1
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity. Immunology 2024; 172:547-565. [PMID: 38566448 DOI: 10.1111/imm.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Luo M, Li L, Chen S, Yan Q, Lv J, Zeng J, Wang H, Gu S, Chen F. Synthesis of 2,4-Disubstituted Oxazoles and Thiazoles via Brønsted Acid-Catalyzed Cyclization of α-diazoketones with Amides. J Org Chem 2024; 89:5038-5048. [PMID: 38517950 DOI: 10.1021/acs.joc.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
A novel method is described for the synthesis of 2,4-disubstituted oxazole and thiazole derivates via the coupling of α-diazoketones with (thio)amides or thioureas using trifluoromethanesulfonic acid (TfOH) as a catalyst. This protocol is characterized by mild reaction conditions, metal-free, and simplicity and also features good functional group tolerance, good to excellent yields, and a broad substrate scope with more than 40 examples. Experimental studies suggest a mechanism involving 2-oxo-2-phenylethyl trifluoromethanesulfonate as the key intermediate.
Collapse
Affiliation(s)
- Mengxiang Luo
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lewan Li
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shixin Chen
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiongjiao Yan
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jian Lv
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jie Zeng
- School of Chemical Engineering & Pharmacy and Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Shuangxi Gu
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
3
|
Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr 2023; 10:1090338. [PMID: 36992907 PMCID: PMC10040549 DOI: 10.3389/fnut.2023.1090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjing Zhu
- Jinyintan Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingjing Zhu,
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ling Yang, ,
| |
Collapse
|
4
|
Chatterjee I, Ali K, Panda G. A Synthetic Overview of Benzoxazines and Benzoxazepines as Anticancer Agents. ChemMedChem 2023; 18:e202200617. [PMID: 36598081 DOI: 10.1002/cmdc.202200617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Benzoxazines and benzoxazepines are nitrogen and oxygen-containing six and seven-membered benzo-fused heterocyclic scaffolds, respectively. Benzoxazepines and benzoxazines are well-known pharmacophores in pharmaceutical chemistry, which are of significant interest and have been extensively studied because of their promising activity against various diseases including their wide range of anticancer activity. Several reports are known for synthesizing benzoxazine and benzoxazepine-based compounds in the literature. Herein this review provides a critical analysis of synthetic strategies towards benzoxazines and benzoxazepines along with various ranges of anticancer activities based on these molecules that have been reported from 2010 onwards. This review also focuses on the structure-activity relationship of the benzoxazine and benzoxazepine scaffolds containing bioactive compounds and describes how the structural modification affects their anticancer activity.
Collapse
Affiliation(s)
- Indranil Chatterjee
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India
| | - Kasim Ali
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
5
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Review of ferroptosis in colorectal cancer: Friends or foes? World J Gastroenterol 2023; 29:469-486. [PMID: 36688016 PMCID: PMC9850932 DOI: 10.3748/wjg.v29.i3.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell-regulated death. It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by different morphology, biochemistry, and genetics. Recently, studies have shown that ferroptosis is associated with a variety of diseases, including liver, kidney and neurological diseases, as well as cancer. Ferroptosis has been shown to be associated with colorectal epithelial disorders, which can lead to cancerous changes in the gut. However, the potential role of ferroptosis in the occurrence and development of colorectal cancer (CRC) is still controversial. To elucidate the underlying mechanisms of ferroptosis in CRC, this article systematically reviews ferroptosis, and its cellular functions in CRC, for furthering the understanding of the pathogenesis of CRC to aid clinical treatment.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
6
|
Gu X, Liu Y, Dai X, Yang YG, Zhang X. Deciphering the potential roles of ferroptosis in regulating tumor immunity and tumor immunotherapy. Front Immunol 2023; 14:1137107. [PMID: 36926345 PMCID: PMC10011099 DOI: 10.3389/fimmu.2023.1137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibition (ICI) and adoptive immune cells therapy, are promising therapeutic strategies. They reactivate the function of immune cells and induce immune responses to attack tumor cells. Although these novel therapies benefited a large amount of cancer patients, many cancer patients have shown fair responses even resistance to cancer immunotherapies, limiting their wide clinical application. Therefore, it is urgent to explore the underlying mechanisms of low response and resistance of cancer immunotherapy to enhance their treatment efficacy. The programmed cell death (PCD) including the ferroptosis, has been demonstrated to play essential roles in antitumor immunity and in regulating the immune response to ICIs. Ferroptosis, a phospholipid peroxidation-mediated, iron-dependent membrane damage, exhibite three critical hallmarks: the oxidation of phospholipids, the lack of lipid peroxide repair capability and the overloading of redox-active iron. Notably, ferroptosis was found to plays important roles in regulating tumor immunity and response to immunotherapy. Therefore, targeting ferroptosis alone or in combination with immunotherapy may provide novel options to promote their antitumor efficacy. However, the effect of ferroptosis on tumor immunity and immunotherapy is affected by the interaction of ferroptosis and cancer cells, immune cells, tumor microenvironment (TME) and others. In this review, we summarized and discussed the critical roles of ferroptosis in regulating antitumor immunity, TME and in the improvement of the therapeutic efficacy of immunotherapy in cancers.
