1
|
Yao J, Feng X, Wang S, Liang Y, Zhang B. Plasmon-Enhanced Photoelectrochemistry of Photosystem II on a Hierarchical Tin Oxide Electrode for Ultrasensitive Detection of 17β-Estradiol. Anal Chem 2024; 96:18029-18036. [PMID: 39479964 DOI: 10.1021/acs.analchem.4c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Despite its excellent efficiency in natural photosynthesis, the utilization of photosystem II (PSII)-based artificial photoelectrochemical (PEC) systems for analytical purposes is hindered due to the low enzyme loading density and ineffective electron transfer (ET) processes. Here, we present a straightforward and effective approach to prepare a PSII-based biohybrid photoanode with remarkable photoresponse, enabled by the use of a hierarchically structured inverse-opal tin oxide (IO-SnO2) electrode combined with gold nanoparticles (Au NPs). The porous, carbon-containing IO-SnO2 structure allows for a high density and photoactivity loading of PSII complexes, while also providing strong electrical coupling between the protein film and the electrode. A new electron transfer pathway mediated by Au NPs was identified at the protein-electrode interface, which efficiently shuttles the photogenerated electrons from the enzyme to the IO-SnO2 electrode. Furthermore, the PEC response of the electrode was significantly enhanced by the surface plasmon resonance (SPR) effect of Au NPs. Upon light irradiation, this PSII-based photoanode exhibited an impressively high and stable photocurrent output, which was utilized to fabricate an aptasensor for 17β-Estradiol (E2) detection. Under optimal conditions, a detection limit of 0.33 pM was obtained, along with a broad detection range from 15 pM to 30 nM. The applicability of the aptasensor was assessed by measuring E2 in water and urine samples, demonstrating its feasibility in environmental monitoring and clinical tests.
Collapse
Affiliation(s)
- Jingjing Yao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaonan Feng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shangqing Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuemei Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Lu H, Ren Y, Qi Y, Xu M, Liang F, Wang Z, Liu J, Du B, Jiang X. Overcoming Hepatic Biotransformation Barrier of Gold Nanoparticles via Au-Se Bond for Enhanced In Vivo Active Targeting. ACS NANO 2024; 18:29178-29188. [PMID: 39382330 DOI: 10.1021/acsnano.4c10700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key metabolic function of the liver, the hepatic biotransformation process can alter the predesigned surface chemistry of nanoparticles in vivo, leading to hampered functionality and targeting ability. However, strategies to modulate the hepatic biotransformation of nanoparticles have been rarely explored. Herein, using indocyanine green (ICG)-conjugated gold nanoparticles that target liver hepatocytes as a model, we showed that merely changing the metal-ligand bond from gold-sulfur (Au-S) to gold-selenium (Au-Se) completely reshaped the hepatic biotransformation profiles of the nanoparticle as well as its targeting and transport behaviors in vivo. Compared with those of Au-S bond, Au-Se bond markedly slowed down nanoparticle biotransformation in liver sinusoids, enhanced ICG-mediated nanoparticle targeting to hepatocytes by 15-fold, and also altered nanoparticle intrahepatic transport, distribution, and clearance pathways. Moreover, we demonstrated that Au-Se bond could improve the active targeting of gold nanoparticles to hepatic tumors by reducing liver biotransformation-induced dissociation of targeting ligands. These discoveries not only deepen our understanding of nanoparticle biotransformation in the liver but also offer a strategy to overcome the biochemical barrier of hepatic biotransformation, providing guidance for the design and engineering of related nanomedicines by tuning their in vivo biotransformation profiles.
Collapse
Affiliation(s)
- Huixu Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yunfeng Ren
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Fengying Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Ziyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jieman Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Shivaji K, Sridharan K, Kirubakaran DD, Velusamy J, Emadian SS, Krishnamurthy S, Devadoss A, Nagarajan S, Das S, Pitchaimuthu S. Biofunctionalized CdS Quantum Dots: A Case Study on Nanomaterial Toxicity in the Photocatalytic Wastewater Treatment Process. ACS OMEGA 2023; 8:19413-19424. [PMID: 37305291 PMCID: PMC10249079 DOI: 10.1021/acsomega.3c00496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
The toxic nature of inorganic nanostructured materials as photocatalysts is often not accounted for in traditional wastewater treatment reactions. Particularly, some inorganic nanomaterials employed as photocatalysts may release secondary pollutants in the form of ionic species that leach out due to photocorrosion. In this context, this work is a proof-of-concept study for exploring the environmental toxicity effect of extremely small-sized nanoparticles (<10 nm) like quantum dots (QDs) that are employed as photocatalysts, and in this study, cadmium sulfide (CdS) QDs are chosen. Typically, CdS is an excellent semiconductor with suitable bandgap and band-edge positions that is attractive for applications in solar cells, photocatalysis, and bioimaging. However, the leaching of toxic cadmium (Cd2+) metal ions due to the poor photocorrosion stability of CdS is a matter of serious concern. Therefore, in this report, a cost-effective strategy is devised for biofunctionalizing the active surface of CdS QDs by employing tea leaf extract, which is expected to hinder photocorrosion and prevent the leaching of toxic Cd2+ ions. The coating of tea leaf moieties (chlorophyll and polyphenol) over the CdS QDs (referred to hereafter as G-CdS QDs) was confirmed through structural, morphological, and chemical analysis. Moreover, the enhanced visible-light absorption and emission intensity of G-CdS QDs in comparison to that of C-CdS QDs synthesized through a conventional chemical synthesis approach confirmed the presence of chlorophyll/polyphenol coating. Interestingly, the polyphenol/chlorophyll molecules formed a heterojunction with CdS QDs and enabled the G-CdS QDs to exhibit enhanced photocatalytic activity in the degradation of methylene blue dye molecules over C-CdS QDs while effectively preventing photocorrosion as confirmed from cyclic photodegradation studies. Furthermore, detailed toxicity studies were conducted by exposing zebrafish embryos to the as-synthesized CdS QDs for 72 h. Surprisingly, the survival rate of the zebrafish embryos exposed to G-CdS QDs was equal to that of the control, indicating a significant reduction in the leaching of Cd2+ ions from G-CdS QDs in comparison to C-CdS QDs. The chemical environment of C-CdS and G-CdS before and after the photocatalysis reaction was examined by X-ray photoelectron spectroscopy. These experimental findings prove that biocompatibility and toxicity could be controlled by simply adding tea leaf extract during the synthesis of nanostructured materials, and revisiting green synthesis techniques can be beneficial. Furthermore, repurposing the discarded tea leaves may not only facilitate the control of toxicity of inorganic nanostructured materials but can also help in enhancing global environmental sustainability.
