1
|
Patel TR, Ganguly B. The role of linkers and frustrated lewis pairs catalysts in the formation of zwitterionic 1,2-anti-addition product with non-conjugated terminal diacetylenes: A computational study. J Mol Graph Model 2024; 133:108866. [PMID: 39303334 DOI: 10.1016/j.jmgm.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study presents a computational investigation into the mechanistic pathway and the linker units involved in forming the zwitterionic 1,2-anti-addition product of non-conjugated diacetylenes, di(propargyl)ether (DPE), di(prop-2yn-1yl)sulfane (DPS) and 1,6-Heptadiyne (HD) catalyzed by the inter-molecular phosphine/borane frustrated Lewis pairs (FLPs), i.e., PPh2[C6H3(CF3)2](P-CF)/[B(C6F5)3]([B]) and P(o-tolyl)3(P-tol)/[B(C6F5)3]([B]). The potential energy surface (PES) calculations reveal that the anti-addition of P-CF to the internal C-atoms of acetylene units is energetically more favored than that of the addition of P-tol in DPE, DPS, and HD by ∼10.0, ∼9.2, and ∼6.0 kcal/mol, respectively. The calculations performed with DPE contain "-O-," linker unit exhibits superior reactivity than DPS and HD, which suggests the electronegativity of linkers plays a significant role and facilitates the addition of Lewis bases. The higher electronegativity of linker units enables the 1,2-addition reaction by lowering the free energy activation barriers, as observed in the DFT calculations. The Molecular Electrostatic Potential (MESP) study shows that the electrostatic interactions favor the addition of P-CF to the active acetylene positions (C5/C4/C4) of [B]-DPE/DPS/HD-π complexes than the P-tol. The Distortion/Interaction (D/I) analysis reveals that transition states involving P-CF (TS1, TS3, and TS5) exhibit more interaction energy (ΔEInt) and less distortion energies (ΔEd) than that of the P-tol (TS2, TS4, and TS6). Further, the Energy Decomposition Analysis (EDA) also rationalizes the preferential approach of the electron-deficient Lewis base over the electron-rich one on the basis of the significant contribution of orbital interaction energies (ΔEorbital) in the cases of P-CF; TS1, TS3, and TS5. This study suggests that the electronic effects of substrates and the FLPs are crucial to facilitate the desired products formed with non-conjugated terminal alkynes.
Collapse
Affiliation(s)
- Tulsi R Patel
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India, 364 002; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India, 364 002; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Yu X, Wang Y. DFT study on the mechanism of phosphine-catalyzed ring-opening reaction of cyclopropyl ketones. Org Biomol Chem 2024. [PMID: 39523956 DOI: 10.1039/d4ob01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the present study, the mechanism, origin of chemoselectivity, and substituent effects of the phosphine-catalyzed ring-opening reaction of cyclopropyl ketone have been investigated using the DFT method. Multiple pathways, including the formation of hydrofluorenone, the Cloke-Wilson product, and cyclopenta-fused product, were studied and compared. The computational results show that the pathway for the formation of hydrofluorenone is the most favorable one, which involves four processes: nucleophilic substitution to open the three-membered ring, an intramolecular Michael addition for the formation of an enolate intermediate, an intramolecular [1,5]-proton transfer to give ylide, and an intramolecular Wittig reaction to deliver the final product. For disclosing the origin of chemoselectivity, structural analysis and local reactivity index analysis were performed. Moreover, substituent effects were also considered using QTAIM analysis. The current study would provide useful insights for understanding phosphine-catalyzed chemoselective reactions.
Collapse
Affiliation(s)
- Xiaohan Yu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan Province, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, 450001, Zhengzhou, Henan Province, P.R. China.
| |
Collapse
|
3
|
Yan G, Ma J, Qi S, Kirillov AM, Yang L, Fang R. DFT rationalization of the mechanism and selectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols. Phys Chem Chem Phys 2024. [PMID: 39511988 DOI: 10.1039/d4cp01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanism, regioselectivity, and chemoselectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols to give furan-3-carboxylate derivatives were explored by density functional theory (DFT). The obtained results revealed that the first step of the global reaction involves a nucleophilic attack of a pyridine-N-oxide derivative on the catalyst-ligated diynone, forming a vinyl intermediate that can isomerize to an α,α'-dioxo gold carbene upon the cleavage of the N-O bond. In the second step, a nucleophilic addition is also completed via pyridine-N-oxide instead of an alcohol proposed in the experiment. In the following steps, the selective nucleophilic addition of alcohol, 1,2-alkynyl migration, five-membered cyclization, and protodeauration lead to the furan-based products with the regeneration of the gold catalyst. The unique features of regio- and chemoselectivity were investigated in detail by the global reactivity index (GRI) and distortion/interaction analyses. Apart from fully rationalizing the experimental data, the DFT results provide an important contribution to understanding, optimizing, and further developing the related types of organic transformations.
Collapse
Affiliation(s)
- Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
4
|
Alipour B. DFT investigation of the mechanism and role of N-heterocyclic carbene (NHC) in constructing asymmetric organosilanes using NHC-catalyzed [4+2] cycloaddition reaction. RSC Adv 2024; 14:35475-35489. [PMID: 39507686 PMCID: PMC11538972 DOI: 10.1039/d4ra03676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
Herein, the mechanism and origin of stereoselectivity for the asymmetric [4+2] cycloaddition between (E)-3-(p-tolyl)acrylaldehyde (R1) and phenyl-3-(trimethylsilyl)prop-2-en-1-one (R2) in the presence of an N-heterocyclic carbene (NHC) were theoretically scrutinized. The desirable catalytic cycle is characterized by five steps: (1) the coupling reaction of the NHC catalyst with R1, the formation of the Breslow and enolate intermediates in the second and third steps, (4) the formal [4+2] cycloaddition reaction to form the stereoselective C-C bond, and (5) the regeneration of NHC to obtain asymmetric organosilanes. In the most energetically favorable pathway, the formation of the enolate intermediate exhibits the highest energy barrier of about 19.48 kcal mol-1 (Re-TS2BA) and is the rate-determining step. The [4+2] cycloaddition reaction is the stereoselectivity-determining step forming the chiral C-C bond with RR, RS, SR and SS configurations, among which RS is the most desirable configuration. The origin of stereoselectivity was investigated using distortion energy analysis. The first and fourth steps helped in investigating the effects of electron-donating (Me) and electron-withdrawing (Cl) groups on cinnamaldehyde. Conceptual DFT (CDFT) analysis was carried out to confirm the critical role of the NHC catalyst as a Lewis base during the reaction processes.
Collapse
Affiliation(s)
- Batoul Alipour
- Department of Chemistry, Tarbiat Modares University P.O. Box 14115 175 Tehran Iran
| |
Collapse
|
5
|
Bouhaoui A, Moumad A, Domingo LR, Bouissane L. An MEDT Study of the Reaction Mechanism and Selectivity of the Hetero-Diels-Alder Reaction Between 3-Methylene-2,4-Chromandione and Methyl Vinyl Ether. Molecules 2024; 29:5109. [PMID: 39519750 PMCID: PMC11547322 DOI: 10.3390/molecules29215109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The hetero-Diels-Alder (HDA) reaction between the ambident heterodiene 3-methylene-2,4-chromandione (MCDO) and non-symmetric methyl vinyl ether (MVE) is investigated using the molecular electron density theory (MEDT) at the B3LYP/6-311G(d,p) computational level. The aim of this study is to gain insight into its molecular mechanism and to elucidate the factors that control the selectivity found experimentally. DFT-based reactivity indices reveal that MCDO exhibits strong electrophilic characteristics, while MVE displays a strong nucleophilic character. Meanwhile, the Parr function explains the ortho regioselectivity of this HDA reaction. The highly polar nature of this HDA reaction, supported by the high global electron density transfer (GEDT) taking place at the transition state structures (TSs), accounts for the very low activation energy associated with the most favorable TS-4on. The ambident nature of MCDO allows for the formation of two constitutional isomeric cycloadducts. In the case of MVE, pseudocyclic selectivity is attained using a thermodynamic control. This polar HDA reaction displays an endo stereoselectivity and a complete ortho regioselectivity. A comparative relative interacting atomic energy (RIAE) analysis of the two diastereomeric structures TS-4on and TS-6on indicates a high degree of likeness, which explains the low pseudocyclic selectivity under kinetic control.
Collapse
Affiliation(s)
- Abderrazzak Bouhaoui
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco; (A.B.); (A.M.)
| | - Aziz Moumad
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco; (A.B.); (A.M.)
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco; (A.B.); (A.M.)
| |
Collapse
|
6
|
Sadowski M, Dresler E, Zawadzińska K, Wróblewska A, Jasiński R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules 2024; 29:4892. [PMID: 39459260 PMCID: PMC11510298 DOI: 10.3390/molecules29204892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation of nitroethene as well as its methyl- and chloro-substituted analogs can be realized via a single-step mechanism. On the other hand, [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and 1,1-dinitroethene can proceed according to a stepwise mechanism with a zwitterionic intermediate. Finally, we evaluated the affinity of model reaction products for several target proteins: cytochrome P450 14α-sterol demethylase CYP51 (RSCB Database PDB ID: 1EA1), metalloproteinase gelatinase B (MMP-9; PDB ID: 4XCT), and the inhibitors of cyclooxygenase COX-1 (PDB:3KK6) and COX-2 (PDB:5KIR).
