1
|
Tsuji G, Yamaguchi Y, Oki M. 0.46 Terahertz wave irradiation inhibit transcription reaction in liposomes. Sci Rep 2025; 15:18729. [PMID: 40437100 PMCID: PMC12119987 DOI: 10.1038/s41598-025-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 05/22/2025] [Indexed: 06/01/2025] Open
Abstract
Terahertz waves are absorbed by hydrogen bonds between water molecules and proteins, and low-frequency terahertz waves, in particular, have been reported to cause changes in protein function and inhibit cell division. In this study, we established an experimental system to irradiate liposomes containing T7 RNA polymerase for in vitro transcription reactions with terahertz waves in the absence of external fluid, and analyzed the resulting changes in transcription reaction efficiency. Terahertz wave irradiation at 460 GHz did not alter the shape of the liposomes, but the intraliposomal transcription reaction was non-thermally inhibited during irradiation, regardless of the energy per pulse. After irradiation, the transcription reaction efficiency was found to be higher than in non-irradiated samples. Since our experimental system allows for the analysis of a wide range of terahertz wave frequencies, pulse widths, pulse intervals, and energy levels, we can comprehensively explore the effects of terahertz waves on living organisms, an area that has been challenging to study in the past. This capability significantly broadens the potential applications of terahertz waves in future research.
Collapse
Affiliation(s)
- Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, 910-8507, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
- Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| |
Collapse
|
2
|
Takamori S, Mimura H, Osaki T, Kondo T, Shintomi M, Shintomi K, Ohsugi M, Takeuchi S. Nuclear Assembly in Giant Unilamellar Vesicles Encapsulating Xenopus Egg Extract. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412126. [PMID: 40390663 DOI: 10.1002/smll.202412126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Indexed: 05/21/2025]
Abstract
The reconstitution of a cell nucleus in a lipid bilayer-enclosed synthetic cell makes great strides in bottom-up synthetic biology. In this study, a method for assembling a nucleus in giant unilamellar vesicles (GUVs) is proposed. To induce reconstitution of the nucleus, the interphase egg extract of African clawed frogs Xenopus laevis is utilized, known as a biochemically controllable cell-free system capable of transforming an added sperm chromatin into a nucleus in vitro. The GUV formation efficiency is enhanced by the inverted emulsion method through incorporating prolonged waiting time and adding chloroform into lipid-dispersed oil, facilitating subsequent nuclear assembly reactions in the GUVs. Characterization of nucleus-like structures formed in the GUVs revealed the presence of dense DNA and accumulated GFP-NLS in the structure, indicative of functional nuclear import. Immunostaining further validated the presence of nuclear pore complexes on the surfaces of these nucleus-like structures. The approach offers a versatile platform for constructing artificial cellular systems that closely mimic eukaryotic cells.
Collapse
Affiliation(s)
- Sho Takamori
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tomo Kondo
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Miyuki Shintomi
- Life Science Network, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Miho Ohsugi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Sharf‐Pauker N, Galil I, Kfir O, Chen G, Menachem R, Shklover J, Schroeder A, Ackerman S. Scaling Up Synthetic Cell Production Using Robotics and Machine Learning Toward Therapeutic Applications. Adv Biol (Weinh) 2025; 9:e2400671. [PMID: 40162738 PMCID: PMC12078883 DOI: 10.1002/adbi.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Synthetic cells (SCs), developed through bottom-up synthetic biology, hold great potential for biomedical applications, with the promise of replacing malfunctioning natural cells and treating diseases with spatiotemporal control. Currently, most SC synthesis and characterization processes are manual, limiting scalability and efficiency. In this study, an automated method is developed for large-scale production of protein-producing SCs for therapeutic applications. The optimized process, compatible with a robotic liquid handling system (LiHa), reduces production time by half. Additionally, incorporation of an automated tissue dissociator-based emulsification increases batch size 30-fold while preserving SC characteristics. To assess SC quality and protein synthesis, artificial intelligence (AI)-based image analysis is employed, allowing for automated, accurate and high-throughput SC characterization. Large-scale luciferase-expressing SCs from a single homogeneous batch are administered to mice, allowing for real-time monitoring of protein expression and reducing experimental variability. By troubleshooting several central steps in SC synthesis, it is demonstrated that automation and computerized quality control can significantly improve the process of SC synthesis for preclinical and clinical applications.
Collapse
Affiliation(s)
- Noga Sharf‐Pauker
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and NanotechnologyTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Ido Galil
- Faculty of Computer ScienceTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Omer Kfir
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Gal Chen
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
- The Interdisciplinary Program for BiotechnologyTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Rotem Menachem
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
- Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
4
|
Inoue Y, Yoshinare Y, Yamaguchi A, Oshima A, Yamaguchi M, Heya A, Sumitomo K. Aggregation Control of Gold Nanoparticles and Surface-Enhanced Raman Scattering within Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9567-9573. [PMID: 40163099 DOI: 10.1021/acs.langmuir.5c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
To detect trace molecules within giant unilamellar vesicles (GUVs), the effect of surface-enhanced Raman scattering within the vesicles was examined. Enhanced Raman spectra of a target molecule (bipyridine) within the GUVs were acquired through the encapsulation of gold nanoparticle aggregates and bipyridine. Furthermore, the introduction of gramicidin into the GUV membrane facilitated cation permeation through the lipid membrane, regulating the aggregation of gold nanoparticles. While the encapsulation of the gold nanoparticle dispersion in the GUV did not enhance the Raman signal, aggregation of gold nanoparticles, triggered by the influx of Na+ ions via gramicidin, amplified the Raman spectrum. This observation implies that molecules integrated into GUVs through vesicle fusion can aggregate with gold nanoparticles. These gold nanoparticle-encapsulated GUVs could serve as a new biosensor for detecting small amounts of molecules within the vesicles.