Collapse
Affiliation(s)
- Kavitha Shivaji
- Department
of Biotechnology, K. S. Rangasamy College
of Technology, Tiruchengode 637215, India
| | - Kishore Sridharan
- Department
of Nanoscience and Technology, School of Physical Sciences, University of Calicut, Thenhipalam 673635, India
| | - D. David Kirubakaran
- Department
of Physics, K. S. R College of Arts and
Science for Women, Tiruchengode 637215, India
| | - Jayaramakrishnan Velusamy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | | | | | - Anitha Devadoss
- Institute
of Biological Chemistry, Biophysics and Bioengineering (IB3), School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Santanu Das
- Department
of Ceramic Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical, Processing and
Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
5
|
Mitra D, Adhikari P, Djebaili R, Thathola P, Joshi K, Pellegrini M, Adeyemi NO, Khoshru B, Kaur K, Priyadarshini A, Senapati A, Del Gallo M, Das Mohapatra PK, Nayak AK, Shanmugam V, Panneerselvam P. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:103-120. [PMID: 36706690 DOI: 10.1016/j.plaphy.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, West Bengal, India; Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Priyanka Adhikari
- Centre for excellence on GMP extraction facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Pooja Thathola
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nurudeen O Adeyemi
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Ankita Priyadarshini
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | | | - Amaresh Kumar Nayak
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
6
|
Thomas EM, Cortes CL, Paul L, Gray S, Thomas KG. Combined Effects of Emitter-Emitter and Emitter-Plasmonic Surface Separations Dictate Photoluminescence Enhancement in Plasmonic Field. Phys Chem Chem Phys 2022; 24:17250-17262. [DOI: 10.1039/d2cp01681h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The brightness of an emitter can be enhanced by metal-enhanced fluorescence, wherein the excitonic dipole couples with the electromagnetic field of the surface plasmon. Herein, we experimentally map the landscape...
Collapse
|
7
|
Nazri NAA, Azeman NH, Bakar MHA, Mobarak NN, Luo Y, Arsad N, Aziz THTA, Zain ARM, Bakar AAA. Localized Surface Plasmon Resonance Decorated with Carbon Quantum Dots and Triangular Ag Nanoparticles for Chlorophyll Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010035. [PMID: 35009983 PMCID: PMC8746898 DOI: 10.3390/nano12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/08/2023]
Abstract
This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP-CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP-CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm-1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm-1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP-CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP-CQD as a sensing material in this study.
Collapse
Affiliation(s)
- Nur Afifah Ahmad Nazri
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Nur Hidayah Azeman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| | - Mohd Hafiz Abu Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Nadhratun Naiim Mobarak
- Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science and Engineering, Jinan University, Guangzhou 510632, China;
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Tg Hasnan Tg Abd Aziz
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A. Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
- Institut Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| |
Collapse
|
8
|
Singh A, Tiwari S, Pandey J, Lata C, Singh IK. Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol 2021; 337:57-70. [PMID: 34175328 DOI: 10.1016/j.jbiotec.2021.06.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) possess specific physical and chemical features and they are capable enough to cross cellular barriers and show their effect on living organisms. Their capability to cross cellular barriers have been noticed for their application not only in medicine, electronics, chemical and physical sciences, but also in agriculture. In agriculture, nanotechnology can help to improve the growth and crop productivity by the use of various nanoscale products such as nanofertilizers, nanoherbicides, nanofungicides, nanopesticides etc. An optimized concentration of NPs can be administered by incubation of seeds, roots, pollen, isolated cells and protoplast, foliar spraying, irrigation with NPs, direct injection, hydroponic treatment and delivery by biolistics. Once NPs come in contact with plant cells, they are uptaken by plasmodesmatal or endocytosed pathways and translocated via apoplastic and / symplastic routes. Once beneficial NPs reach different parts of plants, they boost photosynthetic rate, biomass measure, chlorophyll content, sugar level, buildup of osmolytes and antioxidants. NPs also improve nitrogen metabolism, enhance chlorophyll as well as protein content and upregulate the expression of abiotic- and biotic stress-related genes. Herein, we review the state of art of different modes of application, uptake, transport and prospective beneficial role of NPs in stress management and crop improvement.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Shalini Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067, India.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India; i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
9
|
Cisneros J, Chain CY, Rivas Aiello MB, Parisi J, Castrogiovanni DC, Bosio GN, Mártire DO, Vela ME. Pectin-Coated Plasmonic Nanoparticles for Photodynamic Therapy: Inspecting the Role of Serum Proteins. ACS OMEGA 2021; 6:12567-12576. [PMID: 34056407 PMCID: PMC8154119 DOI: 10.1021/acsomega.1c00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic metal nanoparticles (NPs) can be used as enhancers of the efficiency of standard photosensitizers (PSs) in photodynamic therapy (PDT). Protein corona, the adsorption layer that forms spontaneously around NPs once in contact with biological fluids, determines to a great extent the efficiency of PDT. In this work, we explore the possibility that pectin-coated Au NPs (Au@Pec NPs) could act as adjuvants in riboflavin (Rf)-based PDT by comparing the photodamage in HeLa cells cultured in the presence and in the absence of the NPs. Moreover, we investigate the impact that the preincubation of Rf and Au@Pec NPs (or Ag@Pec NPs) at two very different serum concentrations could have on cell's photodamage. Because reactive oxygen species (ROS) precursors are the excited states of the PS, the effect of proteins on the photophysics of Rf and Rf/plasmonic NPs was studied by transient absorption experiments. The beneficial effect of Au@Pec NPs in Rf-based PDT on HeLa cells cultured under standard serum conditions was demonstrated for the first time. However, the preincubation of Rf and Au@Pec NPs (or Ag@Pec NPs) with serum has undesirable results regarding the enhancement of Rf-based PDT. In this sense, we also verified that more concentrated protein conditions result in lower amounts of the triplet excited state of Rf and thus an expected lower production of ROS, which are the key elements for PDT's efficacy. These findings point out the relevance of serum concentration in the design of in vitro cell culture experiments carried out to determine the best way to combine and use potential sensitizers with plasmonic NPs to develop more effective PDTs.