Collapse
Affiliation(s)
- Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| | - Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | | | - Aneta Wróblewska
- Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| |
Collapse
|
7
|
Sadowski M, Dresler E, Wróblewska A, Jasiński R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl ( Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules 2024; 29:4876. [PMID: 39459242 PMCID: PMC11510463 DOI: 10.3390/molecules29204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate was investigated using wb97xd/6-311+G(d,p)(PCM) quantum chemical calculations. It was found that the most probable reaction mechanism is fundamentally different from what was previously postulated. In particular, six possible zwitterionic intermediates were detected on the reaction pathway. Their formation is determined by the nature of local nucleophile/electrophile interactions. Additionally, the channel involving the formation of the exo-nitro Diels-Alder cycloadduct was completely ruled out. Finally, the electronic nature of the five- and six-membered nitronates as potential TACs was evaluated.
Collapse
Affiliation(s)
- Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kedzierzyn-Kozle, Poland;
| | - Aneta Wróblewska
- Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
8
|
Mohamed Ahmed MS, Alfraiji RA, Attaby FA, Abdallah ZA. Synthesis, Antimicrobial Evaluation, DFT, in Silico-Docking, and ADMET Investigations of Novel Chromene-Based 2,4-Thiazolidinediones. Chem Biodivers 2024; 21:e202401095. [PMID: 39007423 DOI: 10.1002/cbdv.202401095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Three series of thiazolidinedione (TZD) derivatives (5a-f, 7a-f, and 9a-f) were prepared efficiently. Afterward, the synthesized candidates' antibacterial efficacy against both gram-positive and gram-negative bacteria was assessed. Compounds 7c, 7d, and 7f had values comparable to that of ampicillin, a reference antibiotic, whereas compounds 5c, 5d, and 7e exhibited the greatest values (23.0±1.0, 27.7±0.6, and 20.0±1.0, respectively) against gram-positive bacteria (Staphylococcus aureus). The optimal structure of the produced molecules was determined by DFT computing. To assess the binding energy and elucidate the interaction between the potential candidates and different proteins, in silico docking is employed. ADMET analysis to assess the synthesized compounds' toxicity, metabolism, excretion, distribution, and absorption.
Collapse
Affiliation(s)
| | - Redhab Aj Alfraiji
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Chemistry Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Fawzy A Attaby
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Zeinab A Abdallah
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
9
|
Hmaimou S, Ait Lahcen M, Adardour M, Alanazi MM, Kabra A, Maatallah M, Baouid A. A Stereoselective Synthesis of a Novel α,β-Unsaturated Imine-Benzodiazepine through Condensation Reaction, Crystal Structure, and DFT Calculations. Molecules 2024; 29:4323. [PMID: 39339318 PMCID: PMC11434389 DOI: 10.3390/molecules29184323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The stereoisomers (E)-2,2-dimethyl-4-(4-subsitutedstyryl)-2,3-dihydro-1H-[1,5]-benzodiazepine 3(a-d) were synthesized via the condensation reaction of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (BZD) 1 with the benzaldehyde derivatives 2(a-d) in ethanol. The chemical structure of the prepared products was confirmed by NMR (1H and 13C), HRMS, and X-ray analysis of the crystal structure 3d. The condensation reaction was examined using DFT calculations at the theoretical level of B3LYP/6-31G(d) to elucidate the chemo-, regio-, and stereoselectivity and the reaction mechanism of the produced isomer. Furthermore, we identified each reagent's reactive sites by the measurement of the reactivity indices. We also looked at how the electron-withdrawing groups (EWGs) of various aldehydes affected the reaction's mechanism and the stability of products 3(a-d).
Collapse
Affiliation(s)
- Samir Hmaimou
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech 40001, Morocco; (S.H.); (M.A.L.); (M.A.); (A.B.)
| | - Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech 40001, Morocco; (S.H.); (M.A.L.); (M.A.); (A.B.)
| | - Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech 40001, Morocco; (S.H.); (M.A.L.); (M.A.); (A.B.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali 14041, Punjab, India;
| | - Mohamed Maatallah
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech 40001, Morocco; (S.H.); (M.A.L.); (M.A.); (A.B.)
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech 40001, Morocco; (S.H.); (M.A.L.); (M.A.); (A.B.)
| |
Collapse
|
10
|
Bucher G. Accessing the Cloke-Wilson Rearrangement via Conjugate Addition of Phosphoranes to Michael Acceptors: A Route to Cyclopropanes and 5-Membered Ring Heterocycles Investigated by Density Functional and Ab Initio Theory. J Org Chem 2024; 89:12020-12031. [PMID: 39136640 PMCID: PMC11382343 DOI: 10.1021/acs.joc.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Conjugate addition of unstabilized Wittig-type phosphonium ylides to 1,1-diacceptor- and 1-acceptor-substituted alkenes is investigated by density functional theory and high-level ab initio (DLPNO-CCSD(T)) calculations. The results indicate that the initial conjugate addition step should be facile with barriers predicted to be between 0 and 21 kcal mol-1. Potential intramolecular follow-up reactions include the formation of acceptor-substituted cyclopropanes as well as the formation of dihydrofuran derivatives via intramolecular SN2-type transition state structures. The barriers calculated for these potentially valuable cyclization reactions are substantial with Gibbs free energies of activation between 19 and 40 kcal mol-1. Competing reaction channels include Wittig olefination (for ketones and aldehydes), as well as Claisen condensation reactions. The reaction offers an alternative entry point to the nucleophile-catalyzed Cloke-Wilson rearrangement.
Collapse
Affiliation(s)
- Götz Bucher
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
11
|
Horváth Á, Benkő Z. Phthalazine as a Diene in Diels-Alder Reactions With P- and As-Containing Anionic Dienophiles: Comparison of Possible Reaction Channels. Chempluschem 2024; 89:e202400140. [PMID: 38819996 DOI: 10.1002/cplu.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Phthalazine can behave as a diene in Diels-Alder (DA) cycloadditions, typically at the pyridazine ring, however, its application is somewhat limited because these reactions usually require harsh conditions or sophisticated catalysts. As an unconventional example, phthalazine was reported to undergo cycloaddition with the [PCO]- anion without any catalyst. In this computational study, we scrutinise the mechanism of the DA reactions between phthalazine and the so far known [ECX]- (E: P, As; X: O, S, Se) anions as dienophiles. In principle, the attack of an [ECX]- anion may occur at two different sites of phthalazine, either at the benzene or the pyridazine ring, and both of these possible reaction channels were juxtaposed on the basis of energetic aspects. In all of the investigated cases, the analysis of the energy profiles reveals a clear regioselectivity that favours the attack at the pyridazine ring. As a result, so far unprecedented 2-pnictanaphth-3-olate analogues seem achievable as final products. Comparing the characteristics of these pathways allowed us to clarify the source of this regioselectivity: The pyridazine ring of phthalazine exhibits lower aromaticity than the benzene subring; therefore, in the DA step, the former ring shows a higher affinity toward a dienophile than the latter, leading to lower activation barriers. To further map the electronic and structural features of the cycloaddition steps, the local interactions evolving in the transition states were analysed and compared using global and local descriptors. In most aspects, the characteristics of both pathways were found to be rather similar, in contrast to the markedly differing activation barriers on the two routes.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp 3., H-1111, Budapest, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp 3., H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Műegyetem rkp 3., H-1111, Budapest, Hungary
| |
Collapse
|
12
|
Benselama W, Benchouk W. In silico design based on quantum chemical, molecular docking studies and ADMET predictions of ciprofloxacin derivatives as novel potential antibacterial and antimycrobacterium agents. J Biomol Struct Dyn 2024; 42:7650-7666. [PMID: 37551116 DOI: 10.1080/07391102.2023.2240906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. In this paper, we report the prediction of new ciprofloxacin derivatives by quantum chemical, molecular docking studies and pharmacokinetic properties. Theoretical studies were performed by geometry optimization computation using B3LYP level at 6-311 G (d,p) basis set. The absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters were predicted and the result show that all compounds have a great ADMET profile. To study the antibacterial, anti-Mycobacterium tuberculosis activities, ciprofloxacin and its derivatives were interacted with the proteins: Thymidylate Kinase (PDB: 4QGG), Biotin carboxylase (PDB: 3JZF) and β-lactamase BlaC (PDB: 3N7W). The results of the docking studies indicate that one pharmacophore designed presents a great inhibition behavior against gram-positive organism (4QGG) and significant interactions observed between the compound and ARG48, GLN101, ARG105 and GLU37 residues of 4QGG. Also, another derivative designed present the best inhibition against gram-negative organism (3JZF) several interactions were noticed between the compound and GLY165, ILE287, LEU278, HIS236, HIS209, MET169 and LYS159 residues of (3JZF). As well as, one designed candidate is good inhibitors for β-lactamase (3N7W) multiple no bonded interactions were observed between the compound and SER84, ILE117, ASN186, LYS87, ARG187, ASN186 and THR251 residues of(3N7W). Molecular dynamics (MD) simulation study was also performed for 100 ns to confirm the stability behaviour of the main protein and inhibitor complexes. The MD simulation study validated the stability of three compounds in the protein binding pocket as potent binders. Natural bonding orbital analysis, reactivity indices and molecular electrostatic potential were carried out. The research finding of this study can be helpful to design a new potent antibacterial, antimycrobacterium candidate's drugs that will serve as the basis for future in vitro and in vivo research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Benselama
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
13
|
Lu T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J Chem Phys 2024; 161:082503. [PMID: 39189657 DOI: 10.1063/5.0216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Analysis of electron wavefunction is a key component of quantum chemistry investigations and is indispensable for the practical research of many chemical problems. After more than ten years of active development, the wavefunction analysis program Multiwfn has accumulated very rich functions, and its application scope has covered numerous aspects of theoretical chemical research, including charge distribution, chemical bond, electron localization and delocalization, aromaticity, intramolecular and intermolecular interactions, electronic excitation, and response property. This article systematically introduces the features and functions of the latest version of Multiwfn and provides many representative examples. Through this article, readers will be able to fully understand the characteristics and recognize the unique value of Multiwfn. The source code and precompiled executable files of Multiwfn, as well as the manual containing a detailed introduction to theoretical backgrounds and very rich tutorials, can all be downloaded for free from the Multiwfn website (http://sobereva.com/multiwfn).