Collapse
Affiliation(s)
- Yurika Inoue
- University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yuto Yoshinare
- University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | | | - Azusa Oshima
- NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0198, Japan
| | - Masumi Yamaguchi
- NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0198, Japan
| | - Akira Heya
- University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Koji Sumitomo
- University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
5
|
Tsuji G. Flow Cytometric Analysis for Evaluating Protein Synthesis Efficiency in Giant Unilamellar Vesicles with Charged Lipids. Chembiochem 2025; 26:e202400874. [PMID: 39714999 DOI: 10.1002/cbic.202400874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Quantitative investigation of the relationship between endosomal translation reactions and phospholipid membrane composition is crucial for enhancing protein translation efficiency in artificial cells. In this study, we quantitatively compared the translation reactions within liposomes containing negatively and positively charged lipids using green fluorescent protein fluorescence as an indicator to investigate whether lipid membrane charge affects translation reaction efficiency in artificial cells. Thus, translation efficiency reduced in liposomes containing both negatively and positively charged lipids. Interestingly, flow cytometry analysis revealed that the percentage of liposomes undergoing translational reactions was reduced by the charged phospholipids. This translation reaction inhibition was alleviated by adding equal amounts of negatively and positively charged lipids, indicating that phospholipid membrane charges affected translation reaction efficiency. The relationship between membrane composition and translation reaction efficiency identified in this study is significant for the constructing complex artificial cells, particularly concerning membrane composition design.
Collapse
Affiliation(s)
- Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
- Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| |
Collapse
|
6
|
Zhang N, Song J, Han Y. Research Progress of Phospholipid Vesicles in Biological Field. Biomolecules 2024; 14:1628. [PMID: 39766335 PMCID: PMC11726895 DOI: 10.3390/biom14121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Due to their high biocompatibility, biodegradability, and facile surface functionalization, phospholipid vesicles as carriers have garnered significant attention in the realm of disease diagnosis and treatment. On the one hand, phospholipid vesicles can function as probes for the detection of various diseases by encapsulating nanoparticles, thereby enabling the precise localization of pathological changes and the monitoring of disease progression. On the other hand, phospholipid vesicles possess the capability to selectively target and deliver therapeutic agents, including drug molecules, genes and immune modulators, to affected sites, thereby enhancing the sustained release of these agents and improving therapeutic efficacy. Recent advancements in nanotechnology have led to an increased focus on the application of phospholipid vesicles in drug delivery, biological detection, gene therapy, and cell mimics. This review aims to provide a concise overview of the structure, characteristics, and preparation techniques of phospholipid vesicles of varying sizes. Furthermore, we will summarize the latest research developments regarding their use as nanomedicines and gene carriers in disease treatment. Additionally, we will elucidate the potential of phospholipid vesicles in facilitating the internalization, controlled release, and targeted delivery of therapeutic substrates. Through this review, we aspire to enhance the understanding of the evolution of phospholipid vesicles within the biological field, outline prospective research, and address the forthcoming challenges associated with phospholipid vesicles in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Na Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Jie Song
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Yuchun Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Harjung A, Fracassi A, Devaraj NK. Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins. Nat Commun 2024; 15:9363. [PMID: 39477950 PMCID: PMC11526174 DOI: 10.1038/s41467-024-53783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.
Collapse
Affiliation(s)
- Alexander Harjung
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
8
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
9
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
10
|
Okada S, Shoji K. Microrail-assisted liposome trapping and aligning in microfluidic channels. RSC Adv 2024; 14:18003-18010. [PMID: 38841399 PMCID: PMC11152143 DOI: 10.1039/d4ra02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Liposome assemblies with a specific shape are potential cell tissue models for studying intercellular communication. Microfluidic channels that can trap liposomes have been constructed to achieve efficient and high-throughput manipulation and observation of liposomes. However, the trapping and alignment of multiple liposomes in a specific space are still challenging because the liposomes are soft and easily ruptured. In this study, we focused on a microrail-assisted technique for manipulating water-in-oil (w/o) emulsions. In this technique, w/o emulsions are trapped under the microrails through a surface energy gradient. First, we investigated whether the microrail channel can be applied for liposome trapping and alignment and found that the numerical simulations showed that drag forces in the direction of the microrail acted on the liposomes, thereby moving the liposomes from the main channel to the microrail. Next, we designed a microrail device based on the simulation results and trapped liposomes using the device. Resultantly, 24.7 ± 8.5 liposomes were aligned under the microrail within an hour, and the microrail was filled with liposomes for 3 hours. Finally, we prepared the microrail devices with y-shaped and ring-shaped microrails and demonstrated the construction of liposome assemblies with specific shapes, not only the straight shape. Our results indicate that the microrail-assisted technique is a valuable method for manipulating liposomes because it has the potential to provide various-shaped liposome assemblies. We believe the microrail channel will be a powerful tool for constructing liposome-based cell-cell interaction models.
