1
|
Shen C, Mao Z, Chen T, Wei Y, Zhou T, Zhong N, Zhu G, Shi Q, Xie Z, Zhao H, Zhang X. Design, Synthesis, and Biological Evaluation of 2-Arylaminopyrimidine Derivatives as Dual Cathepsin L and JAK Inhibitors for the Treatment of Acute Lung Injury. J Med Chem 2025; 68:361-386. [PMID: 39699557 DOI: 10.1021/acs.jmedchem.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Acute lung injury (ALI) is a disease characterized by pulmonary inflammation, blood barrier functional disorder, and hypoxemia. Herein, a series of 2-aminopyrimidine derivatives were synthesized. Most of them exhibited inhibitory effects on inflammatory cytokines IL-6 and IL-8 in human bronchial epithelial (HBE) cells at a concentration of 5 μM without significant cytotoxicity. Compound A8 displayed an excellent anti-inflammatory activity, achieving inhibition rates of 83% for IL-6 and 85% for IL-8. Besides, A8 has a strong binding affinity to CTSL and a good inhibitory activity on JAKs. Western blot analysis indicated that compound A8 strongly blocked the maturation of CTSL and the phosphorylation of p-38, p-65, and STATs, thereby repressing the activation of the MAPK, NF-κB, and JAK/STAT signaling pathway. Moreover, animal experiments showed that A8 played a protective and therapeutic role in ALI in mice, validating its potential as a treatment for ALI.
Collapse
Affiliation(s)
- Chunwei Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianpeng Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Tao Zhou
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ningyuan Zhong
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zheyu Xie
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Bakalakou VA, Mavroidi B, Kalampaliki AD, Josselin B, Bach S, Skaltsounis AL, Marakos P, Pouli N, Pelecanou M, Myrianthopoulos V, Ruchaud S, Kostakis IK. The pyrazolo[4,3-c]pyrazole core as a novel and versatile scaffold for developing dual DYRK1A-CLK1 inhibitors targeting key processes of Alzheimer's disease pathology. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 12:100193. [DOI: 10.1016/j.ejmcr.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Defois M, Josselin B, Brindeau P, Krämer A, Knapp S, Anizon F, Giraud F, Ruchaud S, Moreau P. Synthesis and biological evaluation of 1H-pyrrolo[3,2-g]isoquinolines. Bioorg Med Chem 2024; 100:117619. [PMID: 38320389 DOI: 10.1016/j.bmc.2024.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Mathilde Defois
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Brindeau
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
5
|
Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. RSC Med Chem 2023; 14:1400-1409. [PMID: 37593581 PMCID: PMC10429883 DOI: 10.1039/d3md00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
Current cancer chemotherapies rely mainly on the induction of apoptosis of tumor cells, while drug resistance arising from conventional chemicals has always been a big challenge. In recent years, more and more new types of cell deaths including methuosis have been extensively investigated and recognized as potential alternative targets for future cancer treatment. Methuosis is usually caused by excessive accumulation of macropinosomes owing to ectopic activation of macropinocytosis, which can be triggered by external stimuli such as chemical agents. Increasing reports demonstrate that many small molecule compounds could specifically induce methuosis in tumor cells while showing little or no effect on normal cells. This finding raises the possibility of targeting tumor cell methuosis as an effective strategy for the prevention of cancer. Based on fast-growing studies lately, we herein provide a comprehensive overview on the overall research progress of small molecule methuosis inducers. Promisingly, previous efforts and experiences will facilitate the development of next-generation anticancer therapies.
Collapse
Affiliation(s)
- Tao Ye
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao Shandong 266031 P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
6
|
Geng H, Chen F, Zhao Y, Guo B, Tang L, Yang YY. Protecting-Group-Free Synthesis of Meridianin A-G and Derivatives and Its Antibiofilm Evaluation. J Org Chem 2023; 88:3927-3934. [PMID: 36815756 DOI: 10.1021/acs.joc.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, a protecting-group-free protocol was developed to realize a time and step economy diversification of the Meridianin alkaloid. A broad range of substituents are tolerated to deliver the products in moderate to high yields, and the first synthesis of Meridianin B was achieved. The simplicity of this protocol enables the rapid construction of a Meridianin derivative library for antibiofilm evaluation. Preliminary results reveal that Meridianin derivatives were capable of inhibiting the Acinetobacter baumannii biofilm and lowering the antibiotic MIC synergistically.
Collapse
Affiliation(s)
- Huidan Geng
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Fei Chen
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
7
|
Yang T, Yang Y, Chen Y, Tang M, Shi M, Tian Y, Yuan X, Yang Z, Chen L. Rational design and appraisal of selective Cdc2-Like kinase 1 (Clk1) inhibitors as novel autophagy inducers for the treatment of acute liver injury (ALI). Eur J Med Chem 2023; 250:115168. [PMID: 36780830 DOI: 10.1016/j.ejmech.2023.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Autophagy inducers are promising agents for treating certain medical illnesses, while no safe autophagy inducers are in clinical applications. Cdc2-like kinase 1 (Clk1) inhibitors induce autophagy efficiently; however, most Clk1 inhibitors lack selectivity, especially against Dyrk1A kinase. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridin-5-amine derivatives as novel Clk1 inhibitors. Through detailed structural modification and structure-activity relationship studies, compound 10ad shows potent and selective inhibition for Clk1, with an IC50 value of 5 nM and over 300-fold selectivity for Dyrk1A. Related kinase screening also validates the selectivity of compound 10ad. Furthermore, compound 10ad potently induces autophagy in vitro and exhibits significant hepatoprotective effects in the acute liver injury model induced by acetaminophen (paracetamol). In general, due to the excellent potency and selectivity, compound 10ad was worth further investigation in the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yingxue Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Tian
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| |
Collapse
|
8
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
10
|
Boron Trifluoride Etherate Promoted Regioselective 3-Acylation of Indoles with Anhydrides. Molecules 2022; 27:molecules27238281. [PMID: 36500373 PMCID: PMC9741063 DOI: 10.3390/molecules27238281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
An efficient, high-yielding and scalable procedure for the regioselective 3-acylation of indoles with anhydrides promoted by boron trifluoride etherate under mild conditions was reported. This novel protocol provided a simple way to prepare 3-(benzofuran-2-yl) indole in three steps.