Collapse
Affiliation(s)
- José
S. Cisneros
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| | - Cecilia Y. Chain
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| | - María B. Rivas Aiello
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| | - Julieta Parisi
- Instituto
Multidisciplinario de Biología Celular (CICPBA-CONICET-UNLP), Calle 526 y Camino General Belgrano, B1906APO La Plata, Argentina
| | - Daniel C. Castrogiovanni
- Instituto
Multidisciplinario de Biología Celular (CICPBA-CONICET-UNLP), Calle 526 y Camino General Belgrano, B1906APO La Plata, Argentina
| | - Gabriela N. Bosio
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| | - Daniel O. Mártire
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| | - María E. Vela
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(Facultad de Ciencias Exactas-UNLP-CONICET), Diagonal 113 esquina 64 S/N, 1900 La Plata, Argentina
| |
Collapse
|
10
|
Jiang X, Zhou Q, Du B, Li S, Huang Y, Chi Z, Lee WM, Yu M, Zheng J. Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. SCIENCE ADVANCES 2021; 7:7/8/eabd9847. [PMID: 33608272 PMCID: PMC7895432 DOI: 10.1126/sciadv.abd9847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 05/29/2023]
Abstract
Hepatic glutathione plays a key role in regulating redox potential of the entire body, and its depletion is known to increase susceptibility to oxidative stress involved in many diseases. However, this crucial pathophysiological event can only be detected noninvasively with high-end instrumentation or invasively with surgical biopsy, limiting both preclinical research and clinical prevention of oxidative stress-related diseases. Here, we report that both in vivo fluorescence imaging and blood testing (the first-line detection in the clinics) can be used for noninvasive and consecutive monitoring of hepatic glutathione depletion at high specificity and accuracy with assistance of a body-clearable nanoprobe, of which emission and surface chemistries are selectively activated and transformed by hepatic glutathione in the liver sinusoids. These findings open a new avenue to designing exogenous blood markers that can carry information of local disease through specific nanobiochemical interactions back to the bloodstream for facile and rapid disease detection.
Collapse
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Qinhan Zhou
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Siqing Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| |
Collapse
|
11
|
Pontes MS, Graciano DE, Antunes DR, Santos JS, Arruda GJ, Botero ER, Grillo R, Lima SM, Andrade LHC, Caires ARL, Santiago EF. In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122484. [PMID: 32302886 DOI: 10.1016/j.jhazmat.2020.122484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
This work has assessed the impact of copper oxide nanoparticles (CuONPs), designed via green route, toward photosynthetic apparatus on aquatic photoautotrophic organisms. In order to filling knowledge gaps, in vitro and in vivo assays were performed, using cyanobacterial phycocyanin (C-PC) from Arthrospira platensis and Lemna valdiviana plants (duckweed), respectively. Impairment in light energy transfer became evident in C-PC exposed to CuONPs, giving rise to an increase of light absorption and a suppression of fluorescence emission. Fourier transform infrared spectroscopy (FTIR) results showed that C-PC structures might be altered by the nanoparticles, also revealed that CuONPs preferably interacts with -NH functional groups. The data also revealed that CuONPs affected the chlorophyll a content in duckweed leaves. In addition, photosystem II (PSII) performance was significantly affected by CuONPs, negatively impacting the PSII photochemical network. In summary, the results point out that, even eco-friendly designed, CuONPs may negatively affect the photosynthetic process when accumulated by aquatic photoautotrophs.
Collapse
Affiliation(s)
- Montcharles S Pontes
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Daniela E Graciano
- Applied Optics Group, Faculty of Science and Technology, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Débora R Antunes
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Jaqueline S Santos
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Gilberto J Arruda
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Eriton R Botero
- Applied Optics Group, Faculty of Science and Technology, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Sandro M Lima
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Luís H C Andrade
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil; School of Life Science, University of Essex, Colchester, CO4 3SQ, Essex, UK
| | - Etenaldo F Santiago
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil.
| |
Collapse
|
12
|
Roy K, Ghosh D, Sarkar K, Devi P, Kumar P. Chlorophyll( a)/Carbon Quantum Dot Bio-Nanocomposite Activated Nano-Structured Silicon as an Efficient Photocathode for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37218-37226. [PMID: 32814382 DOI: 10.1021/acsami.0c10279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solar-driven water splitting is considered as a futuristic sustainable way to generate hydrogen and chemical storage of solar energy. Further, considering the technological competence, silicon is one of the potential materials for developing large-scale and cost-effective photocathodes (PCs), but it lacks efficacy and stability. Here, we show that chlorophyll(a)/carbon quantum dots (Chl/CQDs) bio-nanocomposite (b-NC)-decorated Si-nanowires (SiNWs) as PC can surpass the reported efficiency for photoelectrochemical (PEC) hydrogen generation along with stability. The optimized heterojunction (Chl/CQDs_SiNW) significantly enhances broad-band solar absorption and protects Si surface from corrosion. Further, the appropriate band alignment enforces efficient photogenerated charge separation and possesses directional exciton transport property via the Förster resonance energy transfer (FRET) mechanism. This synergic effect demonstrates an ∼18 times increase in photocurrent density (26.36 mA/cm2) compared to pristine SiNW PC at 1.07 V vs reversible hydrogen electrode (RHE). The efficiency reaches ∼7.86%, which is comparably the highest reported for hybrid Si-based photocathodes. Hydrogen evaluation rate was measured to be ∼113 μmol/h at 0.8 V vs RHE under 1 sun illumination. With Si-process line compatibility, this new finding opens a new direction toward the development of Si-based efficient and stable PCs at a large scale for commercial applications.