Collapse
Affiliation(s)
- Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100024, People's Republic of China
| |
Collapse
|
14
|
Wang W, Huang T, Cao Z, Zhu X, Sun Y, Dong F. Surface Defect-Induced Specific Catalysis Activates 100% Selective Sensing toward Amine Gases at Room Temperature. ACS NANO 2024; 18:23205-23216. [PMID: 39146530 DOI: 10.1021/acsnano.4c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Achieving selective sensing toward target volatile organic compound gases is of vital importance in the fields of air quality assessment, food freshness evaluation, and diagnosis of patients via exhaled breath. However, chemiresistive sensors that exhibit specificity like biological enzymes in a complex environment are rare. Herein, we developed a strategy of optimizing oxygen vacancy structures in tin oxides to induce specific catalysis, activating 100% selective sensing toward amine gases at room temperature. In situ technologies and theoretical calculations reveal that the "donor-receptor" coordination between nitrogen atoms from amine molecules and bridging oxygen vacancies (OVBri)-induced electron-deficient center is the essence of specific catalysis and provides the bridge from the surface oxidation reaction to electrophysical characteristics evolution, which allows the sensor to exhibit amine-specific sensing behavior, even in gas mixtures. Moreover, OVBri enhances the selectivity by enabling a room-temperature sensing pathway where lattice oxygens participate in catalytic oxidation for amine molecules, resulting in record-high sensing values: 19,938.92 toward 100 ppm of triethylamine, 15,236.78 toward trimethylamine, and 123.41 toward diethylamine. Our findings illustrate the feasibility of designing specific active sites through defect engineering and can contribute to the advancement of highly selective sensors based on catalytic processes.
Collapse
Affiliation(s)
- Wu Wang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Taobo Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Zhengmao Cao
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, P. R. China
| | - Fan Dong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, P. R. China
| |
Collapse
|
15
|
Roshni J, Sivakumar M, Alzahrani FM, Halawani IF, Alzahrani KJ, Patil S, Ahmed SSSJ. Virtual screening, molecular dynamics and density functional theory on pain inhibitors against TRPV1 associating inflammatory conditions. J Biomol Struct Dyn 2024; 42:6788-6798. [PMID: 37489910 DOI: 10.1080/07391102.2023.2237595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Transient receptor potential vanilloid 1 protein (TRPV1) is expressed widely in skin and sensory neurons that contribute to pain/heat sensation in the human system. TRPV1 gene polymorphisms are susceptible to multiple diseases and it is considered a therapeutic target for various inflammatory conditions. Among the TRPV1 variants, rs8065080 (1911 A > G) plays a vital role in painful osteoarthritis and migraine. The presence of rs8065080 polymorphism may render drug efficacy. This study aimed to identify better antagonists against wild-type and variant TRPV1 that may help in the relief of pain/inflammation. We constructed suitable TRPV1 protein structures for wild-type and rs8065080 variant through a homology modelling approach. A total of 3363 anti-inflammatory compounds with high chemical diversity and good drug-like properties were collected and screened against the generated structures. Molecular docking showed that nobilamide B had the highest binding affinity (-5.83 kcal/mol) towards the wild-type. Whereas, isoquinoline analogue displayed highest binding potency with the variant TRPV1 (-11.65 kcal/mol). Besides those, C18H15F3N4O showed affinity towards both wild-type (-5.53 kcal/mol) and variant TRPV1 (-9.75 kcal/mol). Then, molecular dynamic simulation revealed stable conformation in wild-type and variant TRPV1 upon binding of nobilmaide B, isoquinoline analogue and C18H15F3N4O. Additionally, density functional theory (DFT) using B3LYP hybrid function showed high chemical reactiveness of nobilamie B, isoquinoline analogue and C18H15F3N4O. Overall, our systematic investigations provide, C18H15F3N4O could be a potential analgesic inhibiting both wild-type and variant TRPV1 against inflammatory conditions.
Collapse
Affiliation(s)
- Jency Roshni
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Mahema Sivakumar
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - Shiek S S J Ahmed
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
16
|
Akonor BG, Aniagyei A, Kwawu CR, Amankwah G, Menkah ES, Adei E. A quantum mechanistic investigation into the unusual reactions of nitrilimine and nitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. J Mol Model 2024; 30:282. [PMID: 39048781 DOI: 10.1007/s00894-024-06074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
CONTEXT The theoretical study investigates the [3 + 2] cycloaddition (32CA) reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. Nitrilimines and nitrile oxides are dipoles used in the synthesis of several heterocyclic compounds, including spiropyrazoline oxindoles and isoxazolines. The derivatives of these compounds are found with different biological activities, such as ion channel blockers, anti-inflammatory and anticancer agents as well as antimalarial. Conceptual density functional theory (CDFT) analysis, along with the activation energies of the 32CA reaction between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone, demonstrates concordance with the empirical findings. The 32CA reaction is found to proceed through a very polar single-step asynchronous mechanism. While deductions from the activation energies of the 32CA reaction between benzonitrile oxide and 2,3,4,5-tetraphenylcyclopentadienone are found to lead to the experimental product, the parr function analysis could not explain the observed chemo- and regioselectivity. This 32CA reaction is also found to proceed through a one-step asynchronous mechanism, though with a non-polar character. The modulation of substituents positioned at the reactive sites of the reactants is found to influence the kinetics, thermodynamics, and CDFT parameters of the two 32CA reactions, consequently impacting the observed selectivities. METHODS The 32CA reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone have been explored theoretically using the density functional theory method at the hybrid ωB97X-D coupled with the split valence triple-ξ (TZ) basis set as implemented in the Gaussian 09. Solvent effects were taken into account by full optimization of the gas phase geometries through the polarizable continuum model developed within the self-consistent reaction field.
Collapse
Affiliation(s)
- Benjamin G Akonor
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Aniagyei
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana.
| | - Caroline R Kwawu
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gabriel Amankwah
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elliot S Menkah
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
17
|
Idrissi KE, Abdoul-Hakim M, Saleh N, Garmes H, Syed A, Ríos-Gutiérrez M, Paray BA, Verma M, Zeroual A, Domingo LR. MEDT analysis of mechanism and selectivities in non-catalyzed and lewis acid-catalyzed diels-alder reactions between R-carvone and isoprene. Sci Rep 2024; 14:16827. [PMID: 39039149 PMCID: PMC11263594 DOI: 10.1038/s41598-024-67351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Within the context of Molecular Electronic Density Theory (MEDT), this study investigates the Diels-Alder reaction among isoprene (2) and R-carvone (1R) applying DFT simulations, with and without Lewis acid (LA) catalysis. The results show that carvone (1R) acts as an electrophile and isoprene (2) as a nucleophile in a polar process. LA catalysis increases the electrophilicity of carvone, thereby improving the reactivity and selectivity of the reaction by reducing the activation Gibbs free energy. Parr functions reveal that the C5=C6 double bond is more reactive than the C9=C10 double bond, indicating chemoselectivity. The examination of the Electron Localization Function (ELF) reveals high regio- and stereoselectivity, indicating an asynchronous mechanism for the LA-catalyzed DA reaction. Furthermore, it is suggested that cycloadduct 3 has great anti-HIV potential because it exhibits lower binding energies than azidothymidine (AZT) in the docking studies of cycloadducts 3 and 4 amongst a primary HIV-1protein (1A8O plus 5W4Q).
Collapse
Affiliation(s)
- Khadija El Idrissi
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
- Analytical Chemistry and Environmental Sciences Team, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Mohamed Abdoul-Hakim
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
- Analytical Chemistry and Environmental Sciences Team, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Hocine Garmes
- Analytical Chemistry and Environmental Sciences Team, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| | - Abdellah Zeroual
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco.
