1
|
Yang J, Wang H, Chen H, Hou H, Hu Q. The association of genetic polymorphisms within the dopaminergic system with nicotine dependence: A narrative review. Heliyon 2024; 10:e33158. [PMID: 39021905 PMCID: PMC11253068 DOI: 10.1016/j.heliyon.2024.e33158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Nicotine, the main compound in cigarettes, leads to smoking addiction. Nicotine acts on the limbic dopamine reward loop in the midbrain by binding to nicotinic acetylcholine receptors, promoting the release of dopamine, and resulting in a rewarding effect or satisfaction. This satisfaction is essential for continued and compulsive tobacco use, and therefore dopamine plays a crucial role in nicotine dependence. Numerous studies have identified genetic polymorphisms of dopaminergic pathways which may influence susceptibility to nicotine addiction. Dopamine levels are greatly influenced by synthesis, storage, release, degradation, and reuptake-related genes, including genes encoding tyrosine hydroxylase, dopamine decarboxylase, dopamine transporter, dopamine receptor, dopamine 3-hydroxylase, catechol-O-methyltransferase, and monoamine oxidase. In this paper, we review research progress on the effects of polymorphisms in the above genes on downstream smoking behavior and nicotine dependence, to offer a theoretical basis for the elucidation of the genetic mechanism underlying nicotine dependence and future personalized treatment for smoking cessation.
Collapse
Affiliation(s)
- Jingjing Yang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102209, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 102209, China
| |
Collapse
|
2
|
Tan X, Qu S, Wang G, Zhang G, Liu T, Ling F, Wang G. Structure-based discovery of potent myosin inhibitors to guide antiparasite drug development. Eur J Med Chem 2024; 269:116338. [PMID: 38522112 DOI: 10.1016/j.ejmech.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Monogenea, a prevalent parasite in aquaculture, poses significant threats to the industry, leading to substantial losses. Current preventive measures have proven insufficient, necessitating the development of novel and effective anti-parasitic drugs. In this investigation, we obtained the full-length myosin cDNA sequence by analyzing three-generation transcriptome data, revealing a 5817-base sequence encoding 1938 amino acids. Subsequently, we modeled and analyzed the characteristics of the secondary and tertiary of myosin, pinpointing the crucial functional region within the motor domain (amino acids 1-768). The prokaryotic expression of this domain yielded a protein of 87.44 kDa, confirmed as myosin by Western Blotting. Molecular docking identified ASN439 as the key amino acid residue involved in arctigenin and myosin binding, a result corroborated by site-directed mutagenesis, affirming the active cavity of this interaction. Chalcone and shikonin were chosen from a virtual sieve of molecular library of natural drugs based on the active cavity. Chalcone and shikonin exhibited EC50 values of 1.085 mg/L and 0.371 mg/L, respectively, with corresponding IC50 values for myosin of 0.44 mM and 0.14 mM. Given its superior activity and structure, shikonin was selected for further optimization of drug molecule design, culminating in the discovery of 1,4-naphthoquinone as a potent antiparasitic agent. This compound demonstrated an EC50 of 0.047 mg/L, LC50 of 0.23 mg/L, and a TI index of 4.893. These findings collectively highlight the potential of shikonin and 1,4-naphthoquinone as alternative compounds to control Gyrodactylus infections. Further optimization of medicinal chemistry holds promise for the development of more potent 1,4-naphthoquinone analogues, offering prospects for future anthelmintic control through combinatorial or replacement strategies.
