investigated the photophysical properties, AIE behavior, spectral features, and reactive oxygen generation capacity of Ir-TPA. The results demonstrate that Ir-TPA exhibits excellent optical properties with pronounced AIE phenomenon and robust capability for producing singlet oxygen species. This work not only introduces a new class of metal iridium complex photosensitizer with AIE attributes but also holds promise for achieving remarkable photodynamic therapeutic effects in future cellular experiments and biological studies.
Collapse
Affiliation(s)
- Weijin Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Shengnan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Ziwei Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Chunguang Shi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Qiaohua Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Zihan Wu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| |
Collapse
|
11
|
Liang H, Lu Q, Yang J, Yu G. Supramolecular Biomaterials for Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2023; 6:0211. [PMID: 37705962 PMCID: PMC10496790 DOI: 10.34133/research.0211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Cancer immunotherapy has achieved tremendous successful clinical results and obtained historic victories in tumor treatments. However, great limitations associated with feeble immune responses and serious adverse effects still cannot be neglected due to the complicated multifactorial etiology and pathologic microenvironment in tumors. The rapid development of nanomedical science and material science has facilitated the advanced progress of engineering biomaterials to tackle critical issues. The supramolecular biomaterials with flexible and modular structures have exhibited unparalleled advantages of high cargo-loading efficiency, excellent biocompatibility, and diversiform immunomodulatory activity, thereby providing a powerful weapon for cancer immunotherapy. In past decades, supramolecular biomaterials were extensively explored as versatile delivery platforms for immunotherapeutic agents or designed to interact with the key moleculars in immune system in a precise and controllable manner. In this review, we focused on the crucial role of supramolecular biomaterials in the modulation of pivotal steps during tumor immunotherapy, including antigen delivery and presentation, T lymphocyte activation, tumor-associated macrophage elimination and repolarization, and myeloid-derived suppressor cell depletion. Based on extensive research, we explored the current limitations and development prospects of supramolecular biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Liang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingqing Lu
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jie Yang
- College of Science,
Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry,
Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Zhou M, Tian B, Bu Y, Wu Z, Yu J, Wang S, Sun X, Zhu X, Zhou H. Enhanced pH-Responsive Chemo/Chemodynamic Synergistic Cancer Therapy Based on In Situ Cu 2+ Di-Chelation. ACS APPLIED BIO MATERIALS 2023; 6:3221-3231. [PMID: 37428493 DOI: 10.1021/acsabm.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Considering the chemodynamic therapy and chemotherapy independent of external stimulus witnessing great advantage in the clinical translation, developing a smart nanoplatform that can realize enhanced chemo/chemodynamic synergistic therapy in the tumor microenvironment (TME) is of great significance. Herein, we highlight the enhanced pH-responsive chemo/chemodynamic synergistic cancer therapy based on in situ Cu2+ di-chelation. The alcohol-withdrawal drug disulfiram (DSF) and chemotherapeutic drug mitoxantrone (MTO) were embedded into PEGylated mesoporous CuO (denoted as PEG-CuO@DSF@MTO NPs). The acidic TME triggered the collapse of CuO and the concurrent release of Cu2+, DSF, and MTO. Then, the in situ complexation between Cu2+ and DSF, as well as the coordination between Cu2+ and MTO not only prominently enhanced the chemotherapeutic performance but also triggered the chemodynamic therapy. In vivo mouse model experiments demonstrated that the synergistic therapy can remarkably eliminate tumors. This study provides an interesting strategy to design intelligent nanosystems, which could proceed to clinical translations.
Collapse
Affiliation(s)
- Minghua Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Beibei Tian
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Zhichao Wu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Sen Wang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Xianshun Sun
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
13
|
Su W, Jiang X, Zhang Y, Lin C, Xiao J, Li P. Photothermal-driven disassembly of naphthalocyanine nano-photosensitizers for photothermal and photodynamic therapy. J Colloid Interface Sci 2023; 647:201-210. [PMID: 37247483 DOI: 10.1016/j.jcis.2023.05.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The disassembly of nanomaterials is of particular interest for high-quality imaging and targeted therapies in the field of nanomedicine. In this study, we developed a novel strategy for fabricating self-assembled naphthalocyanine photosensitizers (SiNc@CEL) with intrinsically unique photochemical and photophysical properties. SiNc@CEL could be disassembled under the photothermal effect, and its photoactivity could be enhanced by 780 nm laser irradiation. Moreover, SiNc@CEL generates reactive oxygen species, including superoxide radicals (O2•-) and singlet oxygen (1O2), as well as good photothermal properties, facilitating the application of multifunctional phototherapy. In vitro evaluation indicated that SiNc@CEL possesses an excellent bactericidal effect under a combination of photodynamic (PDT) and photothermal therapy (PTT). The in vivo treatment of a full-layer skin defect model of Escherichia coli (E. coli) infection showed that SiNc@CEL had superior antibacterial and wound-healing abilities. These results provide the basis for a feasible strategy to enhance the phototherapeutic effect of photosensitizer (PS) systems.