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Liu X, Zhu R, Yang Y, Xue Y, Xu D. Theoretical insights into enantioselective [2 + 1] cyclopropanation reactions of diazo compounds with electron-deficient olefins. J Mol Model 2024; 30:274. [PMID: 39023638 DOI: 10.1007/s00894-024-06079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT The cyclopropane skeleton plays a significant role in bioactive molecules due to its distinctive structural properties. This has sparked keen interest and in-depth exploration in the field of stereoselective synthesis of cyclopropane derivatives. In the present study, the mechanism and the origin of stereoselectivity of diastereodivergent synthesis of cyclopropane derivatives via the catalyst-free [2 + 1]-cyclopropanation reactions of 3-diazo-N-methylindole (R1) with two types of electron-deficient olefins (R2 and R3) in both aqueous and toluene media have been studied using the DFT calculations. The findings indicate that these [2 + 1] cycloaddition reactions proceed in two stages, where the first step is not only the rate-determining step but also critically dictates the stereoselectivity of the product. The calculated diastereomeric ratios are in agreement with the experimental results. Furthermore, by utilizing non-covalent interaction (NCI) analysis and energy decomposition analysis based on molecular force fields (EDA-FF), we elucidated that the electrostatic interactions between reactant fragments in the transition state TS1s for the first step are the predominant factors determining the stereoselectivity, as opposed to the experimentally hypothesized steric hindrance and π-π stacking interactions. METHODS The geometrical structures of all minima and transition states on the potential energy surface (PES) in solvents water and toluene were fully optimized using the DFT method at the M06-2X(D3)/SMD/6-31 + G(d,p) level of theory. Single-point energy calculations were carried out based on the optimized geometries in the solution at the M06-2X(D3)/6-311 + G(d,p) level. All the DFT calculations were performed using the Gaussian 09 software. The optimized molecular structures were visualized using CYLview software. NCI analysis was performed using the Multiwfn and VMD softwares. The Multiwfn program was also used for CDFT and EDA-FF analyses.
Collapse
Affiliation(s)
- Xudong Liu
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Ruyu Zhu
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yongsheng Yang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637100, People's Republic of China
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Dingguo Xu
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
19
|
Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, Idrissi ME, Wong LS, Zeroual A. Chromatography Scrutiny, Molecular Docking, Clarifying the Selectivities and the Mechanism of [3 + 2] Cycloloaddition Reaction between Linallol and Chlorobenzene-Nitrile-oxide. J Fluoresc 2024; 34:1913-1929. [PMID: 37668770 DOI: 10.1007/s10895-023-03411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
Collapse
Affiliation(s)
- Ali Barhoumi
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| | - Kamal Ryachi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mohammed Elalaoui Belghiti
- Laboratory of Physical Chemistry of Materials, Ben M'Sick Faculty of Sciences, Hassan II University, Casablanca, Morocco
- Laboratory of Nernest Technology, 163 Willington Street, Sherbrooke, QC J1H5C7, Canada
| | - Mohammed Chafi
- LIPE, Higher School of Technology, Hassan II University, Casablanca, Morocco
| | - Abdessamad Tounsi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed El Idrissi
- Team of Chemical Processes and Applied Materials, Faculty Polydisciplinary, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Abdellah Zeroual
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| |
Collapse
|
20
|
Hoffmann G, Chermette H, Morell C. Revisiting nucleophilicity: an index for chemical reactivity from a CDFT approach. J Mol Model 2024; 30:232. [PMID: 38937336 DOI: 10.1007/s00894-024-06020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Understanding and predicting the nucleophilic reactivity are paramount in elucidating organic chemical reactions and designing new synthetic pathways. In this study, we propose a nucleophilicity index within the framework of Conceptual Density Functional Theory (CDFT). Through rigorous theoretical formulations, we introduce an original quantum reactivity descriptor that captures the nucleophilic propensity of molecules based on their electronic structure and chemical environment. Subsequently, this proposed index is applied to a series of nucleophiles (pyrrolidines derivatives), spanning a diverse range of chemical functionalities. Our computational assessments reveal insightful correlations between the predicted nucleophilicity index and experimental observations of nucleophilic behavior. Thereby, they offer a promising avenue for advancing the understanding of organic reactivity and guiding synthetic efforts. METHODS Experimentally, Mayr's experimental parameters accounting for nucleophilicity were selected for the pyrrolidines. This study used DFT calculations at the B3LYP/Aug-cc-pVTZ level of theory using the Gaussian 16 program. Geometry optimization was thus performed, and the methodology employed for the computation of quantum reactivity descriptor is presented. Solvent effect was also taken into account using IEFPCM, and empirical dispersion correction (GD3) was employed.
Collapse
Affiliation(s)
- Guillaume Hoffmann
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France.
| | - Henry Chermette
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France
| | - Christophe Morell
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France
| |
Collapse
|
21
|
Dresler E, Wróblewska A, Jasiński R. Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide [3+2] Cycloaddition: An MEDT Computational Study. Molecules 2024; 29:3042. [PMID: 38998997 PMCID: PMC11243562 DOI: 10.3390/molecules29133042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Regioselectivity and the molecular mechanism of the [3+2] cycloaddition reaction between nitro-substituted formonitrile N-oxide 1 and electron-rich alkenes were explored on the basis of the wb97xd/6-311+G(d) (PCM) quantum chemical calculations. It was established that the thermodynamic factors allow for the formation of stable cycloadducts along all considered models. The analysis of the kinetic parameters of the main processes show that all [3+2] cycloadditions should be realized with full regioselectivity. In all cases, the formation of 5-substituted 3-nitro-2-isoxazolidines is clearly preferred. It is interesting that regiodirection is not determined by the local electrophile/nucleophile interactions but by steric effects. From a mechanistic point of view, all considered reactions should be treated as polar, one-step reactions. All attempts to locate the hypothetical zwitterionic intermediates along the cycloaddition paths were, however, not successful.
Collapse
Affiliation(s)
- Ewa Dresler
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Aneta Wróblewska
- Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
22
|
Laru S, Ghoshal S, Sarkar P, Hajra A. Unusual Regioselective C-H Difluoroalkylation of Heteroarenes under Photoredox Catalysis. Org Lett 2024; 26:5098-5104. [PMID: 38847562 DOI: 10.1021/acs.orglett.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We disclose a new general strategy for the site-selective difluoroalkylation of nonprefunctionalized heteroarenes, such as quinoxaline at the C-8 position, and benzothiadiazole, benzoxadiazole, and benzothiazole at the C-4 position via consecutive organophotoredox-catalyzed radical-radical cross-coupling and base-assisted hydrogen abstraction reactions. The current methodology represents a site-selective direct difluoroalkylative strategy to allow broad functional group tolerance and a wide substrate scope in good to excellent yields. Careful experimental investigations and detailed DFT calculations revealed the exact site-selectivity of the heteroarenes and a possible mechanistic pathway.
Collapse
Affiliation(s)
- Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| |
Collapse
|
23
|
Chen X, Zhou R, Du Y, She Y, Yang YF. Mechanistic Insights into Oxidation of Benzaldehyde by Co-Peroxo Complexes. J Org Chem 2024; 89:9019-9026. [PMID: 38831395 DOI: 10.1021/acs.joc.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal-peroxide complexes play a crucial role as intermediates in oxidation reactions. To unravel the mechanism of benzaldehyde oxidation by the Co-peroxo complex, we conducted density functional theory (DFT) calculations. The identified competing mechanisms include nucleophilic attack and hydrogen atom transfer (HAT). The nucleophilic attack pathway involves Co-O cleavage and nucleophilic attack, leading to the formation of the benzoate product. And the HAT pathway comprises O-O cleavage and HAT, ultimately resulting in the benzoate product. DFT calculations revealed that the formation of the end-on Co-superoxo complex 2 through Co-O cleavage, starting from the side-on Co-peroxo complex 1, is much more favorable than the formation of the two-terminal oxyl-radical intermediate 3 through O-O cleavage. Compared with the nucleophilic attack of benzaldehyde by 2, the abstraction of a hydrogen atom from benzaldehyde by 3 requires higher energy. The nature of the nucleophilicity of 2 and 3 accounts for the reactivity of the reaction.
Collapse
Affiliation(s)
- Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongrong Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuxin Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
24
|
Eddahmi M, La Spada G, Domingo LR, Vergoten G, Bailly C, Catto M, Bouissane L. Synthesis, Molecular Electron Density Theory Study, Molecular Docking, and Pharmacological Evaluation of New Coumarin-Sulfonamide-Nitroindazolyl-Triazole Hybrids as Monoamine Oxidase Inhibitors. Int J Mol Sci 2024; 25:6803. [PMID: 38928509 PMCID: PMC11203676 DOI: 10.3390/ijms25126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.
Collapse
Affiliation(s)
- Mohammed Eddahmi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Gérard Vergoten
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Christian Bailly
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| |
Collapse
|
25
|
Domingo LR, Ríos-Gutiérrez M. Revealing the Critical Role of Global Electron Density Transfer in the Reaction Rate of Polar Organic Reactions within Molecular Electron Density Theory. Molecules 2024; 29:1870. [PMID: 38675690 PMCID: PMC11053847 DOI: 10.3390/molecules29081870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The critical role of global electron density transfer (GEDT) in increasing the reaction rate of polar organic reactions has been studied within the framework of Molecular Electron Density Theory (MEDT). To this end, the series of the polar Diels-Alder (P-DA) reactions of cyclopentadiene with cyanoethylene derivatives, for which experimental kinetic data are available, have been chosen. A complete linear correlation between the computed activation Gibbs free energies and the GEDT taking place at the polar transition state structures (TSs) is found; the higher the GEDT at the TS, the lower the activation Gibbs free energy. An interacting quantum atoms energy partitioning analysis allows for establishing a complete linear correlation between the electronic stabilization of the electrophilic ethylene frameworks and the GEDT taking place at the polar TSs. This finding supports Parr's proposal for the definition of the electrophilicity ω index. The present MEDT study establishes the critical role of the GEDT in the acceleration of polar reactions, since the electronic stabilization of the electrophilic framework with the electron density gain is greater than the destabilization of the nucleophilic one, making a net favorable electronic contribution to the decrease in the activation energy.
