1
|
Tsuyama Y, Mawatari K. Nanofluidic Detection Platform for Simultaneous Light Absorption and Scattering Measurement of Individual Nanoparticles in Flow. Anal Chem 2024; 96:11430-11438. [PMID: 38959081 DOI: 10.1021/acs.analchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Characterization and quantification of plasmonic nanoparticles at the single particle level have become increasingly important with the advancements in nanotechnology and their application to various biological analyses including diagnostics, photothermal therapy, and immunoassays. While various nanoparticle detection methodologies have been developed and widely used, simultaneous measurement of light absorption and scattering from individual plasmonic nanoparticles in flow is still challenging. Herein, we describe a novel nanofluidic detection platform that enables simultaneous measurement of absorption and scattering signals from individual nanoparticles within a nanochannel. Our detection platform utilized optical diffraction phenomena by a single nanochannel as both a readout signal for photothermal detection and a reference light for interferometric scattering detection. Through the elucidation of the frequency effect on the detection performance and optimization of experimental conditions, we achieved the classification of gold and silver nanoparticles with a diameter of 20-60 nm at an average accuracy score of 82.6 ± 2.1% by measured data sets of absorption and scattering signals. Furthermore, we demonstrated the concentration determination of plasmonic nanoparticle mixtures using a trained Support vector machine (SVM) classifier. Our simple yet sensitive nanofluidic detection platform will be a valuable tool for the analysis of nanoparticles and their applications to chemical and biological assays.
Collapse
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Graduate School of Information, Production and Systems, Waseda University, 2-7, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
2
|
Bourgeois MR, Pan F, Anyanwu CP, Nixon AG, Beutler EK, Dionne JA, Goldsmith RH, Masiello DJ. Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments. Annu Rev Phys Chem 2024; 75:509-534. [PMID: 38941525 DOI: 10.1146/annurev-physchem-083122-125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.
Collapse
Affiliation(s)
- Marc R Bourgeois
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Feng Pan
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - C Praise Anyanwu
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Austin G Nixon
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Elliot K Beutler
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
3
|
Woo HJ, Han J, Ji S, Shin BG, Park SH, Lee SG, Lee CW, Hwang E, Kim DS, Choi S, Jeong MS, Yi GR, Kim J, Song YJ. Probing Inherent Optical Anisotropy in Substrates via Direct Nanoimaging of Mie Scattering. ACS NANO 2024; 18:12333-12340. [PMID: 38688009 DOI: 10.1021/acsnano.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, we investigated the optical properties of a transition metal dichalcogenide (TMD) substrate via Mie-scattering-induced surface analysis (MISA). Employing near-field optical microscopy and finite-difference time-domain (FDTD) simulations, we systemically prove and directly visualize the Mie scattering of superspherical gold nanoparticles (s-AuNPs) at the nanoscale. Molybdenum disulfide substrates exhibited optical isotropy, while rhenium disulfide (ReS2) substrates showed anisotropic behavior attributed to the interaction with incident light's electric field. Our study revealed substantial anisotropic trends in Mie scattering, particularly in the near-infrared energy range, with ReS2 exhibiting more pronounced spectral and angular responses in satellite peaks. Our results emphasize the application of Mie scattering, exploring the optical properties of substrates and contributing to a deeper understanding of nanoscale light-matter interactions.
Collapse
Affiliation(s)
- Hwi Je Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaewon Han
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangmin Ji
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bong Gyu Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sung-Gyu Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang-Won Lee
- Institute of Advanced Optics and Photonics, Department of Applied Optics, School of Basic Sciences, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Euyheon Hwang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok-Soo Kim
- Advanced Facility Center for Quantum Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soobong Choi
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
- Intelligent Sensor Convergence Research Center (ISCRC), Incheon National University, Incheon 22012, Republic of Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University (HYU), Seoul 04763, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junki Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Jae Song
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Liu M, Zhu H, Fang Y, Liu C, Li X, Zhang X, Ma L, Wang K, Yu M, Sheng W, Zhu B. An ultra-sensitive fluorescent probe for recognition of aluminum ions and its application in environment, food, and living organisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123578. [PMID: 37984115 DOI: 10.1016/j.saa.2023.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The concentration of aluminum ions (Al3+) is closely related to the ecological environment, food safety, and human health, with excessive accumulation of Al3+ causing irreversible damage to both the ecological balance and human health. Therefore, a fluorescent probe ABHS, based on aminobenzoylhydrazide Schiff-base, was designed and synthesized in one step with a high yield. ABHS can form a 1:1 coordination complex with Al3+ in a pure water system. It exhibits ultra-sensitive and accurate detection of Al3+ even at low concentration of Al3+, with the detection limit of 6.7 nM. Furthermore, ABHS demonstrated significant enhancement of specific fluorescence for Al3+, with rapid response speed, good stability, and robust resistance to interference. Importantly, ABHS has shown excellent detection and imaging capabilities even in complex real environmental samples, food samples, and living organisms.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
5
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
6
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
West CA, Lee SA, Shooter J, Searles EK, Goldwyn HJ, Willets KA, Link S, Masiello DJ. Nonlinear effects in single-particle photothermal imaging. J Chem Phys 2023; 158:024202. [PMID: 36641380 DOI: 10.1063/5.0132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although photothermal imaging was originally designed to detect individual molecules that do not emit or small nanoparticles that do not scatter, the technique is now being applied to image and spectroscopically characterize larger and more sophisticated nanoparticle structures that scatter light strongly. Extending photothermal measurements into this regime, however, requires revisiting fundamental assumptions made in the interpretation of the signal. Herein, we present a theoretical analysis of the wavelength-resolved photothermal image and its extension to the large particle scattering regime, where we find the photothermal signal to inherit a nonlinear dependence upon pump intensity, together with a contraction of the full-width-at-half-maximum of its point spread function. We further analyze theoretically the extent to which photothermal spectra can be interpreted as an absorption spectrum measure, with deviations between the two becoming more prominent with increasing pump intensities. Companion experiments on individual 10, 20, and 100 nm radius gold nanoparticles evidence the predicted nonlinear pump power dependence and image contraction, verifying the theory and demonstrating new aspects of photothermal imaging relevant to a broader class of targets.