Collapse
Affiliation(s)
- Xiaoping Tan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Shenye Qu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Guangshuo Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gengrong Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Tianqiang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Santos TB, de Moraes LGC, Pacheco PAF, dos Santos DG, Ribeiro RMDAC, Moreira CDS, da Rocha DR. Naphthoquinones as a Promising Class of Compounds for Facing the Challenge of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:1577. [PMID: 38004442 PMCID: PMC10674926 DOI: 10.3390/ph16111577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative disease that affects approximately 6.1 million people and is primarily caused by the loss of dopaminergic neurons. Naphthoquinones have several biological activities explored in the literature, including neuroprotective effects. Therefore, this review shows an overview of naphthoquinones with neuroprotective effects, such as shikonin, plumbagin and vitamin K, that prevented oxidative stress, in addition to multiple mechanisms. Synthetic naphthoquinones with inhibitory activity on the P2X7 receptor were also found, leading to a neuroprotective effect on Neuro-2a cells. It was found that naphthazarin can act as inhibitors of the MAO-B enzyme. Vitamin K and synthetic naphthoquinones hybrids with tryptophan or dopamine showed inhibition of the aggregation of α-synuclein. Synthetic derivatives of juglone and naphthazarin were able to protect Neuro-2a cells against neurodegenerative effects of neurotoxins. In addition, routes for producing synthetic derivatives were also discussed. With the data presented, 1,4-naphthoquinones can be considered as a promising class in the treatment of PD and this review aims to assist the scientific community in the application of these compounds. The derivatives presented can also support further research that explores their structures as synthetic platforms, in addition to helping to understand the interaction of naphthoquinones with biological targets related to PD.
Collapse
Affiliation(s)
- Thaís Barreto Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Leonardo Gomes Cavalieri de Moraes
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Paulo Anastácio Furtado Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Douglas Galdino dos Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Rafaella Machado de Assis Cabral Ribeiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Caroline dos Santos Moreira
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
- Instituto Federal do Rio de Janeiro, Campus Paracambi, Rua Sebastião Lacerda s/n°, Fábrica, Paracambi CEP 26.600-000, RJ, Brazil
| | - David Rodrigues da Rocha
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| |
Collapse
|
4
|
Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022; 93:163-172. [PMID: 36155069 DOI: 10.1016/j.neuro.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Tobacco smoking is reputed to be the most difficult addiction of all to give up, and nicotine has been noted as the major addictive agent in tobacco smoke. However, research shows that nicotine addiction is due to more than nicotine alone. One hypothesis is that monoamine oxidase (MAO) inhibition from non-nicotinic components in, or derived from, tobacco smoke contributes to nicotine addiction. Harman and norharman, have been recognised as major and potent MAO inhibitors in tobacco smoke, but these two inhibitors together comprise perhaps less than 10% of the total MAO A inhibitory activity in cigarette smoke suggesting other unidentified components may make significant contributions to total inhibitory activity. Therefore, we reviewed an index of the chemical components of tobacco and tobacco smoke and identified those known to be MAO inhibitors. Amongst these inhibitors, phenols and phenolic acids with MAO inhibitory activity are commonly reversible and selective MAO A inhibitors, whereas trans,trans-farnesol, 2-methyl-1,4-naphthoquinone (menadione), 1,4-naphthoquinone, scopoletin, and diosmetin with MAO inhibitory activity are reversible and selective MAO B inhibitors. The compound, 1,4-benzoquinone is an irreversible MAO A inhibitor and to the best of our knowledge, this is the first irreversible MAO A inhibitor to be reported in tobacco smoke. MAO inhibitors have been used clinically to treat depression, anxiety, and Parkinson's disease. The MAO inhibitors identified from tobacco and tobacco smoke and summarized in this review, are potential pharmacological candidates to be investigated further. This review will enhance our knowledge of the way tobacco smoke affects MAO activity in smokers and will also be important in helping to understand nicotine addiction.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
5
|
Sved AF, Weeks JJ, Grace AA, Smith TT, Donny EC. Monoamine oxidase inhibition in cigarette smokers: From preclinical studies to tobacco product regulation. Front Neurosci 2022; 16:886496. [PMID: 36051642 PMCID: PMC9424897 DOI: 10.3389/fnins.2022.886496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase (MAO) activity is reduced in cigarette smokers and this may promote the reinforcing actions of nicotine, thereby enhancing the addictive properties of cigarettes. At present, it is unclear how cigarette smoking leads to MAO inhibition, but preclinical studies in rodents show that MAO inhibition increases nicotine self-administration, especially at low doses of nicotine. This effect of MAO inhibition develops slowly, likely due to plasticity of brain monoamine systems; studies relying on acute MAO inhibition are unlikely to replicate what happens with smoking. Given that MAO inhibition may reduce the threshold level at which nicotine becomes reinforcing, it is important to consider this in the context of very low nicotine content (VLNC) cigarettes and potential tobacco product regulation. It is also important to consider how this interaction between MAO inhibition and the reinforcing actions of nicotine may be modified in populations that are particularly vulnerable to nicotine dependence. In the context of these issues, we show that the MAO-inhibiting action of cigarette smoke extract (CSE) is similar in VLNC cigarettes and cigarettes with a standard nicotine content. In addition, we present evidence that in a rodent model of schizophrenia the effect of MAO inhibition to enhance nicotine self-administration is absent, and speculate how this may relate to brain serotonin systems. These issues are relevant to the MAO-inhibiting effect of cigarette smoking and its implications to tobacco product regulation.