Collapse
Affiliation(s)
- Shun Okada
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Kan Shoji
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
11
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
12
|
Miwa A, Wakamori M, Ariyoshi T, Okada Y, Shirouzu M, Umehara T, Kamiya K. Efficiency of transcription and translation of cell-free protein synthesis systems in cell-sized lipid vesicles with changing lipid composition determined by fluorescence measurements. Sci Rep 2024; 14:2852. [PMID: 38310141 PMCID: PMC10838264 DOI: 10.1038/s41598-024-53135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
To develop artificial cell models that mimic living cells, cell-sized lipid vesicles encapsulating cell-free protein synthesis (CFPS) systems are useful for protein expressions or artificial gene circuits for vesicle-vesicle communications. Therefore, investigating the transcriptional and translational properties of CFPS systems in lipid vesicles is important for maximizing the synthesis and functions of proteins. Although transcription and translation using CFPS systems inside lipid vesicles are more important than that outside lipid vesicles, the former processes are not investigated by changing the lipid composition of lipid vesicles. Herein, we investigated changes in transcription and translation using CFPS systems inside giant lipid vesicles (approximately 5-20 μm in diameter) caused by changing the lipid composition of lipid vesicles containing neutral, positively, and negatively charged lipids. After incubating for 30 min, 1 h, 2 h, and 4 h, the transcriptional and translational activities in these lipid vesicles were determined by detecting the fluorescence intensities of the fluorogenic RNA aptamer on the 3'-untranslated region of mRNA (transcription) and the fluorescent protein sfCherry (translation), respectively. The results revealed that transcriptional and translational activities in a lipid vesicle containing positively charged lipids were high when the protein was synthesized using the CFPS system inside the lipid vesicle. Thus, the present study provides an experimental basis for constructing complex artificial cell models using bottom-up approaches.
Collapse
Affiliation(s)
- Akari Miwa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Tetsuro Ariyoshi
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furue-Dai, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Graduate School of Medicine, and International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furue-Dai, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Graduate School of Medicine, and International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Physics and Universal Biology Institute (UBI), Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
13
|
Cook AB, Gonzalez BD, van Hest JCM. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Biomacromolecules 2024; 25:425-435. [PMID: 38064593 PMCID: PMC10777345 DOI: 10.1021/acs.biomac.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.
Collapse
Affiliation(s)
- Alexander B Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bruno Delgado Gonzalez
- Departamento
de Química Orgánica, Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Jan C M van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
- Biomedical
Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
14
|
Tror S, Jeon S, Nguyen HT, Huh E, Shin K. A Self-Regenerating Artificial Cell, that is One Step Closer to Living Cells: Challenges and Perspectives. SMALL METHODS 2023; 7:e2300182. [PMID: 37246263 DOI: 10.1002/smtd.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/29/2023] [Indexed: 05/30/2023]
Abstract
Controllable, self-regenerating artificial cells (SRACs) can be a vital advancement in the field of synthetic biology, which seeks to create living cells by recombining various biological molecules in the lab. This represents, more importantly, the first step on a long journey toward creating reproductive cells from rather fragmentary biochemical mimics. However, it is still a difficult task to replicate the complex processes involved in cell regeneration, such as genetic material replication and cell membrane division, in artificially created spaces. This review highlights recent advances in the field of controllable, SRACs and the strategies to achieve the goal of creating such cells. Self-regenerating cells start by replicating DNA and transferring it to a location where proteins can be synthesized. Functional but essential proteins must be synthesized for sustained energy generation and survival needs and function in the same liposomal space. Finally, self-division and repeated cycling lead to autonomous, self-regenerating cells. The pursuit of controllable, SRACs will enable authors to make bold advances in understanding life at the cellular level, ultimately providing an opportunity to use this knowledge to understand the nature of life.
Collapse
Affiliation(s)
- Seangly Tror
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - SeonMin Jeon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Eunjin Huh
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
15
|
Kawamura I, Kawano R, Matsuura T. Bottom-up creation of cell-free molecular systems: Basic research toward social implementation. Biophys Physicobiol 2023; 20:e200042. [PMID: 38344037 PMCID: PMC10850460 DOI: 10.2142/biophysico.bppb-v20.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 10/28/2024] Open
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
16
|
Sato T, Matsuda S, Aoki W. Optimizing conditions to construct artificial cells using commercial in vitro transcription-translation system (PUREfrex2.0). J Biosci Bioeng 2023; 136:334-339. [PMID: 37517904 DOI: 10.1016/j.jbiosc.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Artificial cells containing in vitro transcription and translation (IVTT) systems inside liposomes are important for the reconstruction and analysis of various biological systems. To improve the accessibility of artificial cell research, it is important that artificial cells can be constructed using only commercially available components. Here, we optimized the construction of artificial cells containing PUREfrex2.0, a commercially available IVTT with high transcriptional and translational activity. Specifically, the composition of the inner and outer s olutions of the liposomes and the concentrations of lipids, glucose/sucrose, potassium glutamate, and magnesium acetate were systematically optimized, and finally we found a protocol for the stable construction of artificial cells containing PUREfre×2.0. These findings are expected to be important in expanding the artificial cell research community.