Collapse
Affiliation(s)
- Claire A West
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Jesse Shooter
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Emily K Searles
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Harrison J Goldwyn
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Yang W, Wei Z, Nie Y, Tian Y. Optical Detection and Imaging of Nonfluorescent Matter at the Single-Molecule/Particle Level. J Phys Chem Lett 2022; 13:9618-9631. [PMID: 36214484 DOI: 10.1021/acs.jpclett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the first optical detection of single molecules in 1989, single-molecule spectroscopy has developed rapidly and been widely applied in many areas. However, the vast majority of matter is extremely inefficient at emitting photons in our physical world, which seriously limits the applications of optical methods based on photoluminescence. In addition to indirect detection by fluorescence labeling, many efforts have been made to directly image nonfluorescent matter at the single-particle or single-molecule level in different ways based on the absorption or scattering interaction between light and matter. Herein, we review five popular methods for imaging nonfluorescent particles/molecules, including dark-field microscopy (DFM), surface plasmon resonance microscopy (SPRM), surface enhanced Raman microscopy (SERM), interferometric scattering microscopy (iSCAT), and photothermal microscopy (PTM). After summarizing the principles and applications of these methods, we compare the advantages and disadvantages of each method and describe further potential development and applications.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Zhihong Wei
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| |
Collapse
|
9
|
Li P, Li R, Wang K, Liu Q, Ren B, Ding Y, Guan R, Cao D. A julolidine-chalcone-based fluorescent probe for detection of Al 3+ in real water sample and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121213. [PMID: 35398807 DOI: 10.1016/j.saa.2022.121213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A fluorescent probe 1 based on julolidine-chalcone derivative, which can specifically recognize aluminum ion with high selectivity and anti-interference, was developed. Probe 1 has good fluorescence stability and can detect Al3+ with turn-on fluorescence in a wide pH range of 4.0-9.0. The probe has good repeatability for the detection of Al3+ and fluorescence turn-on and off can be repeated with the alternate Al3+ and EDTA. The sensing mechanism is speculated that Al3+ will coordinate with hydroxyl oxygen and carbonyl oxygen on the probe through in situ 1H NMR and HRMS combing with Job's plot. The probe can also detect Al3+ in actual water samples and applied to monitor Al3+ in biological system.
Collapse
Affiliation(s)
- Panpan Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Runsen Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kangnan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baosheng Ren
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyu Ding
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
10
|
Miyazaki J, Ishikawa Y, Kondo R. Multiwavelength Photothermal Imaging of Individual Single-Walled Carbon Nanotubes Suspended in a Solvent. J Phys Chem A 2022; 126:5483-5491. [PMID: 35925805 DOI: 10.1021/acs.jpca.2c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical imaging of individual single-walled carbon nanotubes (SWCNTs) enables the characterization of heterogeneous SWCNT samples. However, previous measurement methods have targeted SWCNTs fixed on a substrate. In this study, absorption-contrast imaging of individual SWCNTs moving irregularly in a solvent was performed by simultaneous multiwavelength photothermal (PT) microscopy. Using this technique, heterogeneous samples containing semiconducting and metallic SWCNTs were characterized by absorption spectroscopy. The semiconducting and metallic SWCNTs were visualized in different colors in the obtained multiwavelength images due to their different absorption spectra. Statistical analysis of the multiwavelength signals revealed that semiconducting and metallic SWCNTs could be distinguished with more than 90% accuracy. Time-series PT imaging of the nanotube aggregates induced by salt addition was also conducted by performing single-nanotube measurements. Our study demonstrated that PT microscopy is a versatile technique for determining the composition and degree of aggregation of SWCNTs in liquid and polymeric media, which can promote the industrial application of such materials.
Collapse
Affiliation(s)
- Jun Miyazaki
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Yuya Ishikawa
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Ryosuke Kondo
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| |
Collapse
|
11
|
Cai YY, Tauzin LJ, Ostovar B, Lee S, Link S. Light emission from plasmonic nanostructures. J Chem Phys 2021; 155:060901. [PMID: 34391373 DOI: 10.1063/5.0053320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of light emission from metallic nanoparticles has been a subject of debate in recent years. Photoluminescence and electronic Raman scattering mechanisms have both been proposed to explain the observed emission from plasmonic nanostructures. Recent results from Stokes and anti-Stokes emission spectroscopy of single gold nanorods using continuous wave laser excitation carried out in our laboratory are summarized here. We show that varying excitation wavelength and power change the energy distribution of hot carriers and impact the emission spectral lineshape. We then examine the role of interband and intraband transitions in the emission lineshape by varying the particle size. We establish a relationship between the single particle emission quantum yield and its corresponding plasmonic resonance quality factor, which we also tune through nanorod crystallinity. Finally, based on anti-Stokes emission, we extract electron temperatures that further suggest a hot carrier based mechanism. The central role of hot carriers in our systematic study on gold nanorods as a model system supports a Purcell effect enhanced hot carrier photoluminescence mechanism. We end with a discussion on the impact of understanding the light emission mechanism on fields utilizing hot carrier distributions, such as photocatalysis and nanothermometry.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lawrence J Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephen Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
12
|
Yang W, Li M, Xie M, Nie Y, Du A, Tian Y. Localized quenching sites in MAPbI 3 investigated by fluorescence and photothermal microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083701. [PMID: 34470388 DOI: 10.1063/5.0048239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In this work, we developed a fluorescence and photothermal microscope with extremely large scanning range and high spatial resolution. We demonstrated the capability of this instrument by simultaneously measuring the photoluminescence and photothermal signals of the CH3NH3PbI3 (MAPbI3) film. After scanning the MAPbI3 film on the scale of centimeters, we can obtain information of both emissive and nonemissive processes with a resolution of 200 nm at any location of the large area. We can clearly see the localized photothermal signal while the photoluminescence signal is uniform. These results directly prove that the emissive recombination happens all over the materials, but the nonemissive recombination happens only at certain localized quenching sites. The fluorescence and photothermal microscope with both large scanning range and high spatial resolution can provide information of all the relaxation channels of the excitons, showing potential applications for investigation of photophysical mechanisms in photoelectric materials.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meilian Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anbang Du
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
13
|
Hosseini Jebeli SA, West CA, Lee SA, Goldwyn HJ, Bilchak CR, Fakhraai Z, Willets KA, Link S, Masiello DJ. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods. NANO LETTERS 2021; 21:5386-5393. [PMID: 34061548 DOI: 10.1021/acs.nanolett.1c01740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic structures confine electromagnetic energy at the nanoscale, resulting in local, inhomogeneous, controllable heating, but reading out the temperature using optical techniques poses a difficult challenge. Here, we report on the optical thermometry of individual gold nanorod trimers that exhibit multiple wavelength-dependent plasmon modes resulting in measurably different local temperature distributions. Specifically, we demonstrate how photothermal microscopy encodes different wavelength-dependent temperature profiles in the asymmetry of the photothermal image point spread function. These asymmetries are interpreted through companion numerical simulations to reveal how thermal gradients within the trimer can be controlled by exciting its hybridized plasmon modes. We also find that plasmon modes that are optically dark can be excited by focused laser beam illumination, providing another route to modify thermal profiles beyond wide-field illumination. Taken together these findings demonstrate an all-optical thermometry technique to actively create and measure nanoscale thermal gradients below the diffraction limit.
