1
|
Dorney K, Shropshire NS, Adams DG, Zandi A, Baker J, Brittle S, Kanel S, Hooshmand N, Pavel IE. Ecofriendly Filtration of Silver Nanoparticles for Ultrasensitive Surface-Enhanced (Resonance) Raman Spectroscopy-Based Detection. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16563-16575. [PMID: 39380975 PMCID: PMC11457218 DOI: 10.1021/acs.jpcc.4c03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
In this study, a widely used colloid of Creighton AgNPs (ORI, 1-100 nm, mostly ≤ 40 nm, ∼10 μg mL-1) was rapidly manipulated via tangential flow filtration (TFF) for highly reproducible surface-enhanced (resonance) Raman spectroscopy (SE(R)RS) experiments down to the single-molecule (SM) level. The quasi-spherical AgNPs were size-selected, purified, and concentrated in two TFF fractions of a cutoff diameter of ∼40 nm: AgNP ≤ 40 (∼900 μg mL-1) and AgNP ≥ 40 (∼100 μg mL-1). The SE(R)S-based sensing capabilities of the two TFF fractions were then tested under pre-resonance (632.8 nm) and resonance (532.1 nm) excitation conditions for rhodamine 6G (R6G, 10-6-10-15 M). Both TFF isolates, AgNP ≤ 40 and AgNP ≥ 40, were more effective in adsorbing the R6G analyte (≥91%) than the original colloid (≥78%) at submonolayer coverages. Furthermore, the surface enhancement factors (SEF) of the two TFF fractions were markedly superior to those of ORI under all excitation conditions. SERS at 632.8 nm: only AgNP ≥ 40 enabled the detection of R6G at 10-9 M and produced the largest SEF (2.1 × 106). SE(R)RS and SM-SERRS at 532.1 nm: AgNP ≥ 40 gave rise to the largest SEF values (2.5 × 1010) corresponding to the SM regime down to 10-15 M of R6G. Nevertheless, AgNP ≤ 40 compensated for the size-dependence of the electromagnetic enhancements by an increase in the silver concentration, which led to SEF values comparable to those of AgNP ≥ 40 through additional resonance enhancements. TFF resulted into a ∼100-fold increase (AgNP ≤ 40) in the number of negatively charged AgNPs that were available to electrostatically bridge R6G cations and form SERRS "hot-spots" (AgNP-R6G-AgNP) within the focal volume. Evidently, the interplay between AgNP size, AgNP concentration, and excitation wavelength governs the SE(R)RS enhancements. This study demonstrated that TFF can facilitate the ecofriendly isolation of spherical AgNPs of controlled morphological and plasmonic properties for further enhancing their sensing capabilities as SE(R)RS substrates.
Collapse
Affiliation(s)
- Kevin
M. Dorney
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Nicholas S. Shropshire
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Daniel G. Adams
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Ashkan Zandi
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, United States
| | - Joshua Baker
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Seth Brittle
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Sushil Kanel
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
- UES, 4401 Dayton Xenia Rd, Beavercreek, Ohio 45432, United States
| | - Nasrin Hooshmand
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Ioana E. Pavel
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
2
|
Parambath JBM, Vijai Anand K, Alawadhi H, Mohamed AA. Impact of Graphene Oxide on SERS Enhancement of Arylated Gold Nanospheres: Mechanistic Insight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17675-17688. [PMID: 39120713 DOI: 10.1021/acs.langmuir.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The performance of gold nanospheres as substrates for surface-enhanced Raman spectroscopy (SERS) investigation has been compromised by their low adsorption efficiency, high colloidal dispersibility, and diminishing hot spots. However, gold nanosphere substrates modified using aryldiazonium gold(III) chemistry via durable gold-carbon bonds are promising for SERS enhancement due to their controlled organic layer density. In this study, arylated gold nanospheres AuNSs-COOH have shown SERS enhancement when incorporated into graphene oxide (GO) to form nanocomposites (NCs) labeled AuNSs-COOH/GO (AuNCs). Our investigation using X-ray photoelectron spectroscopy (XPS) surface analysis showed that the gold-aryl nanospheres reached their maximum SERS enhancement with an optimal coating. The evaluation included the Au 4f chemical environment and compact graphitic layers for the SERS substrate optimization. The fabricated AuNC substrates demonstrated superior efficiency and reproducibility. A broad linear range of 10-3-10-7 M 4-nitrophenol detection was obtained with exceptional repeatability, as evidenced by the relative standard deviation (RSD) of 9.32%. A detailed investigation of the energy profiles, particularly the valence band maximum (VBM) and band gap values of the substrate and analyte, depicted the electromagnetic (EM) and charge-transfer-induced enhancement and the role of GO inclusion in substrate efficiency in SERS enhancement mechanisms. The finite-difference time domain (FDTD) simulation results revealed that AuNCs incorporated with graphitic nanostructures exhibited the most substantial SERS effect through an EM field enhancement mechanism. This study demonstrated significant SERS enhancement using gold-aryl nanospheres when modified with GO, in contrast to the typical reliance on anisotropic nanostructures.
Collapse
Affiliation(s)
- Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
- Department of Chemistry, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics & Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A Mohamed
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Kamimura R, Maeda S, Hayashi T, Motobayashi K, Ikeda K. Why Is Surface-Enhanced Raman Scattering Insensitive to Liquid Water? J Am Chem Soc 2024; 146:22327-22334. [PMID: 39102527 DOI: 10.1021/jacs.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is widely recognized as a remarkably powerful analytical technique that enables trace-level detection of organic molecules on a metal surface in aqueous systems with negligible spectral interference of water. This insensitivity of SERS to liquid water is violated in a restrictive manner under specific electrochemical conditions. However, the origin of such different SERS sensitivities to liquid water remains unclear. Here, we show that hydrogen-bond networks of water play a pivotal role in losing SERS enhancement for liquid water, and SERS detection of water requires local defects in the hydrogen-bond networks, which are formed around hydration shells of solute ions or on a polarized electrode surface. This work gives a new perspective on in situ SERS investigations in aqueous systems, including electrochemical and biological reactions.
Collapse
Affiliation(s)
- Ryuto Kamimura
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kenta Motobayashi
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Katsuyoshi Ikeda
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Chaudhry I, Hu G, Ye H, Jensen L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS NANO 2024. [PMID: 39087679 DOI: 10.1021/acsnano.4c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM. To elucidate the rich information contained in SERS spectra about molecules at interfaces, a comprehensive understanding of the enhancement mechanisms is necessary. In this Perspective, we discuss the current understanding of the enhancement mechanisms and highlight their interplay in complex local environments. We will also discuss emerging areas where the development of computational and theoretical models is needed with specific attention given to how the CM contributes to the spectral changes. Future efforts in modeling should focus on overcoming the challenges presented in this review in order to capture the complexity of CM in SERS.
Collapse
Affiliation(s)
- Imran Chaudhry
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Hepeng Ye
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
6
|
Wustholz KL, Svoboda SA, Martin MG, Steinman BT, Zheng Z. Uncovering Art's Vanishing Hues with Surface-Enhanced Raman Scattering: Drawing Inspiration from the Past for the Future. ACS NANO 2024; 18:17369-17377. [PMID: 38922293 PMCID: PMC11238617 DOI: 10.1021/acsnano.4c05389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aesthetic and historical significance of art is well recognized; art can stoke emotions, invite close inquiry, and connect us to the past. However, works of art are also complex material objects that present unique challenges and opportunities for the scientific community. Identifying "fugitive" organic pigments in traditional oil paintings, for example, presents a particularly complex analytical challenge that is critical to address for their conservation and long-term preservation. In this Perspective, we discuss the benefits and technical challenges of applying surface-enhanced Raman scattering (SERS) spectroscopy to the ultrasensitive identification of fugitive pigments in paintings as well as future developments in SERS we envision that are inspired by the past.