Collapse
Affiliation(s)
- Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Xiantao Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jun'an Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
14
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
15
|
Zhang P, Zhu Y, Xiao C, Chen X. Activatable dual-functional molecular agents for imaging-guided cancer therapy. Adv Drug Deliv Rev 2023; 195:114725. [PMID: 36754284 DOI: 10.1016/j.addr.2023.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Theranostics has attracted great attention due to its ability to combine the real-time diagnosis of cancers with efficient treatment modalities. Activatable dual-functional molecular agents could be synthesized by covalently conjugating imaging agents, therapeutic agents, stimuli-responsive linkers and/or targeting molecules together. They could be selectively activated by overexpressed physiological stimuli or external triggers at the tumor sites to release imaging agents and cytotoxic drugs, thus offering many advantages for tumor imaging and therapy, such as a high signal-to-noise ratio, low systemic toxicity, and improved therapeutic effects. This review summarizes the recent advances of dual-functional molecular agents that respond to various physiological or external stimuli for cancer theranostics. The molecular designs, synthetic strategies, activatable mechanisms, and biomedical applications of these molecular agents are elaborated, followed by a brief discussion of the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, PR China
| | - Yaowei Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| |
Collapse
|
16
|
Chen W, Wang Z, Tian M, Hong G, Wu Y, Sui M, Chen M, An J, Song F, Peng X. Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy. J Am Chem Soc 2023; 145:8130-8140. [PMID: 37001012 DOI: 10.1021/jacs.3c01042] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Type I photosensitization provides an effective solution to the problem of unsatisfactory photodynamic therapeutic (PDT) effects caused by the tumor hypoxia. The challenge in the development of Type I mode is to boost the photosensitizer's own electron transfer capacity. Herein, we found that the use of bovine serum albumin (BSA) to encapsulate a thermally activated delayed fluorescence (TADF) photosensitizer PS can significantly promote the Type I PDT process to generate a mass of superoxide anions (O2•-). This Type I photosensitization opened a new strategy by employing BSA as "electron reservoir" and TADF photosensitizer as "electron pump". We integrated these roles of BSA and PS in one system by preparing nanophotosensitizer PS@BSA. The Type I PDT performance was demonstrated with tumor cells under hypoxic conditions. Furthermore, PS@BSA took full advantage of the tumor-targeting role of BSA and achieved efficient PDT for tumor-bearing mice in the in vivo experiments. This work provides an effective route to improve the PDT efficiency of hypoxic tumors.
Collapse
|
17
|
Khang TM, Nhien PQ, Cuc TTK, Weng CC, Wu CH, Wu JI, Hue BTB, Li YK, Lin HC. Dual and Sequential Locked/Unlocked Photochromic Effects on FRET Controlled Singlet Oxygen Processes by Contracted/Extended Forms of Diarylethene-Based [1]Rotaxane Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205597. [PMID: 36504441 DOI: 10.1002/smll.202205597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Manipulations of singlet oxygen (1 O2 ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1 O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1 O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1 O2 productions and managements based on mechanically interlocked molecules for future bioapplications.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chang-Ching Weng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
18
|
Qiao B, Song X, Zhang N, Xu M, Zhuang B, Guo H, Wu W, Yang Z, Xie X, Luan Y, Zhang C. Artificial nano-red blood cells nanoplatform with lysosomal escape capability for ultrasound imaging-guided on-demand pain management. Acta Biomater 2023; 158:798-810. [PMID: 36638944 DOI: 10.1016/j.actbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Postoperative pain management would benefit significantly from an anesthetic that could take effect in an on-demand manner. An ultrasound would be an appropriate tool for such nanoplatform because it is widely used in clinical settings for ultrasound-guided anesthesia. Herein, we report a nanoplatform for postoperative on-demand pain management that can effectively enhance their analgesic time while providing ultrasonic imaging. Levobupivacaine and perfluoropentane were put into dendritic mesoporous silica and covered with red blood cell membranes to make the pain relief last longer in living organisms. The generated nanoplatform with gas-producing capability is ultrasonic responsive and can finely escape from the lysosomal in cells under ultrasound irradiation, maximizing the anesthetic effect with minimal toxicity. Using an incision pain model in vivo, levobupivacaine's sustained and controlled release gives pain reduction for approximately 3 days straight. The duration of pain relief is over 20 times greater than with a single injection of free levobupivacaine. Effective pain management was reached in vivo, and the pain reduction was enhanced by repeated ultrasonic irradiation. There was no detectable systemic or tissue injury under either of the treatments. Thus, our results suggest that nanoplatform with lysosomal escape capability can provide a practical ultrasound imaging-guided on-demand pain management strategy. STATEMENT OF SIGNIFICANCE: On-demand pain management is essential to postoperative patients. However, the traditional on-demand pain management strategy is hampered by the limited tissue penetration depth of near-infrared stimuli and the lack of proper imaging guidance. The proposed research is significant because it provides a nanoplatform for deep penetrated ultrasound controlled pain management under clinical applicable ultrasound imaging guidance. Moreover, the nanoplatform with prolonged retention time and lysosomal escape capability can provide long-term pain alleviation. Therefore, our results suggest that nanoplatform with lysosomal escape capability can provide an effective strategy for ultrasound imaging-guided on-demand pain management.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huanling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Wenxin Wu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhuyang Yang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
19
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Li M, Huo L, Zeng J, Zhu G, Liu X, Zhu X, Huang G, Wang Y, Ni K, Zhao Z. Switchable ROS Scavenger/Generator for MRI-Guided Anti-Inflammation and Anti-Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater 2023; 12:e2202043. [PMID: 36367363 DOI: 10.1002/adhm.202202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Photosensitizer in photodynamic therapy (PDT) accumulates in both tumor and adjacent normal tissue due to low selective biodistribution, results in undesirable side effect with limited clinic application. Herein, an intelligent nanoplatform is reported that selectively acts as reactive oxygen species (ROS) scavenger in normal tissue but as ROS generator in tumor microenvironment (TME) to differentially control ROS level in tumor and surrounding normal tissue during PDT. By down-regulating the produced ROS with dampened cytokine wave in normal tissue after PDT, the nanoplatform reduces the inflammatory response of normal tissue in PDT, minimizing the side effect and tumor metastasis in PDT. Alternatively, the nanoplatform switches from ROS scavenger to generator through the glutathione (GSH) responsive degradation in TME, which effectively improves the PDT efficacy with reduced GSH level and amplified oxidative stress in tumor. Simultaneously, the released Mn ions provide real-time and in situ signal change of magnetic resonance imaging (MRI) to monitor the reversal process of catalysis activity and achieve accurate tumor diagnosis. This TME-responsive ROS scavenger/generator with activable MRI contrast may provide a new dimension for design of next-generation PDT agents with precise diagnosis, high therapeutic efficacy, and low side effect.