Collapse
Affiliation(s)
| | - Claire A West
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Harrison J Goldwyn
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Connor R Bilchak
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Stephan Link
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Collins SSE, Searles EK, Tauzin LJ, Lou M, Bursi L, Liu Y, Song J, Flatebo C, Baiyasi R, Cai YY, Foerster B, Lian T, Nordlander P, Link S, Landes CF. Plasmon Energy Transfer in Hybrid Nanoantennas. ACS NANO 2021; 15:9522-9530. [PMID: 33350807 DOI: 10.1021/acsnano.0c08982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic metal nanoparticles exhibit large dipole moments upon photoexcitation and have the potential to induce electronic transitions in nearby materials, but fast internal relaxation has to date limited the spatial range and efficiency of plasmonic mediated processes. In this work, we use photo-electrochemistry to synthesize hybrid nanoantennas comprised of plasmonic nanoparticles with photoconductive polymer coatings. We demonstrate that the formation of the conductive polymer is selective to the nanoparticles and that polymerization is enhanced by photoexcitation. In situ spectroscopy and simulations support a mechanism in which up to 50% efficiency of nonradiative energy transfer is achieved. These hybrid nanoantennas combine the unmatched light-harvesting properties of a plasmonic antenna with the similarly unmatched device processability of a polymer shell.
Collapse
Affiliation(s)
- Sean S E Collins
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Lawrence J Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Minhan Lou
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Luca Bursi
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Jia Song
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Charlotte Flatebo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Program, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Rashad Baiyasi
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yi-Yu Cai
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Benjamin Foerster
- Advanced Materials & Systems Research, Polymer Colloid Technology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Abstract
ConspectusMetal nanoparticles have been utilized for a vast amount of plasmon enhanced spectroscopies and energy conversion devices. Their unique optical properties allow them to be used across the UV-vis-NIR spectrum tuned by their size, shape, and material. In addition to utility in enhanced spectroscopy and energy/charge transfer, the plasmon resonance of metal nanoparticles is sensitive to its surrounding environment in several ways. The local refractive index determines the resonance wavelength, but plasmon damping, as indicated by the homogeneous line width, also depends on the surface properties of the metal nanoparticles. Plasmon oscillations can decay through interband, intraband, radiation, and surface damping. While the first three damping mechanisms can be modeled based on bulk dielectric data using electromagnetic simulations, surface damping does not depend on the material properties of the nanoparticle alone but rather on the interface composition between the nanoparticle and its surrounding environment. In this Account, we will discuss three different metal nanoparticle interfaces, identifying the surface damping contribution from chemical interface damping and how it manifests itself in different interface types. On the way to uncovering the various damping contributions, we use three different single-particle spectroscopic techniques that are essential to measuring homogeneous plasmon line widths: darkfield scattering, photothermal heterodyne imaging, and photoluminescence microscopies. Obtaining the homogeneous plasmon spectrum through single-particle spectroscopy is paramount to measuring changes in plasmon damping, where even minor size and shape heterogeneities can completely obfuscate the broadening caused by surface damping. Using darkfield scattering spectroscopy, we first describe a model for chemical interface damping by expanding upon the surface damping contribution to the plasmon resonance line width to include additional influences due to adsorbed molecules. Based on the understanding of chemical interface damping as a surface damping mechanism, we then carefully compare how two molecular isomers lead to greatly different damping rates upon adsorption to gold nanorods due to differences in the formation of image dipoles within the metal nanoparticles. This plasmon damping dependence on the chemical identity of the interface is strongly correlated with the chemical's electronegativity. A similar damping trend is observed for metal oxide semiconductors, where the metal oxide with greater electron affinity leads to larger interface damping. However, in this case, the mechanism is different for the metal oxide interfaces, as damping occurs through charge transfer into interfacial states. Finally, the damping effect of catalytic metal nanoislands on gold nanorods is compared for the three spectroscopic methods mentioned. Through correlated single-particle scattering, absorption, and photoluminescence spectroscopy, the mechanism for metal-metal interface damping is determined most likely to arise from an enhanced absorption, although charge transfer cannot be ruled out. From this body of research, we conclude that chemical interface damping is a major component of the total damping rate of the plasmon resonance and critically depends on the chemical interface of the metallic nanoparticles. Plasmon damping occurs through distinct mechanisms that are important to differentiate when considering the purpose of the plasmonic nanoparticle: enhanced spectroscopy, energy conversion, or catalysis. It must also be noted that many of the mechanisms are currently indifferentiable, and thus, new single-particle spectroscopic methods are needed to further characterize the mechanisms underlying chemical interface damping.
Collapse
|
16
|
Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS NANO 2020; 14:16414-16445. [PMID: 33216527 PMCID: PMC7760091 DOI: 10.1021/acsnano.0c07638] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photothermal (PT) signal arises from slight changes of the index of refraction in a sample due to absorption of a heating light beam. Refractive index changes are measured with a second probing beam, usually of a different color. In the past two decades, this all-optical detection method has reached the sensitivity of single particles and single molecules, which gave birth to original applications in material science and biology. PT microscopy enables shot-noise-limited detection of individual nanoabsorbers among strong scatterers and circumvents many of the limitations of fluorescence-based detection. This review describes the theoretical basis of PT microscopy, the methodological developments that improved its sensitivity toward single-nanoparticle and single-molecule imaging, and a vast number of applications to single-nanoparticle imaging and tracking in material science and in cellular biology.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ashish Kar
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Martin Dieter Baaske
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Saumyakanti Khatua
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
17
|
Hoffmann B, Esser TK, Abel B, Asmis KR. Electronic Action Spectroscopy on Single Nanoparticles in the Gas Phase. J Phys Chem Lett 2020; 11:6051-6056. [PMID: 32645270 DOI: 10.1021/acs.jpclett.0c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present electronic excitation spectra of individual nanoparticles (NPs) in the gas phase obtained by messenger-mediated single nanoparticle action spectroscopy at cryogenic temperatures (cryo-SNAS). Single ∼100 nm diameter SiO2 NPs, either colorless or dye-loaded, are trapped and coated with multiple layers of N2 in a temperature-controllable modified quadrupole ion-trap at 100 K. The NP's mass is monitored quasi-continuously and nondestructively by light scattering. Absorption of electromagnetic radiation from a tunable (400-800 nm), quasi-continuous, supercontinuum laser leads to heating of the NP and subsequent evaporation of N2 molecules. The average change in NP mass as a function of the irradiation wavelength then yields the cryo-SNAS spectrum without further correction. The obtained spectra are similar to direct absorption spectra of the corresponding NP suspensions but reveal narrower bands due to the lower NP temperature. These experiments demonstrate that cryo-SNAS allows the determination of photoabsorption spectra of single, free NPs independently of scattering processes.