Collapse
Affiliation(s)
- Kristin L Wustholz
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187, United States
| | - Shelley A Svoboda
- Paintings Conservation, Colonial Williamsburg Foundation, Williamsburg, Virginia 23187, United States
| | - Meredith G Martin
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187, United States
| | - Benjamin T Steinman
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187, United States
| | - Zhaoyun Zheng
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187, United States
| |
Collapse
|
7
|
Lane LA, Zhang J, Wang Y. AMP coated SERS NanoTags with hydrophobic locking: Maximizing brightness, stability, and cellular targetability. J Colloid Interface Sci 2024; 663:295-308. [PMID: 38402824 DOI: 10.1016/j.jcis.2024.02.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Developing innovative surface-enhanced Raman scattering (SERS) nanotags continues to attract significant attention due to their unparalleled sensitivity and specificity for in vitro diagnostic and in vivo tumor imaging applications. Here, we report a new class of bright and stable SERS nanotags using alkylmercaptan-PEG (AMP) polymers. Due to its amphiphilic structure and a thiol anchoring group, these polymers strongly absorb onto gold nanoparticles, leading to an inner hydrophobic layer and an outer hydrophilic PEG layer. The inner hydrophobic layer serves to "lock in" the Raman reporter molecules adsorbed on the particle surface via favorable hydrophobic interactions that also allow denser PEG coatings, which "lock out" other molecules from competitive binding or adsorbing to the gold surface, thereby providing superior colloidal and signal stability. The higher grafting densities of AMP polymers compared to conventional thiolated PEG also led to dramatic increases in cellular target selectivity, with specific-to-nonspecific binding ratios reaching beyond an order of magnitude difference. Experimental evaluations and theoretical considerations of dielectric polarization and light scattering indicate that the hydrophobic layer provides a more favorable dielectric environment with less plasmon dampening, greater particle scattering efficiency, and increased Raman reporter polarizability. Accordingly, SERS nanotags with AMP polymer coatings are observed to be considerably brighter (∼10-fold). Furthermore, the AMP-coated SERS nanotag's increased intensity and avidity can boost cellular detection sensitivity by nearly two orders of magnitude.
Collapse
Affiliation(s)
- Lucas A Lane
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Jinglei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Jiangsu Province 210093, China.
| |
Collapse
|
8
|
Hernandez S, Perez-Estebanez M, Cheuquepan W, Perales-Rondon JV, Heras A, Colina A. Raman, UV-Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations. Anal Chem 2023; 95:16070-16078. [PMID: 37871281 PMCID: PMC10633809 DOI: 10.1021/acs.analchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Raman signal enhancement is fundamental to develop different analytical tools for chemical analysis, interface reaction studies, or new materials characterization, among others. Thus, phenomena such as surface-enhanced Raman scattering (SERS) have been used for decades to increase the sensitivity of Raman spectroscopy, leading to a huge development of this field. Recently, an alternative method to SERS for the amplification of Raman signals has been reported. This method, known as electrochemical surface oxidation-enhanced Raman scattering (EC-SOERS), has been experimentally described. However, to date, it has not yet been fully understood. In this work, new experimental data that clarify the origin of the Raman enhancement in SOERS are provided. The use of a complete and unique set of combined spectroelectrochemistry techniques, including time-resolved operando UV-vis absorption, fluorescence, and Raman spectroelectrochemistry, reveals that such enhancement is related to the generation of dielectric or semiconductor nanocrystals on the surface of the electrode and that the interaction between the target molecule and the dielectric substrate is mediated by metal cations. According to these results, the interaction metal electrode-nanocrystal-metal cation-molecule is proposed as being responsible for the Raman enhancement in Ag and Cu substrates. Elucidation of the origin of the Raman enhancement will help to promote the rational design of SOERS substrates as an attractive alternative to the well-known SERS phenomenon.
Collapse
Affiliation(s)
- Sheila Hernandez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Martin Perez-Estebanez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - William Cheuquepan
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Bernal
Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Juan V. Perales-Rondon
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
9
|
Hung YS, Chang CW, Shen YC, Yu YC, Huang WL, Huang CC. Spectroscopic analyses of particle and energy aggregations at the interface of silver nanoparticles and fluorescent carbon nanodots. NANOSCALE 2023; 15:13987-13996. [PMID: 37466382 DOI: 10.1039/d3nr01695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
We study the change in the surface electromagnetic field provided by photoexcited silver nanoparticles as the field is disturbed by fluorescent carbon nanodots. Fluorescent carbon nanodots with an appropriate quantity and quality of surface functional groups are used to mediate the aggregation of silver nanoparticles of matching size and shape to form available nano-size conical structures. Carbon nanodots in the composite absorb and transfer additional photoenergy to the silver surface, resulting in energy aggregation within the cone structure and enhancement of the electromagnetic field in proximity to the silver surface. This elevated energy state is manifested in the strengthening of the SERS signal of the analytical probe 4-aminophenyl disulfide and the mechanism involved is elucidated by additional molecular spectroscopy studies.
Collapse
Affiliation(s)
- Yi-Shan Hung
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 60004, Taiwan
| | - Chia-Wen Chang
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan.
| | - Yi Chen Shen
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 60004, Taiwan
| | - Yun-Chi Yu
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 60004, Taiwan
| | - Wei-Lun Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 60004, Taiwan
| | - Chia-Chi Huang
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan.
| |
Collapse
|
10
|
He C, Zhang Y, Wen T, Pei S, Wang Z, Xia J, Xi G, Li W, Wang J, Gu G, Zhong G, Wei L, Yang C, Chen M. Heteropolyacids: An Ultrasensitive Ionic Volume-Enhanced Raman Scattering Platform. Anal Chem 2023. [PMID: 37405966 DOI: 10.1021/acs.analchem.3c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is regarded as the most direct and powerful tool to identify chemical fingerprints. However, current SERS substrate materials still face some critical challenges, including low molecular utilization efficiency and low selectivity. Herein, a novel oxygen vacancy heteropolyacid─H10Fe3Mo21O51 (HFMO)─is developed as a high-performance volume-enhanced Raman scattering (VERS)-active platform. Due to its merit of water solubility, HFMO forms a special coordination bond with the probe molecule at the molecular level, which allows its enhancing ability to be comparable to that of noble metals. An enhancement factor of 1.26 × 109 and a very low detection limit of 10-13 M for rhodamine 6G were obtained. A robust O-N coordination bond was formed between the anion of HFMO and the probe molecule, resulting in a special electron transfer path (Mo-O-N) with high selectivity, which is verified using X-ray photoelectron spectroscopy analysis and density functional theory calculations. That is to say, the proposed HFMO platform has excellent VERS enhancing effect, specifically for the molecules containing the imino group (e.g., methyl blue, detection limit: 10-11 M), offering the merits of high reproducibility and uniformity, high-temperature resistance, long-time laser irradiation, and strong acid resistance. Such an initial effort on the ionic type VERS platform may enable the further development of highly sensitive, highly selective, and water-soluble VERS technology.
Collapse
Affiliation(s)
- Chenying He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanao Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Ting Wen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611713, People's Republic of China
| | - Shenghai Pei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611713, People's Republic of China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611713, People's Republic of China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing 100176, P. R. China
| | - Wenjie Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guoqiang Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guohua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Cheng J, Zhang Z, Zhang L, Miao J, Chen Y, Zhao R, Liu M, Chen L, Wang X. Size-controllable colloidal Ag nano-aggregates with long-time SERS detection window for on-line high-throughput detection. Talanta 2023; 257:124358. [PMID: 36821962 DOI: 10.1016/j.talanta.2023.124358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Making metal nanoparticle aggregates is a common way to improve surface-enhanced Raman scattering (SERS) enhancement via the formation of hot spots between nanoparticles. Here, we propose a "freeze-thaw-ultrasonication" method to obtain stable colloidal Ag nano-aggregates (AgNAs) with controllable sizes, which can remain stable for a few days. Compared with other method using aggregation reagents (e.g., organic molecules and salt), this method can maintain metal surface charges and adsorption affinity, which ensures the excellent SERS stability and sensitivity. The SERS detection window during the experiment can reach more than 25 min, which makes it a prerequisite for accurate SERS detection during a long-time range. Combining the obtained stable AgNAs with microfluidic devices, we established a sequential SERS on-line continuous detection method for the high-throughput detection of multiplex samples. The UV-Fenton degradation process of methylene blue (MB) is continuously on-line monitored through this platform, which is more sensitive than the UV-Vis Spectrum. Moreover, we have realized the sensitive and accurate detection of 5-nitro-8-hydroxyquinoline (5-NQ) with antibacterial and anticancer activities based on chloride-functionalized silver, which paved a way for SERS high-throughput analysis in bioanalysis and other fields.