Collapse
Affiliation(s)
- Toshiko Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
17
|
Shin J, Jang Y. Rational design and engineering of polypeptide/protein vesicles for advanced biological applications. J Mater Chem B 2023; 11:8834-8847. [PMID: 37505198 DOI: 10.1039/d3tb01103h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Synthetic vesicles have gained considerable popularity in recent years for numerous biological and medical applications. Among the various types of synthetic vesicles, the utilization of polypeptides and/or proteins as fundamental constituents has garnered significant interest for vesicle construction owing to the unique bio-functionalities inherent in rationally designed amino acid sequences. Especially the incorporation of functional proteins onto the vesicle surface facilitates a wide range of advanced biological applications that are not easily attainable with traditional building blocks, such as lipids and polymers. The main goal of this review is to provide a comprehensive overview of the latest advancements in polypeptide/protein vesicles. Moreover, this review encompasses the rational design and engineering strategies employed in the creation of polypeptide/protein vesicles, including the synthesis of building blocks, the modulation of their self-assembly, as well as their diverse applications. Furthermore, this work includes an in-depth discussion of the key challenges and opportunities associated with polypeptide/protein vesicles, providing valuable insights for future research. By offering an up-to-date review of this burgeoning field of polypeptide/protein vesicle research, this review will shed light on the potential applications of these biomaterials.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, USA.
| |
Collapse
|
18
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
19
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
20
|
Caliari A, Hanczyc MM, Imai M, Xu J, Yomo T. Quantification of Giant Unilamellar Vesicle Fusion Products by High-Throughput Image Analysis. Int J Mol Sci 2023; 24:ijms24098241. [PMID: 37175944 PMCID: PMC10179211 DOI: 10.3390/ijms24098241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Artificial cells are based on dynamic compartmentalized systems. Thus, remodeling of membrane-bound systems, such as giant unilamellar vesicles, is finding applications beyond biological studies, to engineer cell-mimicking structures. Giant unilamellar vesicle fusion is rapidly becoming an essential experimental step as artificial cells gain prominence in synthetic biology. Several techniques have been developed to accomplish this step, with varying efficiency and selectivity. To date, characterization of vesicle fusion has relied on small samples of giant vesicles, examined either manually or by fluorometric assays on suspensions of small and large unilamellar vesicles. Automation of the detection and characterization of fusion products is now necessary for the screening and optimization of these fusion protocols. To this end, we implemented a fusion assay based on fluorophore colocalization on the membranes and in the lumen of vesicles. Fluorescence colocalization was evaluated within single compartments by image segmentation with minimal user input, allowing the application of the technique to high-throughput screenings. After detection, statistical information on vesicle fluorescence and morphological properties can be summarized and visualized, assessing lipid and content transfer for each object by the correlation coefficient of different fluorescence channels. Using this tool, we report and characterize the unexpected fusogenic activity of sodium chloride on phosphatidylcholine giant vesicles. Lipid transfer in most of the vesicles could be detected after 20 h of incubation, while content exchange only occurred with additional stimuli in around 8% of vesicles.
Collapse
Affiliation(s)
- Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, 38123 Povo, Italy
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, 38123 Povo, Italy
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
22
|
Supramaniam P, Wang Z, Chatzimichail S, Parperis C, Kumar A, Ho V, Ces O, Salehi-Reyhani A. Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:1227-1238. [PMID: 36977193 PMCID: PMC10127275 DOI: 10.1021/acssynbio.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle-based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approach, enabling the absolute quantification of encapsulated biomolecules. While the measured average encapsulation efficiency was 11.4 ± 6.8%, the AC/QC method allowed us to determine encapsulation efficiencies per vesicle, which varied significantly from 2.4 to 41%. We show that it is possible to achieve a desired concentration of biomolecule within each vesicle by commensurate compensation of its concentration in the seed emulsion. However, the variability in encapsulation efficiency suggests caution is necessary when using such vesicles as simplified biological models or standards.