Collapse
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
26
|
Kim JM, Gao P, Miao Q, Zhao Q, Rahman MM, Chen P, Zhang X, Hu E, Liu P, Zhang JG, Xu W. Tailoring Solvation Solvent in Localized High-Concentration Electrolytes for Lithium||Sulfurized Polyacrylonitrile. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38620048 DOI: 10.1021/acsami.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for lithium-sulfur (Li-S) batteries due to its significantly reduced polysulfide (PS) dissolution compared to that of elemental S cathodes. Although conventional carbonate-based electrolytes are stable with SPAN electrodes, they are unstable with Li metal anodes. Recently, localized high-concentration electrolytes (LHCEs) have been developed to improve the stability of Li anodes. Here, we report a new strategy to further improve the performance of Li||SPAN batteries by replacing the conventional solvating solvent 1,2-dimethoxyethane (DME) in LHCEs with a new solvating solvent, 1,2-diethoxyethane (DEE). The new optimal DEE-LHCE exhibits less reactivity against Li2S2, alleviates PS dissolution, forms a better cathode-electrolyte interphase layer on the SPAN cathode, and enhances SPAN structural reversibility even at elevated temperatures (45 °C). Compared to DME-LHCE, DEE-LHCE with the same salt and diluent leads to better performance in Li||SPAN batteries (with 82.9% capacity retention after 300 cycles at 45 °C), preservation of the SPAN cathode structure, and suppression of volume change of the Li metal anode. A similar strategy on tailoring the solvating solvents in LHCEs can also be used in other rechargeable batteries to improve their electrochemical performances.
Collapse
Affiliation(s)
- Ju-Myung Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peiyuan Gao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Qiushi Miao
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Qian Zhao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Ping Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ji-Guang Zhang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wu Xu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
27
|
Waddar B, Gandi S, Parne SR, Chari VR, Prasanth GR. Investigation of second-order NLO properties of novel 1,3,4-oxadiazole derivatives: a DFT study. J Mol Model 2024; 30:118. [PMID: 38561544 DOI: 10.1007/s00894-024-05910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT In this study, we have developed four new chromophores (TM1-TM4) and performed quantum chemical calculations to explore their nonlinear optical properties. Our focus was on understanding the impact of electron-donating substituents on 1,3,4-oxadiazole derivative chromophores. The natural bond orbital analysis confirmed the interactions between donors and acceptors as well as provided insights into intramolecular charge transfer. We also estimated dipole moment, linear polarizability molecular electrostatic potential, UV-visible spectra, and first hyperpolarizability. Our results revealed that TM1 with a strong and stable electron-donating group exhibited high first hyperpolarizability (β) 293,679.0178 × 10-34 esu. Additionally, TM1 exhibited a dipolar moment (μ) of 5.66 Debye and polarizability (α) of 110.62 × 10-24 esu when measured in dimethyl sulfoxide (DMSO) solvent. Furthermore, in a benzene solvent, TM1 showed a low energy band gap of 5.33 eV by using the ωB97XD functional with a 6-311 + + G(d, p) basis set. Moreover, our study of intramolecular charge transfers highlighted N, N dimethyl triphenylamine and carbazole as major electron-donating groups among the four 1,3,4-oxadiazole derivative chromophores. This research illustrates the potential applications of these organic molecules in photonics due to their versatile nature. METHODS The molecules were individually optimized using different functionals, including APFD, B3LYP, CAM B3LYP, and ωB97XD combined with the 6-311 + + G (d, p) basis set in Gaussian 16 software. These methods encompass long-range functionals such as APFD and B3LYP, along with long-range corrected functionals like CAM B3LYP and ωB97XD. The employed functionals of APFD, B3LYP, CAM B3LYP, and ωB97XD with the 6-311 + + G (d,p) basis set were used to extract various properties such as geometrical structures, dipole moment, molecular electrostatic potential, and first hyperpolarizability through precise density functional theory (DFT). Additionally, TD-DFT was utilized for obtaining UV-visible spectra. All studies have been conducted in both gas and solvent phases.
Collapse
Affiliation(s)
- Balachandar Waddar
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| | - Suman Gandi
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India.
| | - Vishnu Rama Chari
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Gurusiddappa R Prasanth
- Department of Electronics & Communication Engineering, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| |
Collapse
|
28
|
El-Mernissi R, Khaldan A, Bouamrane S, Rehman HM, Alaqarbeh M, Ajana MA, Lakhlifi T, Bouachrine M. 3D-QSAR, molecular docking, simulation dynamic and ADMET studies on new quinolines derivatives against colorectal carcinoma activity. J Biomol Struct Dyn 2024; 42:3682-3699. [PMID: 37227776 DOI: 10.1080/07391102.2023.2214233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Cancer is the uncontrolled spread of abnormal cells that results in abnormal tissue growth in the affected organ. One of the most important organs is exposed to the growth of colon cancer cells, which start in the large intestine (colon) or the rectum. Several therapeutic protocols were used to treat different kinds of cancer. Recently, several studies have targeted tubulin and microtubules due to their remarkable prefoliation. Also, recent research shows that quinoline compounds have significant efficacy against human colorectal cancer. So, the present work investigated the potential of thirty quinoline compounds as tubulin inhibitors using computational methods. A 3D-QSAR approach using two contours (CoMFA and CoMSIA), molecular docking simulation to determine the binding type of the complexes (ligand-receptor), molecular dynamics simulation and identifying pharmacokinetic characteristics were used to design molecules. For all compounds designed (T1-5), molecular docking was used to compare the stability by type of binding. The ADMET has been utilized for molecules with good stability in molecular docking (T1-3); these compounds have good medicinal characteristics. Furthermore, a molecular dynamics simulation (MD) at 100 ns was performed to confirm the stability of the T1-3 compounds; the molecules (T1-3) remained the most stable throughout the simulation. The compounds T1, T2 and T3 are the best-designed drugs for colorectal carcinoma treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reda El-Mernissi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Ayoub Khaldan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Soukaina Bouamrane
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | | | | | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Beni mellal, Morocco
| |
Collapse
|
29
|
Atif M, Barhoumi A, Syed A, Bahkali AH, Chafi M, Tounsi A, Zeroual A, Paray BA, Wang S, El Idrissi M. ADME Study, Molecular Docking, Elucidating the Selectivities and the Mechanism of [4 + 2] Cycloaddition Reaction Between (E)-N ((dimethylamino)methylene)benzothioamide and (S)-3-acryloyl-4-phenyloxazolidin-2-one. Mol Biotechnol 2024:10.1007/s12033-024-01105-w. [PMID: 38456961 DOI: 10.1007/s12033-024-01105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The molecular electron density theory (MEDT) was employed to examine the [4 + 2] cycloaddition reaction between (E)-N-((dimethylamino)methylene)benzothioamide (1) and (S)-3-acryloyl-4-phenyloxazolidin-2-one (2) at the B3LYP/6-311++G(d,p) design level. Parr functions and energy studies clearly show that this reaction is regio- and stereoselective, in perfect agreement with experimental results. By evaluating the chemical mechanism in terms of bond evolution theory (BET) and electron localization function (ELF), which divulges a variety of variations in the electron density along the reaction path, a single-step mechanism with highly asynchronous transition states structures was revealed. Additionally, we conducted a docking study on compounds P1, P2, P3, and P4 in the SARS-CoV-2 main protease (6LU7) in comparison to Nirmatrelvir. Our findings provide confirmation that product P4 may serve as a potent antiviral drug.
Collapse
Affiliation(s)
- Mhamed Atif
- Laboratoire de Génie Environnemental, Ecologique et Agro-Industriel, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ali Barhoumi
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed Chafi
- LIPE, Higher School of Technology, Hassan II University of Casablanca, B.P 8012, Oasis, Morocco
| | - Abdessamad Tounsi
- Laboratoire de Génie Environnemental, Ecologique et Agro-Industriel, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abdellah Zeroual
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco.
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404000, China
| | - Mohammed El Idrissi
- Team of Chemical Processes and Applied Materials, Faculty Polydisciplinary, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| |
Collapse
|
30
|
Xiao Y, Chen X, Jian J, Cheng Y, Zou Y, Su Y, Wu Q, Tang C, Zhang Z, Wang MS, Zheng J, Yang Y. Electrolyte Engineering Empowers Li||CF x Batteries to Achieve High Energy Density and Low Self-Discharge at Harsh Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308472. [PMID: 37946668 DOI: 10.1002/smll.202308472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/08/2023] [Indexed: 11/12/2023]
Abstract
Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.
Collapse
Affiliation(s)
- Yukang Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Xunxin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Junhua Jian
- Research Institute, Ningde Amperex Technology Limited, Ningde, 352100, China
| | - Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yue Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Yu Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Qilong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Chao Tang
- Research Institute, Ningde Amperex Technology Limited, Ningde, 352100, China
| | - Zhongru Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jianming Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| | - Yong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
31
|
Alcázar JJ. Thiophene Stability in Photodynamic Therapy: A Mathematical Model Approach. Int J Mol Sci 2024; 25:2528. [PMID: 38473777 DOI: 10.3390/ijms25052528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Thiophene-containing photosensitizers are gaining recognition for their role in photodynamic therapy (PDT). However, the inherent reactivity of the thiophene moiety toward singlet oxygen threatens the stability and efficiency of these photosensitizers. This study presents a novel mathematical model capable of predicting the reactivity of thiophene toward singlet oxygen in PDT, using Conceptual Density Functional Theory (CDFT) and genetic programming. The research combines advanced computational methods, including various DFT techniques and symbolic regression, and is validated with experimental data. The findings underscore the capacity of the model to classify photosensitizers based on their photodynamic efficiency and safety, particularly noting that photosensitizers with a constant rate 1000 times lower than that of unmodified thiophene retain their photodynamic performance without substantial singlet oxygen quenching. Additionally, the research offers insights into the impact of electronic effects on thiophene reactivity. Finally, this study significantly advances thiophene-based photosensitizer design, paving the way for therapeutic agents that achieve a desirable balance between efficiency and safety in PDT.