Collapse
Affiliation(s)
- Krishnendu Roy
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Dibyendu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - K Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pooja Devi
- Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
13
|
Maity P, Sasai K, Dhital RN, Sakai H, Hasobe T, Sakurai H. Excimer Formation of Aryl Iodides Chemisorbed on Gold Nanoparticles for the Significant Enhancement of Photoluminescence. J Phys Chem Lett 2020; 11:1199-1203. [PMID: 31967476 DOI: 10.1021/acs.jpclett.9b03557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photoluminescence properties of aryl iodides chemisorbed on gold nanoparticles were examined. Chemisorption of a series of aryl iodides onto poly(N-vinylpyrrolidone)-protected Au nanoparticles (Au:PVP) in solution resulted in highly enhanced luminescence. Kinetic studies revealed that the photoluminescence is derived from the excimer formation of aryl iodides on Au:PVP, and the process is significantly faster than intersystem crossing by the heavy atom.
Collapse
Affiliation(s)
- Prasenjit Maity
- Institute for Molecular Science , Myodaiji , Okazaki 444-8787 , Japan
- Institute of Research and Development , Gujarat Forensic Sciences University , Gandhinagar 382007 , India
| | - Kenji Sasai
- Division of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Raghu Nath Dhital
- Institute for Molecular Science , Myodaiji , Okazaki 444-8787 , Japan
- Division of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Hidehiro Sakurai
- Institute for Molecular Science , Myodaiji , Okazaki 444-8787 , Japan
- Division of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
14
|
Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134816. [PMID: 31704404 DOI: 10.1016/j.scitotenv.2019.134816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnology is an emerging field in science and engineering, which presents significant impacts on the economy, society and the environment. The nanomaterials' (NMs) production, use, and disposal is inevitably leading to their release into the environment where there are uncertainties about its fate, behaviour, and toxicity. Recent works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. However, studies about the effects of the NMs on plants are still limited because most investigations are carried out in the initial stage of plant development. The present study aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The AgNPs were characterized by transmission electron microscopy and dynamic light scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion (Ag+) release from Ag particles was determined by dialysis. The results revealed that AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and an increase in the non-photochemical quenching. The data also revealed that AgNPs affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that AgBulk caused only a small or no changes on plants. In summary, the results point out that AgNPs may negatively affect the photosynthesis process when accumulated in the leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release was detected.
Collapse
Affiliation(s)
- William F Falco
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - Marisa D Scherer
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil.
| | - Heberton Wender
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Anderson R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
16
|
Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-17061-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Unveiling the interaction between carbon nanodot and IR light emitting fluorescent dyes inside the confined micellar environment. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Bao Z, Lan CQ. Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans. Colloids Surf B Biointerfaces 2018; 170:251-257. [PMID: 29935418 DOI: 10.1016/j.colsurfb.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
This study investigated the role of chlorophyll and light in the biosynthesis of silver nanoparticles (AgNPs) using disrupted cell aqueous extract of Neochloris oleoabundans. It was found that, while increasing sonication time increased the percentage of disrupted cells and efficiency of aqueous cell extraction, over-sonication reduced AgNPs production. AgNPs biosynthesis required illumination of white, blue, or purple light while AgNPs formation was undetectable under dark condition or illumination of orange or red light, indicating only photons of high energy levels among the photosynthetic active radiations are capable of exciting the electrons of chlorophylls to a state that is sufficient for Ag+ reduction. Chlorophylls were demonstrated to be an essential component mediating the reduction of Ag+ and results of mass balance suggest that chlorophylls need to be recycled for the reaction to complete. The ultimate electron donor was hypothesized to be water, which supplemented electrons through water splitting catalyzed by photosynthetic enzyme complexes such as photosystem II. A hypothetical reaction mechanism is proposed for the light-dependent biosynthesis of AgNPs based on systematic experimental results and literature data for the first time.
Collapse
Affiliation(s)
- Zeqing Bao
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| |
Collapse
|
19
|
Abstract
The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.
Collapse
|
20
|
Hu J, Wang J, Liu S, Zhang Z, Zhang H, Cai X, Pan J, Liu J. Effect of TiO 2 nanoparticle aggregation on marine microalgae Isochrysis galbana. J Environ Sci (China) 2018; 66:208-215. [PMID: 29628089 DOI: 10.1016/j.jes.2017.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 06/08/2023]
Abstract
TiO2 nanoparticles (NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO2 NPs on a marine microalgae Isochrysis galbana were investigated. The aggregation kinetics of TiO2 NPs under different conditions was also investigated to determine and understand these effects. Results showed that, though TiO2 NPs had no obvious impact on the size and reproducibility of algal cells under testing conditions, they caused a negative effect on algal chlorophyll, which led to a reduction in photosynthesis. Furthermore, fast aggregation of TiO2 NPs occurred under all conditions, especially at the pH close to the pHzpc. Increasing ionic strength and NP concentration also enhanced the aggregation rate. The aggregation and the following sedimentation of TiO2 NPs reduced their adverse effects on I. galbana.
Collapse
Affiliation(s)
- Ji Hu
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China.
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Shuxia Liu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhechao Zhang
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China
| | - Haifeng Zhang
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China
| | - Xiaoxia Cai
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China
| | - Jianming Pan
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China
| | - Jingjing Liu
- The Second Institute of Oceanography, State Oceanic Administration, Laboratory of Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China
| |
Collapse
|
21
|
Torres R, Diz VE, Lagorio MG. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts. Photochem Photobiol Sci 2018; 17:505-516. [DOI: 10.1039/c8pp00067k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interaction between light and plants containing gold nanoparticles: a deep insight into the physicochemical processes taking place.