Collapse
Affiliation(s)
| | - Zibo Wang
- Department of Surgery & Cancer, Imperial College London, London W12 0HS, U.K
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| | | | - Christopher Parperis
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| | - Aditi Kumar
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Vanessa Ho
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Imperial College London, London SW7 2AZ, U.K
| | - Ali Salehi-Reyhani
- Department of Surgery & Cancer, Imperial College London, London W12 0HS, U.K
- fabriCELL, Imperial College London, London SW7 2AZ, U.K
- Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
23
|
van Buren L, Koenderink GH, Martinez-Torres C. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:120-135. [PMID: 36508359 PMCID: PMC9872171 DOI: 10.1021/acssynbio.2c00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Giant unilamellar vesicles (GUVs) are cell-sized aqueous compartments enclosed by a phospholipid bilayer. Due to their cell-mimicking properties, GUVs have become a widespread experimental tool in synthetic biology to study membrane properties and cellular processes. In stark contrast to the experimental progress, quantitative analysis of GUV microscopy images has received much less attention. Currently, most analysis is performed either manually or with custom-made scripts, which makes analysis time-consuming and results difficult to compare across studies. To make quantitative GUV analysis accessible and fast, we present DisGUVery, an open-source, versatile software that encapsulates multiple algorithms for automated detection and analysis of GUVs in microscopy images. With a performance analysis, we demonstrate that DisGUVery's three vesicle detection modules successfully identify GUVs in images obtained with a wide range of imaging sources, in various typical GUV experiments. Multiple predefined analysis modules allow the user to extract properties such as membrane fluorescence, vesicle shape, and internal fluorescence from large populations. A new membrane segmentation algorithm facilitates spatial fluorescence analysis of nonspherical vesicles. Altogether, DisGUVery provides an accessible tool to enable high-throughput automated analysis of GUVs, and thereby to promote quantitative data analysis in synthetic cell research.
Collapse
Affiliation(s)
- Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Cristina Martinez-Torres
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
24
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
25
|
Shimomura A, Ina S, Oki M, Tsuji G. Effects of Charged Lipids on Giant Unilamellar Vesicle Fusion and Inner Content Mixing via Freeze-Thawing. Chembiochem 2022; 23:e202200550. [PMID: 36321751 DOI: 10.1002/cbic.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Fusion between giant unilamellar vesicles (GUVs) can incorporate and mix components of biochemical reactions. Recently, GUV fusion induced by freeze-thawing (F/T) was employed to construct artificial cells that can easily and repeatedly fuse GUVs with efficient content mixing. However, GUVs were ruptured during F/T, and the inner contents leaked. Herein, we investigated the effects of charged lipids on GUV fusion via F/T. The presence of 10 %-50 % (w/w%) negatively charged lipids in GUV membranes, mainly composed of the neutral charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), improved resistance to GUV rupture and decreased inner content leakage. Furthermore, we found that the presence of positively charged lipids in GUV membranes elevated GUV rupture compared with F/T between GUVs containing POPC alone. Modified GUVs may better incorporate nutrients and lipid membranes with less damage following GUV fusion via F/T, providing an improved artificial model.
Collapse
Affiliation(s)
- Ayu Shimomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Shiori Ina
- Department of Materials Science and Biotechnology, School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Department of Materials Science and Biotechnology, School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Department of Materials Science and Biotechnology, School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| |
Collapse
|
26
|
Li DY, Zhou ZH, Yu YL, Deng NN. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chauhan G, Norred SE, Dabbs RM, Caveney PM, George JKV, Collier CP, Simpson ML, Abel SM. Crowding-Induced Spatial Organization of Gene Expression in Cell-Sized Vesicles. ACS Synth Biol 2022; 11:3733-3742. [PMID: 36260840 DOI: 10.1021/acssynbio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| | - S Elizabeth Norred
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Rosemary M Dabbs
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - John K Vincent George
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| |
Collapse
|
28
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
29
|
Kuznetsov IA, Berlew EE, Glantz ST, Hannanta-Anan P, Chow BY. Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment. CELL REPORTS METHODS 2022; 2:100245. [PMID: 35880018 PMCID: PMC9308134 DOI: 10.1016/j.crmeth.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022]
Abstract
We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Spencer T. Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pimkhuan Hannanta-Anan
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Han WB, Kang DH, Kim TS. 3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Chien PJ, Shih YL, Cheng CT, Tu HL. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions. LAB ON A CHIP 2022; 22:2540-2548. [PMID: 35667105 DOI: 10.1039/d2lc00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated. In this study, we present a reliable method for the rapid production of highly uniform phase-separated liposomes as synthetic cell models. Specifically, a microfluidics-based strategy coupled with custom reagents for generating size-tunable liposomes with various lipid compositions is presented. In addition, an important cell signaling interacting pair, the pleckstrin homology (PH) domain and PIP2 lipid, is used to demonstrate the controlled molecular assembly inside these liposomes. The result shows that PIP2 on phase-separated domains successfully recruits the PH domains to realize spatially defined molecular interactions. Such a system is versatile and can be expanded to synthesize other proteins for realizing multiplexed molecular interactions in the same liposome. Phase-separated lipid domains can also be used to recruit targeted proteins to initiate localized reactions, thus paving the way for organizing a complex signaling cascade in the synthetic cell.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Lun Shih
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chieh-Teng Cheng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| |
Collapse
|
32
|
Yang J, Wang C, Lu Y. A Temperature-Controlled Cell-Free Expression System by Dynamic Repressor. ACS Synth Biol 2022; 11:1408-1416. [PMID: 35319196 DOI: 10.1021/acssynbio.1c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-free protein synthesis (CFPS) system is a typical protein production platform in the field of synthetic biology. However, there are limitations in controlling protein synthesis in the CFPS system. Compared with the traditional method of adding chemicals, temperature is an ideal control switch to achieve precise spatiotemporal control with few side effects. Hence, the design of a temperature-controlled cell-free protein synthesis (tcCFPS) system based on E. coli was carried out with the repressor cI protein in this study. The corresponding tcCFPS achieved a 143-fold dynamic protein expression level at 37 °C than that at 30 °C. Besides, the artificial cell controlled by temperature was constructed to expand the applications of tcCFPS. This study provides a new effective method for active protein synthesis in a cell-free system and a potential means of drug synthesis and delivery.