Collapse
Affiliation(s)
- Xu Gu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhao H, Shang H. The role of ferroptosis in the side effects of dexamethasone. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hongjiang Zhao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
He X, Xu K, Liu Y, Wang D, Tang Q, Hui W, Chen H, Shang Y. Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4 H-chromen-4-ones. Molecules 2022; 27:7412. [PMID: 36364239 PMCID: PMC9654733 DOI: 10.3390/molecules27217412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
A robust metal- and solvent-free cascade radical-induced C-N cleavage/intramolecular 6-endo-dig annulation/hydrocarbonylation for the synthesis of the valuable 2-aryl-4H-chromen-4-ones is described. This practical synthesis strategy utilizes propargylamines and air as the oxygen source and green carbonylation reagent, in which propargylamines are activated by the inexpensive and available dimethyl 2,2'-azobis(2-methylpropionate) (AIBME) and (PhSe)2 as the radical initiators. This simple and green protocol features wide substrate adaptability, good functional group tolerance, and amenability to scaling up and derivatizations.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Zhao X, Wu X, Zhang L, Li G, He Y. Electrochemical Synthesis of Trisubstituted Oxazoles and Imines from β‐Diketones and Amines. ChemElectroChem 2022. [DOI: 10.1002/celc.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yangli Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xiao‐Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Lizhu Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
10
|
Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov Today 2022; 27:759-776. [PMID: 34890803 PMCID: PMC8901563 DOI: 10.1016/j.drudis.2021.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Tubulin is an important cancer drug target. Compounds that bind at the colchicine site in tubulin have attracted significant interest as they are generally less affected by multidrug resistance than other potential drugs. Modeling is useful in understanding the interactions between tubulin and colchicine binding site inhibitors (CBSIs), but because the colchicine binding site contains two flexible loops whose conformations are highly ligand-dependent, modeling has its limitations. X-ray crystallography provides experimental pictures of tubulin-ligand interactions at this challenging colchicine site. Since 2004, when the first X-ray structure of tubulin in complex with N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) was published, many X-ray crystal structures have been reported for tubulin complexes involving the colchicine binding site. In this review, we summarize the crystal structures of tubulin in complexes with various CBSIs, aiming to facilitate the discovery of new generations of tubulin inhibitors.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol 2022; 12:771870. [PMID: 35174081 PMCID: PMC8841808 DOI: 10.3389/fonc.2022.771870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of tissue homeostasis under physiological conditions while its aberration is tightly connected with lots of pathophysiological processes such as acute tissue injury, chronic degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin structure and gene expression by writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences suggest that epigenetic regulation is involved in the determination of cellular vulnerability to ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that control the expression of ferroptosis-associated genes and thereby the ferroptosis process. Moreover, the potential value of epigenetic drugs in targeting or synergizing ferroptosis during cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujie Qian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| |
Collapse
|
12
|
Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021; 11:727778. [PMID: 34604067 PMCID: PMC8479096 DOI: 10.3389/fonc.2021.727778] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.
Collapse
Affiliation(s)
- Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Kulkarni S, Kaur K, Jaitak V. Recent Developments in Oxazole Derivatives as Anticancer Agents: Review on Synthetic Strategies, Mechanism of Action and SAR studies. Anticancer Agents Med Chem 2021; 22:1859-1882. [PMID: 34525925 DOI: 10.2174/1871520621666210915095421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the world's third deadliest disease. Despite the availability of numerous treatments, researchers are focusing on the development of new drugs lacking resistance and toxicity issues. Many newly synthesized drugs fail to reach clinical trials due to poor pharmacokinetic properties. Therefore, there is an imperative requisite to expand novel anticancer agents with in vivo efficacy. OBJECTIVE This review emphasizes synthetic methods, contemporary strategies used for the inclusion of oxazole moiety, mechanistic targets along with comprehensive structure-activity relationship studies to provide perspective into the rational design of highly efficient oxazole-based anticancer drugs. METHODS Literature related to oxazole derivatives engaged in cancer research is reviewed. This article gives a detailed account of synthetic strategies, targets of oxazole in cancer, including STAT3, Microtubules, G-quadruplex, DNA topoisomerases, DNA damage, Protein kinases, miscellaneous targets, in vitro studies, and