Collapse
Affiliation(s)
- Benjamin Hoffmann
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103 Leipzig, Germany
| | - Tim K Esser
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103 Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103 Leipzig, Germany
- Leibniz-Institut für Oberflächenmodifizierung, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Tsuyama Y, Mawatari K. Detection and Characterization of Individual Nanoparticles in a Liquid by Photothermal Optical Diffraction and Nanofluidics. Anal Chem 2020; 92:3434-3439. [DOI: 10.1021/acs.analchem.9b05554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Spaeth P, Adhikari S, Le L, Jollans T, Pud S, Albrecht W, Bauer T, Caldarola M, Kuipers L, Orrit M. Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging. NANO LETTERS 2019; 19:8934-8940. [PMID: 31790264 PMCID: PMC6909236 DOI: 10.1021/acs.nanolett.9b03853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10-3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.
Collapse
Affiliation(s)
- Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Laurent Le
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Thomas Jollans
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergii Pud
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Wiebke Albrecht
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- EMAT, University
of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Thomas Bauer
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Martín Caldarola
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Department
of Bionanoscience, Delft University of Technology,
Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- E-mail:
| | - L. Kuipers
- Department
of Quantum Nanoscience, Delft University
of Technology, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- E-mail:
| |
Collapse
|
20
|
Hogan LT, Horak EH, Ward JM, Knapper KA, Nic Chormaic S, Goldsmith RH. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS NANO 2019; 13:12743-12757. [PMID: 31614083 PMCID: PMC6887843 DOI: 10.1021/acsnano.9b04702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Optical microresonators have widespread application at the frontiers of nanophotonic technology, driven by their ability to confine light to the nanoscale and enhance light-matter interactions. Microresonators form the heart of a recently developed method for single-particle photothermal absorption spectroscopy, whereby the microresonators act as microscale thermometers to detect the heat dissipated by optically pumped, nonluminescent nanoscopic targets. However, translation of this technology to chemically dynamic systems requires a platform that is mechanically stable, solution compatible, and visibly transparent. We report microbubble absorption spectrometers as a versatile platform that meets these requirements. Microbubbles integrate a two-port microfluidic device within a whispering gallery mode microresonator, allowing for the facile exchange of chemical reagents within the resonator's interior while maintaining a solution-free environment on its exterior. We first leverage these qualities to investigate the photoactivated etching of single gold nanorods by ferric chloride, providing a method for rapid acquisition of spatial and morphological information about nanoparticles as they undergo chemical reactions. We then demonstrate the ability to control nanorod orientation within a microbubble through optically exerted torque, a promising route toward the construction of hybrid photonic-plasmonic systems. Critically, the reported platform advances microresonator spectrometer technology by permitting room-temperature, aqueous experimental conditions, which may be used for time-resolved single-particle experiments on non-emissive, nanoscale analytes engaged in catalytically and biologically relevant chemical dynamics.
Collapse
Affiliation(s)
- Levi T. Hogan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erik H. Horak
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M. Ward
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kassandra A. Knapper
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
21
|
Velázquez-Salazar JJ, Bazán-Díaz L, Zhang Q, Mendoza-Cruz R, Montaño-Priede L, Guisbiers G, Large N, Link S, José-Yacamán M. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. ACS NANO 2019; 13:10113-10128. [PMID: 31419107 DOI: 10.1021/acsnano.9b03084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Growth of anisotropic nanostructures enables the manipulation of optical properties across the electromagnetic spectrum by fine morphological tuning of the nanoparticles. Among them, stellated metallic nanostructures present enhanced properties owing to their complex shape, and hence, the control over the final morphology becomes of great importance. Herein, a seed-mediated method for the high-yield production of goldrich-copper concave branched nanostructures and their structural and optical characterization is reported. The synthesis protocol enabled excellent control and tunability of the final morphology, from concave pentagonal nanoparticles to five-fold branched nanoparticles, named "nanostars". The anisotropic shape was achieved via kinetic control over the synthesis conditions by selective passivation of facets using a capping agent and assisted by the presence of copper chloride ions, both having a crucial impact over the final structure. Optical extinction measurements of nanostars in solution indicated a broad spectral response, hiding the properties of the individual nanostars. Hence, single-particle scattering measurements of individual concave pentagonal nanoparticles and concave nanostars were performed to determine the origin of the multiple plasmon bands by correlation with their morphological features, following their growth evolution. Finite-difference time-domain calculations delivered insights into the geometry-dependent plasmonic properties of concave nanostars and their packed aggregates. Our results uncover the intrinsic scattering properties of individual nanostars and the origin of the broad spectral response, which is mostly due to z-direction packed aggregates.
Collapse
Affiliation(s)
| | | | | | | | | | - Grégory Guisbiers
- Department of Physics & Astronomy , The University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , Arkansas 72204 , United States
| | | | | | | |
Collapse
|
22
|
Zahedian M, Koh ES, Dragnea B. Photothermal microspectroscopy with Bessel-Gauss beams and reflective objectives. APPLIED OPTICS 2019; 58:7352-7358. [PMID: 31674379 DOI: 10.1364/ao.58.007352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Here, we investigate scanning photothermal microspectroscopic imaging of metal nanoparticles with reflective objectives. We show that correction-less collection of spectra from single spherical nanoparticles embedded in a polymer is possible over a wide spectral band, with large depth of focus, long working distance, and high lateral spatial resolution. We posit that these beneficial characteristics are inherent of the Bessel-Gauss character of the focused beam. When compared with other types of optical microscopy, the combination of these characteristics give photothermal imaging with reflective objectives unique appeal for material characterization applications.