Collapse
Affiliation(s)
- Rocio Torres
- CONICET - Universidad de Buenos Aires
- Instituto de Química Física de los Materiales
- Medio Ambiente y Energía (INQUIMAE)
- Buenos Aires
- Argentina
| | - Virginia E. Diz
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Inorgánica
- Analítica y Química Física
- Buenos Aires
| | - M. Gabriela Lagorio
- CONICET - Universidad de Buenos Aires
- Instituto de Química Física de los Materiales
- Medio Ambiente y Energía (INQUIMAE)
- Buenos Aires
- Argentina
| |
Collapse
|
22
|
La JA, Jeon JM, Sang BI, Yang YH, Cho EC. A Hierarchically Modified Graphite Cathode with Au Nanoislands, Cysteamine, and Au Nanocolloids for Increased Electricity-Assisted Production of Isobutanol by Engineered Shewanella oneidensis MR-1. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43563-43574. [PMID: 29172431 DOI: 10.1021/acsami.7b09874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is necessary to understand the surface structural effects of electrodes on the bioalcohol productivity of Shewanella oneidensis MR-1, but this research area has not been deeply explored. Here, we report that the electricity-assisted isobutanol productivity of Shewanella oneidensis MR-1::pJL23 can be enhanced by sequentially modifying a graphite felt (GF) surface with Au nanoislands (Au), cysteamine (NH2), and Au nanoparticles (Au NPs). After bacteria were incubated for 50 h with the unmodified GF under various electrode potentials (vs Ag/AgCl), the bacterial isobutanol concentrations increased from 2.9 ± 1 mg/L under no electricity supply to a maximum of 5.9 ± 1 mg/L at -0.6 V. At this optimum electrode potential, the concentrations continued increasing to 9.1 ± 1, 14 ± 2, and 27 ± 2 mg/L when the GF electrodes were modified with Au, NH2-Au, and Au NP-NH2-Au, respectively. We further studied how each surface structure affected the bacterial adsorptions, current profiles, and biofilms' electrochemical performances. In particular, these modifications induced the adsorption of elongated bacteria, with the amount dependent on the electrode structure. In the presence of electric supply, the amount of elongated bacteria further increased. We also found that the NH2-Au-GF and Au NP-NH2-Au-GF electrodes themselves could increase the concentrations to 11 ± 0.3 and 12 ± 2 mg/L, respectively, upon the bacterial incubation without electricity. Among the electrodes tested, the contribution of electricity to the bacterial isobutanol production was the greatest with the Au NP-NH2-Au-GF electrode. After 96 h of incubation, the concentration increased to 72 ± 2 mg/L, which was 4.7 and 3.7 times the previously reported values obtained without and with electricity, respectively.
Collapse
Affiliation(s)
- Ju A La
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University , Seoul 05030, South Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University , Seoul 05030, South Korea
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| |
Collapse
|
23
|
Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M. Effect of Zinc and Copper Nanoparticles on Drought Resistance of Wheat Seedlings. NANOSCALE RESEARCH LETTERS 2017; 12:60. [PMID: 28105609 PMCID: PMC5247391 DOI: 10.1186/s11671-017-1839-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves. Colloidal solution of Cu,Zn-nanoparticles had less significant influence on these indexes in seedlings of the Stolichna variety under drought.
Collapse
Affiliation(s)
- Nataliya Taran
- Educational and Scientific Centre ‘Institute of Biology and Medicine’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
| | - Volodymyr Storozhenko
- Educational and Scientific Centre ‘Institute of Biology and Medicine’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
| | - Nataliia Svietlova
- Educational and Scientific Centre ‘Institute of Biology and Medicine’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
| | - Ludmila Batsmanova
- Educational and Scientific Centre ‘Institute of Biology and Medicine’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
| | - Viktor Shvartau
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17, Vasylkivska St., Kyiv, 03022 Ukraine
| | - Mariia Kovalenko
- Educational and Scientific Centre ‘Institute of Biology and Medicine’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
| |
Collapse
|
24
|
Tahara K, Mohamed A, Kawahara K, Nagao R, Kato Y, Fukumura H, Shibata Y, Noguchi T. Fluorescence property of photosystem II protein complexes bound to a gold nanoparticle. Faraday Discuss 2017; 198:121-134. [PMID: 28272621 DOI: 10.1039/c6fd00188b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of an efficient photo-anode system for water oxidation is key to the success of artificial photosynthesis. We previously assembled photosystem II (PSII) proteins, which are an efficient natural photocatalyst for water oxidation, on a gold nanoparticle (GNP) to prepare a PSII-GNP conjugate as an anode system in a light-driven water-splitting nano-device (Noji et al., J. Phys. Chem. Lett., 2011, 2, 2448-2452). In the current study, we characterized the fluorescence property of the PSII-GNP conjugate by static and time-resolved fluorescence measurements, and compared with that of free PSII proteins. It was shown that in a static fluorescence spectrum measured at 77 K, the amplitude of a major peak at 683 nm was significantly reduced and a red shoulder at 693 nm disappeared in PSII-GNP. Time-resolved fluorescence measurements showed that picosecond components at 683 nm decayed faster by factors of 1.4-2.1 in PSII-GNP than in free PSII, explaining the observed quenching of the major fluorescence peak. In addition, a nanosecond-decay component arising from a 'red chlorophyll' at 693 nm was lost in time-resolved fluorescence of PSII-GNP, probably due to a structural perturbation of this chlorophyll by interaction with GNP. Consistently with these fluorescence properties, degradation of PSII during strong-light illumination was two times slower in PSII-GNP than in free PSII. The enhanced durability of PSII is an advantageous property of the PSII-GNP conjugate in the development of an artificial photosynthesis device.
Collapse
Affiliation(s)
- Kazuki Tahara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:236-264. [PMID: 27289187 DOI: 10.1016/j.plaphy.2016.05.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 05/04/2023]
Abstract
Recent investigations show that carbon-based and metal-based engineered nanomaterials (ENMs), components of consumer goods and agricultural products, have the potential to build up in sediments and biosolid-amended agricultural soils. In addition, reports indicate that both carbon-based and metal-based ENMs affect plants differently at the physiological, biochemical, nutritional, and genetic levels. The toxicity threshold is species-dependent and responses to ENMs are driven by a series of factors including the nanomaterial characteristics and environmental conditions. Effects on the growth, physiological and biochemical traits, production and food quality, among others, have been reported. However, a complete understanding of the dynamics of interactions between plants and ENMs is not clear enough yet. This review presents recent publications on the physiological and biochemical effects that commercial carbon-based and metal-based ENMs have in terrestrial plants. This document focuses on crop plants because of their relevance in human nutrition and health. We have summarized the mechanisms of interaction between plants and ENMs as well as identified gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Nubia Zuverza-Mena
- Metallurgical and Materials Engineering Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, USA; Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA
| | - Domingo Martínez-Fernández
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Wenchao Du
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Jose A Hernandez-Viezcas
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Nestor Bonilla-Bird
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Martha L López-Moreno
- Department of Chemistry, University of Puerto Rico at Mayagu¨ez, Mayagu¨ez, PR 00680, USA
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Jose R Peralta-Videa
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jorge L Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
26
|
Mei Z, Tang L. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Anal Chem 2016; 89:633-639. [PMID: 27991768 DOI: 10.1021/acs.analchem.6b02797] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An innovative gold nanorod (GNR) array biochip was developed to systematically investigate the localized surface plasmon resonance (LSPR)-coupled fluorescence enhancement for signal amplification in molecular beacon detection. An ordered GNR assembly in vertical standing array on a glass surface was fabricated as plasmonic substrates, resulting in dramatically intensified LSPR between adjacent nanoparticles as compared to that from an ensemble of random nanorods. We have shown that the plasmonic response of the nanoarray can be tuned by the proper choice of GNR size to overlap the fluorophore excitation and emission wavelengths greater than 600 nm. Plasmon-induced fluorescence enhancement was found to be distance-dependent with the competition between quenching and enhancement by the metal nanostructures. The augmented fluorescence enhancement by the GNR array can efficiently overcome the quenching effect of the gold nanoparticle even at close proximity. The enhancement correlates with the spectral overlap between the fluorophore excitation/emission and the plasmonic resonance of the GNR array, indicating a surface-plasmon-enhanced excitation and radiative mechanism for the amplification. From these results, the applicability of the ordered GNR array chip was extended to molecular fluorescence enhancement for practical use as a highly functional and ultrasensitive plasmonic DNA biochip in molecular beacon fashion.