Collapse
Affiliation(s)
- Muyao Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Guifen Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiangqing Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianglong Zhu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
21
|
Burns KH, Quincy TJ, Elles CG. Excited-state resonance Raman spectroscopy probes the sequential two-photon excitation mechanism of a photochromic molecular switch. J Chem Phys 2022; 157:234302. [PMID: 36550048 DOI: 10.1063/5.0126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some diarylethene molecular switches have a low quantum yield for cycloreversion when excited by a single photon, but react more efficiently following sequential two-photon excitation. The increase in reaction efficiency depends on both the relative time delay and the wavelength of the second photon. This paper examines the wavelength-dependent mechanism for sequential excitation using excited-state resonance Raman spectroscopy to probe the ultrafast (sub-30 fs) dynamics on the upper electronic state following secondary excitation. The approach uses femtosecond stimulated Raman scattering (FSRS) to measure the time-gated, excited-state resonance Raman spectrum in resonance with two different excited-state absorption bands. The relative intensities of the Raman bands reveal the initial dynamics in the higher-lying states, Sn, by providing information on the relative gradients of the potential energy surfaces that are accessed via secondary excitation. The excited-state resonance Raman spectra reveal specific modes that become enhanced depending on the Raman excitation wavelength, 750 or 400 nm. Many of the modes that become enhanced in the 750 nm FSRS spectrum are assigned as vibrational motions localized on the central cyclohexadiene ring. Many of the modes that become enhanced in the 400 nm FSRS spectrum are assigned as motions along the conjugated backbone and peripheral phenyl rings. These observations are consistent with earlier measurements that showed higher efficiency following secondary excitation into the lower excited-state absorption band and illustrate a powerful new way to probe the ultrafast dynamics of higher-lying excited states immediately following sequential two-photon excitation.
Collapse
Affiliation(s)
- Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Timothy J Quincy
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
22
|
Kim H, Yang M, Kwon N, Cho M, Han J, Wang R, Qi S, Li H, Nguyen V, Li X, Cheng H, Yoon J. Recent progress on photodynamic therapy and photothermal therapy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Sujie Qi
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Haidong Li
- School of Bioengineering Dalian University of Technology Dalian China
| | - Van‐Nghia Nguyen
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou China
| | - Hong‐Bo Cheng
- State Key Laboratory of Organic−Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| |
Collapse
|
23
|
Li Y, Xiong J, Hu Y, Miao W, Huang H. Wrapping collagen-based nanoparticle with macrophage membrane for treating multidrug-resistant bacterial infection. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractNowadays, multidrug-resistant (MDR) bacterial infectious diseases has become a thorny issue in the healthcare field. Owning to its intrinsic merits, photodynamic therapy (PDT) shows tremendous strengths in fighting against MDR bacterial infections. However, most photodynamic nanoplatforms exhibit unsatisfactory targeting efficiency towards bacteria and infection site, which may compromise the bactericidal effect of PDT. Herein, we firstly reported a bacteria-targeted collagen-based nanoparticle, named Ce6/Col/MM, for treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Ce6/Col/MM was fabricated by wrapping chlorin e6 (Ce6)-loaded collagen-based nanoparticles with macrophage membrane (MM), showing excellent photodynamic activity and good biocompatibility. In vitro studies demonstrated that Ce6/Col/MM could target to bacteria and then exhibit prominent antibacterial capacity against planktonic MRSA under light irradiation. Furthermore, the treatment of MRSA-infected wound in mice with Ce6/Col/MM plus light illumination resulted in potent bacterial inactivation and accelerated wound healing, accompanied by favorable histological compatibility. Collectively, Ce6/Col/MM with superior targeting ability towards bacteria, effective photodynamic antibacterial potency and minimal safety concerns, might be a powerful bactericidal nanoagent for treating infections caused by MDR bacteria.