Collapse
|
11
|
Exploring the roles of the Cdc2-like kinases in cancers. Bioorg Med Chem 2022; 70:116914. [PMID: 35872347 DOI: 10.1016/j.bmc.2022.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The Cdc2-like kinases (CLKs 1-4) are involved in regulating the alternative splicing of a variety of genes. Their activity contributes to important cellular processes such as proliferation, differentiation, apoptosis, migration, and cell cycle regulation. Abnormal expression of CLKs can lead to cancers; therefore, pharmacological inhibition of CLKs may be a useful therapeutic strategy. This review summarises what is known about the roles of each of the CLKs in cancerous cells, as well as the effects of relevant small molecule CLK inhibitors.
Collapse
|
12
|
Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. Directed C-H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System. J Org Chem 2022; 88:1299-1318. [PMID: 35609297 PMCID: PMC9903333 DOI: 10.1021/acs.joc.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pd(II)-catalyzed C-H arylations of free (NH) indoles including different carbonyl directing groups on C3-position with aryl iodides are demonstrated. Importantly, the reactions are carried out using the same catalyst system without any additional transient directing group (TDG). In this study, the formyl group as a directing group gave the C4-arylated indoles versus C2-arylation. Using this catalyst system, C-H functionalization of 3-acetylindoles provided domino C4-arylation/3,2-carbonyl migration products. This transformation involves the unusual migration of the acetyl group to the C2-position following C4-arylation in one pot. Meanwhile, migration of the acetyl group could be simply controlled and N-protected 3-acetylindoles afforded C4-arylation products without migration of the acetyl group. Functionalization of indole-3-carboxylic acid (or methyl ester) with aryl iodides using the present Pd(II)-catalyst system resulted in decarboxylation followed by the formation of C2-arylated indoles. Based on the control experiments and the literature, plausible mechanisms are proposed. The synthetic utilities of these acetylindole derivatives have also been demonstrated. Remarkably, C4-arylated acetylindoles have allowed the construction of functionalized pityiacitrin (a natural product).
Collapse
|
13
|
Identification of Pharmacophoric Fragments of DYRK1A Inhibitors Using Machine Learning Classification Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061753. [PMID: 35335117 PMCID: PMC8954712 DOI: 10.3390/molecules27061753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Dual-specific tyrosine phosphorylation regulated kinase 1 (DYRK1A) has been regarded as a potential therapeutic target of neurodegenerative diseases, and considerable progress has been made in the discovery of DYRK1A inhibitors. Identification of pharmacophoric fragments provides valuable information for structure- and fragment-based design of potent and selective DYRK1A inhibitors. In this study, seven machine learning methods along with five molecular fingerprints were employed to develop qualitative classification models of DYRK1A inhibitors, which were evaluated by cross-validation, test set, and external validation set with four performance indicators of predictive classification accuracy (CA), the area under receiver operating characteristic (AUC), Matthews correlation coefficient (MCC), and balanced accuracy (BA). The PubChem fingerprint-support vector machine model (CA = 0.909, AUC = 0.933, MCC = 0.717, BA = 0.855) and PubChem fingerprint along with the artificial neural model (CA = 0.862, AUC = 0.911, MCC = 0.705, BA = 0.870) were considered as the optimal modes for training set and test set, respectively. A hybrid data balancing method SMOTETL, a combination of synthetic minority over-sampling technique (SMOTE) and Tomek link (TL) algorithms, was applied to explore the impact of balanced learning on the performance of models. Based on the frequency analysis and information gain, pharmacophoric fragments related to DYRK1A inhibition were also identified. All the results will provide theoretical supports and clues for the screening and design of novel DYRK1A inhibitors.
Collapse
|
14
|
Design, Synthesis and Structure-Activity Relationship Studies of Meridianin Derivatives as Novel JAK/STAT3 Signaling Inhibitors. Int J Mol Sci 2022; 23:ijms23042199. [PMID: 35216314 PMCID: PMC8875316 DOI: 10.3390/ijms23042199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperactivation of Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling is an attractive therapeutic target for tumor therapy. Herein, forty-eight novel meridianin derivatives were designed and synthesized, and their antitumor activity was evaluated in vitro both for activity optimization and structure–activity relationship (SAR) study. The results indicated that most derivatives exhibited significantly improved antitumor activity, especially for compound 6e. The compound 6e contains an isothiouronium linked by an alkyl chain consisting of six carbon atoms with IC50 ranging from 1.11 to 2.80 μM on various cancer cell lines. Consistently, the 6e dose dependently induced the apoptosis of A549 and DU145 cells, in which STAT3 is constitutively active. Western blotting assays indicated that the phosphorylation levels of JAK1, JAK2 and STAT3 were inhibited by 6e at 5 μM without significant change in the total STAT3 level. Moreover, 6e also suppressed the expression of STAT3 downstream genes, including c-Myc, Cyclin D1 and Bcl-XL at 10 μM. An additional in vivo study revealed that 6e at the dose of 10 mg/kg could potently inhibit the DU145 xenograft tumor without obvious body weight loss. These results clearly indicate that 6e could be a potential antitumor agent by targeting the JAK/STAT3 signaling pathway.