some SAR studies. RESULTS Oxazole derivatives possess potent anticancer activity by inhibiting novel targets such as STAT3 and G-quadruplex. Oxazoles also inhibit tubulin protein to induce apoptosis in cancer cells. Some other targets such as DNA topoisomerase enzyme, protein kinases, and miscellaneous targets including Cdc25, mitochondrial enzymes, HDAC, LSD1, HPV E2 TAD, NQO1, Aromatase, BCl-6, Estrogen receptor, GRP-78, and Keap-Nrf2 pathway are inhibited by oxazole derivatives Many derivatives showed excellent potencies on various cancer cell lines with IC50 values in nanomolar concentrations. CONCLUSION Oxazole is a five-membered heterocycle, with oxygen and nitrogen at 1 and 3 positions respectively. It is often combined with other pharmacophores in the expansion of novel anticancer drugs. In summary, oxazole is a promising entity to develop new anticancer drugs.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| |
Collapse
|
14
|
Kalaiarasi G, Dharani S, Rajkumar SRJ, Kaminsky W, Prabhakaran R. Synthesis, spectroscopic/electrochemical characterization, DNA/Protein binding studies and bioactivity assays of Ru(II) carbonyl complexes of 4-oxo-4H-chromene-3-carbaldehyde thiosemicarbazones. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Stefaniak M, Olszewska B. 1,5-Benzoxazepines as a unique and potent scaffold for activity drugs: A review. Arch Pharm (Weinheim) 2021; 354:e2100224. [PMID: 34368985 DOI: 10.1002/ardp.202100224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/09/2022]
Abstract
Benzoxazepines constitute a huge number of organic compounds widely described in the literature. Many of them are distinguished by their biological properties. Among them, our attention was drawn to 1,5-benzoxazepine derivatives due to their interesting pharmacological properties. As is reported in the literature, these compounds are not only good building blocks in organic synthesis but also have interesting biological and pharmacological properties. This article is the first review publication to describe the synthesis methods and unique properties of 1,5-benzoxazepines. Literature reports widely describe the biological properties of 1,5-benzoxazepine, like anticancer, antibacterial, or antifungal activities. 1,5-Benzoxazepine derivatives can also interact with G-protein-coupled receptors and could be incorporated into new potential drugs, among others, in treating neuronal disorders like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Monika Stefaniak
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| | - Beata Olszewska
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
16
|
Sisco E, Barnes KL. Design, Synthesis, and Biological Evaluation of Novel 1,3-Oxazole Sulfonamides as Tubulin Polymerization Inhibitors. ACS Med Chem Lett 2021; 12:1030-1037. [PMID: 34141089 DOI: 10.1021/acsmedchemlett.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
A series of novel 1,3-oxazole sulfonamides were constructed and screened for their potential to inhibit cancer cell growth. These compounds were evaluated against the full NCI-60 human tumor cell lines, with the majority exhibiting promising overall growth inhibitory properties. They displayed high specificity within the panel of leukemia cell lines versus all other lines tested. When examined in the dose-response assay, GI50 values fell within the low micromolar to nanomolar ranges. 1,3-Oxazole sulfonamide 16 displayed the best average growth inhibition, whereas the 2-chloro-5-methylphenyl and 1-naphthyl substituents on the sulfonamide nitrogen proved to be the most potent leukemia inhibitors with mean GI50 values of 48.8 and 44.7 nM, respectively. In vitro tubulin polymerization experiments revealed that this class of compounds effectively binds to tubulin and induces the depolymerization of microtubules within cells.
Collapse
Affiliation(s)
- Edward Sisco
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Korry L. Barnes
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| |
Collapse
|
17
|
La Rosa P, Petrillo S, Fiorenza MT, Bertini ES, Piemonte F. Ferroptosis in Friedreich's Ataxia: A Metal-Induced Neurodegenerative Disease. Biomolecules 2020; 10:biom10111551. [PMID: 33202971 PMCID: PMC7696618 DOI: 10.3390/biom10111551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which is emerging as a crucial player in neurodegeneration. This review provides an analysis of the most recent advances in ferroptosis, with a special focus on Friedreich's Ataxia (FA), the most common autosomal recessive neurodegenerative disease, caused by reduced levels of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and antioxidant defenses. The hypothesis is that the iron-induced oxidative damage accumulates over time in FA, lowering the ferroptosis threshold and leading to neuronal cell death and, at last, to cardiac failure. The use of anti-ferroptosis drugs combined with treatments able to activate the antioxidant response will be of paramount importance in FA therapy, such as in many other neurodegenerative diseases triggered by oxidative stress.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (P.L.R.); (M.T.F.)
| | - Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (E.S.B.)
| | - Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (P.L.R.); (M.T.F.)
| | - Enrico Silvio Bertini
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (E.S.B.)
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (E.S.B.)