Collapse
Affiliation(s)
- Zhong Mei
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| |
Collapse
|
27
|
Synthesis of Fluorescent Core-Shell Metal Nanohybrids: A Versatile Approach. MATERIALS 2016; 9:ma9120997. [PMID: 28774118 PMCID: PMC5457000 DOI: 10.3390/ma9120997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022]
Abstract
A flexible way of fabricating core-shell noble metal-organic nanohybrids with tailored chemical and spectroscopic properties is proposed here. The synthetic protocol consists of a multi-step procedure able to guarantee acceptable reproducibility of core size and shape as well as control of the organic outer layer. The proposed method highlights limitations in obtaining highly controllable products, although the heterogeneity degree of the nanostructures is in line with that expected from bottom-up approaches in solution. Selective functionalization of the nanohybrids with properly-substituted fluorescent dyes under variable experimental conditions allowed the preparation of composite systems of tunable spectroscopic properties to be employed as nanoprobes in sensing or photonic applications. To this end, preliminary investigation on embedding the nanohybrids in compatible polymeric matrices is also reported.
Collapse
|
28
|
Queiroz AM, Mezacasa AV, Graciano DE, Falco WF, M'Peko JC, Guimarães FEG, Lawson T, Colbeck I, Oliveira SL, Caires ARL. Quenching of chlorophyll fluorescence induced by silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 168:73-77. [PMID: 27280858 DOI: 10.1016/j.saa.2016.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 05/25/2023]
Abstract
The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.
Collapse
Affiliation(s)
- A M Queiroz
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil; Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - A V Mezacasa
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - D E Graciano
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - W F Falco
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - J-C M'Peko
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - F E G Guimarães
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - T Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, Essex, United Kingdom
| | - I Colbeck
- School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, Essex, United Kingdom
| | - S L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - A R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil.
| |
Collapse
|
29
|
Zhang JZ, Sokol KP, Paul N, Romero E, van Grondelle R, Reisner E. Competing charge transfer pathways at the photosystem II-electrode interface. Nat Chem Biol 2016; 12:1046-1052. [PMID: 27723748 PMCID: PMC5113757 DOI: 10.1038/nchembio.2192] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.
Collapse
Affiliation(s)
- Jenny Z Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Nicholas Paul
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Elisabet Romero
- Department of Physics and Astronomy, VU Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, VU Amsterdam, Amsterdam, The Netherlands
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Panigrahi S, Calmeiro T, Martins R, Nunes D, Fortunato E. Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell. ACS NANO 2016; 10:6139-6146. [PMID: 27244449 DOI: 10.1021/acsnano.6b02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The charge transfer dynamics at interfaces are fundamental to know the mechanism of photovoltaic processes. The internal potential in solar cell devices depends on the basic processes of photovoltaic effect such as charge carrier generation, separation, transport, recombination, etc. Here we report the direct observation of the surface potential depth profile over the cross-section of the ZnO nanorods/Cu2O based solar cell for two different layer thicknesses at different wavelengths of light using Kelvin probe force microscopy. The topography and phase images across the cross-section of the solar cell are also observed, where the interfaces are well-defined on the nanoscale. The potential profiling results demonstrate that under white light illumination, the photoinduced electrons in Cu2O inject into ZnO due to the interfacial electric field, which results in the large difference in surface potential between two active layers. However, under a single wavelength illumination, the charge carrier generation, separation, and transport processes between two active layers are limited, which affect the surface potential images and corresponding potential depth profile. Because of changes in the active layer thicknesses, small variations have been observed in the charge carrier transport mechanism inside the device. These results provide the clear idea about the charge carrier distribution inside the solar cell in different conditions and show the perfect illumination condition for large carrier transport in a high performance solar cell.