Collapse
Affiliation(s)
- Jianxia Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Longfei Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jiaqi Miao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Meichun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
12
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Tian J, Shi Z, Wang G. Thermodynamic and Kinetic Binding Behaviors of Human Serum Albumin to Silver Nanoparticles. MATERIALS 2022; 15:ma15144957. [PMID: 35888425 PMCID: PMC9323290 DOI: 10.3390/ma15144957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022]
Abstract
A nanoparticle, under biological milieu, is inclined to be combined with various biomolecules, particularly protein, generating an interfacial corona which provides a new biological identity. Herein, the binding interaction between silver nanoparticles (AgNPs) and human serum albumin (HSA) was studied with transmission electron microscopy (TEM), circular dichroism (CD), and multiple spectroscopic techniques. Due to the ground state complex formed mainly through hydrophobic interactions, the fluorescence titration method proved that intrinsic fluorescence for HSA was probably statically quenched by AgNPs. The complete thermodynamic parameters were derived, indicating that the interaction between HSA and AgNPs is an entropy-driven process. Additionally, synchronous fluorescence and CD spectrum results suggested the conformational variation it has upon binding to AgNPs and the α-helix content has HSA visibly decreased. The kinetic experiments proved the double hysteresis effect has in HSA’s binding to the AgNPs surface. Moreover, the binding has between HSA and AgNPs follows the pseudo-second-order kinetic characteristic and fits the Freundlich model for multilayer adsorption. These results facilitate the comprehension about NPs’ underlying biological effects under a physiological environment and promote the secure applications of NPs biologically and medically.
Collapse
Affiliation(s)
- Jinjun Tian
- Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China;
| | - Zhenghai Shi
- Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China;
- Correspondence: (Z.S.); (G.W.)
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (Z.S.); (G.W.)
| |
Collapse
|
14
|
Chen S, Li Q, Tian D, Ke P, Yang X, Wu Q, Chen J, Hu C, Ji H. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121030. [PMID: 35189488 DOI: 10.1016/j.saa.2022.121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Silver nanowires (AgNWs) as a promising surface-enhanced Raman spectroscopy (SERS) substrate could be used in the analytical science due to its high sensitivity. However, it is difficult for the randomly-distributed silver nanowires to offer uniform "hot spots" to achieve the SERS signal reproducibility of small molecules detection. Herein, the evaporation-induced aggregation had been used to assemble long silver nanowires into highly aligned structure to achieve uniform "hot spots" for SERS detection. The normal glass slide with well-aligned silver nanowires could act as a high sensitivity and excellent reproducibility SERS substrate to provide a versatile platform for detecting analytes. Rhodamine 6G (R6G) is used to evaluate the sensitivity and reproducibility of these AgNWs SERS substrates. Even the low concentration of the R6G was 10-10 mol/L, the SERS features of R6G could be still observed clearly, and the uniform distribution of enhancement factor (EF) was higher than 0.8 × 104 accounting for about 75 % in the observed mapping area. Moreover, the relative standard deviation (RSD) of SERS intensity at the band of 610 cm-1 was used to estimate the signal reproducibility, and the calculated RSD value of aligned AgNWs substrate was about 3.6%, which was much higher than that of the randomly distributed AgNWs (26.8%) because of the highly aligned structure of silver nanowires with abundant and uniform inherent "hot spots". In addition, potential SERS detection of other small molecule, e.g. melamine was also demonstrated in the micromolar range.
Collapse
Affiliation(s)
- Shaoyun Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Qi Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Du Tian
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Pai Ke
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Xinxin Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Qingyun Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance. J Fluoresc 2022; 32:1309-1319. [PMID: 35362934 DOI: 10.1007/s10895-022-02909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem = 527 nm, Φ = 0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of - 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (∼70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (∼ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.
Collapse
|
16
|
Physical Properties and the Reconstruction of Unstable Decahedral Silver Nanoparticles Synthesized Using Plasmon-Mediated Photochemical Process. NANOMATERIALS 2022; 12:nano12071062. [PMID: 35407181 PMCID: PMC9000470 DOI: 10.3390/nano12071062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022]
Abstract
Plasmon-mediated shape transformation from quasi-spherical silver nanoparticles (AgNPs) to silver nanoprisms (AgNPrs) and decahedral silver nanoparticles (D-AgNPs) under irradiation of blue LEDs (λ = 456 ± 12 nm, 80 mW/cm2) was studied at temperatures ranging between 60, 40, 30, 20, 10, and 0 °C. It was found that reaction temperature affected transformation rates and influenced the morphology distribution of final products. The major products synthesized at temperatures between 60 °C and 0 °C were AgNPrs and D-AgNPs, respectively. The D-AgNPs synthesized at such low temperatures are unstable and become blunt when light irradiation is removed after the photochemical synthesis. These blunt nanoparticles with pentagonal multiple-twinned structures can be further used as the seeds to reconstruct complete D-AgNPs after irradiating blue LEDs at various bath temperatures. Our results showed that these rebuilt D-AgNPs are much more stable when at higher bath temperatures. Furthermore, the rebuilt D-AgNPs (edge lengths ~41 nm) can grow into larger D-AgNPs (edge lengths ~53 nm) after the irradiation of green LEDs. Surface-enhanced Raman spectra of CV in AgNP colloids showed that D-AgNP colloids have better SERS enhancements factors than AgNPrs.
Collapse
|
17
|
Yilmaz H, Mohapatra SS, Culha M. Surface-enhanced infrared absorption spectroscopy for microorganisms discrimination on silver nanoparticle substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120699. [PMID: 34894567 DOI: 10.1016/j.saa.2021.120699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Extracting molecular level label-free information from complex biological processes for a range of purposes including disease diagnosis and microbial identification and discrimination is always a challenging task. This is mostly due to lack of a technique providing rich molecular information with a high spatial and temporal resolution properties. Two surface-enhanced vibrational spectroscopic (SEVS) techniques, surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption spectroscopy (SEIRAS), are recently attracting considerable attention to study biosystems at an interface since they can satisfy these requirements to a certain level by providing rich intrinsic molecular information from molecules and molecular systems in a close proximity of nanostructured noble metal surfaces. In this study, these two surface-enhanced vibrational spectroscopic techniques are comparatively evaluated for the discrimination and identification of Candida albicans (C. albicans), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by paying attention to the source of the observed spectral pattern. The citrate-reduced colloidal silver nanoparticles (AgNPs) were used as substrates. The results show that the SEIRAS provides very rich molecular information about the biomolecular species adsorbed onto AgNPs similar to the case of SERS. The discrimination power of SEIRAS is much improved compared to FTIR demonstrated by PCA analysis. This study suggests that SEIRAS can be a potential technique for microbial analysis.
Collapse
Affiliation(s)
- Hulya Yilmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey.
| | - Shyam S Mohapatra
- Center for Research and Education in Nano-bioengineering, Department of Internal Medicine, Morsani College of Medicine, The University of South Florida, Tampa, FL, United States
| | - Mustafa Culha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center for Research and Education in Nano-bioengineering, Department of Internal Medicine, Morsani College of Medicine, The University of South Florida, Tampa, FL, United States; Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey.
| |
Collapse
|
18
|
Yao Y, Guo W, Hui Z, Jin C, Peng P. Laser Fabricated Cu
2
O‐CuO/Ag Nanocomposite Films for SERS Application**. ChemistrySelect 2022. [DOI: 10.1002/slct.202104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Yao
- School of Mechanical Engineering and Automation Beihang University Beijing 100191 China
| | - Wei Guo
- School of Mechanical Engineering and Automation Beihang University Beijing 100191 China
| | - Zhuang Hui
- College of Chemistry and Materials Science Northwest University Xi'an, Shaan Xi 710127 China
| | - Chao Jin
- School of Environmental Science and Engineering Sun Yat-Sen University Guangzhou 510275 China
| | - Peng Peng
- Department of Mechanical and Mechatronics Engineering University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
19
|
Su G, Zhong X, Qiu S, Fan J, Zhou H, Zhou X. Preparation of mesoporous silica-based nanocomposites with synergistically antibacterial performance from nano-metal (oxide) and polydopamine. NANOTECHNOLOGY 2022; 33:155702. [PMID: 34959229 DOI: 10.1088/1361-6528/ac467a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
In this work, a novel antibacterial nanocomposite system was developed using mesoporous silica (MSN) as an effective nanocarrier, and the resultant nanocomposites demonstrated remarkable antibacterial performance due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine (PDA). The successful synthesis of MSN/ZnO@PDA/Ag nanocomposites was confirmed. The physicochemical properties and the morphologies of these nanocomposites were investigated. It was found that the particle size increased along with the evolution of these nanocomposites. Besides, nano zinc oxides were formed in the nanochannels of mesoporous silica with a particle size about 2 nm, and that of silver nanoparticle was less than 50 nm. In addition, the results revealed that the presence of mesoporous silica could effectively prevent the formation of large-size silver nanoparticles and facilitate their well dispersion. Due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine, these nanocomposites exhibited remarkable antibacterial performance even at a low concentration of 313 ppm, and the antibacterial mechanism was also elucidated. Therefore, this work provides a facile and controllable approach to preparing synergistically antibacterial nanocomposites, and the remarkable antibacterial performance make them suitable for practical applications.