Graphical Abstract
Collapse
|
24
|
Zhao Y, Xie Z, Deng Y, Huang A, He Y, Wen B, Liao X, Chang R, Zhang G, Zhu L, Wang Y, Li T, Zhong Y, Zuo J, Zhang H, Chen M, Liu J, Chen X, Liu H. Photothermal nanobomb blocking metabolic adenosine-A2AR potentiates infiltration and activity of T cells for robust antitumor immunotherapy. CHEMICAL ENGINEERING JOURNAL 2022; 450:138139. [DOI: 10.1016/j.cej.2022.138139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
|
25
|
Liang Y, Li C, Qiu W, Li P, Yang Z, Lin H, Zhao Y. Nitrogen Mustard Based 2-Benzylidene-1-tetralone as ICT-Based Fluorescent Probe for Drug Release Monitoring and Cervical Cancer Therapy. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Luo P, Zhang Y, Zhang J, Zhang H, Yang C, Li C. Mitochondria-Driven Dye Rearrangement That Enables Spatiotemporally Controlled Photomedicine. Adv Healthc Mater 2022; 11:e2201611. [PMID: 36066089 DOI: 10.1002/adhm.202201611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Reversibly controlling the dye arrangements in living systems has great potential to realize spatiotemporally controlled photomedicine. However, tuning or even maintaining a certain arrangement of dyes in a complex living environments is extremely challenging due to the interference of the various biological species. Herein, a conceptual supramolecular strategy to engineer a switchable photosensitizer (PS) via mitochondria-mediated dynamic interconversion between monomer and J-aggregation, enabling specific activation of the mitochondria-targeting photodynamic therapy (PDT) and hibernation after mitochondria damage is presented. The presented mitochondria-mediated "activate-then-hibernate" PS design enables a fascinating spatiotemporally controlled PDT in which spatially controlled mitochondrial-targeting enhances therapeutic efficacy and temporally controlled activation-then-hibernation averts off-target damage during PDT and tissue damage after clinical treatment, thus offering significant potential for biological research and clinical needs.
Collapse
Affiliation(s)
- Pei Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Chun Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
27
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Luo Y, Qiao B, Yang C, Zhang P, Xie Z, Cao J, Yang A, Xiang Q, Ran H, Wang Z, Hao L, Cao Y, Zhou Z, Ren J. Low Intensity Focused Ultrasound Ignited “Deep-Penetration Nanobomb” (DPNB) for Tetramodal Imaging Guided Hypoxia-Tolerant Sonodynamic Therapy Against Hypoxic Tumors. Int J Nanomedicine 2022; 17:4547-4565. [PMID: 36199475 PMCID: PMC9527552 DOI: 10.2147/ijn.s361648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/31/2022] [Indexed: 12/07/2022] Open
Abstract
Background Sonodynamic therapy (SDT) has been regarded as a novel therapeutic modality for killing tumors. However, the hypoxic tumor microenvironment, especially deep-seated tumors distant from blood vessels, severely restricts therapeutic efficacy due to the oxygen-dependent manner of SDT. Methods Herein, we report a novel ultrasonic cavitation effect-based therapeutic modality that is able to facilitate the hypoxia-tolerant SDT for inducing hypoxic tumor death. A tLyP-1 functionalized liposomes is fabricated, composed of hematoporphyrin monomethyl ether gadolinium as the sonosentizer and perfluoropentane (PFP) as the acoustic environment regulator. Moreover, the tLyP-1 functioned liposomes could achieve active tumor homing and effective deep-penetrating into hypoxic tumors. Upon low intensity focused ultrasound (LIFU) irradiation, the acoustic droplet vaporization effect of PFP induced fast liquid-to-gas transition and quick bubbles explosion to generate hydroxyl radicals, efficiently promoting cell death in both normoxic and hypoxic microenvironment (acting as deep-penetration nanobomb, DPNB). Results The loading of PFP is proved to significantly enhance the therapeutic efficacy of hypoxic tumors. In particular, these DPNB can also act as ultrasound, photoacoustic, magnetic resonance, and near-infrared fluorescence tetramodal imaging agents for guiding the therapeutic process. Conclusion This study is the first report involving that liquid-to-gas transition based SDT has the potential to combat hypoxic tumors.
Collapse
Affiliation(s)
- Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Bin Qiao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Chao Yang
- Radiology Department, Chongqing General Hospital, Chongqing, 400014, People’s Republic of China
| | - Ping Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhuoyan Xie
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jin Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Anyu Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qinyanqiu Xiang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhiyi Zhou
- General Practice Department, Chongqing General Hospital, Chongqing, 400014, People’s Republic of China
- Correspondence: Zhiyi Zhou; Jianli Ren, Email ;
| | - Jianli Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
29
|
Burns KH, Elles CG. Ultrafast Dynamics of a Molecular Switch from Resonance Raman Spectroscopy: Comparing Visible and UV Excitation. J Phys Chem A 2022; 126:5932-5939. [PMID: 36026439 DOI: 10.1021/acs.jpca.2c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance Raman spectroscopy probes the ultrafast dynamics of a diarylethene (DAE) molecular switch following excitation into the first two optical absorption bands. Mode-specific resonance enhancements for Raman excitation at visible (750-560 nm) and near-UV (420-390 nm) wavelengths compared with the calculated and experimental off-resonance Raman spectrum at 785 nm reveal different Franck-Condon active vibrations for the two electronically excited states. The resonance enhancements at visible wavelengths are consistent with initial motion on the first excited-state that promotes the cycloreversion reaction, whereas the enhancements for excitation at near-UV wavelengths highlight motions involving conjugated backbone and phenyl ring stretching modes that are orthogonal to the reaction coordinate. The results support a mechanism involving rapid internal conversion from the higher-lying state followed by cycloreversion on the first excited state. These observations provide new information about the reactivity of DAE derivatives following excitation in the visible and near-UV.