Collapse
|
23
|
Devkota T, Brown BS, Beane G, Yu K, Hartland GV. Making waves: Radiation damping in metallic nanostructures. J Chem Phys 2019; 151:080901. [PMID: 31470703 DOI: 10.1063/1.5117230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metal nanostructures display several types of resonances. In the visible and near-IR spectral regions, there are localized surface plasmon resonances (LSPRs) that involve the coherent oscillation of the conduction electrons. Extended metal nanostructures, such as nanowires or nanoplates, also exhibit propagating surface plasmon polaritons (PSPPs), which are motions of the electrons at the surface of the structure that have a well-defined momentum. In addition, the vibrational normal modes of metal nanostructures give rise to low frequency resonances in the gigahertz to terahertz range. These different types of motions/resonances suffer energy losses from internal effects and from interactions with the environment. The goal of this perspective is to describe the part of the energy relaxation process due to the environment. Even though the plasmon resonances and acoustic vibrational modes arise from very different physics, it turns out that environmental damping is dominated by radiation of waves. The way the rates for radiation damping depend on the size of the nanostructure and the properties of the environment will be discussed for the different processes. For example, it is well known that for LSPRs, the rate of radiation damping increases with particle size. However, the radiation damping rate decreases with increasing dimensions for PSPPs and for the acoustic vibrational modes.
Collapse
Affiliation(s)
- Tuphan Devkota
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brendan S Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gary Beane
- ARC Center of Excellence in Future Low-Energy Electronic Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Kuai Yu
- College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Gregory V Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
24
|
Bhattacharjee U, West CA, Hosseini Jebeli SA, Goldwyn HJ, Kong XT, Hu Z, Beutler EK, Chang WS, Willets KA, Link S, Masiello DJ. Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization. ACS NANO 2019; 13:9655-9663. [PMID: 31361953 DOI: 10.1021/acsnano.9b04968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to control and manipulate temperature at nanoscale dimensions has the potential to impact applications including heat-assisted magnetic recording, photothermal therapies, and temperature-driven reactivity. One challenge with controlling temperature at nanometer dimensions is the need to mitigate heat diffusion, such that the temperature only changes in well-defined nanoscopic regions of the sample. Here we demonstrate the ability to use far-field laser excitation to actively shape the thermal near-field in individual gold nanorod heterodimers by resonantly pumping either the in-phase or out-of-phase hybridized dipole plasmon modes. Using single-particle photothermal heterodyne imaging, we demonstrate localization bias in the photothermal intensity due to preferential heating of one of the nanorods within the pair. Theoretical modeling and numerical simulation make explicit how the resulting photothermal images encode wavelength-dependent temperature biases between each nanorod within a heterodimer, demonstrating the ability to actively manage the thermal near-field by simply tuning the color of incident light.
Collapse
Affiliation(s)
- Ujjal Bhattacharjee
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Claire A West
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Seyyed Ali Hosseini Jebeli
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| | - Harrison J Goldwyn
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Xiang-Tian Kong
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Zhongwei Hu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Elliot K Beutler
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Wei-Shun Chang
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Katherine A Willets
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Stephan Link
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - David J Masiello
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
25
|
Pustovalov VK. Modeling and analysis of optical properties of nanoparticles and nanofluids for effective absorption of solar radiation and their heating. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
26
|
Al-Zubeidi A, Hoener BS, Collins SSE, Wang W, Kirchner SR, Hosseini Jebeli SA, Joplin A, Chang WS, Link S, Landes CF. Hot Holes Assist Plasmonic Nanoelectrode Dissolution. NANO LETTERS 2019; 19:1301-1306. [PMID: 30616352 DOI: 10.1021/acs.nanolett.8b04894] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strong light-absorbing properties allow plasmonic metal nanoparticles to serve as antennas for other catalysts to function as photocatalysts. To achieve plasmonic photocatalysis, the hot charge carriers created when light is absorbed must be harnessed before they decay through internal relaxation pathways. We demonstrate the role of photogenerated hot holes in the oxidative dissolution of individual gold nanorods with millisecond time resolution while tuning charge-carrier density and photon energy using snapshot hyperspectral imaging. We show that light-induced hot charge carriers enhance the rate of gold oxidation and subsequent electrodissolution. Importantly, we distinguish how hot holes generated from interband transitions versus hot holes around the Fermi level contribute to photooxidative dissolution. The results provide new insights into hot-hole-driven processes with relevance to photocatalysis while emphasizing the need for statistical descriptions of nonequilibrium processes on innately heterogeneous nanoparticle supports.
Collapse
|
27
|
Samolis PD, Sander MY. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution. OPTICS EXPRESS 2019; 27:2643-2655. [PMID: 30732299 DOI: 10.1364/oe.27.002643] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Imaging of the phase output of a lock-in amplifier in mid-infrared photothermal vibrational microscopy is demonstrated for the first time in combination with nonlinear demodulation. In general, thermal blurring and heat transport phenomena contribute to the resolution and sensitivity of mid-infrared photothermal imaging. For heterogeneous samples with multiple absorbing features, if imaged in a spectral regime of comparable absorption with their embedding medium, it is demonstrated that differentiation with high contrast is achieved in complementary imaging of the phase signal obtained from a lock-in amplifier compared to standard imaging of the photothermal amplitude signal. Specifically, by investigating the relative contribution of the out-of-phase lock-in signal, information based on changes in the rate of heat transport can be extracted, and inhomogeneities in the thermal diffusion properties across the sample plane can be mapped with high sensitivity and sub-diffraction limited resolution. Under these imaging conditions, wavenumber regimes can be identified in which the thermal diffusion contributions are minimized and an enhancement of the spatial resolution beyond the diffraction limited spot size of the probe beam in the corresponding phase images is achieved. By combining relative diffusive phase imaging with nonlinear demodulation at the second harmonic, it is demonstrated that 1-μm-size melamine beads embedded in a thin layer of 4-octyl-4'-cyanobiphenyl (8CB) liquid crystal can be detected with a 1.3-μm spatial full-width at half-maximum (FWHM) resolution. Thus, imaging with a resolving power that exceeds the probe diffraction limited spot size by a factor of 2.5 is presented, which paves the route towards super-resolution, label-free imaging in the mid-infrared.