Collapse
Affiliation(s)
- Jackson J Alcázar
- Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
32
|
Liang P, Yang H, Wang Y. Elucidating the mechanism and origin of stereoselectivity in the activation/transformation of an acetic ester catalyzed by an N-heterocyclic carbene. Phys Chem Chem Phys 2024; 26:4320-4328. [PMID: 38234281 DOI: 10.1039/d3cp05581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The activation of an ester by N-heterocyclic carbene (NHC) organocatalysis is an efficient and important approach for generating an NHC-bound enolate intermediate, an important active intermediate in the transformation of carbonyl compounds. Herein, we perform a theoretical study on the NHC-catalyzed activation and transformation reaction of an acetic ester in which the NHC-bound enolate intermediate is a key intermediate. Multiple activation and transformation pathways are proposed and analyzed to identify an energetically favorable pathway. The use of different substrates for the reaction is considered. When a chalcone substrate is used, [4+2] cycloaddition between the enolate intermediate and the chalcone is identified to be both the rate- and stereoselectivity-determining step for the reaction, with the R-configured product being generated as the major isomer. Noncovalent interaction (NCI) and atoms-in-molecules (AIM) analyses are performed to identify the origin of the stereoselectivity of the reaction, and a local reactivity analysis is conducted to explore substrate and catalyst effects on the reaction.
Collapse
Affiliation(s)
- Pingxin Liang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Haoran Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| |
Collapse
|
33
|
Flores-Holguín N, Salas-Leiva JS, Núñez-Vázquez EJ, Tovar-Ramírez D, Glossman-Mitnik D. Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View. Molecules 2024; 29:275. [PMID: 38202857 PMCID: PMC10780485 DOI: 10.3390/molecules29010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
This work highlights the significant potential of marine toxins, particularly saxitoxin (STX) and its derivatives, in the exploration of novel pharmaceuticals. These toxins, produced by aquatic microorganisms and collected by bivalve mollusks and other filter-feeding organisms, offer a vast reservoir of chemical and biological diversity. They interact with sodium channels in physiological processes, affecting various functions in organisms. Exposure to these toxins can lead to symptoms ranging from tingling sensations to respiratory failure and cardiovascular shock, with STX being one of the most potent. The structural diversity of STX derivatives, categorized into carbamate, N-sulfocarbamoyl, decarbamoyl, and deoxydecarbamoyl toxins, offers potential for drug development. The research described in this work aimed to computationally characterize 18 STX derivatives, exploring their reactivity properties within marine sponges using conceptual density functional theory (CDFT) techniques. Additionally, their pharmacokinetic properties, bioavailability, and drug-likeness scores were assessed. The outcomes of this research were the chemical reactivity parameters calculated via CDFT as well as the estimated pharmacokinetic and ADME properties derived using computational tools. While they may not align directly, the integration of these distinct datasets enriches our comprehensive understanding of the compound's properties and potential applications. Thus, this study holds promise for uncovering new pharmaceutical candidates from the considered marine toxins.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico; (J.S.S.-L.); (D.G.-M.)
| | - Joan S. Salas-Leiva
- Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico; (J.S.S.-L.); (D.G.-M.)
| | - Erick J. Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.J.N.-V.); (D.T.-R.)
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.J.N.-V.); (D.T.-R.)
| | - Daniel Glossman-Mitnik
- Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico; (J.S.S.-L.); (D.G.-M.)
| |
Collapse
|
34
|
Zeng W, Zhao Y, Zhang F, Li R, Tang M, Chang X, Wang Y, Wu F, Han B, Liu Z. A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons. Nat Commun 2024; 15:160. [PMID: 38167384 PMCID: PMC10761813 DOI: 10.1038/s41467-023-44604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Chemical recycling of plastic wastes is of great significance for sustainable development, which also represents a largely untapped opportunity for the synthesis of value-added chemicals. Herein, we report a novel and general strategy to degrade polyesters via directly breaking the Calkoxy-O bond by nucleophilic substitution of halide anion of ionic liquids under mild conditions. Combined with hydrogenation over Pd/C, 1-butyl-2,3-dimethylimidazolium bromide can realize the deconstruction of various polyesters including aromatic and aliphatic ones, copolyesters and polyester mixtures into corresponding carboxylic acids and alkanes; meanwhile, tetrabutylphosphonium bromide can also achieve direct decomposition of the polyesters with β-H into carboxylic acids and alkenes under hydrogen- and metal-free conditions. It is found that the hydrogen-bonding interaction between ionic liquid and ester group in polyester enhances the nucleophilicity of halide anion and activates the Calkoxy-O bond. The findings demonstrate how polyester wastes can be a viable feedstock for the production of carboxylic acids and hydrocarbons.
Collapse
Affiliation(s)
- Wei Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Rongxiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoqian Chang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengtian Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
35
|
Dresler E, Woliński P, Wróblewska A, Jasiński R. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023; 28:8152. [PMID: 38138640 PMCID: PMC10745654 DOI: 10.3390/molecules28248152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
The molecular mechanism of the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate was evaluated in the framework of the Molecular Electron Density Theory. It was found that independently of the nature of the substituent within the azide molecule, the cycloaddition process is realized via a polar but single-step mechanism. All attempts of localization as postulated earlier by Abu-Orabi and coworkers' zwitterionic intermediates were not successful. At the same time, the formation of zwitterions with an "extended" conformation is possible on parallel reaction paths. The ELF analysis shows that the studied cycloaddition reaction leading to the 1,4-triazole proceeds by a two-stage one-step mechanism. It also revealed that both zwitterions are created by the donation of the nitrogen atom's nonbonding electron densities to carbon atoms of ethyl propiolate.
Collapse
Affiliation(s)
- Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | - Przemysław Woliński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Aneta Wróblewska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lódź, Tamka 12, 91-403 Łódź, Poland;
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| |
Collapse
|
36
|
Barakat A, Alshahrani S, Al-Majid AM, Alamary AS, Haukka M, Abu-Serie MM, Domingo LR, Ashraf S, Ul-Haq Z, Nafie MS, Teleb M. New spiro-indeno[1,2- b]quinoxalines clubbed with benzimidazole scaffold as CDK2 inhibitors for halting non-small cell lung cancer; stereoselective synthesis, molecular dynamics and structural insights. J Enzyme Inhib Med Chem 2023; 38:2281260. [PMID: 37994663 PMCID: PMC11003489 DOI: 10.1080/14756366.2023.2281260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Qi S, Ma J, Yan G, Kirillov AM, Yang L, Fang R. Theoretical Analysis of a Three-Component Reaction between Two Diazo Compounds and a Hydroxylamine Derivative: Mechanism, Enantioselectivity, and Effect of Cooperative Catalysis. J Org Chem 2023. [PMID: 38032356 DOI: 10.1021/acs.joc.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The mechanism, enantioselectivity, and effect of chiral phosphoric acid (CPA) cocatalyst were investigated by the density functional theory (DFT) for the three-component asymmetric aminohydroxylation between two diazo compounds and a hydroxylamine derivative. This type of cascade process is cooperatively catalyzed by Rh2(OAc)4 and CPA. The obtained results clearly indicate that the first step of the global reaction involves a nucleophilic attack at the nitrogen center of N-hydroxyaniline by rhodium-carbene intermediates producing imines. Subsequently, an enolate intermediate was recognized as the key species generated from the second diazo compound and the leaving benzyl alcohol (BnOH) fragment of the first step and in the presence of the same dirhodium catalyst. Then, the reaction is terminated by the asymmetric Mannich-type addition, delivering the aminohydroxylation products of an S-R conformation with the assistance of chiral phosphoric acid. The distortion/interaction analysis shows that the relative distortions of CPA and the enol play a vital role in the energy ordering of the stereocontrolling transition states (TSs). Furthermore, the influence of different substituents in CPA was fully rationalized by distortion/interaction analysis. This study opens up novel synthetic possibilities and improves the reaction predictability when exploring the related types of cooperatively catalyzed organic transformations.