Collapse
Affiliation(s)
- Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
30
|
Fang S, Chen W, Jiang H, Ma R, Wu W. Palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chem Commun (Camb) 2022; 58:9666-9669. [PMID: 35946388 DOI: 10.1039/d2cc03298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to the synthesis of 3-bromoindoles via palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes has been described. This protocol features high atom economy, excellent chemo- and regioselectivities, and good functional group tolerance. Moreover, the resultant 3-bromoindoles can be transformed to various functionalized indole derivatives, which demonstrates the practicability of this method in organic synthesis.
Collapse
Affiliation(s)
- Songjia Fang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ruize Ma
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
31
|
Song X, Luan M, Zhang W, Zhang R, Xue L, Luan Y. Moderate-Intensity Ultrasound-Triggered On-Demand Analgesia Nanoplatforms for Postoperative Pain Management. Int J Nanomedicine 2022; 17:3177-3189. [PMID: 35909815 PMCID: PMC9329681 DOI: 10.2147/ijn.s367190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The restricted duration is a fundamental drawback of traditional local anesthetics during postoperative pain from a single injection. Therefore, an injectable local anesthetic that produces repeatable on-demand nerve blocks would be ideal. Methods We offer ultrasound-triggered on-demand analgesia consisting of dendritic mesoporous silica nanoparticles (DMSN) carried with ultrasound-sensitive perfluoropentane (PFP) and levobupivacaine (DMSN-bupi-PFP) to achieve repeatable and customizable on-demand local anesthetics. Results The vaporization of liquid PFP was triggered by ultrasound irradiation to produce a gas environment. Subsequently, the enhanced cavitation effect could improve the release of levobupivacaine to achieve pain relief under a moderate-intensity ultrasound irradiation. DMSN-bupi-PFP demonstrated a controlled-release pattern and showed a reinforced ultrasonic sensitivity compared to levobupivacaine loaded DMSN (DMSN-bupi). The sustained release of levobupivacaine produced continuous analgesia of more than 9 hours in a model of incision pain, approximately 3 times longer than a single free levobupivacaine injection (3 hours). The external ultrasound irradiation can trigger the release of levobupivacaine repeatedly, resulting in on-demand analgesia. In addition, DMSN-bupi-PFP nanoplatforms for ultrasound-enabled analgesia showed low neurotoxicity and good biocompatibility in vitro and in vivo. Conclusion This DMSN-bupi-PFP nanoplatform can be used in pain management by providing long-lasting and on-demand pain alleviation with the help of moderate-intensity ultrasound.
Collapse
Affiliation(s)
- Xinye Song
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Mengxiao Luan
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Weiyi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Ruizheng Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Li Xue
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yong Luan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
32
|
Wang SY, Chen G, Chen JF, Wang J, Deng SH, Cheng D. Glutathione-depleting polymer delivering chlorin e6 for enhancing photodynamic therapy. RSC Adv 2022; 12:21609-21620. [PMID: 35975058 PMCID: PMC9346557 DOI: 10.1039/d2ra01877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/16/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutic effect of photodynamic therapy (PDT) is highly dependent on the intracellular production of reactive oxygen species (ROS). However, the ROS generated by photosensitizers can be consumed by the highly concentrated glutathione (GSH) in tumor cells, severely impairing the therapeutic effect of PDT. Herein, we synthesized a GSH-scavenging copolymer to deliver photosensitizer chlorin e6 (Ce6). The pyridyl disulfide groups, which have faster reactivity with the thiol groups of GSH than other disulfide groups, were grafted onto a hydrophobic block to encapsulate the Ce6. Under NIR irradiation, the Ce6 generated ROS to kill tumor cells, and the pyridyl disulfide groups depleted the GSH to prevent ROS consumption, which synergistically enhanced the therapeutic effect of PDT. In vitro and in vivo experiments confirmed the combinatory antitumor effect of Ce6-induced ROS generation and the pyridyl disulfide group-induced GSH depletion. Therefore, the pyridyl disulfide group-grafted amphiphilic copolymer provides a more efficient strategy for enhancing PDT and has promising potential for clinical application.