Collapse
|
28
|
Li M, Yuan T, Jiang Y, Sun L, Wei W, Chen HY, Wang W. Total Internal Reflection-Based Extinction Spectroscopy of Single Nanoparticles. Angew Chem Int Ed Engl 2018; 58:572-576. [PMID: 30397979 DOI: 10.1002/anie.201810324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 01/05/2023]
Abstract
Herein we report a reflection-mode total internal reflection microscopy (TIRM) to measure the extinction spectrum of individual dielectric, plasmonic, or light-absorbing nanoparticles, and to differentiate absorption and scattering components from the total optical output. These capabilities were enabled via illuminating the sample with evanescent wave of which the lightpath length was comparable with the size of single nanoparticles, leading to a dramatically improved reflectance change (ΔI/I0 ) up to tens of percent. It was further found that scattering and absorption of light contributed to bright and dark centroids, respectively, in the optical patterns of single nanoparticles, allowing to distinguish scattering and absorption components from the extinction spectrum by the use of an appropriate image processing method. In addition, wide-field feature of TIRM enabled the studies on tens of nanoparticles simultaneously with gentle illumination.
Collapse
Affiliation(s)
- Meng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tinglian Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yingyan Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Linlin Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hong-Yuan Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
29
|
Li M, Yuan T, Jiang Y, Sun L, Wei W, Chen HY, Wang W. Total Internal Reflection-Based Extinction Spectroscopy of Single Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Meng Li
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Tinglian Yuan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Yingyan Jiang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Linlin Sun
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Wei Wei
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Hong-Yuan Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| | - Wei Wang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing Jiangsu 210023 China
| |
Collapse
|
30
|
Pelivanov I, Petrova E, Yoon SJ, Qian Z, Guye K, O'Donnell M. Molecular fingerprinting of nanoparticles in complex media with non-contact photoacoustics: beyond the light scattering limit. Sci Rep 2018; 8:14425. [PMID: 30258194 PMCID: PMC6158233 DOI: 10.1038/s41598-018-32580-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Optical instruments can probe physical systems even to the level of individual molecules. In particular, every molecule, solution, and structure such as a living cell has a unique absorption spectrum representing a molecular fingerprint. This spectrum can help identify a particular molecule from others or quantify its concentration; however, scattering limits molecular fingerprinting within a complex compound and must be overcome. Here, we present a new, non-contact photoacoustic (PA)-based method that can almost completely remove the influence of background light scattering on absorption measurements in heterogeneous highly scattering solutions and, furthermore, separate the intrinsic absorption of nanoscale objects from their scattering. In particular, we measure pure absorption spectra for solutions of gold nanorods (GNRs) as an example of a plasmonic agent and show that these spectra differ from the extinction measured with conventional UV-VIS spectrophotometry. Finally, we show how the original GNR absorption changes when nanoparticles are internalized by cells.
Collapse
Affiliation(s)
- Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| | - Elena Petrova
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Soon Joon Yoon
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoxia Qian
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kathryn Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
31
|
Knapper KA, Pan F, Rea MT, Horak EH, Rogers JD, Goldsmith RH. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. OPTICS EXPRESS 2018; 26:25020-25030. [PMID: 30469610 DOI: 10.1364/oe.26.025020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Whispering-gallery mode (WGM) microresonators have recently been employed as platforms for label-free single-molecule and single-particle detection, imaging, and spectroscopy. However, innovations in device geometry and integration are needed to make WGM microresonators more versatile for biological and chemical applications. Particularly, thick device substrates, originating from wafer-scale fabrication processing, prevent convenient optical interrogation. In this work, we fabricate all-glass toroidal microresonators on a coverslip thickness (~170 μm) substrate, enabling excitation delivery through the sample, simplifying optical integration. Further, we demonstrate the application of this new geometry for single-particle photothermal imaging. Finally, we discover and develop simulations to explain a non-trivial astigmatism in the point spread function (PSF) arising from the curvature of the resonator.
Collapse
|
32
|
Kwon N, Oh H, Kim R, Sinha A, Kim J, Shin J, Chon JWM, Lim B. Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. NANO LETTERS 2018; 18:5927-5932. [PMID: 30075632 DOI: 10.1021/acs.nanolett.8b02629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembly of plasmonic metal nanoparticles can provide an opportunity of creating colloidal superparticles with fascinating optical properties arising from interparticle plasmonic coupling, but typically requires multiple steps involving solvent and/or ligand exchange. We developed a direct, one-step chemical synthesis of plasmonic black colloidal Au superparticles with broadband absorption in visible and near-infrared regions. During the synthesis, the Au superparticles were formed through self-assembly of in-situ-formed Au nanoparticles driven by solvophobic interactions between nanoparticles and solvent. These superparticles could be solution-processed to fabricate a thin film, which exhibited near-perfect absorption over a broad range from 400 nm to 2.5 μm as well as the excellent antireflective property. Thanks to their broadband absorption property, the Au superparticles showed good performances for near-infrared surface-enhanced Raman spectroscopy and light-to-heat conversion.
Collapse
Affiliation(s)
- Nayoung Kwon
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Hwisu Oh
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Reehyang Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Arjyabaran Sinha
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Jaeyun Kim
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - James W M Chon
- Centre for Micro-Photonics, Department of Physics, Faculty of Science, Engineering and Technology , Swinburne University of Technology , PO Box 218, Hawthorn , 3122 Victoria , Australia
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| |
Collapse
|
33
|
Totachawattana A, Hong MK, Erramilli S, Sander MY. Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy. Analyst 2018; 142:1882-1890. [PMID: 28275761 DOI: 10.1039/c6an02565j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel nonlinear mid-infrared vibrational spectroscopy regime where multiple bifurcations and signal enhancement are observed in the photothermal spectrum of a 6 μm-thick layer of 4-octyl-4'-cyanobiphenyl (8CB) liquid crystal. For increasing pump power values, the nonlinear evolution of the photothermal spectrum is studied in 8CB samples initially in the crystalline and smectic-A phase and their non-equilibrium transitions are characterized with pump-probe thermal lens spectroscopy. The nonlinear photothermal phenomena can be explained by the nucleation of localized non-equilibrium transitions that leads to the formation of bubbles, which modify the thermal lensing behavior. Analysis of the multiple bifurcations reveals a universal critical exponent for these non-equilibrium dynamics that can be linked to mean field theory. We report for the first time simultaneous measurement of the photothermal signal amplitude and phase behavior in the nonlinear regime. Due to the signal enhancement and spectral narrowing observed, nonlinear photothermal behavior shows promise for improvement in sensitivity and signal contrast in mid-infrared, attractive for sample characterization in the mid-infrared.
Collapse
Affiliation(s)
- Atcha Totachawattana
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
34
|
Simoncelli S, Li Y, Cortés E, Maier SA. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping. NANO LETTERS 2018; 18:3400-3406. [PMID: 29715431 DOI: 10.1021/acs.nanolett.8b00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.