Collapse
Affiliation(s)
- Guofeng Su
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Ximing Zhong
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Songfa Qiu
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Jiajin Fan
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Mao Ming, Guangdong, 525000, People's Republic of China
| |
Collapse
|
20
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
21
|
Liang JF, Peng C, Li P, Ye QX, Wang Y, Yi YT, Yao ZS, Chen GY, Zhang BB, Lin JJ, Luo Q, Chen X. A Review of Detection of Antibiotic Residues in Food by Surface-Enhanced Raman Spectroscopy. Bioinorg Chem Appl 2021; 2021:8180154. [PMID: 34777490 PMCID: PMC8589529 DOI: 10.1155/2021/8180154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics, as veterinary drugs, have made extremely important contributions to disease prevention and treatment in the animal breeding industry. However, the accumulation of antibiotics in animal food due to their overuse during animal feeding is a frequent occurrence, which in turn would cause serious harm to public health when they are consumed by humans. Antibiotic residues in food have become one of the central issues in global food safety. As a safety measure, rapid and effective analytical approaches for detecting these residues must be implemented to prevent contaminated products from reaching the consumers. Traditional analytical methods, such as liquid chromatography, liquid chromatography mass spectrometry, and capillary electrophoresis, involve time-consuming sample preparation and complicated operation and require expensive instrumentation. By comparison, surface-enhanced Raman spectroscopy (SERS) has excellent sensitivity and remarkably enhanced target recognition. Thus, SERS has become a promising alternative analytical method for detecting antibiotic residues, as it can provide an ultrasensitive fingerprint spectrum for the rapid and noninvasive detection of trace analytes. In this study, we comprehensively review the recent progress and advances that have been achieved in the use of SERS in antibiotic residue detection. We introduce and discuss the basic principles of SERS. We then present the prospects and challenges in the use of SERS in the detection of antibiotics in food. Finally, we summarize and discuss the current problems and future trends in the detection of antibiotics in food.
Collapse
Affiliation(s)
- Jun-Fa Liang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Peiyu Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Xiong Ye
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yun-Ting Yi
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Zi-Sheng Yao
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Gui-Yun Chen
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Bin-Bin Zhang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Jia-Jian Lin
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Ko RHH, Shayegannia M, Farid S, Kherani NP. Protein capture and SERS detection on multiwavelength rainbow-trapping width-graded nano-gratings. NANOTECHNOLOGY 2021; 32:505207. [PMID: 34544057 DOI: 10.1088/1361-6528/ac2842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates with multiwavelength rainbow-trapping properties hold the potential for a one-size-fits-all platform for rapid and multiplexed disease detection. We present the first report on the utilization of rainbow-trapping width-graded nano-gratings, a new class of chirped metamaterials, to detect protein biomarkers. Using cytochrome c (Cc), a charged analyte with inherent difficulty in adsorbing onto sputtered silver films, we investigated methods of binding Cc on the silver nano-grating in order to improve the SERS signal strength at both 532 and 638 nm excitation. Cc was not detectable on the Ag nano-gratings without surface functionalization at 1μM concentration. Upon charge reversal functionalization of the Ag nano-gratings, 1μM Cc was detectable albeit not reliably. By further crosslinking 1μM Cc to the functionalized Ag nano-gratings, the analyte-capture detection scheme greatly improved the SERS signal strength and reliability at both excitation wavelengths and allowed for quantification of their coefficients of variation with values down to 27%.
Collapse
Affiliation(s)
- Remy H H Ko
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Moein Shayegannia
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Sidra Farid
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Nazir P Kherani
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON Canada M5S 3E4, Canada
| |
Collapse
|
23
|
Yu Z, Huang L, Zhang Z, Li G. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti 3C 2T x/DNA/Ag Membrane Substrate. Anal Chem 2021; 93:13072-13079. [PMID: 34515467 DOI: 10.1021/acs.analchem.1c03019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and accurate analysis of multiple targets in complex samples is still a big challenge in the fast detection field. Herein, we developed a rapid and accurate strategy for simultaneous quantification of trace multiple antibiotic residues in complex aquatic samples by surface-enhanced Raman scattering (SERS) using a Ti3C2Tx/DNA/Ag membrane substrate. This membrane substrate was proven to have good uniformity, reproducibility, stability, and SERS activity by a series of characterizations. Also, this substrate combined excellent electromagnetic enhancement and chemical enhancement effects, which endowed it with good sensitivity and selectivity during SERS analysis. It achieved the integration of multitarget separation, enrichment, and in situ detection, which significantly improved the selectivity, sensitivity, accuracy, and detection throughput by membrane substrate coupling with SERS for real-sample analysis. Finally, this rapid SERS analysis strategy was successfully applied to the simultaneous quantification of trace nitrofurantoin (NFT) and ofloxacin (OFX) in aquatic samples. It was observed that trace NFT and OFX were actually detected and simultaneously quantified to be 8.0-13.7 and 42.6-49.1 μg/kg in aquatic samples, respectively, with good recoveries of 88.0-107% and relative standard deviations of 0.3-5.5%. The results were verified by a traditional high-performance liquid chromatography method with relative errors of -9.8 to 5.3%. This strategy provided a methodological reference for accurate SERS quantification of multiple targets in complex samples.
Collapse
Affiliation(s)
- Zhongning Yu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Fleitas-Salazar N, Pedroso-Santana S, Silva-Campa E, Angulo-Molina A, Toledo JR, Riera R, Pedroza-Montero M. Raman spectroscopy and silver nanoparticles for efficient detection of membrane proteins in living cells. NANOTECHNOLOGY 2021; 32:495101. [PMID: 34450614 DOI: 10.1088/1361-6528/ac21ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Molecular fingerprints revealed by Raman techniques show great potential for biomedical applications, like disease diagnostic through Raman detection of tumor markers and other molecules in the cell membrane. However, SERS substrates used in membrane molecule studies produce enhanced Raman spectra of high variability and challenging band assignments that limit their application. In this work, these drawbacks are addressed to detect membrane-associated hemoglobin (Hbm) in human erythrocytes through Raman spectroscopy. These cells are incubated with silver nanoparticles (AgNPs) in PBS before Raman measurements. Our results showed that AgNPs form large aggregates in PBS that adhered to the erythrocyte membrane, which enhances Raman scattering by molecules around the membrane, like Hbm. Also, deoxyHb markers may allow Hbmdetection in Raman spectra of oxygenated erythrocytes (oxyRBCs). Raman spectra of oxyRBCs incubated with AgNPs showed enhanced deoxyHb signals with good spectral reproducibility, supporting the Hbmdetection through deoxyHb markers. Instead, Raman spectra of oxyRBCs showed oxyHb bands associated with free cytoplasmic hemoglobin. Other factors influencing Raman detection of membrane proteins are discussed, like bothz-position and dimension of the sample volume. The results encourage membrane protein studies in living cells using Raman spectroscopy, leading to the characterization and diagnostic of different pathologies through a non-invasive technique.