Collapse
Affiliation(s)
- Shi-Yin Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guo Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Ji-Feng Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630 P. R. China
| | - Shao-Hui Deng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
33
|
Sekine A. In-situ crystal structure analysis and control of photochromism with dual-mode photoreactive soft crystals. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
34
|
Li W, Zhang S, Xing D, Qin H. Pulsed Microwave-Induced Thermoacoustic Shockwave for Precise Glioblastoma Therapy with the Skin and Skull Intact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201342. [PMID: 35585690 DOI: 10.1002/smll.202201342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Indexed: 05/16/2023]
Abstract
Glioblastoma has a dismal prognosis and is a critical and urgent health issue that requires aggressive research and determined clinical efforts. Due to its diffuse and infiltrative growth in the brain parenchyma, complete neurosurgical resection is rarely possible. Here, pulsed microwave-induced thermoacoustic (MTA) therapy is proposed as a potential alternative modality to precisely and effectively eradicate in vivo orthotopic glioblastoma. A nanoparticle composed of polar amino acids and adenosine-based agonists is constructed with high microwave absorbance and selective penetration of the blood-brain barrier (BBB) at the tumor site. This nanoparticle can activate the adenosine receptor on the BBB to allow self-passage and tumor accumulation. The nanoparticle converts absorbed microwaves into ultrasonic shockwaves via the thermoacoustic cavitation effect. The ultrasonic shockwave can mechanically destroy tumor cells within a short range with minimal damage to adjacent normal brain tissue due to the rapid decay of the ultrasonic shockwave intensity. The deep tissue penetration characteristics of the microwave and the rapid decay of the ultrasonic shockwave make MTA therapy a promising glioblastoma cure including intact skin and skull.
Collapse
Affiliation(s)
- Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shanxiang Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Lab of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
35
|
Chen D, Dai H, Wang W, Cai Y, Mou X, Zou J, Shao J, Mao Z, Zhong L, Dong X, Zhao Y. Proton-Driven Transformable 1 O 2 -Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200128. [PMID: 35435332 PMCID: PMC9189669 DOI: 10.1002/advs.202200128] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Indexed: 05/11/2023]
Abstract
Despite the clinical potential, photodynamic therapy (PDT) relying on singlet oxygen (1 O2 ) generation is severely limited by tumor hypoxia and endosomal entrapment. Herein, a proton-driven transformable 1 O2 -nanotrap (ANBDP NPs) with endosomal escape capability is presented to improve hypoxic tumor PDT. In the acidic endosomal environment, the protonated 1 O2 -nanotrap ruptures endosomal membranes via a "proton-sponge" like effect and undergoes a drastic morphology-and-size change from nanocubes (≈94.1 nm in length) to nanospheres (≈12.3 nm in diameter). Simultaneously, anthracenyl boron dipyrromethene-derived photosensitizer (ANBDP) in nanospheres transforms to its protonated form (ANBDPH) and switches off its charge-transfer state to achieve amplified 1 O2 photogeneration capability. Upon 730 nm photoirradiation, ANBDPH prominently produces 1 O2 and traps generated-1 O2 in the anthracene group to form endoperoxide (ANOBDPH). Benefitting from the hypoxia-tolerant 1 O2 -release property of ANOBDPH in the dark, the 1 O2 -nanotrap brings about sustained therapeutic effect without further continuous irradiation, thereby achieving remarkable antitumor performance.
Collapse
Affiliation(s)
- Dapeng Chen
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yu Cai
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Xiaozhou Mou
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Liping Zhong
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongxiang Zhao
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| |
Collapse
|
36
|
Zhu L, Meng D, Wang X, Chen X. Ferroptosis-Driven Nanotherapeutics to Reverse Drug Resistance in Tumor Microenvironment. ACS APPLIED BIO MATERIALS 2022; 5:2481-2506. [PMID: 35614872 DOI: 10.1021/acsabm.2c00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis, characterized by iron-dependent lipid reactive oxygen species (ROS) accumulation, is non-apoptotic programmed cell death highly relevant to tumor development. It was found to manipulate oncogenes and resistant mutations of cancer cells via lipid metabolism pathways converging on phospholipid glutathione peroxidase (GPX4) that squanders lipid peroxides (L-OOH) to block the iron-mediated reactions of peroxides, thus rendering resistant cancer cells vulnerable to ferroptotic cell death. By accumulating ROS and lipid peroxidation (LPO) products to lethal levels in tumor microenvironment (TME), ferroptosis-driven nanotherapeutics show a superior ability of eradicating aggressive malignancies than traditional therapeutic modalities, especially for the drug-resistant tumors with high metastasis tendency. Moreover, Fenton reaction, inhibition of GPX-4, and exogenous regulation of LPO are three major therapeutic strategies to induce ferroptosis in cancer cells, which were generally applied in ferroptosis-driven nanotherapeutics. In this review, we elaborate current trends of ferroptosis-driven nanotherapeutics to reverse drug resistance of tumors in anticancer fields at the intersection of cancer biology, materials science, and chemistry. Finally, their challenges and perspectives toward feasible translational studies are spotlighted, which would ignite the hope of anti-resistant cancer treatment.