Collapse
Affiliation(s)
- Sabrina Simoncelli
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Department of Physics and Randall Division of Cell and Molecular Biophysics , King's College London , London SE1 1UL , United Kingdom
| | - Yi Li
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics , Ludwig-Maximilians-Universität München , 80799 München , Germany
| |
Collapse
|
35
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
36
|
Joplin A, Chang WS, Link S. Imaging and Spectroscopy of Single Metal Nanostructure Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3775-3786. [PMID: 29149571 DOI: 10.1021/acs.langmuir.7b03154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The highly tunable optical properties of metal nanoparticles make them an ideal building block in any application that requires control over light, heat, or electrons on the nanoscale. Because of their size, metal nanoparticles both absorb and scatter light efficiently. Consequently, improving their performance often involves shifting the balance between absorption and scattering to promote desirable features of their optical properties. Scattering by single metal nanoparticles is commonly characterized using dark-field scattering spectroscopy, but routine methods to characterize pure absorption over a broad wavelength range are much more complex. This article reviews work from our lab using photothermal imaging in combination with dark-field scattering and electron microscopy to separate radiative and nonradiative properties of single nanoparticles and their assemblies. We present both initial work using different laser wavelengths to explore pure absorption free from scattering contributions based on the heat released into the environment as well as the development of photothermal spectroscopy over a broad wavelength range, making it possible to resolve details that are otherwise hidden in ensemble measurements that most of the time also do not separate radiative and nonradiative properties.
Collapse
|
37
|
Joplin A, Hosseini Jebeli SA, Sung E, Diemler N, Straney PJ, Yorulmaz M, Chang WS, Millstone JE, Link S. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. ACS NANO 2017; 11:12346-12357. [PMID: 29155558 DOI: 10.1021/acsnano.7b06239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic nanocatalysts have the potential to surmount current limitations in industrial catalysis if their electronic and optical properties can be effectively controlled. However, improving the performance of bimetallic photocatalysts requires a functional understanding of how the intricacies of their morphology and composition dictate every element of their optical response. In this work, we examine Au and Pt-decorated Au nanorods on a single-particle level to ascertain how Pt influences the plasmon resonance of the bimetallic nanostructure. We correlated scattering, photoluminescence, and pure absorption of individual nanostructures separately to expose the impact of Pt on each component. We found that the scattering and absorption spectra of uncoated Au nanorods followed expected trends in peak intensity and shape and were accurately reproduced by finite difference time domain simulations. In contrast, the scattering and absorption spectra of single Pt-decorated Au nanorods exhibited red-shifted, broad features and large deviations in line shape from particle to particle. Simulations using an idealized geometry confirmed that Pt damps the plasmon resonance of individual Au nanorods and that spectral changes after Pt deposition were a consequence of coupling between Au and Pt in the hybrid nanostructure. Simulations also revealed that the Au nanorod acts as an antenna and enhances absorption in the Pt islands. Furthermore, comparing photoluminescence spectra from Au and Pt-decorated Au nanorods illustrated that emission was significantly reduced in the presence of Pt. The reduction in photoluminescence intensity indicates that Pt lowers the number of hot carriers in the Au nanorod available for radiative recombination through either direct production of hot carriers in Pt following enhanced absorption or charge transfer from Au to Pt. Overall, these results confirm that the Pt island morphology and distribution on the nanorod surface contribute to the optical response of individual hybrid nanostructures and that the damping observed in ensemble measurements originates not only from structural heterogeneity but also because of significant damping in single nanostructures.
Collapse
Affiliation(s)
| | | | | | - Nathan Diemler
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Patrick J Straney
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | |
Collapse
|
38
|
Thakkar N, Rea MT, Smith KC, Heylman KD, Quillin SC, Knapper KA, Horak EH, Masiello DJ, Goldsmith RH. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization. NANO LETTERS 2017; 17:6927-6934. [PMID: 28968499 DOI: 10.1021/acs.nanolett.7b03332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrid photonic-plasmonic systems have tremendous potential as versatile platforms for the study and control of nanoscale light-matter interactions since their respective components have either high-quality factors or low mode volumes. Individual metallic nanoparticles deposited on optical microresonators provide an excellent example where ultrahigh-quality optical whispering-gallery modes can be combined with nanoscopic plasmonic mode volumes to maximize the system's photonic performance. Such optimization, however, is difficult in practice because of the inability to easily measure and tune critical system parameters. In this Letter, we present a general and practical method to determine the coupling strength and tailor the degree of hybridization in composite optical microresonator-plasmonic nanoparticle systems based on experimentally measured absorption spectra. Specifically, we use thermal annealing to control the detuning between a metal nanoparticle's localized surface plasmon resonance and the whispering-gallery modes of an optical microresonator cavity. We demonstrate the ability to sculpt Fano resonance lineshapes in the absorption spectrum and infer system parameters critical to elucidating the underlying photonic-plasmonic hybridization. We show that including decoherence processes is necessary to capture the evolution of the lineshapes. As a result, thermal annealing allows us to directly tune the degree of hybridization and various hybrid mode quantities such as the quality factor and mode volume and ultimately maximize the Purcell factor to be 104.
Collapse
Affiliation(s)
- Niket Thakkar
- Department of Applied Mathematics, University of Washington , Seattle, Washington 98195-3925, United States
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Kevin C Smith
- Department of Physics, University of Washington , Seattle, Washington 98195-1560, United States
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Steven C Quillin
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - David J Masiello
- Department of Applied Mathematics, University of Washington , Seattle, Washington 98195-3925, United States
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
39
|
Astafyeva LG, Pustovalov VK, Fritzsche W. Characterization of plasmonic and thermo-optical parameters of spherical metallic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Ma J, Zhan L, Li RS, Gao PF, Huang CZ. Color-Encoded Assays for the Simultaneous Quantification of Dual Cancer Biomarkers. Anal Chem 2017; 89:8484-8489. [DOI: 10.1021/acs.analchem.7b02033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
41
|
Zeng ZC, Wang H, Johns P, Hartland GV, Schultz ZD. Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface Enhanced Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:11623-11631. [PMID: 28736586 PMCID: PMC5515383 DOI: 10.1021/acs.jpcc.7b01220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The optical properties of plasmonic nanoparticles are strongly dependent on interactions with other nanoparticles, which complicates analysis for systems larger than a few particles. In this work we examined heat dissipation in aggregated nanoparticles, and its influence on surface enhanced Raman scattering (SERS), through correlated photothermal heterodyne imaging, electron microscopy and SERS measurements. For dimers the per particle absorption cross-sections show evidence of interparticle coupling, however, the effects are much smaller than those for the field enhancements that are important for SERS. For larger aggregates the total absorption was observed to be simply proportional to aggregate volume. This observation allows us to model light absorption and heating in the aggregates by assuming that the particles act as independent heat sources. The heat dissipation calculations show that very high temperatures can be created at the nanoparticle surface, and that the temperature decreases with increasing thermal conductivity of the surroundings. This is in agreement with the SERS measurements that show faster signal degradation for air compared to water environments.