Collapse
Affiliation(s)
- Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
38
|
Islam MS, Al-Majid AM, Haukka M, Parveen Z, Ravaiz N, Wadood A, Rehman AU, Ríos-Gutiérrez M, Domingo LR, Barakat A. A novel alpha-amylase inhibitor-based spirooxindole-pyrrolidine-clubbed thiochromene-pyrzaole pharmacophores: Unveiling the [3+2] cycloaddition reaction by molecular electron density theory. Chem Biol Drug Des 2023; 102:972-995. [PMID: 37563748 DOI: 10.1111/cbdd.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
A novel spirooxindole-pyrrolidine clubbed thiochromene and pyrazole motifs were synthesized by [3+2] cycloaddition (32CA) reactions in one step process starting from the ethylene-based thiochromene and pyrazole scaffolds with the secondary amino-acids and substituted isatins in high yield. The 32CA reaction of AY 10 with ethylene derivative 6 has also been studied with Molecular Electron Density Theory. The high nucleophilic character of AY 10, N = 4.39 eV, allows explaining that the most favorable TS-on is 13.9 kcal mol-1 below the separated reagent. This 32CA, which takes place through a non-concerted one-step mechanism, presents a total ortho regio- and endo stereoselectivity, which is controlled by the formation of two intramolecular H… O hydrogen bonds. The design of spirooxindole-pyrrolidines engrafted thiochromene and pyrazole was tested for alpha-amylase inhibition and show a high efficacy in nanoscale range of reactivity. The key interaction between the most active hybrids and the receptor was studied by molecular docking. The physiochemical properties of the designed spirooxindole-pyrrolidines were carried out by in silico ADMET prediction. The newly synthesized most potent hybrid could be considered as a lead compound for drug discovery development for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
| | | | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nabeela Ravaiz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Flores-Holguín N, Salas-Leiva JS, Núñez-Vázquez EJ, Tovar-Ramírez D, Glossman-Mitnik D. Exploring marine toxins: comparative analysis of chemical reactivity properties and potential for drug discovery. Front Chem 2023; 11:1286804. [PMID: 38025068 PMCID: PMC10646282 DOI: 10.3389/fchem.2023.1286804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Marine toxins, produced by various marine microorganisms, pose significant risks to both marine ecosystems and human health. Understanding their diverse structures and properties is crucial for effective mitigation and exploration of their potential as therapeutic agents. This study presents a comparative analysis of two hydrophilic and two lipophilic marine toxins, examining their reactivity properties and bioavailability scores. By investigating similarities among these structurally diverse toxins, valuable insights into their potential as precursors for novel drug development can be gained. The exploration of lipophilic and hydrophilic properties in drug design is essential due to their distinct implications on drug distribution, elimination, and target interaction. By elucidating shared molecular properties among toxins, this research aims to identify patterns and trends that may guide future drug discovery efforts and contribute to the field of molecular toxinology. The findings from this study have the potential to expand knowledge on toxins, facilitate a deeper understanding of their bioactivities, and unlock new therapeutic possibilities to address unmet biomedical needs. The results showcased similarities among the studied systems, while also highlighting the exceptional attributes of Domoic Acid (DA) in terms of its interaction capabilities and stability.
Collapse
Affiliation(s)
| | | | | | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
| | | |
Collapse
|
40
|
Zhang X, Dai HY, Liu WC, Zeng R, Dai Z, Wang YP, Li JL, Li QZ, Han B. Base-Promoted Formal (3 + 2) Cycloaddition of α-Halohydroxamates with Electron-Deficient Alkenyl-iminoindolines To Synthesize Spiro-indolinepyrrolidinones. J Org Chem 2023; 88:14619-14633. [PMID: 37789599 DOI: 10.1021/acs.joc.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of pyrrolidinyl-spiroindoles with easily available starting materials has attracted considerable attention from the synthesis community and is in great demand. Here, we describe a base-promoted formal (3 + 2) cycloaddition of α-halohydroxamates with alkenyl-iminoindolines. The present methodology features mild reaction conditions and a broad substrate scope with up to 99% yield and excellent diastereoselectivity. The versatility of this approach is demonstrated through valuable synthetic transformations. Preliminary mechanistic studies shed light on the mechanism of this cycloaddition process.
Collapse
Affiliation(s)
- Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hai-Yu Dai
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wan-Cong Liu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Dai
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Ya-Peng Wang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Han
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
41
|
Sivakumar M, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Network-Derived Radioresistant Breast Cancer Target with Candidate Inhibitors from Brown Algae: A Sequential Assessment from Target Selection to Quantum Chemical Calculation. Mar Drugs 2023; 21:545. [PMID: 37888480 PMCID: PMC10608582 DOI: 10.3390/md21100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant progress in early detection and treatment, a few aggressive breast cancers still exhibit resistance to therapy. This study aimed to identify a therapeutic target for radioresistant breast cancer (RRbc) through a protein network from breast cancer genes and to evaluate potent phytochemicals against the identified target. Our approach includes the integration of differential expression genes from expression datasets to create a protein network and to use survival analysis to identify the crucial RRbc protein in order to discover a therapeutic target. Next, the phytochemicals sourced from brown algae were screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation, MM-GBSA, and quantum mechanics against the identified target. As a result of our protein network investigation, the proto-oncogene c-KIT (KIT) protein was identified as a potent radioresistant breast cancer target. Further, phytochemical screening establishes that nahocol-A1 from brown algae has high binding characteristics (-8.56 kcal/mol) against the KIT protein. Then, quantum chemical analysis of nahocol-A1 provided insights into its electronic properties favorable for protein binding. Also, MD simulation comprehends the conformational stability of the KIT-nahocol-A1 complex. Overall, our findings suggest nahocol-A1 could serve as a promising therapeutic candidate for radioresistant breast cancer.
Collapse
Affiliation(s)
- Mahema Sivakumar
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
42
|
Alshahrani S, Al-Majid AM, Alamary AS, Ali M, Altowyan MS, Ríos-Gutiérrez M, Yousuf S, Barakat A. Synthesis and Characterization of New Spirooxindoles Including Triazole and Benzimidazole Pharmacophores via [3+2] Cycloaddition Reaction: An MEDT Study of the Mechanism and Selectivity. Molecules 2023; 28:6976. [PMID: 37836817 PMCID: PMC10574610 DOI: 10.3390/molecules28196976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
A new series of spirooxindoles based on benzimidazole, triazole, and isatin moieties were synthesized via a [3+2] cycloaddition reaction protocol in one step. The single X-ray crystal structure of the intermediate triazole-benzimidazole 4 was solved. The new chemical structures of these spirooxindole molecules have been achieved for the first time. The final synthesized chemical architecture has differently characterized electronic effects. An MEDT study of the key 32CA reaction between in situ generated azomethine ylide (AY) and chalcones explained the low reaction rates and the total selectivities observed. The supernucleophilic character of AY and the strong electrophilicity of chalcones favor these reactions through a highly polar two-stage one-step mechanism in which bond formation at the β-conjugated carbon of the chalcones is more advanced. The present combined experimental and theoretical study reports the synthesis of new spirooxindoles with potential biological activities and fully characterizes the molecular mechanisms for their formation through the key 32CA reaction step.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (A.S.A.); (M.A.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (A.S.A.); (M.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (A.S.A.); (M.A.)
| | - Mohamed Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (A.S.A.); (M.A.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (A.S.A.); (M.A.)
| |
Collapse
|
43
|
Flores-Holguín N, Salas-Leiva JS, Glossman-Mitnik D. Computational Discovery of Marine Molecules of the Cyclopeptide Family with Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1377. [PMID: 37895848 PMCID: PMC10610383 DOI: 10.3390/ph16101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Stellatolides are natural compounds that have shown promising biological activities, including antitumor, antimicrobial, and anti-inflammatory properties, making them potential candidates for drug development. Chemical Reactivity Theory (CRT) is a branch of chemistry that explains and predicts the behavior of chemical reactions based on the electronic structure of molecules. Conceptual Density Functional Theory (CDFT) and Computational Peptidology (CP) are computational approaches used to study the behavior of atoms, molecules, and peptides. In this study, we present the results of our investigation of the chemical reactivity and ADMET properties of Stellatolides A-H using a novel computational approach called Conceptual DFT-based Computational Peptidology (CDFT-CP). Our study uses CDFT and CP to predict the reactivity and stability of molecules and to understand the behavior of peptides at the molecular level. We also predict the ADMET properties of the Stellatolides A-H to provide insight into their effectiveness, potential side effects, and optimal dosage and route of administration, as well as their biological targets. This study sheds light on the potential of Stellatolides A-H as promising candidates for drug development and highlights the potential of CDFT-CP for the study of other natural compounds and peptides.