Collapse
|
15
|
Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2022; 229:114062. [PMID: 34954592 DOI: 10.1016/j.ejmech.2021.114062] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes. It is located in the region q22.2 of chromosome 21, which is involved in the pathogenesis of Down syndrome (DS). Moreover, DYRK1A has been shown to promote the accumulation of amyloid beta (Aβ) peptides leading to gradual Tau hyperphosphorylation, which contributes to neurodegeneration. Additionally, alterations in the DRK1A expression are also associated with cancer and diabetes. Recent years have witnessed an explosive increase in the development of DYRK1A inhibitors. A variety of novel DYRK1A inhibitors have been reported as potential treatments for human diseases. In this review, the latest therapeutic potential of DYRK1A for different diseases and the novel DYRK1A inhibitors discoveries are summarized, guiding future inhibitor development and structural optimization.
Collapse
Affiliation(s)
- Tong Liu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
17
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases. Mar Drugs 2022; 20:53. [PMID: 35049908 PMCID: PMC8781171 DOI: 10.3390/md20010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet's biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Mind the Byte S.L., 08028 Barcelona, Catalonia, Spain; (L.L.-P.); (A.N.-C.)
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | |
Collapse
|
18
|
Han S, Zhou W, Zhuang C, Chen F. Structure-Based design of Marine-derived Meridianin C derivatives as glycogen synthase kinase 3β inhibitors with improved oral bioavailability: From aminopyrimidyl-indoles to the sulfonyl analogues. Bioorg Chem 2021; 119:105537. [PMID: 34902644 DOI: 10.1016/j.bioorg.2021.105537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) has become an attractive target for the treatment of diabetes. Compound I is an indole-based GSK-3β inhibitor designed from the Meridianin C, a marine natural product (MNP) isolated from Aplidium meridianum. However, this compound has a moderate inhibitory activity toward GSK-3β (IC50 = 24.4 μM), moderate glucose uptake (38%), and especially, a low oral bioavailability (F = 11.4%). In the present study, applying the structure-based design strategy, a series of derivatives modified on the indole moiety were synthesized based on the lead compound I, followed by evaluating their cytotoxic activity, antihyperglycemic activity, and kinase inhibitory activity. Among this series, compound 6x with a sulfonyl group displayed the highest glucose uptake (83.5%) in muscle L6 cells, showing much higher inhibitory activity against GSK-3β (IC50 = 5.25 μM). Molecular docking indicated that compound 6x was properly inserted into the ATP-binding binding pocket of GSK-3β with a higher docking score (-8.145 kcal/mol) compared with that of compound I (-6.950 kcal/mol), interpreting the higher kinase inhibitory activity toward GSK-3β. Remarkably, compound 6x showed favorable drug-like properties, including significantly better oral bioavailability (F = 47.4%) and no two-week acute toxicity at a dose of 1 g/kg. Our findings suggest that these MNP-derived sulfonyl indole derivatives could be used as lead compounds for the development of anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Shuwen Han
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| |
Collapse
|
19
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
20
|
Kumar Jain A, Gupta A, Karthikeyan C, Trivedi P, Dutt Konar A. Unravelling the Selectivity of 6,7-Dimethyl Quinoxaline Analogs for Kinase Inhibition: An Insight towards the Development of Alzheimer's Therapeutics. Chem Biodivers 2021; 18:e2100364. [PMID: 34486216 DOI: 10.1002/cbdv.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Untangling the most selective kinase inhibitors via pharmacological intervention remains one of the challenging affairs to date. In accordance to this drift, herein we describe the design and synthesis of a set of new heterocyclic analogs consisting of 6,7-dimethyl Quinoxaline, appended to a connector, employing Schiff base strategy (Compounds I-IX). The compounds were characterized by various spectroscopic techniques and the kinase inhibition assay were performed on few prime members of the CMGC family namely the GSK3β, DYRK1A and CLK1 receptors, respectively, that have been known to be directly involved in hyperphosphorylation of Tau. Interestingly the biological evaluation results revealed that Compounds IV and V, with bromo/chloro functionalities in the aromatic core were advantaged of being highly selective towards the target GSK3β over others. To strengthen our analysis, we adopted molecular modelling studies, where compounds IV/V were redocked in the same grid 4AFJ, as that of the reference ligand, 5-aryl-4-carboxamide-1,3-oxazole. Surprisingly, our investigation underpinned that for both the compounds IV/V, a primary H-bonding existed between the designed molecules (IV/V) and Val 135 residue in the receptor GSK3β, in line with the reference ligand. We attribute this interaction to instigate potency in the compounds. Indeed the other non-covalent interaction, between the derivative's aromatic nucleus and Arg 141/Thr 138 in the receptor GSK3β, might have been responsible for enhancing the selectivity in the targets. Overall, we feel that the present work depicts a logical demonstration towards fine tuning the efficacy of the inhibitors through systematic adjustment of electron density at appropriate positions in the aromatic ring be it the main quinoxaline or the other aromatic nucleus. Thus this pathway offers a convenient strategy for the development of efficient therapeutics for diversified neurodegenerative diseases like that of Alzheimer's.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Arindam Gupta
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - C Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (MP), 484887, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
- Center of Innovation and Translational Research, BharatiVidyapeeth, Pune, 411038, Maharashtra, India
| | - Anita Dutt Konar
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
- Dept. of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Bhopal, 462033, Madhya Pradesh, India
- University Grants Commission, New Delhi -, 110002, New Delhi, India
| |
Collapse
|
21
|
Design and Microwave Synthesis of New (5 Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5 Z) 2-Amino-5-arylidene-1,3-thiazol-4(5 H)-one as New Inhibitors of Protein Kinase DYRK1A. Pharmaceuticals (Basel) 2021; 14:ph14111086. [PMID: 34832868 PMCID: PMC8623179 DOI: 10.3390/ph14111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the synthesis of libraries of new 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones 3 (twenty-two compounds) and new 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones 5 (twenty-four compounds) with stereo controlled Z-geometry under microwave irradiation. The 46 designed final compounds were tested in order to determine their activity against four representative protein kinases (DYR1A, CK1, CDK5/p25, and GSK3α/β). Among these 1,3-thiazolidin-4-ones, the molecules (5Z) 5-(4-hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one 3e (IC50 0.028 μM) and (5Z)-5-benzo[1,3]dioxol-5-ylmethylene-2-(pyridin-2-yl)amino-1,3-thiazol-4(5H)-one 5s (IC50 0.033 μM) were identified as lead compounds and as new nanomolar DYRK1A inhibitors. Some of these compounds in the two libraries have been also evaluated for their in vitro inhibition of cell proliferation (Huh7 D12, Caco2, MDA-MB 231, HCT 116, PC3, and NCI-H2 tumor cell lines). These results will enable us to use the 1,3-thiazolidin-4-one core as pharmacophores to develop potent treatment for neurological or oncological disorders in which DYRK1A is fully involved.