Collapse
Affiliation(s)
- Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Uyeda A, Reyes SG, Kanamori T, Matsuura T. Identification of conditions for efficient cell-sized liposome preparation using commercially available reconstituted in vitro transcription-translation system. J Biosci Bioeng 2021; 133:181-186. [PMID: 34789414 DOI: 10.1016/j.jbiosc.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/29/2022]
Abstract
Attempts to create complex molecular systems that mimic parts of cellular systems using a bottom-up approach have become important in the field of biology. Among various molecular systems, in vitro protein synthesis inside lipid vesicles (liposomes), which we refer to as the artificial cell, has become an attractive system because it possesses two fundamental features of living cells: central dogma, and compartmentalization. Here, we investigated the effect of altering the amount or concentration of four constituents of the artificial cell consisting of a commercially available reconstituted in vitro transcription-translation (IVTT) system. As this IVTT system is available worldwide, the results will be useful to the scientific community when shared, unlike those from a lab-made IVTT system. We succeeded in revealing the effect and trend of altering each parameter and identified a suitable condition for preparing liposomes that are unilamellar and can synthesize proteins equally as well as the original IVTT system. Because the commercially available reconstituted IVTT system is an important standardization tool and the constituents can be adjusted as desired, our results will be useful for the bottom-up creation of more complex molecular systems.
Collapse
Affiliation(s)
- Atsuko Uyeda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sabrina Galiñanes Reyes
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-i7E Ookayama, Meguro-Ku, Tokyo 152-8550, Japan.
| | - Takashi Kanamori
- GeneFrontier Corporation, SHARP Kashiwa Building, 4F, 273-1 Kashiwa, Kashiwa-shi, Chiba 277-0005, Japan.
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-i7E Ookayama, Meguro-Ku, Tokyo 152-8550, Japan.
| |
Collapse
|
34
|
Islam MS, Gaston JP, Baker MAB. Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers. MEMBRANES 2021; 11:857. [PMID: 34832086 PMCID: PMC8619978 DOI: 10.3390/membranes11110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage of control over the membrane and protein composition and the lipid environment. Rhodopsin and rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a natural candidate for investigation with fluorescence methods. Here we review techniques for synthesizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins in synthetic liposomes.
Collapse
Affiliation(s)
- Md. Sirajul Islam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - James P. Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
35
|
Controlled metabolic cascades for protein synthesis in an artificial cell. Biochem Soc Trans 2021; 49:2143-2151. [PMID: 34623386 DOI: 10.1042/bst20210175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
In recent years, researchers have been pursuing a method to design and to construct life forms from scratch - in other words, to create artificial cells. In many studies, artificial cellular membranes have been successfully fabricated, allowing the research field to grow by leaps and bounds. Moreover, in addition to lipid bilayer membranes, proteins are essential factors required to construct any cellular metabolic reaction; for that reason, different cell-free expression systems under various conditions to achieve the goal of controlling the synthetic cascades of proteins in a confined area have been reported. Thus, in this review, we will discuss recent issues and strategies, enabling to control protein synthesis cascades that are being used, particularly in research on artificial cells.
Collapse
|
36
|
Garenne D, Thompson S, Brisson A, Khakimzhan A, Noireaux V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth Biol (Oxf) 2021; 6:ysab017. [PMID: 34712841 PMCID: PMC8546610 DOI: 10.1093/synbio/ysab017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The new generation of cell-free gene expression systems enables the prototyping and engineering of biological systems in vitro over a remarkable scope of applications and physical scales. As the utilization of DNA-directed in vitro protein synthesis expands in scope, developing more powerful cell-free transcription-translation (TXTL) platforms remains a major goal to either execute larger DNA programs or improve cell-free biomanufacturing capabilities. In this work, we report the capabilities of the all-E. coli TXTL toolbox 3.0, a multipurpose cell-free expression system specifically developed for synthetic biology. In non-fed batch-mode reactions, the synthesis of the fluorescent reporter protein eGFP (enhanced green fluorescent protein) reaches 4 mg/ml. In synthetic cells, consisting of liposomes loaded with a TXTL reaction, eGFP is produced at concentrations of >8 mg/ml when the chemical building blocks feeding the reaction diffuse through membrane channels to facilitate exchanges with the outer solution. The bacteriophage T7, encoded by a genome of 40 kb and ∼60 genes, is produced at a concentration of 1013 PFU/ml (plaque forming unit/ml). This TXTL system extends the current cell-free expression capabilities by offering unique strength and properties, for testing regulatory elements and circuits, biomanufacturing biologics or building synthetic cells.
Collapse
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Amaury Brisson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
37
|
Kato S, Garenne D, Noireaux V, Maeda YT. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021; 22:3451-3459. [PMID: 34258998 DOI: 10.1021/acs.biomac.1c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.