- Correspondence: ; Tel.: +39-06-6859-2102
| |
Collapse
|
18
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
19
|
Kim KM, Cho SS, Ki SH. Emerging roles of ferroptosis in liver pathophysiology. Arch Pharm Res 2020; 43:985-996. [PMID: 33079307 DOI: 10.1007/s12272-020-01273-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Ferroptosis is a widely recognized process of regulated cell death linking redox state, metabolism, and human health. It is considered a defense mechanism against extensive lipid peroxidation, a complex process that may disrupt the membrane integrity, eventually leading to toxic cellular injury. Ferroptosis is controlled by iron, reactive oxygen species, and polyunsaturated fatty acids. Accumulating evidence has addressed that ferroptosis plays an unneglectable role in regulating the development and progression of multiple pathologies of the liver, including hepatocellular carcinoma, liver fibrosis, nonalcoholic steatosis, hepatic ischemia-reperfusion injury, and liver failure. This review may increase our understating of the cellular and molecular mechanisms of liver disease progression and establish the foundation of strategies for pharmacological intervention.
Collapse
Affiliation(s)
- Kyu Min Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
20
|
Zuo S, Yu J, Pan H, Lu L. Novel insights on targeting ferroptosis in cancer therapy. Biomark Res 2020; 8:50. [PMID: 33024562 PMCID: PMC7532638 DOI: 10.1186/s40364-020-00229-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis belongs to a novel form of regulated cell death. It is characterized by iron dependence, destruction of intracellular redox balance and non-apoptosis. And cellular structure and molecules level changes also occur abnormally during ferroptosis. It has been proved that ferroptosis exist widespreadly in many diseases, such as heart disease, brain damage or alzheimer disease. At the same time, the role of ferroptosis in cancer cannot be underestimated. More and more indications have told that ferroptosis is becoming a powerful weapon against cancer. In addition, therapies rely on ferroptosis have been applied to the clinic. Therefore, it is necessary to understand this newly discovered form of cell death and its connection with cancer. This review summarizes the mechanism of ferroptosis, ferroptosis inducers based on different targets and inspection methods. At last, we analyzed the relationship between ferroptosis and malignancies, in order to provide a novel theory basis for cancer treatment.
Collapse
Affiliation(s)
- Sipeng Zuo
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Jie Yu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Hui Pan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Linna Lu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| |
Collapse
|
21
|
Harisha MB, Dhanalakshmi P, Suresh R, Kumar RR, Muthusubramanian S. Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate. Beilstein J Org Chem 2020; 16:2108-2118. [PMID: 32952727 PMCID: PMC7476590 DOI: 10.3762/bjoc.16.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
The reactivity of α-azidochalcones has been explored for the preparation of highly substituted oxazoles via a 2H-azirine intermediate. The azidochalcones, when treated with potassium thiocyanate in the presence of potassium persulfate, lead to 2,4,5-trisubstituted oxazoles in good yields. Incidentally, 2-aminothiazoles are the products when ferric nitrate is employed instead of persulfate in the above reaction.
Collapse
Affiliation(s)
- Mysore Bhyrappa Harisha
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India.,Eurofins-Advinus Limited, Phase II, Peenya Industrial Area, Bangalore-560 058, India
| | - Pandi Dhanalakshmi
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India.,Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore-560 012, India
| | - Rajendran Suresh
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Shanmugam Muthusubramanian
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| |
Collapse
|
22
|
The Latest View on the Mechanism of Ferroptosis and Its Research Progress in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6375938. [PMID: 32908634 PMCID: PMC7474794 DOI: 10.1155/2020/6375938] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
Ferroptosis is a recently identified nonapoptotic form of cell death whose major markers are iron dependence and accumulation of lipid reactive oxygen species, accompanied by morphological changes such as shrunken mitochondria and increased membrane density. It appears to contribute to the death of tumors, ischemia-reperfusion, acute renal failure, and nervous system diseases, among others. The generative mechanism of ferroptosis includes iron overloading, lipid peroxidation, and downstream execution, while the regulatory mechanism involves the glutathione/glutathione peroxidase 4 pathway, as well as the mevalonate pathway and the transsulfuration pathway. In-depth research has continuously developed and enriched knowledge on the mechanism by which ferroptosis occurs. In recent years, reports of the noninterchangeable role played by selenium in glutathione peroxidase 4 and its function in suppressing ferroptosis and the discovery of ferroptosis suppressor protein 1, identified as a ferroptosis resistance factor parallel to the glutathione peroxidase 4 pathway, have expanded and deepened our understanding of the mechanism by which ferroptosis works. Ferroptosis has been reported in spinal cord injury animal model experiments, and the inhibition of ferroptosis could promote the recovery of neurological function. Here, we review the latest studies on mechanism by which ferroptosis occurs, focusing on the ferroptosis execution and the contents related to selenium and ferroptosis suppressor protein 1. In addition, we summarize the current research status of ferroptosis in spinal cord injury. The aim of this review is to better understand the mechanisms by which ferroptosis occurs and its role in the pathophysiological process of spinal cord injury, so as to provide a new idea and frame of reference for further exploration.