Collapse
Affiliation(s)
- Noralvis Fleitas-Salazar
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Seidy Pedroso-Santana
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Aracely Angulo-Molina
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Jorge R Toledo
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Raul Riera
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
25
|
Święch D, Palumbo G, Piergies N, Pięta E, Szkudlarek A, Paluszkiewicz C. Spectroscopic Investigations of 316L Stainless Steel under Simulated Inflammatory Conditions for Implant Applications: The Effect of Tryptophan as Corrosion Inhibitor/Hydrophobicity Marker. COATINGS 2021; 11:1097. [DOI: 10.3390/coatings11091097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
In this paper, the conformational changes of tryptophan (Trp) on the corroded 316 L stainless steel (SS) surface obtained under controlled simulated inflammatory conditions have been studied by Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopy methods. The corrosion behavior and protective efficiency of the investigated samples were performed using the potentiodynamic polarization (PDP) technique in phosphate-buffered saline (PBS) solution acidified to pH 3.0 at 37 °C in the presence and absence of 10−2 M Trp, with different immersion times (2 h and 24 h). The amino acid is adsorbed onto the corroded SS surface mainly through the lone electron pair of the nitrogen atom of the indole ring, which adopts a more/less tilted orientation, and the protonated amine group. The visible differences in the intensity of the Fermi doublet upon adsorption of Trp onto the corroded SS surface, which is a sensitive marker of the local environment, suggested that a stronger hydrophobic environment is observed. This may result in an improvement of the corrosion resistance, after 2 h than 24 h of exposure time. The electrochemical results confirm this statement—the inhibition efficiency of Trp, acting as a mixed-type inhibitor, is made drastically higher after a short period of immersion.
Collapse
Affiliation(s)
- Dominika Święch
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Gaetano Palumbo
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | | |
Collapse
|
26
|
Wei C, Bandowe BAM, Han Y, Cao J, Watson JG, Chow JC, Wilcke W. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147234. [PMID: 33971611 DOI: 10.1016/j.scitotenv.2021.147234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic compounds (PACs) such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives [oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs), and azaarenes (AZAs)] are toxic and ubiquitous air pollutants. In this study, the concentrations of these PACs were determined in air obtained in spring and autumn of 2012 from urban and rural areas of the Tibetan Plateau, temperate, subtropical, and tropical climate zones in China. Average concentrations (gaseous + particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs, and ∑4AZAs were 928 ± 658, 54 ± 45, 5.3 ± 4.4, 14 ± 11 ng m-3 and 995 ± 635, 67 ± 38, 8.4 ± 6.1, 24 ± 16 ng m-3 in spring and autumn, respectively. Various C fractions and latitude correlated significantly with the concentrations and ratios of PACs. The slopes of the regression of gas-particle partition coefficients (Kp) of PACs on their sub-cooled liquid vapor pressures (PL0), indicated both adsorption and absorption to total suspended particles (TSP) for PAHs, OPAHs, and NPAHs in the four studied climatic zones. This result was further supported by comparing the fractions of PACs in TSP calculated from field data with those predicted by the Junge-Pankow adsorption and KOA absorption models. The concentration ratios of most OPAHs or NPAHs to their parent PAHs and of benzo[e]pyrene/benzo[a]pyrene were higher in autumn than in spring and increased with remoteness from point sources. This suggests enhanced secondary formation of PAH derivatives due to the elevated photochemical activity in autumn and longer ageing of air and associated transformation of PACs during their long-distance transport from source regions (urban sites) to rural sites. Lifetime lung cancer risk estimated from PACs ranged from 0.8 ± 0.6 to 3.1 ± 1.0 (×10-3), exceeding the value (10-5) recommended by the WHO. Gaseous PACs contributed substantially to the estimated cancer risks and their contributions increased with decreasing latitude in China.
Collapse
Affiliation(s)
- Chong Wei
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shanghai Carbon Data Research Center (SCDRC), CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - John G Watson
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Judith C Chow
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Gao C, Zhang Q, Ma L, Xu G, Song P, Xia L. Metabolic pathway and biological significance of glutathione detoxification of aristolochic acid Ⅰ. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Surface-Enhanced Raman Scattering Activity of ZrO 2 Nanoparticles: Effect of Tetragonal and Monoclinic Phases. NANOMATERIALS 2021; 11:nano11092162. [PMID: 34578476 PMCID: PMC8466494 DOI: 10.3390/nano11092162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/19/2022]
Abstract
The effect of the ZrO2 crystal form on surface-enhanced Raman scattering (SERS) activity was studied. The ratio of the tetragonal (T) and monoclinic (M) phases of ZrO2 nanoparticles (ZrO2 NPs) was controlled by regulating the ratio of two types of additives in the hydrothermal synthesis method. The SERS intensity of 4-mercaptobenzoic acid (4–MBA) was gradually enhanced by changing the M and T phase ratio in ZrO2 NPs. The degree of charge transfer (CT) in the enhanced 4–MBA molecule was greater than 0.5, indicating that CT was the main contributor to SERS. The intensity of SERS was strongest when the ratio of the T crystal phase in ZrO2 was 99.7%, and the enhancement factor reached 2.21 × 104. More importantly, the proposed study indicated that the T and M phases of the ZrO2 NPs affected the SERS enhancement. This study provides a new approach for developing high-quality SERS substrates and improving the transmission efficiency of molecular sensors.
Collapse
|
29
|
Ranishenka BV, Panarin AY, Chelnokova IA, Terekhov SN, Mojzes P, Shmanai VV. Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu 2+ ions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:902-912. [PMID: 34497738 PMCID: PMC8381809 DOI: 10.3762/bjnano.12.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
This work studies the impact of the electrostatic interaction between analyte molecules and silver nanoparticles (Ag NPs) on the intensity of surface-enhanced Raman scattering (SERS). For this, we fabricated nanostructured plasmonic films by immobilization of Ag NPs on glass plates and functionalized them by a set of differently charged hydrophilic thiols (sodium 2-mercaptoethyl sulfonate, mercaptopropionic acid, 2-mercaptoethanol, 2-(dimethylamino)ethanethiol hydrochloride, and thiocholine) to vary the surface charge of the SERS substrate. We used two oppositely charged porphyrins, cationic copper(II) tetrakis(4-N-methylpyridyl) porphine (CuTMpyP4) and anionic copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine (CuTSPP4), with equal charge value and similar structure as model analytes to probe the SERS signal. Our results indicate that the SERS spectrum intensity strongly, up to complete signal disappearance, correlates with the surface charge of the substrate, which tends to be negative. Using the data obtained and our model SERS system, we analyzed the modification of the Ag surface by different reagents (lithium chloride, polyethylenimine, polyhexamethylene guanidine, and multicharged metal ions). Finally, all those surface modifications were tested using a negatively charged oligonucleotide labeled with Black Hole Quencher dye. Only the addition of copper ions into the analyte solution yielded a good SERS signal. Considering the strong interaction of copper ions with the oligonucleotide molecules, we suppose that inversion of the analyte charge played a key role in this case, instead of a change of charge of the substrate surface. Changing the charge of analytes could be a promising way to get clear SERS spectra of negatively charged molecules on Ag SERS-active supports.
Collapse
Affiliation(s)
- Bahdan V Ranishenka
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Andrei Yu Panarin
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave., 220072, Minsk, Belarus
| | - Irina A Chelnokova
- Institute of Radiobiology of NAS of Belarus, Feduninskogo st., 4, 246007, Gomel, Belarus
| | - Sergei N Terekhov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave., 220072, Minsk, Belarus
| | - Peter Mojzes
- Institute of Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| |
Collapse
|
30
|
Stefancu A, Lee S, Zhu L, Liu M, Lucacel RC, Cortés E, Leopold N. Fermi Level Equilibration at the Metal-Molecule Interface in Plasmonic Systems. NANO LETTERS 2021; 21:6592-6599. [PMID: 34291936 DOI: 10.1021/acs.nanolett.1c02003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We highlight a new metal-molecule charge transfer process by tuning the Fermi energy of plasmonic silver nanoparticles (AgNPs) in situ. The strong adsorption of halide ions upshifts the Fermi level of AgNPs by up to ∼0.3 eV in the order Cl- < Br- < I-, favoring the spontaneous charge transfer to aligned molecular acceptor orbitals until charge neutrality across the interface is achieved. By carefully quantifying, experimentally and theoretically, the Fermi level upshift, we show for the first time that this effect is comparable in energy to different plasmonic effects such as the plasmoelectric effect or hot-carriers production. Moreover, by monitoring in situ the adsorption dynamic of halide ions in different AgNP-molecule systems, we show for the first time that the catalytic role of halide ions in plasmonic nanostructures depends on the surface affinity of halide ions compared to that of the target molecule.