Collapse
Affiliation(s)
- Shuzo Kato
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Abstract
A novel cell free protein synthesis (CFPS) system utilizing layer-by-layer (LbL) polymer assembly was developed to reduce the operational cost of conventional CFPS. This yielded an encapsulated cell system, dubbed "eCells", that successfully performs in vitro CFPS and allows cost-effective incorporation of noncanonical amino acids into proteins. The use of eCells in CFPS circumvents the need for traditional cell lysate preparation and purification of amino acyl-tRNA synthetases (aaRS) while still retaining the small scale of an in vitro reaction. eCells were found to be 55% as productive as standard dialysis CFPS at 13% of the cost. The reaction was shown to be scalable over a large range of reaction volumes, and the crowding environment in eCells confers a stabilizing effect on marginally stable proteins, such as the pyrrolysl tRNA synthetase (PylRS), providing a means for their application in in vitro protein expression. Photocaged-cysteine (PCC) and Nε-(tert-butoxycarbonyl)-l-lysine (Boc-lysine) were incorporated into Peptidyl-prolyl cis-trans isomerase B (PpiB) using small amounts of ncAA with an adequate yield of protein. Fluorescent activated cell sorting (FACS) was used to demonstrate the partition of the lysate within the eCells in contrast to standard one pot cell lysate-based methods.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Zhang Y, Chen Y, Yang X, He X, Li M, Liu S, Wang K, Liu J, Mann S. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. J Am Chem Soc 2021; 143:2866-2874. [PMID: 33566601 DOI: 10.1021/jacs.0c12494] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although giant unilamellar vesicles (GUVs) have been extensively studied as synthetic cell-like microcompartments, their applicability as cytomimetic models is severely compromised by low levels of membrane permeability, low encapsulation efficiencies, and high physicochemical instability. Here, we develop an integrated cytomimetic model comprising a macromolecularly crowded interior with high sequestration efficiency and enclosed within a phospholipid membrane that is permeable to molecules below a molecular weight cutoff of ca. 4 kDa. The protocells are readily prepared by spontaneous assembly of a phospholipid membrane on the surface of preformed polynucleotide/polysaccharide coacervate microdroplets and are designated as giant coacervate vesicles (GCVs). Partial anchoring of the GCV membrane to the underlying coacervate phase results in increased robustness, lower membrane fluidity, and increased permeability compared with GUV counterparts. As a consequence, enzyme and ribozyme catalysis can be triggered in the molecularly crowded interior of the GCV but not inside the GUVs when small molecule substrates or inducers are present in the external environment. By integrating processes of membrane-mediated compartmentalization and liquid-liquid microphase separation, GCVs could offer substantial advantages as cytomimetic models, synthetic protocells, and artificial biomolecular microreactors.
Collapse
Affiliation(s)
- Yanwen Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yufeng Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | | | - Songyang Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Stephen Mann
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
40
|
Aden S, Snoj T, Anderluh G. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods Enzymol 2021; 649:219-251. [PMID: 33712188 DOI: 10.1016/bs.mie.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.
Collapse
Affiliation(s)
- Saša Aden
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Snoj
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
42
|
Dutta J, Tiwari S. Aromatic nucleophilic substitution (s
n
ar) reactions of halo‐substituted dinitrobenzene in liposome reaction media: Effect of reaction medium and role of halogen leaving group. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jyoti Dutta
- Department of Chemistry Institute of Chemical Technology Mumbai Maharashtra India
| | - Shraeddha Tiwari
- Department of Chemistry Institute of Chemical Technology Mumbai Maharashtra India
| |
Collapse
|
43
|
Soga N, Ota A, Nakajima K, Watanabe R, Ueno H, Noji H. Monodisperse Liposomes with Femtoliter Volume Enable Quantitative Digital Bioassays of Membrane Transporters and Cell-Free Gene Expression. ACS NANO 2020; 14:11700-11711. [PMID: 32864949 DOI: 10.1021/acsnano.0c04354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital bioassays have emerged as a new category of bioanalysis. However, digital bioassays for membrane transporter proteins have not been well established yet despite high demands in molecular physiology and molecular pharmacology due to the lack of biologically functional monodisperse liposomes with femtoliter volumes. Here, we established a simple and robust method to produce femtoliter-sized liposomes (femto-liposomes). We prepared 106 monodispersed water-in-oil droplets stabilized by a lipid monolayer using a polyethylene glycol-coated femtoliter reactor array device. Droplets were subjected to the optimized emulsion transfer process for femto-liposome production. Liposomes were monodispersed (coefficient of variation = 5-15%) and had suitable diameter (0.6-5.3 μm) and uniform volumes of subfemtoliter or a few femtoliters; thus, they were termed uniform femto-liposomes. The unilamellarity of uniform femto-liposomes allowed quantitative single-molecule analysis of passive and active transporter proteins: α-hemolysin and FoF1-ATPase. Digital gene expression in uniform femto-liposomes (cell-free transcription and translation from single DNA molecules) was also demonstrated, showing the versatility of digital assays for membrane transporter proteins and cell-free synthetic biology.