Collapse
|
23
|
Kotha S, Rao Cheekatla S. Design and Synthesis of Pentacycloundecane Cage Compound Containing Oxazole Moiety. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Tabata H, Funaki K, Tasaka T, Oshitari T, Takahashi H, Natsugari H. Elucidation of the Active Conformation of Antiproliferative Sulfonamides, 5N-Arylsulfonyl-1,5-benzodiazepin-2-ones. J Org Chem 2019; 84:16338-16345. [DOI: 10.1021/acs.joc.9b02833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hidetsugu Tabata
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kaoru Funaki
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomohiko Tasaka
- Affinity Science Corporation, 1-11-1 Nishi-Gotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Tetsuta Oshitari
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Natsugari
- Affinity Science Corporation, 1-11-1 Nishi-Gotanda, Shinagawa-ku, Tokyo 141-0031, Japan
- Faculty of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Xu K, Yang R, Yang S, Jiang C, Ding Z. Hypervalent iodane mediated reactions of N-acetyl enamines for the synthesis of oxazoles and imidazoles. Org Biomol Chem 2019; 17:8977-8981. [PMID: 31576884 DOI: 10.1039/c9ob01895f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A hypervalent iodane reagent used for the intramolecular cyclization of N-acetyl enamines and intermolecular cyclocondensation of enamines and nitriles was investigated. The reaction was performed under mild conditions and gave oxazoles and imidazoles, respectively, in moderate to excellent yields. This transformation exhibits good reactivity, selectivity and functional group tolerance. The selectivity of the intra- or intermolecular reaction is dependent on the structure of N-acetyl enamines.
Collapse
Affiliation(s)
- Kang Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ruiqi Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
26
|
Khan I, Shareef MA, Kumar CG. An overview on the synthetic and medicinal perspectives of indenopyrazoles. Eur J Med Chem 2019; 178:1-12. [DOI: 10.1016/j.ejmech.2019.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023]
|
27
|
Wang B, Chen X, Gao J, Su L, Zhang L, Xu H, Luan Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg Med Chem Lett 2019; 29:2638-2645. [DOI: 10.1016/j.bmcl.2019.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
|
28
|
Zamani P, Phipps J, Hu J, Cheema F, Amiri Rudbari H, Bordbar AK, Khosropour AR, Beyzavi H. Multicomponent Synthesis of Diversified Chromeno[3,2- d]oxazoles. ACS COMBINATORIAL SCIENCE 2019; 21:557-561. [PMID: 31276369 DOI: 10.1021/acscombsci.9b00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical and efficient synthetic procedure to novel chromeno[3,2-d]oxazoles through a one-pot sequential multistep process is presented. This procedure proceeds efficiently in propylene carbonate (PC) as a green solvent and affords a wide range of the chromenooxazole scaffolds.
Collapse
Affiliation(s)
- Parisa Zamani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Joshua Phipps
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Faizan Cheema
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Ahmad R. Khosropour
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hudson Beyzavi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
29
|
Field JJ, Singh AJ, Sinha S, Rowe MR, Denny WA, Brooke DG, Miller JH. Synthesis and Microtubule-Destabilizing Activity of N-Cyclopropyl-4-((3,4-dihydroquinolin-1(2H)-yl)sulfonyl)benzamide and its Analogs. Chem Asian J 2019; 14:1151-1157. [PMID: 30311418 DOI: 10.1002/asia.201801313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/10/2018] [Indexed: 01/17/2023]
Abstract
While clinically useful, microtubule-targeting agents are limited by factors that include their susceptibility to multidrug resistance. A series of aryl sulfonamides, terminally substituted with an amide or carboxylic acid, was synthesized and assayed for biological activity in two human cancer cell lines. The resulting antiproliferative activity data demonstrated that an amide was superior to a carboxylic acid in the para position. The most potent compound (3) had an IC50 for growth inhibition in the low micromolar range, caused cells to accumulate in G2 M of the cell cycle, and led to depolymerization of microtubules. It was also not susceptible to the P-glycoprotein drug efflux pump that underpins the resistance of cells to long-term drug treatment schedules.
Collapse
Affiliation(s)
- Jessica J Field
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - A Jonathan Singh
- Ferrier Research Institute, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Saptarshi Sinha
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Darby G Brooke
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand.,Cawthron Institute, 98 Halifax St East, The Wood, Nelson, 7010, New Zealand
| | - John H Miller
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
30
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
31
|
Bam R, Chalifoux WA. One-Pot Domino Friedel-Crafts Acylation/Annulation between Alkynes and 2-Methoxybenzoyl Chlorides: Synthesis of 2,3-Disubstituted Chromen-4-one Derivatives. J Org Chem 2018; 83:9929-9938. [PMID: 29869491 DOI: 10.1021/acs.joc.8b01357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly regioselective synthesis of 2,3-disubstituted chromen-4-one derivatives is accomplished from readily available internal alkynes and 2-methoxybenzoyl chlorides. The reaction proceeds via a domino intermolecular Friedel-Crafts acylation/intramolecular vinyl carbocation trapping (or oxa-Michael addition)/demethylation reaction sequence. This Lewis acid promoted method features relatively mild reaction conditions to synthesize a variety of 2,3-disubstituted chromen-4-one derivatives in one pot with up to 93% yield. The chromen-2-one (coumarin) product was obtained when 2,6-dimethoxybenzoyl chloride was used as a starting material via an electrophilic aromatic substitution/rearrangement process.