Collapse
Affiliation(s)
- Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
37
|
Ma Y, Xiao F, Lu C, Wen L. Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Front Pharmacol 2022; 13:905078. [PMID: 35645842 PMCID: PMC9130658 DOI: 10.3389/fphar.2022.905078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness, spatiotemporal selectivity, low side-effects, and immune activation ability has been clinically approved for the treatment of head and neck cancer, esophageal cancer, pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma. Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various smart nanomedicine-based strategies are developed to overcome the barriers of traditional PDT including the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death and tumor resistance to the therapy. More notably, a growing number of studies have focused on improving the therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of PDT induced-tumor destruction, especially the host immune response is summarized, and focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate immunity and adaptive immunity. We expect it will provide some insights for conquering the drawbacks current PDT and expand the range of clinical application through this review.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, China
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Fengfeng Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| | - Liewei Wen
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| |
Collapse
|
38
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
39
|
Wang R, Kim KH, Yoo J, Li X, Kwon N, Jeon YH, Shin SK, Han SS, Lee DS, Yoon J. A Nanostructured Phthalocyanine/Albumin Supramolecular Assembly for Fluorescence Turn-On Imaging and Photodynamic Immunotherapy. ACS NANO 2022; 16:3045-3058. [PMID: 35089696 DOI: 10.1021/acsnano.1c10565] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Hwan Kim
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Suk-Kyung Shin
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
40
|
Zhang S, Li Y, Li T, Zhang Y, Li H, Cheng Z, Peng N, Liu Y, Xu J, He H. Activable Targeted Protein Degradation Platform Based on Light-triggered Singlet Oxygen. J Med Chem 2022; 65:3632-3643. [PMID: 35164509 DOI: 10.1021/acs.jmedchem.1c02037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted protein degradation technologies (e.g., PROTACs) that can selectively degrade intracellular protein are an emerging class of promising therapeutic modalities. Herein, we describe the conjugation of photosensitizers and protein ligands (PS-Degrons), as an activable targeted protein degradation platform. PS-Degrons are capable of degrading protein of interest via light-triggered 1O2, which is orthogonal and complementary to existing technologies. This generalizable platform allows controllable knockdown of the target protein with high spatiotemporal precision. Our lead compound PSDalpha induces a complete degradation of human estrogen receptor α (ERα) under visible light. The high degrading ERα efficacy of PSDalpha enables an excellent anti-proliferation performance on MCF-7 cells. Our results establish a modular strategy for the controllable degradation of target proteins, which can hopefully overcome the systemic toxicity in clinical treatment of PROTACs. We anticipate that PS-Degrons would open a new chapter for biochemical research and for the therapeutics.
Collapse
Affiliation(s)
- Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yuanyuan Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Wuhan 430023, P.R. China
| | - Tao Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Haimei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zhengzai Cheng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,College of Chemistry and Chemical Engineering & College of Environmental Science and Engineering, Tiangong University, Tianjin 300378, P. R. China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, P. R. China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
41
|
Xi D, Xu N, Xia X, Shi C, Li X, Wang D, Long S, Fan J, Sun W, Peng X. Strong π-π Stacking Stabilized Nanophotosensitizers: Improving Tumor Retention for Enhanced Therapy for Large Tumors in Mice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106797. [PMID: 34761453 DOI: 10.1002/adma.202106797] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/08/2021] [Indexed: 05/22/2023]
Abstract
Conventional photosensitizers (PSs) often show poor tumor retention and are rapidly cleared from the bloodstream, which is one of the key hindrances to guarantee precise and efficient photodynamic therapy (PDT) in vivo. In this work, a photosensitizer assembly nanosystem that sharply enhances tumor retention up to ≈10 days is present. The PSs are synthesized by meso-substituting anthracene onto a BODIPY scaffold (AN-BDP), which then self-assembles into stable nanoparticles (AN-BDP NPs) with amphiphilic block copolymers due to the strong intermolecular π-π interaction of the anthracene. Additionally, the incorporated anthracene excites the PSs, producing singlet oxygen under red-light irradiation. Although AN-BDP NPs can completely suppress regular test size tumors (≈100 mm3 ) by one-time radiation, only 12% tumor growth inhibition rate is observed in the case of large-size tumors (≈350 mm3 ) under the same conditions. Due to the long-time tumor retention, AN-BDP NPs allow single-dose injection and three-time light treatments, resulting in an inhibition rate over 90%, much more efficient than single-time radiation of conventional clinically used PSs including chlorin-e6 (Ce6) and porphyrin with poor tumor retention. The results reveal the importance of long tumor retention time of PSs for efficient PDT, which can accelerate the clinical development of nanophotosensitizers.
Collapse
Affiliation(s)
- Dongmei Xi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Xiaojing Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Jianshe North Road Section 2 No. 4, Chengdu, Sichuan, 610054, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| |
Collapse
|
42
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
43
|
Xu ZY, Mao W, Zhao Z, Wang ZK, Liu YY, Wu Y, Wang H, Zhang DW, Li ZT, Ma D. Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced photodynamic therapy in vitro and in vivo. J Mater Chem B 2022; 10:899-908. [PMID: 35043828 DOI: 10.1039/d1tb02601a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water-soluble three-dimensional supramolecular-organic frameworks (SOFs) and temoporfin (mTHPC) are discovered to form uniform self-assembled nanoparticles. These nanoparticles demonstrate an improved 1O2 generation efficiency due to the reduced aggregation-caused quenching effect. SOFs and self-assembled nanoparticles are biocompatible. Self-assembled nanoparticles display an improved photo cytotoxicity toward four types of human cancer cells. The tumor model in mice shows that self-assembled nanoparticles could efficiently suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Weipeng Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Ze-Kun Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yan Wu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Hui Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China. .,School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
44
|
Ma W, Mao J, He CT, Shao L, Liu J, Wang M, Yu P, Mao L. Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chem Sci 2022; 13:5606-5615. [PMID: 35694341 PMCID: PMC9116287 DOI: 10.1039/d2sc01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet oxygen (1O2) as an excited electronic state of O2 plays a significant role in the ubiquitous oxidative processes from enzymatic oxidative metabolism to industrial catalytic oxidation. Generally, 1O2 can...