Collapse
Affiliation(s)
- Naoki Soga
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Ota
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kota Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rikiya Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Abstract
Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switch for protein synthesis due to its nontoxicity and excellent time-space conversion. Hence, in this study, a blue light-regulated two-component system named YF1/FixJ was incorporated into an Escherichia coli-based cell-free system to control protein synthesis. The corresponding cell-free system successfully achieved a 5-fold dynamic protein expression by blue light repression and 3-fold dynamic expression by blue light activation. With the aim of expanding the applications of cell-free synthetic biology, the cell-free blue light-sensing system was used to perform imaging, light-controlled antibody synthesis, and light-triggered artificial cell assembly. This study can provide a guide for further research into the field of cell-free optical sensing. Moreover, it will also promote the development of cell-free synthetic biology and optogenetics through applying the cell-free optical sensing system to synthetic biology education, biopharmaceutical research, and artificial cell construction.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Eunhee Cho
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Bharmoria P, Correia SFH, Martins M, Hernández-Rodríguez MA, Ventura SPM, Ferreira RAS, Carlos LD, Coutinho JAP. Protein Cohabitation: Improving the Photochemical Stability of R-Phycoerythrin in the Solid State. J Phys Chem Lett 2020; 11:6249-6255. [PMID: 32643938 DOI: 10.1021/acs.jpclett.0c01491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The poor photochemical stability of R-phycoerythrin (R-PE) has been a bottleneck for its broad-spectrum applications. Inspired by nature, we studied a sustainable strategy of protein cohabitation to enhance R-PE stability by embedding it in a solid matrix of gelatin. Both pure R-PE and fresh phycobiliprotein (PBP) extracts recovered from Gracilaria gracilis were studied. The incorporation of R-PE in the gelatin-based films (gelatin-RPE and gelatin-PBPs) has improved its photochemical stability for at least 8 months, the longest time period reported so far. These results were evidenced by not only absorption but also emission quantum yield measurements (Φ). Moreover, the photostability of gelatin-RPE films upon continuous excitation with an AM1.5G solar simulator was tested and found to remain stable for 23 h after initial decreasing up to 250 min. In the end, another approach was established to allow 100% photostability for a 3 h exposure to an AM1.5G solar simulator by doping the gelatin-based film including R-Phycoerythrin with n-propyl gallate stabilized with Tween 80, allowing their use as naturally based optically active centers in photovoltaic applications.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra F H Correia
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Martins
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rute A S Ferreira
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
46
|
pH induced reorganization of protein-protein interface in liposome encapsulated Ferritin at air/fluid and fluid/solid interfaces. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Abstract
The cell-free molecular synthesis of biochemical systems is a rapidly growing field of research. Advances in the Human Genome Project, DNA synthesis, and other technologies have allowed the in vitro construction of biochemical systems, termed cell-free biology, to emerge as an exciting domain of bioengineering. Cell-free biology ranges from the molecular to the cell-population scales, using an ever-expanding variety of experimental platforms and toolboxes. In this review, we discuss the ongoing efforts undertaken in the three major classes of cell-free biology methodologies, namely protein-based, nucleic acids–based, and cell-free transcription–translation systems, and provide our perspectives on the current challenges as well as the major goals in each of the subfields.
Collapse
Affiliation(s)
- Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allen P. Liu
- Departments of Mechanical Engineering, Biomedical Engineering, Biophysics, and the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
A protocell with fusion and division. Biochem Soc Trans 2019; 47:1909-1919. [PMID: 31819942 DOI: 10.1042/bst20190576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
Abstract
A protocell is a synthetic form of cellular life that is constructed from phospholipid vesicles and used to understand the emergence of life from a nonliving chemical network. To be considered 'living', a protocell should be capable of self-proliferation, which includes successive growth and division processes. The growth of protocells can be achieved via vesicle fusion approaches. In this review, we provide a brief overview of recent research on the formation of a protocell, fusion and division processes of the protocell, and encapsulation of a defined chemical network such as the genetic material. We also provide some perspectives on the challenges and future developments of synthetic protocell research.
Collapse
|
50
|
Oropeza-Guzman E, Ríos-Ramírez M, Ruiz-Suárez JC. Leveraging the Coffee Ring Effect for a Defect-Free Electroformation of Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16528-16535. [PMID: 31747518 DOI: 10.1021/acs.langmuir.9b02488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We took advantage of the microflow hydrodynamics in the evaporation of sessile droplets to increase the height uniformity of thin lipid films for the subsequent electroformation of defect-free giant unilamellar vesicles (GUV). By serially casting progressively larger liposome suspension droplets on the same spot of an indium-tin-oxide (ITO) electrode, we managed to leverage the coffee ring effect (CRE) in the evaporation of each droplet to generate a smeared multilayer film of uniform thickness. This multidroplet technique of lipid film formation outperformed the traditional single-droplet deposition, improving the final quality of electroformed GUV samples. The proposed film formation technique constitutes a solvent-free method that results in a dramatic reduction (∼20×) in the appearance of undesirable structures like nonspherical (NSV), multilamellar (MLV), and multivesicular (MVV) vesicles.
Collapse
Affiliation(s)
- Eric Oropeza-Guzman
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| | - Maricarmen Ríos-Ramírez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| | - Jesús Carlos Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| |
Collapse
|