Collapse
Affiliation(s)
- Shrabani Panigrahi
- Departamento de Ciência dos Materiais, CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/Uninova , 2829-516 Caparica, Portugal
| | - Tomás Calmeiro
- Departamento de Ciência dos Materiais, CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/Uninova , 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- Departamento de Ciência dos Materiais, CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/Uninova , 2829-516 Caparica, Portugal
| | - Daniela Nunes
- Departamento de Ciência dos Materiais, CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/Uninova , 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- Departamento de Ciência dos Materiais, CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/Uninova , 2829-516 Caparica, Portugal
| |
Collapse
|
31
|
Ghavidast A, Mahmoodi NO. A comparative study of the photochromic compounds incorporated on the surface of nanoparticles. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang Z, Guo H, Deng Y, Xing B, He L. Mapping gold nanoparticles on and in edible leaves in situ using surface enhanced Raman spectroscopy. RSC Adv 2016. [DOI: 10.1039/c6ra11748a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A surface enhanced Raman spectroscopic (SERS) mapping technique was applied to qualitatively detect and characterize gold nanoparticles on and in spinach leaves in situ.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Huiyuan Guo
- Stockbridge School of Agriculture
- University of Massachusetts
- Amherst
- USA
| | - Yingqing Deng
- Stockbridge School of Agriculture
- University of Massachusetts
- Amherst
- USA
| | - Baoshan Xing
- Stockbridge School of Agriculture
- University of Massachusetts
- Amherst
- USA
| | - Lili He
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
33
|
Tsai LC, Hsieh HY, Lu KY, Wang SY, Mi FL. EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond) 2016; 11:9-30. [DOI: 10.2217/nnm.15.183] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Development of epigallocatechin gallate (EGCG) and gelatin-doxorubicin conjugate (GLT-DOX)-coated gold nanoparticles (DOX-GLT/EGCG AuNPs) for fluorescence imaging and inhibition of prostate cancer cell growth. Materials & methods: AuNPs alternatively coated with EGCG and DOX-GLT conjugates were prepared by a layer-by-layer assembly method. The physicochemical properties of the AuNPs and the effect of Laminin 67R receptor-mediated endocytosis on the anticancer efficacy of the AuNPs were examined. Results: The AuNPs significantly inhibit the proliferation of PC-3 cancer cell and the enzyme-responsive intracellular release of DOX could be tracked by monitoring the recovery of the fluorescence signal of DOX. Conclusion: Laminin 67R receptor-mediated delivery of DOX using the AuNPs enhanced cellular uptake of DOX and improved apoptosis of PC-3 cells.
Collapse
Affiliation(s)
- Li-Chu Tsai
- Institute of Organic & Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hao-Ying Hsieh
- Institute of Organic & Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10002, Taiwan
| | - Kun-Ying Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sin-Yu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biochemistry & Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Graduate Institute of Nanomedicine & Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
34
|
Heo JH, Kim KI, Cho HH, Lee JW, Lee BS, Yoon S, Park KJ, Lee S, Kim J, Whang D, Lee JH. Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13773-82. [PMID: 26638691 DOI: 10.1021/acs.langmuir.5b03534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The stability of gold nanoparticles (AuNPs) in biological samples is very important for their biomedical applications. Although various molecules such as polystyrenesulfonate (PSS), phosphine, DNA, and polyethylene glycol (PEG) have been used to stabilize AuNPs, it is still very difficult to stabilize large AuNPs. As a result, biomedical applications of large (30-100 nm) AuNPs are limited, even though they possess more favorable optical properties and are easier to be taken up by cells than smaller AuNPs. To overcome this limitation, we herein report a novel method of preparing large (30-100 nm) AuNPs with a high colloidal stability and facile chemical or biological functionality, via surface passivation with an amphiphilic polymer polyvinylpyrrolidone (PVP). This PVP passivation results in an extraordinary colloidal stability for 13, 30, 50, 70, and 100 nm AuNPs to be stabilized in PBS for at least 3 months. More importantly, the PVP capped AuNPs (AuNP-PVP) were also resistant to protein adsorption in the presence of serum containing media and exhibit a negligible cytotoxicity. The AuNP-PVPs functionalized with a DNA aptamer AS1411 remain biologically active, resulting in significant increase in the uptake of the AuNPs (∼12,200 AuNPs per cell) in comparison with AuNPs capped by a control DNA of the same length. The novel method developed in this study to stabilize large AuNPs with high colloidal stability and biological activity will allow much wider applications of these large AuNPs for biomedical applications, such as cellular imaging, molecular diagnosis, and targeted therapy.
Collapse
Affiliation(s)
- Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Kyung-Il Kim
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Hui Hun Cho
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Jin Woong Lee
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Byoung Sang Lee
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Seokyoung Yoon
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Kyung Jin Park
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Seungwoo Lee
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Jaeyun Kim
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Dongmok Whang
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, ‡SKKU Advanced Institute of Nanotechnology (SAINT), and §School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon, South Korea , 16419
| |
Collapse
|
35
|
Spectroscopic Investigation of Interaction Between Carbon Quantum Dots and D-Penicillamine Capped Gold Nanoparticles. J Fluoresc 2015; 25:1085-93. [DOI: 10.1007/s10895-015-1594-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
|
36
|
Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Kotkowiak M, Dudkowiak A. Multiwavelength excitation of photosensitizers interacting with gold nanoparticles and its impact on optical properties of their hybrid mixtures. Phys Chem Chem Phys 2015; 17:27366-72. [DOI: 10.1039/c5cp04459f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Different behavior of the mixtures on excitation with the wavelengths from the Soret and Q bands of the dyes and with those corresponding to the surface plasmon resonance band of gold nanoparticles, was analyzed.
Collapse
Affiliation(s)
- Michał Kotkowiak
- Faculty of Technical Physics Poznan University of Technology
- 60-965 Poznań
- Poland
| | - Alina Dudkowiak
- Faculty of Technical Physics Poznan University of Technology
- 60-965 Poznań
- Poland
| |
Collapse
|
38
|
Zhang Y, Chu W, Foroushani AD, Wang H, Li D, Liu J, Barrow CJ, Wang X, Yang W. New Gold Nanostructures for Sensor Applications: A Review. MATERIALS 2014; 7:5169-5201. [PMID: 28788124 PMCID: PMC5455824 DOI: 10.3390/ma7075169] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new properties and fabrication methods for gold nanostructures, especially gold nanowires (GNWs), and recent developments for their use in optical and electrochemical sensing tools, such as surface enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Yuanchao Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Wendy Chu
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | | | - Hongbin Wang
- School of Chemistry and Biotechnology, Yunnan Minzu University, Kunming 650031, China.
| | - Da Li
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Jingquan Liu
- College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| |
Collapse
|
39
|
Banerjee C, Kuchlyan J, Banik D, Kundu N, Roy A, Ghosh S, Sarkar N. Interaction of gold nanoclusters with IR light emitting cyanine dyes: a systematic fluorescence quenching study. Phys Chem Chem Phys 2014; 16:17272-83. [DOI: 10.1039/c4cp02563f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Ashokkumar R, Kathiravan A, Ramamurthy P. Zn-phthalocyanine-functionalized nanometal and nanometal–TiO2 hybrids: aggregation behavior and excited-state dynamics. Phys Chem Chem Phys 2014; 16:14139-49. [DOI: 10.1039/c4cp00695j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Selva Sharma A, Ilanchelian M. Elucidation of photophysical changes and orientation of acridine orange dye on the surface of borate capped gold nanoparticles using multi-spectroscopic techniques. Photochem Photobiol Sci 2014; 13:1741-52. [DOI: 10.1039/c4pp00223g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present work, we have carried out a detailed investigation on the binding interaction of acridine orange (AO) with borate capped gold nanoparticles (Au NPs) by multi spectroscopic techniques.