Collapse
|
22
|
GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:ijms22169098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.
Collapse
|
23
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Recasens A, Humphrey SJ, Ellis M, Hoque M, Abbassi RH, Chen B, Longworth M, Needham EJ, James DE, Johns TG, Day BW, Kassiou M, Yang P, Munoz L. Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discov 2021; 7:81. [PMID: 33863878 PMCID: PMC8052442 DOI: 10.1038/s41420-021-00456-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michael Ellis
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Monira Hoque
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ramzi H Abbassi
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brianna Chen
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mitchell Longworth
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.,Charles Perkins Centre and School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lenka Munoz
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
25
|
Melander RJ, Basak AK, Melander C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat Prod Rep 2020; 37:1454-1477. [PMID: 32608431 PMCID: PMC7677205 DOI: 10.1039/d0np00022a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have historically been a rich source of diverse chemical matter with numerous biological activities, and have played an important role in drug discovery in many areas including infectious disease. Synthetic and medicinal chemistry have been, and continue to be, important tools to realize the potential of natural products as therapeutics and as chemical probes. The formation of biofilms by bacteria in an infection setting is a significant factor in the recalcitrance of many bacterial infections, conferring increased tolerance to many antibiotics and to the host immune response, and as yet there are no approved therapeutics for combatting biofilm-based bacterial infections. Small molecules that interfere with the ability of bacteria to form and maintain biofilms can overcome antibiotic tolerance conferred by the biofilm phenotype, and have the potential to form combination therapies with conventional antibiotics. Many natural products with anti-biofilm activity have been identified from plants, microbes, and marine life, including: elligic acid glycosides, hamamelitannin, carolacton, skyllamycins, promysalin, phenazines, bromoageliferin, flustramine C, meridianin D, and brominated furanones. Total synthesis and medicinal chemistry programs have facilitated structure confirmation, identification of critical structural motifs, better understanding of mechanistic pathways, and the development of more potent, more accessible, or more pharmacologically favorable derivatives of anti-biofilm natural products.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
26
|
Yoon HR, Balupuri A, Choi KE, Kang NS. Small Molecule Inhibitors of DYRK1A Identified by Computational and Experimental Approaches. Int J Mol Sci 2020; 21:E6826. [PMID: 32957634 PMCID: PMC7554884 DOI: 10.3390/ijms21186826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in cell regulation. Abnormal expression and activity of DYRK1A contribute to numerous human malignancies, Down syndrome, and Alzheimer's disease. Notably, DYRK1A has been proposed as a potential therapeutic target for the treatment of diabetes because of its key role in pancreatic β-cell proliferation. Consequently, DYRK1A is an attractive drug target for a variety of diseases. Here, we report the identification of several DYRK1A inhibitors using our in-house topological water network-based approach. All inhibitors were further verified by in vitro assay.
Collapse
Affiliation(s)
| | | | | | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.R.Y.); (A.B.); (K.-E.C.)
| |
Collapse
|
27
|
Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules 2020; 25:molecules25081983. [PMID: 32340326 PMCID: PMC7221803 DOI: 10.3390/molecules25081983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure-activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure-activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human β-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced β-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on β-cell proliferation and cell-specific targeting approach for diabetes therapeutics.
Collapse
|
28
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Liu YA, Jin Q, Zou Y, Ding Q, Yan S, Wang Z, Hao X, Nguyen B, Zhang X, Pan J, Mo T, Jacobsen K, Lam T, Wu TYH, Petrassi HM, Bursulaya B, DiDonato M, Gordon WP, Liu B, Baaten J, Hill R, Nguyen-Tran V, Qiu M, Zhang YQ, Kamireddy A, Espinola S, Deaton L, Ha S, Harb G, Jia Y, Li J, Shen W, Schumacher AM, Colman K, Glynne R, Pan S, McNamara P, Laffitte B, Meeusen S, Molteni V, Loren J. Selective DYRK1A Inhibitor for the Treatment of Type 1 Diabetes: Discovery of 6-Azaindole Derivative GNF2133. J Med Chem 2020; 63:2958-2973. [PMID: 32077280 DOI: 10.1021/acs.jmedchem.9b01624] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autoimmune deficiency and destruction in either β-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting β-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human β-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Zhicheng Wang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bao Nguyen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jianfeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Kate Jacobsen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thanh Lam
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - H Michael Petrassi
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Michael DiDonato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - W Perry Gordon
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Janine Baaten
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Hill
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Vân Nguyen-Tran