Collapse
Affiliation(s)
- Radha Bam
- Department of Chemistry , University of Nevada-Reno , 1664 North Virginia Street , Reno , Nevada 89557 , United States
| | - Wesley A Chalifoux
- Department of Chemistry , University of Nevada-Reno , 1664 North Virginia Street , Reno , Nevada 89557 , United States
| |
Collapse
|
32
|
Qi C, Peng Y, Wang L, Ren Y, Jiang H. Copper-Catalyzed [2 + 3] Cyclization of α-Hydroxyl Ketones and Arylacetonitriles: Access to Multisubstituted Butenolides and Oxazoles. J Org Chem 2018; 83:11926-11935. [DOI: 10.1021/acs.joc.8b01822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Yang X, Guo X, Qin M, Yuan X, Jing H, Chen B. Metal-free iodine(iii)-promoted synthesis of 2,5-diaryloxazoles. Org Biomol Chem 2018; 16:3104-3108. [PMID: 29645044 DOI: 10.1039/c8ob00401c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nonmetal-catalyzed oxidative cyclization to achieve 2,5-disubstituted oxazoles from inexpensive and readily available substituted chalcone, (diacetoxyiodo)benzene (PIDA) and ammonium acetate (NH4OAc) at room temperature is described. The reaction forms a variety of 2,5-diaryloxazoles in good to excellent yields with broad substrate scope under mild conditions without the requirement of ligands and additional bases.
Collapse
Affiliation(s)
- Xueying Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
34
|
Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front Pharmacol 2018; 8:992. [PMID: 29375387 PMCID: PMC5770584 DOI: 10.3389/fphar.2017.00992] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a process driven by accumulated iron-dependent lipid ROS that leads to cell death, which is a distinct regulated cell death comparing to other cell death. The lethal metabolic imbalance resulted from GSH depletion or inactivation of glutathione peroxidase 4 is the executor of ferroptosis within the cancer cell. Small molecules-induced ferroptosis has a strong inhibition of tumor growth and enhances the sensitivity of chemotherapeutic drugs, especially in the condition of drug resistance. These evidences have highlighted the importance of ferroptosis in cancer therapeutics, but the roles of ferroptosis in tumorigenesis and development remain unclear. This article provides an overview of the mechanisms of ferroptosis, highlights the role of ferroptosis in cancer and discusses strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Bin Lu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Bing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mei Dan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiao Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c ] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis. Eur J Med Chem 2018; 144:104-115. [DOI: 10.1016/j.ejmech.2017.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
|
36
|
Yu X, Chen K, Wang Q, Zhang W, Zhu J. Synthesis of 2,5-disubstituted oxazoles via cobalt(iii)-catalyzed cross-coupling of N-pivaloyloxyamides and alkynes. Chem Commun (Camb) 2018; 54:1197-1200. [DOI: 10.1039/c7cc08611c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient synthesis of 2,5-disubstituted oxazoles via cobalt(iii)-catalyzed cross-coupling of N-pivaloyloxyamides and alkynes is described herein.