Collapse
|
44
|
Das D, Bharadwaz P, Mattaparthi VSK. Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions. J Biomol Struct Dyn 2023; 42:11471-11482. [PMID: 37768058 DOI: 10.1080/07391102.2023.2262599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's disease (PD) is associated with α-synuclein (α-Syn), a presynaptic protein that binds to cell membranes. The molecular pathophysiology of PD most likely begins with the binding of α-Syn to membranes. Recently, two peptidomimetic inhibitors (NPT100-18A and NPT200-11) were identified to potentially interact with α-Syn and affect the interaction of α-Syn with the membrane. In this study, the effect of the two peptidomimetic inhibitors on the α-Syn-membrane interaction was demonstrated. DFT calculations were performed for optimization of the two inhibitors, and the nucleophilicity (N) and electrophilicity (ω) of NPT100-18A and NPT200-11 were calculated to be 3.90 and 3.86 (N); 1.06 and 1.04 (ω), respectively. Using the docking tool (CB-dock2), the two α-Syn-peptidomimetic inhibitor complexes (α-Syn-NPT100-18A and α-Syn-NPT200-11) have been prepared. Then all-atom molecular dynamics (MD) simulation was carried out on the α-Syn (control), α-Syn-NPT100-18A and α-Syn-NPT200-11 complex systems in presence of DOPE: DOPS: DOPC (5:3:2) lipid bilayer. From the conformational dynamics analysis, the 3-D structure of α-Syn was found to be stable, and the helices present in the regions (1-37) and (45-95) of α-Syn were found to be retained in the presence of the two peptidomimetic inhibitors. The electron density profile analysis revealed the binding modes of NAC and C-terminal region of α-Syn (in the presence of NPT200-11 inhibitor) with lipid membrane are in the close vicinity from the lipid bilayer centre. Our findings in this study on α-Syn-membrane interactions may be useful for developing a new therapeutic approach for treating PD and other neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorothy Das
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Priyam Bharadwaz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
45
|
Flores-Holguín N, Salas-Leiva JS, Glossman-Mitnik D. Talarolide A and Talaropeptides A-D: Potential Marine-Derived Therapeutic Peptides with Interesting Chemistry and Biological Activity Studied through Density Functional Theory (DFT) and Conceptual DFT. Molecules 2023; 28:6708. [PMID: 37764483 PMCID: PMC10536153 DOI: 10.3390/molecules28186708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecules sourced from marine environments hold immense promise for the development of novel therapeutic drugs, owing to their distinctive chemical compositions and valuable medicinal attributes. Notably, Talarolide A and Talaropeptides A-D have gained recent attention as potential candidates for pharmaceutical applications. This study aims to explore the chemical reactivity of Talarolide A and Talaropeptides A-D through the application of molecular modeling and computational chemistry techniques, specifically employing Conceptual Density Functional Theory (CDFT). By investigating their chemical behaviors, the study seeks to contribute to the understanding of the potential pharmacological uses of these marine-derived compounds. The molecular geometry optimizations and frequency calculations were conducted using the Density Functional Tight Binding (DFTBA) method. This was followed by a subsequent round of geometry optimization, frequency analysis, and computation of electronic properties and chemical reactivity descriptors. We employed the MN12SX/Def2TZVP/H2O model chemistry, utilizing the Gaussian 16 program and the SMD solvation model. The analysis of the global reactivity descriptors arising from CDFT was achieved as well as the graphical comparison of the dual descriptor DD revealing the areas of the molecules with more propensity to suffer a nucleophilic or electrophilic attack. Additionally, Molinspiration and SwissTargetPrediction were considered for the calculation of molecular characteristics and predicted biological targets. These include enzymes, nuclear receptors, kinase inhibitors, GPCR ligands, and ion channel modulators. The graphical results show that Talarolide A and the Talaropeptides A-D are likely to behave as protease inhibitors.
Collapse
|
46
|
Sinha S, Das A, Giri S. Insights into the catalytic activity of boron-doped thiazoles in the Diels-Alder reaction. Phys Chem Chem Phys 2023; 25:23708-23716. [PMID: 37614158 DOI: 10.1039/d3cp02441e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The role of boron-doped thiazoles as a Lewis acid catalyst in [4+2] cycloaddition reaction between 1,3-butadiene and acrolein has been addressed. Three different organic heterocycles were designed to study their catalytic activity. It has been observed that these heterocycles efficiently work as catalysts than the well-known Lewis acid BF3. All the reactions follow the normal electron demand process and are exothermic. Different conceptual DFT-based reactivity descriptors and electronic structure principles such as maximum hardness and minimum electrophilicity lend additional support to the feasibility of the reaction mechanism. The reaction force (RF), reaction electronic flux (REF), and its different components exhibit a detailed electronic activity throughout the reaction.
Collapse
Affiliation(s)
- Swapan Sinha
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
- Maulana Abul Kalam Azad University of Technology, Haringhata, 741249, India
| | - Abhishek Das
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| |
Collapse
|
47
|
Boutadghart T, Ghailane R. A molecular electron density theory study of asymmetric Diels-Alder [4 + 2] reaction's mechanism of furan with three substituted alkynes (5-R substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one). J Mol Model 2023; 29:290. [PMID: 37612461 DOI: 10.1007/s00894-023-05665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
CONTEXT The [4 +2 ] cycloaddition reactions between furan and three substituted alkynes (5-R-substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one) have been investigated using the MEDT approach. Reactivity indices, reaction pathways, and activation energies are calculated. In an investigation of conceptual DFT indices, furan acts as a nucleophile, while the three substituted alkynes (5-R-substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one) function as electrophiles in this reaction. The cycloaddition is regioiselective, as demonstrated by the activation and reaction energies, in clear agreement with the experiment's results. Hetero Diels-Alder [4 + 2] cycloadditions occur following a non-concerted two stages one-step molecular mechanism. METHODS For the purpose of this study, all calculations were performed using the Gaussian 09 software. Optimization was achieved through Berny's computational gradient optimization method, employing the B3LYP functional and the 6-31G(d) basis set. Analysis of both local and global reactivity indices provided insights into the reactivity tendencies of the reactants, distinguishing between electrophilic and nucleophilic characteristics via Parr functions. Frequency calculations were employed to identify and characterize stationary points, with transition states indicated by a single imaginary frequency and positive values of all frequencies for reactants and product. The electron localization function (ELF) was investigated using the Multiwfn software within the context of topological analyses.
Collapse
Affiliation(s)
- Tarik Boutadghart
- Laboratory of Organic Chemistry, Catalysis and Environment, Unit of Theoretical Chemistry and Modeling, Faculty of Sciences, University of Ibn Tofail, Po Box 133, 14000, Kenitra, Morocco
| | - Rachida Ghailane
- Laboratory of Organic Chemistry, Catalysis and Environment, Unit of Theoretical Chemistry and Modeling, Faculty of Sciences, University of Ibn Tofail, Po Box 133, 14000, Kenitra, Morocco.
| |
Collapse
|
48
|
Gong K, Xu F, Zhao Z, Li W, Liu D, Zhou X, Wang L. Theoretical investigation on the functional group modulation of UV-Vis absorption profiles of triphenylamine derivatives. Phys Chem Chem Phys 2023; 25:22002-22010. [PMID: 37555282 DOI: 10.1039/d3cp01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Understanding the functional group modulation of electronic structure and excitation is pivotal to the design of organic small molecules (OSMs) for photoelectric applications. In this study, we employed density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to explore the unique absorption character of four triphenylamine photosensitizers. The various conformations were investigated given the multiple single bonds in the compounds, and the resemblance in the electronic structure of different conformations is affirmed because the coplanarity and consequent long-range conjugation is maintained regardless of the orientation of the flexible blocks. Six functionals were evaluated, and MN15 was found to successfully reproduce the intense secondary absorption peak for the double 3,4-ethylenedioxythiophene (EDOT) modified sensitizer over B3LYP, PBE0, M062X, CAM-B3LYP, and ωB97XD. The introduction of EDOT gives rise to a new excited state S4, which is a local excitation constrained in the EDOT substituent triphenylamine block. This new excited state S4, in combination with inherent S2 and S3 derived from prototype molecule TPA-Pyc, jointly contributes to the hump of the secondary absorption peak of ETE-Pyc and finally affects the light-harvesting ability of the dye-sensitized TiO2 photoanode. The current findings provide guidance toward the rational design of OSMs with good light-harvest ability.
Collapse
Affiliation(s)
- Kun Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Fang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Zhen Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Xueqin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Lichang Wang
- Department of Chemistry and Biochemistry; and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
49
|
Dresler E, Wróblewska A, Jasiński R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels-Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023; 28:5289. [PMID: 37513163 PMCID: PMC10386420 DOI: 10.3390/molecules28145289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The molecular mechanism of the Diels-Alder reaction with the participation of cyclopentadiene and isopropyl 3-nitroprop-2-enate was examined based on wb97xd/6-311+G(d) (PCM) quantum chemical calculations. It was found that the type of mechanism for the conversion of addends depends significantly on the reaction conditions. In less-polar environments, a one-step polar mechanism is realised. In more polar solvents, the formation of "extended"-type zwitterionic intermediates is possible. In contrast, in the presence of an LA-type catalyst, the one-step mechanisms are replaced by respective stepwise mechanisms with zwitterionic or heterocyclic intermediates.
Collapse
Affiliation(s)
- Ewa Dresler
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
50
|
González B, Veiga N, Hernández G, Seoane G, Carrera I. Reactivity of the Iboga Skeleton: Oxidation Study of Ibogaine and Voacangine. JOURNAL OF NATURAL PRODUCTS 2023; 86:1500-1511. [PMID: 37221656 DOI: 10.1021/acs.jnatprod.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The iboga alkaloids scaffold shows great potential as a pharmacophore in drug candidates for the treatment of neuropsychiatric disorders. Thus, the study of the reactivity of this type of motif is particularly useful for the generation of new analogs suitable for medicinal chemistry goals. In this article, we analyzed the oxidation pattern of ibogaine and voacangine using dioxygen, peroxo compounds, and iodine as oxidizing agents. Special focus was placed on the study of the regio- and stereochemistry of the oxidation processes according to the oxidative agent and starting material. We found that the C16-carboxymethyl ester present in voacangine stabilizes the whole molecule toward oxidation in comparison to ibogaine, especially in the indole ring, where 7-hydroxy- or 7-peroxy-indolenines can be obtained as oxidation products. Nevertheless, the ester moiety enhances the reactivity of the isoquinuclidinic nitrogen to afford C3-oxidized products through a regioselective iminium formation. This differential reactivity between ibogaine and voacangine was rationalized using computational DFT calculations. In addition, using qualitative and quantitative NMR experiments combined with theoretical calculations, the absolute stereochemistry at C7 in the 7-hydroxyindolenine of voacangine was revised to be S, which corrects previous reports proposing an R configuration.
Collapse
Affiliation(s)
- Bruno González
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gonzalo Hernández
- Laboratorio de Resonancia Magnética Nuclear, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| |
Collapse
|