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Minhua Qiu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sheryll Espinola
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sukwon Ha
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Karyn Colman
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
30
|
Shi X, Xu W, Wang R, Zeng X, Qiu H, Wang M. Ketone-Directed Cobalt(III)-Catalyzed Regioselective C2 Amidation of Indoles. J Org Chem 2020; 85:3911-3920. [DOI: 10.1021/acs.joc.9b03018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinxia Shi
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weiyan Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Rongchao Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Min Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| |
Collapse
|
31
|
Cho H, Yadav AK, Do Y, Heo M, Bishop-Bailey D, Lee J, Jang BC. Anti‑survival and pro‑apoptotic effects of meridianin C derivatives on MV4‑11 human acute myeloid leukemia cells. Int J Oncol 2019; 56:368-378. [PMID: 31789392 DOI: 10.3892/ijo.2019.4925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Meridianin C is a marine natural product with anticancer activity. Several meridianin C derivatives (compounds 7a‑j) were recently synthesized, and their inhibitory effects on pro‑viral integration site for Moloney murine leukemia virus (PIM) kinases, as well as their antiproliferative effects on human leukemia cells, were reported. However, the anti‑leukemic effects and mechanisms of action of meridianin C and its derivatives remain largely unknown. The aim of the present study was to investigate the effects of meridianin C and its derivatives on MV4‑11 human acute myeloid leukemia cell growth. The parent compound meridianin C did not markedly affect the viability and survival of MV4‑11 cells. By contrast, MV4‑11 cell viability and survival were reduced by meridianin C derivatives, with compound 7a achieving the most prominent reduction. Compound 7a notably inhibited the expression and activity of PIM kinases, as evidenced by reduced B‑cell lymphoma‑2 (Bcl‑2)‑associated death promoter phosphorylation at Ser112. However, meridianin C also suppressed PIM kinase expression and activity, and the pan‑PIM kinase inhibitor AZD1208 only slightly suppressed the survival of MV4‑11 cells. Thus, the anti‑survival effect of compound 7a on MV4‑11 cells was unrelated to PIM kinase inhibition. Moreover, compound 7a induced apoptosis, caspase‑9 and ‑3 activation and poly(ADP‑ribose) polymerase (PARP) cleavage, but did not affect death receptor (DR)‑4 or DR‑5 expression in MV4‑11 cells. Compound 7a also induced the generation of cleaved Bcl‑2, and the downregulation of myeloid cell leukemia (Mcl)‑1 and X‑linked inhibitor of apoptosis (XIAP) in MV4‑11 cells. Furthermore, compound 7a increased eukaryotic initiation factor (eIF)‑2α phosphorylation and decreased S6 phosphorylation, whereas GRP‑78 expression was unaffected. Importantly, treatment with a pan‑caspase inhibitor (z‑VAD‑fmk) significantly attenuated compound 7a‑induced apoptosis, caspase‑9 and ‑3 activation, PARP cleavage, generation of cleaved Bcl‑2 and downregulation of Mcl‑1 and XIAP in MV4‑11 cells. Collectively, these findings demonstrated the strong anti‑survival and pro‑apoptotic effects of compound 7a on MV4‑11 cells through regulation of caspase‑9 and ‑3, Bcl‑2, Mcl‑1, XIAP, eIF‑2α and S6 molecules.
Collapse
Affiliation(s)
- Hyorim Cho
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Youngrok Do
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mihwa Heo
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW 10TU, United Kingdom
| | - Jinho Lee
- Department of Chemistry, College of Life Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
32
|
Xu W, Chen Y, Wang A, Liu Y. Benzofurazan N-Oxides as Mild Reagents for the Generation of α-Imino Gold Carbenes: Synthesis of Functionalized 7-Nitroindoles. Org Lett 2019; 21:7613-7618. [DOI: 10.1021/acs.orglett.9b02893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yulong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
33
|
Kamel MM, Abdel-Hameid MK, El-Nassan HB, El-Khouly EA. Synthesis and Cytotoxicity Evaluation of Novel Indole Derivatives as Potential Anti-Cancer Agents. Med Chem 2019; 15:873-882. [PMID: 30961505 DOI: 10.2174/1573406415666190408125514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Marine sponges and tunicates have been a wealthy source of cytotoxic compounds such as indole alkaloids. Most of the indole alkaloids show in vitro cytotoxic and antineoplastic activities against a wide range of cancer cell lines. OBJECTIVE Three series of bioisosteres of marine indole alkaloids (meridianins) were synthesized and the compounds were tested for their in vitro anti-proliferative activity against HCT-116 cellline. In the design of the targeted analogues, the 2-aminopyrimidine ring of merdianins was replaced with 5-aminopyrazole, pyrazolo[1,5-a]pyrimidine and pyrazolo[3,4-b]pyridine rings. RESULTS The cytotoxic screening of the synthesized compounds revealed that pyrazolo[1,5- a]pyrimidines (compounds 9c and 11a) had the most potent cytotoxic activity with IC50 = 0.31 μM and 0.34 μM respectively. Compounds 9c and 11a were further investigated for their kinase inhibitory potencies toward six kinases (CDK5/p25, CK1ð/ε, GSK-3α/β, Dyrk1A, Erk2, and CLK1). They exhibited effective inhibition of GSK-3α/β (IC50 = 0.196 μM and 0.246 μM, respectively) and Erk2 (IC50 = 0.295 μM and 0.376 μM, respectively). CONCLUSION Meridianins emerged as promising lead structures that need further development to obtain more selective and potent cytotoxic agents. One of these modifications involved the replacement of 2-aminopyrimidinyl ring of meridianins with other heterocyclic rings. Both pyrazolo[ 1,5-a]pyrimidine and pyrazolo[3,4-b]pyridine rings showed promising cytotoxic activity compared to the five membered 5-aminopyrazole.