Collapse
Affiliation(s)
- Xiaolong Yu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Chemistry for Life Sciences
| | - Kehao Chen
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Chemistry for Life Sciences
| | - Qi Wang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Chemistry for Life Sciences
| | - Wenjing Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Chemistry for Life Sciences
| | - Jin Zhu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Chemistry for Life Sciences
| |
Collapse
|
37
|
Chopra N, Kaur D, Chopra G. Hydrogen bonded complexes of oxazole family: electronic structure, stability, and reactivity aspects. Struct Chem 2017. [DOI: 10.1007/s11224-017-1032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 2016; 21:648-657. [PMID: 27860262 PMCID: PMC5345622 DOI: 10.1111/jcmm.13008] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron‐dependent lipid peroxide accumulation. Ferroptotic cell death is characterized by cytological changes, including cell volume shrinkage and increased mitochondrial membrane density. Ferroptosis can be induced by two classes of small‐molecule substances known as class 1 (system Xc− inhibitors) and class 2 ferroptosis inducers [glutathione peroxidase 4 (GPx4) inhibitors]. In addition to these small‐molecule substances, a number of drugs (e.g. sorafenib, artemisinin and its derivatives) can induce ferroptosis. Various factors, such as the mevalonate (MVA) and sulphur‐transfer pathways, play pivotal roles in the regulation of ferroptosis. Ferroptosis plays an unneglectable role in regulating the growth and proliferation of some types of tumour cells, such as lymphocytoma, ductal cell cancer of the pancreas, renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Here, we will first introduce the discovery of and research pertaining to ferroptosis; then summarize the induction mechanisms and regulatory pathways of ferroptosis; and finally, further elucidate the roles of ferroptosis in human tumourous diseases.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengyi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Environmental and Public Health School of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
40
|
Yang J, Yang S, Zhou S, Lu D, Ji L, Li Z, Yu S, Meng X. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. Eur J Med Chem 2016; 122:488-496. [PMID: 27423028 DOI: 10.1016/j.ejmech.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 12/31/2022]
Abstract
A series of benzenesulfonamide derivatives were synthesized and evaluated for their anti-proliferative activity and interaction with tubulin. These new derivatives showed significant activities against cellular proliferative and tubulin polymerization. Compound BA-3b proved to be the most potent compound with IC50 value ranging from 0.007 to 0.036 μM against seven cancer cell lines, and three drug-resistant cancer cell lines, which indicated a promising anti-cancer agent. The target tubulin was also verified by dynamic tubulin polymerization assay and tubulin intensity assay.
Collapse
Affiliation(s)
- Jun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Simin Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shanshan Zhou
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dongbo Lu
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liyan Ji
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongjun Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Siwang Yu
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xiangbao Meng
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
41
|
Chatterjee T, Cho JY, Cho EJ. Synthesis of Substituted Oxazoles by Visible-Light Photocatalysis. J Org Chem 2016; 81:6995-7000. [DOI: 10.1021/acs.joc.6b00989] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Young Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
42
|
Kadam VS, Shaikh SG, Patel AL. A series of 2, 4, 5-trisubstituted oxazole: Synthesis, characterization and DFT modelling. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24:1419-30. [DOI: 10.1016/j.bmc.2016.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
|
44
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ 2016; 23:369-79. [PMID: 26794443 PMCID: PMC5072448 DOI: 10.1038/cdd.2015.158] [Citation(s) in RCA: 2256] [Impact Index Per Article: 282.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a recently recognized form of regulated cell death. It is characterized morphologically by the presence of smaller than normal mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, and outer mitochondrial membrane rupture. It can be induced by experimental compounds (e.g., erastin, Ras-selective lethal small molecule 3, and buthionine sulfoximine) or clinical drugs (e.g., sulfasalazine, sorafenib, and artesunate) in cancer cells and certain normal cells (e.g., kidney tubule cells, neurons, fibroblasts, and T cells). Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, upregulation of endoplasmic reticulum stress, and inhibition of cystine/glutamate antiporter is involved in the induction of ferroptosis. This process is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism and can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and desferrioxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin, liproxstatin, and zileuton). Glutathione peroxidase 4, heat shock protein beta-1, and nuclear factor erythroid 2-related factor 2 function as negative regulators of ferroptosis by limiting ROS production and reducing cellular iron uptake, respectively. In contrast, NADPH oxidase and p53 (especially acetylation-defective mutant p53) act as positive regulators of ferroptosis by promotion of ROS production and inhibition of expression of SLC7A11 (a specific light-chain subunit of the cystine/glutamate antiporter), respectively. Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity. In this review, we summarize the regulation mechanisms and signaling pathways of ferroptosis and discuss the role of ferroptosis in disease.
Collapse
Affiliation(s)
- Y Xie
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - W Hou
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Song
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Yu
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - X Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - R Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, G.27C Hillman Cancer Center, 5157 Center Ave, Pittsburgh, PA 15213, USA. Tel: +1 412 6231211; Fax: +1 412 6231212; E-mail: or
| | - D Tang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, G.27C Hillman Cancer Center, 5157 Center Ave, Pittsburgh, PA 15213, USA. Tel: +1 412 6231211; Fax: +1 412 6231212; E-mail: or
| |
Collapse
|
45
|
Ibrar A, Khan I, Abbas N, Farooq U, Khan A. Transition-metal-free synthesis of oxazoles: valuable structural fragments in drug discovery. RSC Adv 2016. [DOI: 10.1039/c6ra19324b] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review article encapsulates the recent developments in the metal-free approaches used to construct oxazole moiety.