Collapse
Affiliation(s)
- Andrei Stefancu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Li Zhu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 410083 Changsha, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 410083 Changsha, China
| | | | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Badillo-Ramírez I, Saniger JM, Popp J, Cialla-May D. SERS characterization of dopamine and in situ dopamine polymerization on silver nanoparticles. Phys Chem Chem Phys 2021; 23:12158-12170. [PMID: 34008659 DOI: 10.1039/d1cp00966d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dopamine (DA) regulates several functions in the central nervous system and its depletion is responsible for psychological disorders like Parkinson's disease. Several analytical approaches have been presented for DA detection in pathological diagnosis. SERS spectroscopy is a highly promising technique for the sensitive detection of DA. However, an improvement in its detection in aqueous solution is highly desirable for reliable quantification in biological fluids. In this work, we explored a label-free SERS approach for DA detection, employing two conventional methods to synthesize Ag colloids: reduction via citrates (c-AgNPs) and reduction via hydroxylamine (h-AgNPs), and SERS measurements were performed with a laser at 488 nm wavelength. Under these conditions, DA was identified through reproducible SERS spectra in the c-AgNP medium; however, the SERS spectra of DA in h-AgNP solution showed a completely different SERS profile. SERS band analysis revealed that DA in h-AgNPs was oxidized and converted into polydopamine (PDA), which was triggered after exposure to laser radiation. DA oxidation and PDA formation were followed over time through the SERS band profile at pH 7, 9 and 12. We found that in situ PDA formation started after 50 min of laser irradiation of DA at pH 7, while DA was quickly oxidized at pH 9 and 12. Here, we present a detailed SERS band analysis of PDA, which sheds light on the molecular steps in the pathway formation of the PDA structure. Spectroscopic analysis and characterization revealed that a long laser exposure time led to the formation of stable PDA complexes with AgNPs, which allowed us to propose a novel approach for synthesis of AgNP-PDA composites. In conclusion, to detect DA through a label-free SERS approach, c-AgNPs must be employed, while stable AgNP-PDA materials can be achieved with h-AgNPs and 488 nm laser excitation.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745, Jena, Germany and Leibniz Institute of Photonic Technology, Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745, Jena, Germany and Leibniz Institute of Photonic Technology, Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
32
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
33
|
Abstract
Surface-enhanced Raman scattering (SERS) nanotags are widely used in the biomedical field including live-cell imaging due to the high specificity from their fingerprint spectrum and the multiplexing capability from the ultra-narrow linewidth. However, long-term live-cell Raman imaging is limited due to the photodamage from a relatively long exposure time and a high laser power, which are needed for acquiring detectable Raman signals. In this work, we attempt to resolve this issue by developing ultrabright gap-enhanced resonance Raman tags (GERRTs), consisting of a petal-like gold core and a silver shell with the near-infrared resonant reporter of IR-780 embedded in between, for long-term and high-speed live-cell imaging. GERRTs exhibit an ultrahigh Raman intensity down to a single-nanoparticle level in aqueous solution and the solid state upon 785 nm excitation, allowing for high-resolution time-lapse live-cell Raman imaging with an exposure time of 1 ms per pixel and a laser power of 50 μW. Under these measurement conditions, we can possibly capture dynamic cellular processes with a high temporal resolution, and track living cells for long periods of time owing to the reduced photodamage to cells. These nanotags open new opportunities for ultrasensitive, low-phototoxic, and long-term live-cell imaging.
Collapse
Affiliation(s)
- Yuqing Gu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P. R. China.
| | | | | |
Collapse
|
34
|
Mahata T, Das GM, Dantham VR. Study of surface enhanced Raman scattering of IR-780 Iodide molecules using Au-Ag bimetallic nanostructures with blunt and sharp sprouts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119262. [PMID: 33341743 DOI: 10.1016/j.saa.2020.119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Au-Ag bimetallic nanostructures with blunt and sharp sprouts are synthesized using a high yield one-step synthesis process. For the first time, these nanostructures are obtained at different growth times in the same synthesis process. The synthesized nanostructures are characterized using a field emission-scanning electron microscope, transmission electron microscope, energy dispersive X-ray analyzer, and UV-Visible spectrometer. The plasmon-active substrates are fabricated using synthesized nanostructures with ease. The Raman probe (IR-780 Iodide) molecules are dispersed on the surface of plasmon-active substrates by drop-casting 10 μl of dye solution of concentration ranging from 1 μM to 1 picomolar (pM) on the substrates. The surface enhanced Raman scattering (SERS) spectra are recorded for each concentration. The nanostructures with blunt sprouts are found useful only up to 100 pM. However, this limitation is brought down to 1 pM using nanostructures with sharp sprouts. The normal Raman scattering spectra of molecules and microcrystals are also recorded and compared with the SERS spectra of molecules. The experimental SERS enhancement factor (EF) is found around 1 × 109 for the Raman probe solution with 1 pM concentration. Finite Element Method (FEM) simulations are performed for estimating the possible single molecule SERS enhancement.
Collapse
Affiliation(s)
- Tania Mahata
- Department of Physics, Indian Institute of Technology Patna, Bihar 801103, India
| | - Gour Mohan Das
- Department of Physics, Indian Institute of Technology Patna, Bihar 801103, India
| | | |
Collapse
|
35
|
Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021; 125:2031-2041. [PMID: 33617719 PMCID: PMC8046088 DOI: 10.1021/acs.jpcb.0c10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.
Collapse
Affiliation(s)
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX
| | | | | | | | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
| |
Collapse
|
36
|
Tadesse LF, Safir F, Ho CS, Hasbach X, Khuri-Yakub BP, Jeffrey SS, Saleh AAE, Dionne J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J Chem Phys 2021; 152:240902. [PMID: 32610995 DOI: 10.1063/1.5142767] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a pandemic era, rapid infectious disease diagnosis is essential. Surface-enhanced Raman spectroscopy (SERS) promises sensitive and specific diagnosis including rapid point-of-care detection and drug susceptibility testing. SERS utilizes inelastic light scattering arising from the interaction of incident photons with molecular vibrations, enhanced by orders of magnitude with resonant metallic or dielectric nanostructures. While SERS provides a spectral fingerprint of the sample, clinical translation is lagged due to challenges in consistency of spectral enhancement, complexity in spectral interpretation, insufficient specificity and sensitivity, and inefficient workflow from patient sample collection to spectral acquisition. Here, we highlight the recent, complementary advances that address these shortcomings, including (1) design of label-free SERS substrates and data processing algorithms that improve spectral signal and interpretability, essential for broad pathogen screening assays; (2) development of new capture and affinity agents, such as aptamers and polymers, critical for determining the presence or absence of particular pathogens; and (3) microfluidic and bioprinting platforms for efficient clinical sample processing. We also describe the development of low-cost, point-of-care, optical SERS hardware. Our paper focuses on SERS for viral and bacterial detection, in hopes of accelerating infectious disease diagnosis, monitoring, and vaccine development. With advances in SERS substrates, machine learning, and microfluidics and bioprinting, the specificity, sensitivity, and speed of SERS can be readily translated from laboratory bench to patient bedside, accelerating point-of-care diagnosis, personalized medicine, and precision health.
Collapse
Affiliation(s)
- Loza F Tadesse
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, USA
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Chi-Sing Ho
- Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, California 94305, USA
| | - Ximena Hasbach
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Butrus Pierre Khuri-Yakub
- Department of Electrical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Amr A E Saleh
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Jennifer Dionne
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| |
Collapse
|
37
|
Zhang D, Tang L, Chen J, Tang Z, Liang P, Huang Y, Cao M, Zou M, Ni D, Chen J, Yu Z, Jin S. Controllable Self-Assembly of SERS Hotspots in Liquid Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:939-948. [PMID: 33397111 DOI: 10.1021/acs.langmuir.0c03323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable synthesis of novel metal nanoparticles and effective capture of hotspots are of great significance for SERS (surface-enhanced Raman spectroscopy) detection. Therefore, in this paper, a green controllable synthesis method of gold nanoparticle was achieved via epigallocatechin gallate reduction. Different morphologies of gold nanoparticles were synthesized just by changing the solution pH values, and the growth kinetics of AuNPs (gold nanoparticles) were systematically studied. The synthetic AuNPs were put in a droplet to study dynamic variations of self-assembly SERS hotspots from the liquid sol state to the solid dry state. The addition of halogen ions in the droplet can controllably regulate the self-assembly three-dimensional hotspot model of gold nanoparticles in the evaporation process of a droplet, during which the most enhancement effect can be easily captured. The dynamically changing images of nanoparticles in the process were graphically described based on the internal interaction forces of a droplet. Two stronger areas in the changes of SERS intensity were achieved with a high concentration of halogen ions, while only one maximum intensity area was obtained with a low concentration of halogen ions added. This method can effectively avoid complex and unpredictable microenvironments of SERS substrates in the liquid drop, further improving the reproducibility of SERS detection as well as broadening it to biological applications.