Collapse
Affiliation(s)
- Mona M Kamel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed K Abdel-Hameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hala B El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Eman A El-Khouly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
34
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
35
|
Plisson F, Piggott AM. Predicting Blood⁻Brain Barrier Permeability of Marine-Derived Kinase Inhibitors Using Ensemble Classifiers Reveals Potential Hits for Neurodegenerative Disorders. Mar Drugs 2019; 17:E81. [PMID: 30699889 PMCID: PMC6410078 DOI: 10.3390/md17020081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The recent success of small-molecule kinase inhibitors as anticancer drugs has generated significant interest in their application to other clinical areas, such as disorders of the central nervous system (CNS). However, most kinase inhibitor drug candidates investigated to date have been ineffective at treating CNS disorders, mainly due to poor blood⁻brain barrier (BBB) permeability. It is, therefore, imperative to evaluate new chemical entities for both kinase inhibition and BBB permeability. Over the last 35 years, marine biodiscovery has yielded 471 natural products reported as kinase inhibitors, yet very few have been evaluated for BBB permeability. In this study, we revisited these marine natural products and predicted their ability to cross the BBB by applying freely available open-source chemoinformatics and machine learning algorithms to a training set of 332 previously reported CNS-penetrant small molecules. We evaluated several regression and classification models, and found that our optimised classifiers (random forest, gradient boosting, and logistic regression) outperformed other models, with overall cross-validated model accuracies of 80%⁻82% and 78%⁻80% on external testing. All 3 binary classifiers predicted 13 marine-derived kinase inhibitors with appropriate physicochemical characteristics for BBB permeability.
Collapse
Affiliation(s)
- Fabien Plisson
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, Mexico.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Andrew M Piggott
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
36
|
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, DuttKonar A. Unravelling the potency of 4,5-diamino-4H-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. NEW J CHEM 2019. [DOI: 10.1039/c8nj04205e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This report describes the design of potent kinase inhibitors by simply fine tuning the surroundings of triazole core with diversified derivatization.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - C. Karthikeyan
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Kyle Douglas McIntosh
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Anita DuttKonar
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| |
Collapse
|
37
|
Park N, Park Y, Ramalingam M, Yadav AK, Cho H, Hong VS, More KN, Bae J, Bishop‐Bailey D, Kano J, Noguchi M, Jang I, Lee K, Lee J, Choi J, Jang B. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J Cell Mol Med 2018; 22:5833-5846. [PMID: 30246484 PMCID: PMC6237585 DOI: 10.1111/jcmm.13854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3. Among the cells tested, meridianin C most strongly reduced the growth of YD-10B cells; the most aggressive and tumorigenic of the cell lines tested. Strikingly, meridianin C induced a significant accumulation of macropinosomes in the YD-10B cells; confirmed by the microscopic and TEM analysis as well as the entry of FITC-dextran, which was sensitive to the macropinocytosis inhibitor amiloride. SEM data also revealed abundant long and thin membrane extensions that resemble lamellipodia on the surface of YD-10B cells treated with meridianin C, pointing out that meridianin C-induced macropinosomes was the result of macropinocytosis. In addition, meridianin C reduced cellular levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. A role for DKK-3 in regulating macropinocytosis in the YD-10B cells was confirmed by siRNA knockdown of endogenous DKK-3, which led to a partial accumulation of vacuoles and a reduction in cell proliferation, and by exogenous DKK-3 overexpression, which resulted in a considerable inhibition of the meridianin C-induced vacuole formation and decrease in cell survival. In summary, this is the first study reporting meridianin C has novel anti-proliferative effects via macropinocytosis in the highly tumorigenic YD-10B cell line and the effects are mediated in part through down-regulation of DKK-3.
Collapse
Affiliation(s)
- Nam‐Sook Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Yu‐Kyoung Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Mahesh Ramalingam
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Anil Kumar Yadav
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Hyo‐Rim Cho
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Victor Sukbong Hong
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Kunal N. More
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Jae‐Hoon Bae
- Department of PhysiologyCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | | | - Junko Kano
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Masayuki Noguchi
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Ik‐Soon Jang
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Kyung‐Bok Lee
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Jinho Lee
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Jong‐Soon Choi
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Byeong‐Churl Jang
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| |
Collapse
|
38
|
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J Med Chem 2018; 61:9791-9810. [PMID: 29985601 DOI: 10.1021/acs.jmedchem.8b00185] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Karishma K Mashelkar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
39
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Kororamides, Convolutamines, and Indole Derivatives as Possible Tau and Dual-Specificity Kinase Inhibitors for Alzheimer's Disease: A Computational Study. Mar Drugs 2018; 16:md16100386. [PMID: 30332805 PMCID: PMC6213646 DOI: 10.3390/md16100386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is becoming one of the most disturbing health and socioeconomic problems nowadays, as it is a neurodegenerative pathology with no treatment, which is expected to grow further due to population ageing. Actual treatments for AD produce only a modest amelioration of symptoms, although there is a constant ongoing research of new therapeutic strategies oriented to improve the amelioration of the symptoms, and even to completely cure the disease. A principal feature of AD is the presence of neurofibrillary tangles (NFT) induced by the aberrant phosphorylation of the microtubule-associated protein tau in the brains of affected individuals. Glycogen synthetase kinase-3 beta (GSK3β), casein kinase 1 delta (CK1δ), dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) and dual-specificity kinase cdc2-like kinase 1 (CLK1) have been identified as the principal proteins involved in this process. Due to this, the inhibition of these kinases has been proposed as a plausible therapeutic strategy to fight AD. In this study, we tested in silico the inhibitory activity of different marine natural compounds, as well as newly-designed molecules from some of them, over the mentioned protein kinases, finding some new possible inhibitors with potential therapeutic application.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
- Mind the Byte S.L., 08007 Barcelona, Catalonia, Spain.