Collapse
|
42
|
Sugawa K, Tamura T, Tahara H, Yamaguchi D, Akiyama T, Otsuki J, Kusaka Y, Fukuda N, Ushijima H. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS NANO 2013; 7:9997-10010. [PMID: 24090528 DOI: 10.1021/nn403925d] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.
Collapse
Affiliation(s)
- Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science Technology, Nihon University , Chiyoda, Tokyo 101-8308, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Andreussi O, Biancardi A, Corni S, Mennucci B. Plasmon-controlled light-harvesting: design rules for biohybrid devices via multiscale modeling. NANO LETTERS 2013; 13:4475-4484. [PMID: 23981059 DOI: 10.1021/nl402403v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Photosynthesis is triggered by the absorption of light by light-harvesting (LH) pigment-protein complexes followed by excitation energy transfer to the reaction center(s). A promising strategy to achieve control on and to improve light harvesting is to complement the LH complexes with plasmonic particles. Here a recently developed QM/MM/continuum approach is used to investigate the LH process of the peridinin-chlorophyll-protein (PCP) complex on a silver island film. The simulations not only reproduce and interpret the experiments but they also suggest general rules to design novel biohybrid devices; hot-spot configurations in which the LH complex is sandwiched between couples of metal aggregates are found to produce the largest amplifications. Indications about the best distances and orientations are also reported together with illumination and emission geometries of the PCP-NP system necessary to achieve the maximum enhancement.
Collapse
Affiliation(s)
- Oliviero Andreussi
- Dipartimento di Chimica e Chimica Industriale , Via Risorgimento 35, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
44
|
Ghavidast A, Mahmoodi NO, Zanjanchi MA. Synthesis and photochromic properties of a novel thiol-terminated 1,3-diazabicyclo[3.1.0]hex-3-ene on silver nanoparticles. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Belatik A, Hotchandani S, Carpentier R. Inhibition of the water oxidizing complex of photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+. PLoS One 2013; 8:e68142. [PMID: 23861859 PMCID: PMC3701646 DOI: 10.1371/journal.pone.0068142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/24/2013] [Indexed: 11/28/2022] Open
Abstract
The action of the environmental toxic Pb(2+) on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb(2+) action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb(2+) confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb(2+). This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.
Collapse
Affiliation(s)
- Ahmed Belatik
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Surat Hotchandani
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
46
|
Maity P, Takano S, Yamazoe S, Wakabayashi T, Tsukuda T. Binding motif of terminal alkynes on gold clusters. J Am Chem Soc 2013; 135:9450-7. [PMID: 23721396 DOI: 10.1021/ja401798z] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gold clusters protected by terminal alkynes (1-octyne (OC-H), phenylacetylene (PA-H) and 9-ethynyl-phenanthrene (EPT-H)) were prepared by the ligand exchange of small (diameter <2 nm) Au clusters stabilized by polyvinylpyrrolidone. The bonding motif of these alkynes on Au clusters was investigated using various spectroscopic methods. FTIR and Raman spectroscopy revealed that terminal hydrogen is lost during the ligand exchange and that the C≡C bond of the alkynyl group is weakened upon attachment to the Au clusters. Acidification of the water phase after the ligand exchange indicated that the ligation of alkynyl groups to the Au clusters proceeds via deprotonation of the alkynes. A series of precisely defined Au clusters, Au34(PA)16, Au54(PA)26, Au30(EPT)13, Au35(EPT)18, and Au(41-43)(EPT)(21-23), were synthesized and characterized in detail to obtain further insight into the interfacial structures. Careful mass analysis confirmed the ligation of the alkynes in the dehydrogenated form. An upright configuration of the alkynes on Au clusters was suggested from the Au to alkyne ratios and photoluminescence from the excimer of the EPT ligands. EXAFS analysis implied that the alkynyl carbon is bound to bridged or hollow sites on the cluster surface.
Collapse
Affiliation(s)
- Prasenjit Maity
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
47
|
Fathi F, Kong C, Wang Y, Xie Y, Long YT, Kraatz HB. Tailoring zinc porphyrin to the Ag nanostructure substrate: an effective approach for photoelectrochemical studies in the presence of mononucleotides. Analyst 2013; 138:3380-7. [PMID: 23612117 DOI: 10.1039/c3an00156c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The substituted porphyrin 2-cyano-3-(2'-(5',10',15',20-tetraphenyl porphyrinato zinc-(ii))yl) acrylic acid was used to modify nanostructured Ag surfaces. This porphyrin-modified surface exhibits photocurrent when exposed to a light source, which is modulated in the presence of nucleotides. The addition of the nucleotides adenosine-5'-monophosphate (AMP), guanosine-5'-monophosphate (GMP) and cytidine-5'-monophosphate (CMP) causes partial quenching of the photoelectrochemical response of the porphyrin. The quenching efficiency is 80%, 68% and 48% for AMP, CMP and GMP, respectively. This work represents a new aspect of Ag NS substrates and highlights their usefulness as transducers a for potential chemosensor systems.
Collapse
Affiliation(s)
- Farkhondeh Fathi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Venkatesan R, Pichaimani A, Hari K, Balasubramanian PK, Kulandaivel J, Premkumar K. Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J Mater Chem B 2013; 1:1010-1018. [DOI: 10.1039/c2tb00078d] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Charge separation in a covalently-linked phthalocyanine-oligo(p-phenylenevinylene)-C60 system. Influence of the solvent polarity. J Inorg Biochem 2012; 108:216-24. [DOI: 10.1016/j.jinorgbio.2011.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023]
|
50
|
Zhu H, Li G, Chi Q, Zhao Y, Liu H, Li J, Huang T. Controlled synthesis of tetrapod/Mitsubishi-like palladium nanocrystals. CrystEngComm 2012. [DOI: 10.1039/c2ce06247j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|