Collapse
Affiliation(s)
- Aliya Ibrar
- Department of Chemistry
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Naeem Abbas
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Umar Farooq
- Department of Chemistry
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Ajmal Khan
- Department of Chemistry
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|
46
|
Ballatore C, Smith AB, Lee VMY, Trojanowski JQ, Brunden KR. Microtubule-Stabilizing Agents for Alzheimer’s and Other Tauopathies. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol 2015; 10:1604-9. [PMID: 25965523 PMCID: PMC4509420 DOI: 10.1021/acschembio.5b00245] [Citation(s) in RCA: 651] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Little is known about the regulation of nonapoptotic cell death. Using massive insertional mutagenesis of haploid KBM7 cells we identified nine genes involved in small-molecule-induced nonapoptotic cell death, including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis. One novel compound, CIL56, triggered cell death dependent upon the rate-limiting de novo lipid synthetic enzyme ACC1. These results provide insight into the genetic regulation of cell death and highlight the central role of lipid metabolism in nonapoptotic cell death.
Collapse
Affiliation(s)
- Scott J. Dixon
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
- Department
of Biology, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Leila S. Musavi
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| | - Eric D. Lee
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| | - Berend Snijder
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Manuele Rebsamen
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Brent R. Stockwell
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| |
Collapse
|
48
|
McNamara DE, Senese S, Yeates TO, Torres JZ. Structures of potent anticancer compounds bound to tubulin. Protein Sci 2015; 24:1164-72. [PMID: 25970265 DOI: 10.1002/pro.2704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Small molecules that bind to tubulin exert powerful effects on cell division and apoptosis (programmed cell death). Cell-based high-throughput screening combined with chemo/bioinformatic and biochemical analyses recently revealed a novel compound MI-181 as a potent mitotic inhibitor with heightened activity towards melanomas. MI-181 causes tubulin depolymerization, activates the spindle assembly checkpoint arresting cells in mitosis, and induces apoptotic cell death. C2 is an unrelated compound previously shown to have lethal effects on microtubules in tumorigenic cell lines. We report 2.60 Å and 3.75 Å resolution structures of MI-181 and C2, respectively, bound to a ternary complex of αβ-tubulin, the tubulin-binding protein stathmin, and tubulin tyrosine ligase. In the first of these structures, our crystallographic results reveal a unique binding mode for MI-181 extending unusually deep into the well-studied colchicine-binding site on β-tubulin. In the second structure the C2 compound occupies the colchicine-binding site on β-tubulin with two chemical moieties recapitulating contacts made by colchicine, in combination with another system of atomic contacts. These insights reveal the source of the observed effects of MI-181 and C2 on microtubules, mitosis, and cultured cancer cell lines. The structural details of the interaction between tubulin and the described compounds may guide the development of improved derivative compounds as therapeutic candidates or molecular probes to study cancer cell division.
Collapse
Affiliation(s)
- Dan E McNamara
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, 90095.,Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
49
|
Samanta S, Donthiri RR, Dinda M, Adimurthy S. Iodine catalysed intramolecular C(sp3)–H functionalization: synthesis of 2,5-disubstituted oxazoles from N-arylethylamides. RSC Adv 2015. [DOI: 10.1039/c5ra13441b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Iodine catalyzed synthesis of 2,5-substituted oxazoles from N-arylethylamides through intramolecular C(sp3)–H functionalization under metal-free conditions is described.
Collapse
Affiliation(s)
- Supravat Samanta
- Academy of Scientific & Innovative Research
- Process Development & Engineering Cell
- CSIR–Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Ramachandra Reddy Donthiri
- Academy of Scientific & Innovative Research
- Process Development & Engineering Cell
- CSIR–Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Milan Dinda
- Academy of Scientific & Innovative Research
- Process Development & Engineering Cell
- CSIR–Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research
- Process Development & Engineering Cell
- CSIR–Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| |
Collapse
|
50
|
Alza E, Laraia L, Ibbeson BM, Collins S, Galloway WRJD, Stokes JE, Venkitaraman AR, Spring DR. Synthesis of a novel polycyclic ring scaffold with antimitotic properties via a selective domino Heck-Suzuki reaction. Chem Sci 2015; 6:390-396. [PMID: 28966765 PMCID: PMC5586250 DOI: 10.1039/c4sc02547d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/03/2014] [Indexed: 01/20/2023] Open
Abstract
The synthesis of a previously undescribed sp3-rich 6-5-5-6 tetracyclic ring scaffold using a palladium catalysed domino Heck-Suzuki reaction is reported. This reaction is high-yielding, selective for the domino process over the direct Suzuki reaction and tolerant towards a variety of boronic acids. The novel scaffold can also be accessed via domino Heck-Stille and radical cyclisations. Compounds based around this scaffold were found to be effective antimitotic agents in a human cancer cell line. Detailed phenotypic profiling showed that the compounds affected the congression of chromosomes to give mitotic arrest and apoptotic cell death. Thus, a novel structural class of antimitotic agents that does not disrupt the tubulin network has been identified.
Collapse
Affiliation(s)
- Esther Alza
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Luca Laraia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - Brett M Ibbeson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Súil Collins
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Warren R J D Galloway
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Jamie E Stokes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - Ashok R Venkitaraman
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| |
Collapse
|