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | | |
Collapse
|
40
|
Pathak A, Rohilla A, Gupta T, Akhtar MJ, Haider MR, Sharma K, Haider K, Yar MS. DYRK1A kinase inhibition with emphasis on neurodegeneration: A comprehensive evolution story-cum-perspective. Eur J Med Chem 2018; 158:559-592. [PMID: 30243157 DOI: 10.1016/j.ejmech.2018.08.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer, the fourth leading cause of death embodies a key responsible event including formation of β-amyloid protein clustering to amyloid plaque on blood vessels. The origin of above events is Amyloid precursor protein (APP) which is an integral membrane protein known for its function in synapses formation. Modern research had proposed that the over expression of DYRK1A (Dual specificity tyrosine phosphorylation regulated kinase1A, a family of protein kinases, positioned within the Down's syndrome critical region (DSCR) on human chromosome 21causes phosphorylation of APP protein resulting in its cleavage to Aβ 40, 42 and tau proteins (regulated by beta and gamma secretase) which plays critical role in early onset of Alzheimer's disease (AD) detected in Down's syndrome (DS), leading to permanent functional and structural deformities which results ultimately into neuro-degeneration and neuronal death. Therefore, DYRK1A emerges as a potential target for prevention of neuro-degeneration and hence Alzheimer. Presently, the treatment methods for Down's syndrome, as well as Alzheimer's disease are extremely biased and represent a major deficiency for therapeutic necessities. We hereby, focus our review on the current status of the research and contributions in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
41
|
Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. J Med Chem 2018; 61:7687-7699. [PMID: 30059217 PMCID: PMC6350255 DOI: 10.1021/acs.jmedchem.8b00658] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo. Since harmine has suboptimal kinase selectivity, we sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity, while retaining human β-cell proliferation capability. We carried out the optimization of the 1-position of harmine and synthesized 15 harmine analogues. Six compounds showed excellent DYRK1A inhibition with IC50 in the range of 49.5-264 nM. Two compounds, 2-2 and 2-8, exhibited excellent human β-cell proliferation at doses of 3-30 μM, and compound 2-2 showed improved kinase selectivity as compared to harmine.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ethan A Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
42
|
Darwish SS, Abdel-Halim M, Salah M, Abadi AH, Becker W, Engel M. Development of novel 2,4-bispyridyl thiophene-based compounds as highly potent and selective Dyrk1A inhibitors. Part I: Benzamide and benzylamide derivatives. Eur J Med Chem 2018; 157:1031-1050. [PMID: 30193214 DOI: 10.1016/j.ejmech.2018.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
The protein kinase Dyrk1A modulates several processes relevant to the development or progression of Alzheimer's disease (AD), e. g. through phosphorylation of tau protein, amyloid precursor protein (APP) as well as proteins involved in the regulation of alternative splicing of tau pre-mRNA. Therefore, Dyrk1A has been proposed as a potential target for the treatment of AD. However, the co-inhibition of other closely related kinases of the same family of protein kinases (e.g. Dyrk1B and Dyrk2) or kinases from other families such as Clk1 limits the use of Dyrk1A inhibitors, as this may cause unpredictable side effects especially over long treatment periods. Herein, we describe the design and synthesis of a series of amide functionalized 2,4-bispyridyl thiophene compounds, of which the 4-fluorobenzyl amide derivative (31b) displayed the highest potency against Dyrk1A and remarkable selectivity over closely related kinases (IC50: Dyrk1A = 14.3 nM; Dyrk1B = 383 nM, Clk1 > 2 μM). This degree of selectivity over the frequently hit off-targets has rarely been achieved to date. Additionally, 31b inhibited Dyrk1A in intact cells with high efficacy (IC50 = 79 nM). Furthermore, 31b displayed a high metabolic stability in vitro with a half-life of 2 h. Altogether, the benzamide and benzylamide extension at the 2,4-bispyridyl thiophene core improved several key properties, giving access to compound suitable for future in vivo studies.
Collapse
Affiliation(s)
- Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
43
|
Kumar K, Man-Un Ung P, Wang P, Wang H, Li H, Andrews MK, Stewart AF, Schlessinger A, DeVita RJ. Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. Eur J Med Chem 2018; 157:1005-1016. [PMID: 30170319 PMCID: PMC6396881 DOI: 10.1016/j.ejmech.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022]
Abstract
The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic β-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine 1 which was found to inhibit DYRK1A with IC50 of 9.41 μM (Kd = 7.3 μM). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (Kd = 71-185 nM). Compound 3-5 induced human β-cell proliferation at 5 μM while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 μM. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Man-Un Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hui Wang
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hailing Li
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary K Andrews
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert J DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
44
|
Huggins WM, Barker WT, Baker JT, Hahn NA, Melander RJ, Melander C. Meridianin D Analogues Display Antibiofilm Activity against MRSA and Increase Colistin Efficacy in Gram-Negative Bacteria. ACS Med Chem Lett 2018; 9:702-707. [PMID: 30034604 DOI: 10.1021/acsmedchemlett.8b00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/25/2018] [Indexed: 01/31/2023] Open
Abstract
In the last 30 years, development of new classes of antibiotics has slowed, increasing the necessity for new options to treat multidrug resistant bacterial infections. Development of antibiotic adjuvants that increase the effectiveness of currently available antibiotics is a promising alternative approach to classical antibiotic development. Reports of the ability of the natural product meridianin D to modulate bacterial behavior have been rare. Herein, we describe the ability of meridianin D to inhibit biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) and to increase the potency of colistin against colistin-resistant and sensitive Gram-negative bacteria. Analogues were identified that are capable of inhibiting and dispersing MRSA biofilms and lowering the colistin MIC to below the CLSI breakpoint against Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli.