Collapse
|
42
|
Shimizu H, Miyawaki N, Asano Y, Mawatari K, Kitamori T. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules. Anal Chem 2017; 89:6043-6049. [DOI: 10.1021/acs.analchem.7b00630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hisashi Shimizu
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Naoya Miyawaki
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yoshihiro Asano
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Mann S, Sciacca B, Zhang Y, Wang J, Kontoleta E, Liu H, Garnett EC. Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures. ACS NANO 2017; 11:1412-1418. [PMID: 28056171 PMCID: PMC5333184 DOI: 10.1021/acsnano.6b06534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing.
Collapse
Affiliation(s)
- Sander
A. Mann
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Beniamino Sciacca
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Yunyan Zhang
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Jia Wang
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Evgenia Kontoleta
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huiyun Liu
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- E-mail:
| |
Collapse
|
44
|
Cao X, Feng J, Pan Q, Xiong B, He Y, Yeung ES. Direct Imaging of Single Plasmonic Metal Nanoparticles in Capillary with Laser Light-Sheet Scattering Imaging. Anal Chem 2017; 89:2692-2697. [DOI: 10.1021/acs.analchem.6b03844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xuan Cao
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
- Institute
of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Jingjing Feng
- Department
of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qi Pan
- Department
of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Xiong
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yan He
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
- Department
of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Edward S. Yeung
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
45
|
Mann SA, Oener SZ, Cavalli A, Haverkort JEM, Bakkers EPAM, Garnett EC. Quantifying losses and thermodynamic limits in nanophotonic solar cells. NATURE NANOTECHNOLOGY 2016; 11:1071-1075. [PMID: 27618257 DOI: 10.1038/nnano.2016.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).
Collapse
Affiliation(s)
- Sander A Mann
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sebastian Z Oener
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Alessandro Cavalli
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jos E M Haverkort
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Erik C Garnett
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
46
|
Yorulmaz M, Hoggard A, Zhao H, Wen F, Chang WS, Halas NJ, Nordlander P, Link S. Absorption Spectroscopy of an Individual Fano Cluster. NANO LETTERS 2016; 16:6497-6503. [PMID: 27669356 DOI: 10.1021/acs.nanolett.6b03080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic clusters can exhibit Fano resonances with unique and tunable asymmetric line shapes, which arise due to the coupling of bright and dark plasmon modes within each multiparticle structure. These structures are capable of generating remarkably large local electromagnetic field enhancements and should give rise to high hot carrier yields relative to other plasmonic nanostructures. While the scattering properties of individual plasmonic Fano resonances have been characterized extensively both experimentally and theoretically, their absorption properties, critical for hot carrier generation, have not yet been measured. Here, we utilize single-particle absorption spectroscopy based on photothermal imaging to distinguish between the radiative and nonradiative properties of an individual Fano cluster. In observing the absorption spectrum of individual Fano clusters, we directly verify the theoretical prediction that while Fano interference may be prominent in scattering, it is completely absent in absorption. Our results provide microscopic insight into the nature of Fano interference in systems of coupled plasmonic nanoparticles and should pave the way for the optimization of hot carrier production using plasmonic Fano clusters.
Collapse
Affiliation(s)
- Mustafa Yorulmaz
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Anneli Hoggard
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Hangqi Zhao
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Fangfang Wen
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
47
|
Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo. Anal Cell Pathol (Amst) 2016; 2016:2642361. [PMID: 27699143 PMCID: PMC5028878 DOI: 10.1155/2016/2642361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 01/18/2023] Open
Abstract
Control of sickle cell disease (SCD) stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic (PA) flow cytometry (PAFC) has a potential for real-time monitoring of circulating sickled cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT) and PA spectral imaging of sickle red blood cells (sRBCs) expressing SCD-associated hemoglobin (HbS) compared to normal red blood cells (nRBCs). We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial hemoglobin heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode) as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs both in vitro and in vivo.
Collapse
|
48
|
Shiokawa N, Tokunaga E. Quasi first-order Hermite Gaussian beam for enhanced sensitivity in Sagnac interferometer photothermal deflection spectroscopy. OPTICS EXPRESS 2016; 24:11961-11974. [PMID: 27410118 DOI: 10.1364/oe.24.011961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The detection sensitivity of a Sagnac interferometer photothermal deflection spectroscopy was enhanced by changing the probe beam pattern from zero-order to a quasi-first-order Hermite Gaussian (QHG) beam. The nature of the higher order HG mode, where the beam pattern is preserved during propagation with an increased field gradient, is utilized to enhance the measurement sensitivity. In this spectroscopy, the lateral beam deflection due to the photothermal effect is sensitively detected as a change in the interference light intensity. The change in intensity is amplified due to the higher field gradient of the QHG(1,0) beam at the photodetector. This amplification effect was both numerically and experimentally demonstrated to obtain twofold improvement in the signal-to-noise ratio.
Collapse
|
49
|
Knapper KA, Heylman KD, Horak EH, Goldsmith RH. Chip-Scale Fabrication of High-Q All-Glass Toroidal Microresonators for Single-Particle Label-Free Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2945-50. [PMID: 26853536 DOI: 10.1002/adma.201504976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Indexed: 05/23/2023]
Abstract
Whispering-gallery-mode microresonators enable materials for single-molecule label-free detection and imaging because of their high sensitivity to their micro-environment. However, fabrication and materials challenges prevent scalability and limit functionality. All-glass on-chip microresonators significantly reduce these difficulties. Construction of all-glass toroidal microresonators with high quality factor and low mode volume is reported and these are used as platforms for label-free single-particle imaging.
Collapse
Affiliation(s)
- Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
50
|
Totachawattana A, Liu H, Mertiri A, Hong MK, Erramilli S, Sander MY. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast. OPTICS LETTERS 2016; 41:179-82. [PMID: 26696188 DOI: 10.1364/ol.41.000179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements.
Collapse
|