Collapse
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Chun-Ting He
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry, Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| |
Collapse
|
45
|
Popov S, Plenio H. Switched fluorescence and photosensitization based on reversible ion-pairing. Chem Commun (Camb) 2022; 58:12669-12671. [DOI: 10.1039/d2cc05195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The close ion-pair of Ir(bdpSO3)(cod)(IMes)] is an efficient photosensitizer, while the solvent-separated anion is highly fluorescent.
Collapse
Affiliation(s)
- Stepan Popov
- Organometallic Chemistry, Chemistry, Alarich-Weiss-Str. 12, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Herbert Plenio
- Organometallic Chemistry, Chemistry, Alarich-Weiss-Str. 12, Technical University of Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
46
|
Han J, Li H, Zhao L, Kim G, Chen Y, Yan X, Yoon J. Albumin-mediated “Unlocking” of supramolecular prodrug-like nanozymes toward selective imaging-guided phototherapy. Chem Sci 2022; 13:7814-7820. [PMID: 35865904 PMCID: PMC9258398 DOI: 10.1039/d2sc02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
An adaptive nanozyme without producing off-target toxicity has been successfully applied in phototherapy.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- New and Renewable Energy Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
47
|
Bian Q, Huang L, Xu Y, Wang R, Gu Y, Yuan A, Ma X, Hu J, Rao Y, Xu D, Wang H, Gao J. A Facile Low-Dose Photosensitizer-Incorporated Dissolving Microneedles-Based Composite System for Eliciting Antitumor Immunity and the Abscopal Effect. ACS NANO 2021; 15:19468-19479. [PMID: 34859990 DOI: 10.1021/acsnano.1c06225] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomedicine-based photodynamic therapy (PDT) for melanoma treatment has attracted great attention. However, the complex design of polymer nanoparticles and high doses of photosensitizers used in intravenous injections (for sufficient accumulation of drugs in tumor lesions) pose a huge challenge to the commercialization and further clinical application. Herein, we fabricated the carrier-free nanoassemblies of a chlorin e6 (L-Ce6 NAs)-integrated fast-dissolving microneedles patch (L-Ce6 MNs) enriching only about 3 μg of Ce6 in the needle tips via a facile fabrication method. The L-Ce6 MNs had sufficient mechanical strength to penetrate the skin and facilitated the transportation of L-Ce6 NAs to a depth of 200-500 μm under the skin, thereby achieving efficient and accurate drug delivery to tumor lesions. In a xenograft mouse melanoma model, the L-Ce6 MNs-based PDT with low dose of Ce6 (0.12 mg/kg) exerted efficient ablation of the primary lesions in situ through reactive oxygen species (ROS) generation. More importantly, a significant abscopal effect was also elicited by activating immunogenic cell death (ICD) and releasing danger-associated molecular patterns (DAMPs), which in turn promoted dendritic cells (DCs) maturation and the subsequent antigen presentation, thereby facilitating the T-cell-mediated immune response without synergetic immunotherapies. Collectively, our findings indicate the facile, controllable, and fast-dissolving microneedles patch with a low dose of photosensitizers presented great therapeutic potential for enhanced photoimmunotherapy.
Collapse
Affiliation(s)
- Qiong Bian
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingling Huang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yihua Xu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anran Yuan
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Hu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center of Zhejiang University, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Yao S, Zhao X, Wan X, Wang X, Huang T, Zhang J, Li L. π-π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. MATERIALS HORIZONS 2021; 8:3457-3467. [PMID: 34755162 DOI: 10.1039/d1mh01273h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of reactive oxygen species (ROS) to elicit lethal cellular oxidative damage is an attractive pathway to kill cancer cells, but it is still hindered by the low ROS production efficiency of the current methods. Herein, we design a one-dimensional (1D) π-π conjugated ferriporphyrin covalent organic framework on carbon nanotubes (COF-CNT) for activating nanocatalytic and photodynamic cancer therapy. The COF-CNT can catalyze the generation of ROS and O2 in the tumor microenvironment (TME), and realize a self-oxygen-supplying PDT under near-infrared (NIR) light irradiation, simultaneously. With the full electron delocalization at the atomically dispersed active center, the catalytic activity of COF-CNT with extended π-conjugation is 6.8 times higher than that without the π-conjugated structure. The formation of the COF structure with π-π conjugation also changes the density of states (DOS) profile of its functional building block for improving PDT. Through one single treatment, it successfully achieves complete tumor regression of 4T1 breast carcinoma in mice with immunoregulation.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingru Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
| | - Tian Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
| | - Jiaming Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
50
|
Zhang L, Jiang X, Zhong Z, Tian L, Sun Q, Cui Y, Lu X, Zou J, Luo S. Carbon Nitride Supported High‐Loading Fe Single‐Atom Catalyst for Activation of Peroxymonosulfate to Generate
1
O
2
with 100 % Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Long‐Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Xun‐Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Zi‐Ai Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Yi‐Tao Cui
- SANKA High Technology Co. Ltd. 90-1 Kurimachi, Shingu-machi, Tatsuno Hyogo 679-5155 Japan
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen University Xiamen Fujian 361005 P. R. China
| | - Jian‐Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Sheng‐Lian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| |
Collapse
|