Collapse
Affiliation(s)
- William M. Huggins
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - William T. Barker
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - James T. Baker
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Nicholas A. Hahn
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Roberta J. Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Christian Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
45
|
Lim JH, Han YJ, Kim HJ, Kim MY, Park SY, Cho YH, Ryu HM. Integrative analyses of genes and microRNA expressions in human trisomy 21 placentas. BMC Med Genomics 2018; 11:46. [PMID: 29739397 PMCID: PMC5941645 DOI: 10.1186/s12920-018-0361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 11/26/2022] Open
Abstract
Background The most frequent chromosomal aneuploidy is trisomy 21 (T21) that is caused by an extra copy of chromosome 21. The imbalance of whole genome including genes and microRNAs contributes to the various phenotypes of T21. However, the integrative association between genes and microRNAs in the T21 placenta has yet to be determined. Methods We analyzed the expressions of genes and microRNAs in the whole genomes of chorionic villi cells from normal and T21 human fetal placentas based on our prior studies. The functional significances and interactions of the genes and microRNAs were predicted using bioinformatics tools. Results Among 110 genes and 34 microRNAs showing significantly differential expression between the T21 and normal placentas, the expression levels of 17 genes were negatively correlated with those of eight microRNAs in the T21 group. Of these 17 genes, 10 with decreased expression were targeted by five up-regulated microRNAs, whereas seven genes with increased expression were targeted by three down-regulated microRNAs. These genes were significantly associated with hydrogen peroxide-mediated programmed cell death, cell chemotaxis, and protein self-association. They were also associated with T21 and its accompanying abnormalities. The constructed interactive signaling network showed that seven genes (three increased and four decreased expressions) were essential components of a dynamic signaling complex (P = 7.77e-16). Conclusions In this study, we have described the interplay of genes and microRNAs in the T21 placentas and their modulation in biological pathways related to T21 pathogenesis. These results may therefore contribute to further research about the interaction of genes and microRNAs in disease pathogenesis.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - Hyun Jin Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - So Yeon Park
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| | - Hyun Mee Ryu
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea. .,Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea.
| |
Collapse
|
46
|
Llorach-Pares L, Nonell-Canals A, Sanchez-Martinez M, Avila C. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents. Mar Drugs 2017; 15:E366. [PMID: 29186912 PMCID: PMC5742826 DOI: 10.3390/md15120366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 01/12/2023] Open
Abstract
Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium, against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
- Mind the Byte S.L., 08028 Barcelona, Catalonia, Spain.
| | | | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
47
|
Nguyen TL, Fruit C, Hérault Y, Meijer L, Besson T. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: a survey of recent patent literature. Expert Opin Ther Pat 2017; 27:1183-1199. [PMID: 28766366 DOI: 10.1080/13543776.2017.1360285] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a eukaryotic serine-threonine protein kinase belonging to the CMGC group. DYRK1A hyperactivity appears to contribute to the development of a number of human malignancies and to cognitive deficits observed in Down syndrome and Alzheimer's disease. As a result, the DYRK1A kinase represents an attractive target for the synthesis and optimization of pharmacological inhibitors of potential therapeutic interest. Like most tyrosine kinase inhibitors developed up to the market, DYRK1A inhibitors are essentially acting by competing with ATP for binding at the catalytic site of the kinase. Areas covered: This paper reviews patent activity associated with the discovery of synthetic novel heterocyclic molecules inhibiting the catalytic activity of DYRK1A. Expert opinion: Despite the important role of DYRK1A in biological processes and the growing interest in the design of new therapeutic drugs, there are only few patented synthetic DYRK1A inhibitors and most of them were and are still developed by academic research groups, sometimes with industrial partners.
Collapse
Affiliation(s)
- Thu Lan Nguyen
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
- b Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch , Illkirch , France
- c Centre National de la Recherche Scientifique, UMR7104 , Illkirch , France
- d Institut National de la Santé et de la Recherche Médicale, U964 , Illkirch , France
- e Université de Strasbourg , Illkirch , France
| | - Corinne Fruit
- f Normandie Univ , UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014 , Rouen , France
| | - Yann Hérault
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
- b Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch , Illkirch , France
- c Centre National de la Recherche Scientifique, UMR7104 , Illkirch , France
- d Institut National de la Santé et de la Recherche Médicale, U964 , Illkirch , France
- e Université de Strasbourg , Illkirch , France
| | - Laurent Meijer
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
| | - Thierry Besson
- f Normandie Univ , UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014 , Rouen , France
| |
Collapse
|
48
|
Guo Y, Wang SQ, Ding ZQ, Zhou J, Ruan BF. Synthesis, characterization and antitumor activity of novel ferrocene bisamide derivatives containing pyrimidine-moiety. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Sun QZ, Lin GF, Li LL, Jin XT, Huang LY, Zhang G, Yang W, Chen K, Xiang R, Chen C, Wei YQ, Lu GW, Yang SY. Discovery of Potent and Selective Inhibitors of Cdc2-Like Kinase 1 (CLK1) as a New Class of Autophagy Inducers. J Med Chem 2017; 60:6337-6352. [PMID: 28692292 DOI: 10.1021/acs.jmedchem.7b00665] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy inducers represent new promising agents for the treatment of a wide range of medical illnesses. However, safe autophagy inducers for clinical applications are lacking. Inhibition of cdc2-like kinase 1 (CLK1) was recently found to efficiently induce autophagy. Unfortunately, most of the known CLK1 inhibitors have unsatisfactory selectivity. Herein, we report the discovery of a series of new CLK1 inhibitors containing the 1H-[1,2,3]triazolo[4,5-c]quinoline scaffold. Among them, compound 25 was the most potent and selective, with an IC50 value of 2 nM against CLK1. The crystal structure of CLK1 complexed with compound 25 was solved, and the potency and kinase selectivity of compound 25 were interpreted. Compound 25 was able to induce autophagy in in vitro assays and displayed significant hepatoprotective effects in the acetaminophen (APAP)-induced liver injury mouse model. Collectively, due to its potency and selectivity, compound 25 could be used as a chemical probe or agent in future mechanism-of-action or autophagy-related disease therapy studies.
Collapse
Affiliation(s)
- Qi-Zheng Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Gui-Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Lin-Li Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Xi-Ting Jin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Lu-Yi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China.,School of Chemical Engineering, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Guo Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Wei Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University , Tianjin 300071, P.R. China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Guang-Wen Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China.,School of Chemical Engineering, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| |
Collapse
|
50
|
Chirkova ZV, Filimonov SI, Abramov IG. Synthesis of substituted 3-acyl-1-hydroxyindoles and azoles on their basis. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1849-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|