Collapse
Affiliation(s)
- De Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Lisha Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | | | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
- China Inspection Laboratory Technologies Co. Ltd. (CILT), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
| | | | | | | | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| |
Collapse
|
38
|
Jing Y, Wang R, Wang Q, Xiang Z, Li Z, Gu H, Wang X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:885-905. [PMID: 34485823 PMCID: PMC8409082 DOI: 10.1007/s42114-021-00330-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (NPs), as an efficient substrate for surface-enhanced Raman scattering (SERS), attract much interests because of their various shapes and sizes. The appropriate size and morphology of metallic NPs are critical to serve as the substrate for achieving an efficient SERS. Pulsed laser deposition (PLD) is one of the feasible physical methods employed to synthesize metallic NPs with controllable sizes and surface characteristics. It has been recognized to be a successful tool for the deposition of SERS substrates due to its good controllability and high reproducibility in the manufacture of metallic NPs. This review provides an overview about the recent advances for the preparation of SERS substrates by PLD technique. The influences of parameters on the sizes and morphologies of metallic NPs during the deposition processes in PLD technique including laser output parameters, gas medium, liquid medium, substrate temperature, and properties of 3D substrate are presented. The applications of SERS substrates produced by PLD in the environmental monitoring and biomedical analysis are summarized. This knowledge could serve as a guideline for the researchers in exploring further applications of PLD technique in the production of SERS substrate.
Collapse
Affiliation(s)
- Yuting Jing
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Ruijing Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Qunlong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zheyuan Xiang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zhengxin Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
39
|
Gimenez AV, Kho KW, Keyes TE. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions. NANOSCALE ADVANCES 2020; 2:4740-4756. [PMID: 36132883 PMCID: PMC9417107 DOI: 10.1039/d0na00527d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 05/17/2023]
Abstract
Plasmonic nanostructures are important across diverse applications from sensing to renewable energy. Periodic porous array structures are particularly attractive because such topography offers a means to encapsulate or capture solution phase species and combines both propagating and localised plasmonic modes offering versatile addressability. However, in analytical spectroscopic applications, periodic pore arrays have typically reported weaker plasmonic signal enhancement compared to particulate structures. This may be addressed by introducing additional nano-structuring into the array to promote plasmonic coupling that promotes electric field-enhancement, whilst retaining pore structure. Introducing nanoparticle structures into the pores is a useful means to promote such coupling. However, current approaches rely on either expensive top-down methods or on bottom-up methods that yield random particle placement and distribution. This report describes a low cost, top-down technique for preparation of nano-sub-structured plasmonic pore arrays in a highly reproducible manner that can be applied to build arrays extending over macroscopic areas of mm2 to cm2. The method exploits oxygen plasma etching, under controlled conditions, of the cavity encapsulated templating polystyrene (PS) spheres used to create the periodic array. Subsequent metal deposition leads to reproducible nano-structuring within the wells of the pore array, coined in-cavity nanoparticles (icNPs). This approach was demonstrated across periodic arrays with pore/sphere diameters ranging from 500 nm to 3 μm and reliably improved the plasmonic properties of the substrate across all array dimensions compared to analogous periodic arrays without the nano-structuring. The enhancement factors achieved for metal enhanced emission and surface enhanced Raman spectroscopy depended on the substrate dimensions, with the best performance achieved for nanostructured 2 μm diameter pore arrays, where a more than 104 improvement over Surface Enhanced Raman Spectroscopy (SERS) and 200-fold improvement over Metal Enhanced Fluorescence (MEF) were observed for these substrates compared with analogous unmodified pore arrays. The experiments were supported by Finite-Difference Time-Domain (FDTD) calculations used to simulate the electric field distribution as a function of pore nano-structuring.
Collapse
Affiliation(s)
- Aurélien V Gimenez
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Kiang W Kho
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| |
Collapse
|
40
|
Święch D, Paluszkiewicz C, Piergies N, Pięta E, Kollbek K, Kwiatek WM. Micro- and Nanoscale Spectroscopic Investigations of Threonine Influence on the Corrosion Process of the Modified Fe Surface by Cu Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4482. [PMID: 33050390 PMCID: PMC7600280 DOI: 10.3390/ma13204482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
The work presents a comprehensive vibrational analysis of the process of adsorption of threonine (Thr) onto an Fe surface with deposited Cu nanoparticles (NPs) (of about 4-5 nm in size) in a corrosive environment. The application of surface-enhanced Raman spectroscopy (SERS) and surface-enhanced infrared absorption spectroscopy (SEIRA) provides the opportunity for detailed description of adsorption geometry of amino acid onto a metal surface. The combination of conventional infrared spectroscopy (IR) with atomic force microscopy (AFM) resulted in a nano-SEIRA technique which made it possible to provide a precise description of adsorbate binding to the metal surface. The studies presented confirmed that there is a very good correlation between the spectra recorded by the SERS, SEIRA, and nano-SEIRA techniques. Threonine significantly influenced the process of corrosion of the investigated surface due to the existing strong interaction between the protonated amine and carboxylate groups and the CuNPs deposited onto the Fe surface. In addition, the application of two polarization modulations (s and p) in nano-SEIRA allows subtle changes to be observed in the molecule geometry upon adsorption, with the carboxylate group of Thr being almost horizontally oriented onto the metal surface; whereas the amine group that contains nitrogen is oriented perpendicular to this surface.
Collapse
Affiliation(s)
- Dominika Święch
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Czesława Paluszkiewicz
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (C.P.); (N.P.); (E.P.); (W.M.K.)
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (C.P.); (N.P.); (E.P.); (W.M.K.)
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (C.P.); (N.P.); (E.P.); (W.M.K.)
| | - Kamila Kollbek
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Wojciech M. Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (C.P.); (N.P.); (E.P.); (W.M.K.)
| |
Collapse
|
41
|
Nguyen PHL, Hong B, Rubin S, Fainman Y. Machine learning for composition analysis of ssDNA using chemical enhancement in SERS. BIOMEDICAL OPTICS EXPRESS 2020; 11:5092-5121. [PMID: 33014602 PMCID: PMC7510872 DOI: 10.1364/boe.397616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 05/05/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an attractive method for bio-chemical sensing due to its potential for single molecule sensitivity and the prospect of DNA composition analysis. In this manuscript we leverage metal specific chemical enhancement effect to detect differences in SERS spectra of 200-base length single-stranded DNA (ssDNA) molecules adsorbed on gold or silver nanorod substrates, and then develop and train a linear regression as well as neural network models to predict the composition of ssDNA. Our results indicate that employing substrates of different metals that host a given adsorbed molecule leads to distinct SERS spectra, allowing to probe metal-molecule interactions under distinct chemical enhancement regimes. Leveraging this difference and combining spectra from different metals as an input for PCA (Principal Component Analysis) and NN (Neural Network) models, allows to significantly lower the detection errors compared to manual feature-choosing analysis as well as compared to the case where data from single metal is used. Furthermore, we show that NN model provides superior performance in the presence of complex noise and data dispersion factors that affect SERS signals collected from metal substrates fabricated on different days.
Collapse
|
42
|
Dutra MAL, Marques NDN, Fernandes RDS, de Souza Filho MDSM, Balaban RDC. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110771. [PMID: 32464443 DOI: 10.1016/j.ecoenv.2020.110771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Herein is presented a simple and sensible method to determine organic pollutants in water, based on the utilization of silver nanoparticles (AgNPs) loaded in Polyacrylamide (PAAm)/starch hybrid hydrogels combined with surface-enhanced Raman scattering (SERS) spectroscopy. The materials were characterized by swelling degree studies, UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and scanning electron microscopy (SEM). PAAm/starch hydrogels showed variable swelling capacity, according to the synthetic molar composition. The most promising results were attributed to lower concentrations of starch and crosslink agent (N,N'-methylenebisacrylamide - MBA). Spectroscopic analysis confirmed the formation of AgNPs, by noticing the peak at around 420 nm, due to its surface plasmon resonance (SPR) effect. The results showed that AgNPs were stabilized by hydrogels networks. The average size of the AgNPs was smaller than 100 nm and the size and quantity of nanoparticles were influenced by the molar composition of the hydrogel matrix. The SERS substrate based on the AgNPs-PAAm/starch exhibited reproducibility, stability, and limit of detection (LOD) of phenol in water of 1 × 10-8 M. The average mass of AgNPs-PAAm/starch hydrogels used for each detection analysis was around 10 mg. The spectra with enhanced intensities were possible due to a large number of hot spots generated on the AgNPs-PAAm/starch hydrogel substrate, which leads to potential use for organic pollutant detection. In addition, there is also the possibility of reusing the hydrogel matrix substrate in other analyzes.
Collapse
|
43
|
Guo Y, Girmatsion M, Li HW, Xie Y, Yao W, Qian H, Abraha B, Mahmud A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr 2020; 61:3555-3568. [PMID: 32772549 DOI: 10.1080/10408398.2020.1803197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the globalization of food and its complicated networking system, a wide range of food contaminants is introduced into the food system which may happen accidentally, intentionally, or naturally. This situation has made food safety a critical global concern nowadays and urged the need for effective technologies capable of dealing with the detection of food contaminants as efficiently as possible. Hence, Surface-enhanced Raman spectroscopy (SERS) has been taken as one of the primary choices for this case, due to its extremely high sensitivity, rapidity, and fingerprinting interpretation capabilities which account for its competency to detect a molecule up to a single level. Here in this paper, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection of single and multiple chemical and microbial contaminants in food, food products as well as water. The aim of this paper is to arouse the interest of researchers by addressing recent SERS-based, novel achievements and developments related to the investigation of hazardous chemical and microbial contaminants in edible foods and water. The target chemical and microbial contaminants are antibiotics, pesticides, food adulterants, Toxins, bacteria, and viruses. In this paper, different aspects of SERS-based reports have been addressed including synthesis and use of various forms of SERS nanostructures for the detection of a specific analyte, the coupling of SERS with other analytical tools such as chromatographic methods, combining analyte capture and recognition strategies such as molecularly imprinted polymers and aptasensor as well as using multivariate statistical analyses such as principal component analysis (PCA)to distinguish between results. In addition, we also report some strengths and limitations of SERS as well as future viewpoints concerning its application in food safety.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bereket Abraha
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| |
Collapse
|
44
|
Mehta M, Waterland M. Ultrasensitive surface-enhanced Raman scattering detection of biological pollutants by controlled evaporation on omniphobic substrates. Heliyon 2020; 6:e04317. [PMID: 32637702 PMCID: PMC7330073 DOI: 10.1016/j.heliyon.2020.e04317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
A simple and highly sensitive method, combining slippery liquid-infused porous substrates and surface-enhanced Raman spectroscopy (SLIPSERS) was used to detect biological pollutants at very low concentrations. Two commonly used rodenticides (brodifacoum and sodium monofluoroacetate) with long biological half-lives were selected as analytes. The SLIPSERS platform gives reproducible SERS enhancement and this allows “label-free” SERS detection of these environmental pollutants. Analyte ions were detected down to a concentration of 10−14 M for brodifacoum and 10−9 M for sodium monofluoroacetate. The limit of detection, limit of quantification and limit of linearity for brodifacoum are 10−12 M, 10−10 M and 10−6 M respectively. The SLIPSERS method uses a physical process to significantly increase analyte concentration, and SERS enhancement and therefore can be generally applied to a range of environmental pollutants. The method can be successfully used for ultra-sensitive detection of several chemical and biological contaminants and meet the emerging needs of environmental monitoring and food safety analysis.
Collapse
Affiliation(s)
- Megha Mehta
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Mark Waterland
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
45
|
Hussain A, Pu H, Sun DW. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00448-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Zhao R, Bi S, Shao D, Sun X, Li X. Rapid determination of marbofloxacin by surface-enhanced Raman spectroscopy of silver nanoparticles modified by β-cyclodextrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118009. [PMID: 31927237 DOI: 10.1016/j.saa.2019.118009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/12/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
A novel surface enhanced-Raman spectroscopy (SERS) assay for marbofloxacin was developed based on β-cyclodextrin-modified silver nanoparticles (β-CD-AgNPs). The marbofloxacin could interact with β-CD-AgNPs and a new assembly was formed by AgN covalent bond. This assembly was characterized by the spectra of FT-IR and UV-vis. The optimal measurement conditions were studied in detail. In 0.033 mol L-1 HCl solution, marbofloxacin had a sensitive SERS signal at 806 cm-1. The enhancement factor (EF) was 2.11 × 107. There was a good linear correlation between the concentration of marbofloxacin and SERS intensity: the linear range was 0.003-0.03 μmol L-1 (r2 = 0.996). The limit of detection (LOD) (S/N = 3) was 1.7 nmol L-1 (S/N = 3). Moreover, the influence of some interferences including Cu2+, K+, Zn2+, Ca2+, Na+, Mg2+, glucose and tiamulin on the determination were studied. The developed SERS method was used to detect the content of marbofloxacin in chicken and duck, the recovery was 101.3%-103.1% with RSD 4.07%-6.83%.
Collapse
Affiliation(s)
- Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
47
|
Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Mao P, Liu C, Chen Q, Han M, Maier SA, Zhang S. Broadband SERS detection with disordered plasmonic hybrid aggregates. NANOSCALE 2020; 12:93-102. [PMID: 31674618 DOI: 10.1039/c9nr08118f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructures possessing broadband intense field enhancement over a large area are highly desirable for nanophotonic and plasmonic device applications. In this study, 3D Ag hybrid nanoaggregates (3D-Ag-HNAs) are achieved via a highly efficient oblique angle gas-phase cluster beam deposition method. Not only can such structures produce a high density of plasmonic hot-spots to improve Raman sensitivity, but more importantly they generate kissing point-geometric singularities with a broadband optical response. We succeed in obtaining an experimental SERS enhancement factor beyond 4 × 107 in the visible range, providing an optimal sensing platform for different analytes. Combined with good uniformity, reproducibility and ease of fabrication, our 3D-Ag-HNA offers a candidate for new generations of SERS systems.
Collapse
Affiliation(s)
- Peng Mao
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China and School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| | - Changxu Liu
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK. and Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Qiang Chen
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Min Han
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Shuang Zhang
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
49
|
Fahad S, Yu H, Wang L, Wang Y, Elshaarani T, Amin BU, Naveed KUR, Khan RU, Mehmood S, Haq F, Ni Z, Usman M. Synthesis of corrugated surface AgNWs and their applications in surface enhanced Raman spectroscopy. CrystEngComm 2020. [DOI: 10.1039/c9ce01866b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among metals, AgNWs are considered to be excellent materials for use in surface enhancement Raman spectroscopic (SERS) sensing due to their superior electrical properties, strong electromagnetic field generation and strong enhancement intensity.
Collapse
|
50
|
Locke A, Belsare S, Deutz N, Coté G. Aptamer-switching optical bioassay for citrulline detection at the point-of-care. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-6. [PMID: 31820595 PMCID: PMC7006037 DOI: 10.1117/1.jbo.24.12.127002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/15/2019] [Indexed: 05/27/2023]
Abstract
Researchers have found that decreased levels of circulating citrulline could be an indicator of intestinal failure. Typically, this amino acid, which is produced by the intestinal mucosa cells, circulates in the blood at a physiological level of ∼40 μM. The current methodology for measuring this level involves the use of bulky equipment, such as mass spectroscopy and analysis at a central laboratory, which can delay diagnosis. Therefore, the current detection method is unsuited for routine monitoring at a doctor's office. Our research group proposes the development of a point-of-care (POC) device to overcome this issue. The proposed device utilizes surface-enhanced Raman spectroscopy (SERS) coupled with a specifically designed aptamer, capable of binding to citrulline, conjugated to colloidal gold nanoparticles. The assay is then embedded within a vertical flow paper-fluidic platform as a deliverable at the POC, and a handheld Raman spectrometer (638-nm excitation) was used to interrogate the sample. Results showed good dynamic range and specificity with an average 73% decrease in SERS signal intensity with increasing concentrations of citrulline (0 to 50 μM) in phosphate-buffered saline compared to its controls: glycine, glutamine, histidine, and valine, which showed less than 10% average decrease in the presence of 200 μM of each analyte. Further, the limit of detection (LOD) within a chip was determined to be 0.56 μM, whereas the LOD across chips was below 10 μM.
Collapse
Affiliation(s)
- Andrea Locke
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, Department of Biomedical Engineering, College Station, Texas, United States
| | - Sayali Belsare
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Nicolaas Deutz
- Texas A&M University, Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, College Station, Texas, United States
| | - Gerard Coté
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|