Collapse
Affiliation(s)
- Alan F. Sved
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jillian J. Weeks
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tracy T. Smith
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Eric C. Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
6
|
van der Toorn M, Koshibu K, Schlage WK, Majeed S, Pospisil P, Hoeng J, Peitsch MC. Comparison of monoamine oxidase inhibition by cigarettes and modified risk tobacco products. Toxicol Rep 2019; 6:1206-1215. [PMID: 31768332 PMCID: PMC6872813 DOI: 10.1016/j.toxrep.2019.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 10/30/2022] Open
Abstract
The adverse effects of cigarette smoking are well documented, and the two main strategies for reducing smoking prevalence are prevention of smoking initiation and promotion of smoking cessation. More recently, a third and complementary avenue, tobacco harm reduction has emerged, which is aimed to reduce the burden of smoking-related diseases. This has been enabled by the development of novel products such as electronic cigarettes (e-cigarettes) and heated tobacco products, designed to deliver nicotine with significantly reduced levels of the toxicants that are emitted by cigarettes. Several potential modified risk tobacco products (pMRTP) have been reported to emit significantly less toxicants than cigarettes and significantly reduce toxicant exposure in smokers who switch completely to such products. These are two prerequisites for pMRTPs to reduce harm and the risk of smoking-related disease. However, concerns remain regarding the addictive nature of these products. Smoking addiction is a complex phenomenon involving multiple pharmacological and non-pharmacological factors. Although the main pharmacological substance associated with smoking addiction is nicotine, accumulating evidence suggests that nicotine mostly acts as a primary reinforcer and that other factors are involved in establishing smoking addiction. Inhibition of monoamine oxidases (MAO)-mammalian flavoenzymes with a central role in neurotransmitter metabolism-has also been suggested to be involved in this process. Therefore, we aimed to comparatively investigate the ability of several types of pMRTPs and cigarette smoke (3R4F) to inhibit MAO activity. The results showed that the heated tobacco product Tobacco Heating System (THS) 2.2 and the MESH 1.1 e-cigarette possessed no MAO inhibitory activity while 3R4F significantly inhibits the levels of MAO activity (3R4F MAO-A and B; > 2 μM nicotine). Snus products have similar inhibition profiles as 3R4F but for larger nicotine concentrations (snus MAO-A; ∼68-fold, snus MAO-B; ∼23-fold higher compared to 3R4F). These observations were confirmed by analytical datasets of potential MAO inhibitors emitted by these products. In conclusion, we have demonstrated that specific pMRTPs, namely THS 2.2 and MESH 1.1, have a significantly lower MAO-inhibitory activity than 3R4F. These findings provide a basis for further investigation of the role of MAO inhibitors in cigarette addiction as well as the implications of the findings for abuse liability of pMRTPs in comparison with cigarettes.
Collapse
Key Words
- 3R4F, reference cigarette
- CRP, CORESTA Reference Product
- CS, cigarette smoke
- DMSO, dimethyl sulfoxide
- E-cigarettes
- FID, flame ionization detection
- GC, gas chromatography
- GCW, General Classic White
- GVP, gas–vapor phase
- Harm reduction
- IC50, half maximal inhibitory concentrations
- Ki, Inhibition Constant
- Km, Michaelis constant
- MAO, monoamine oxidases
- MESH, electronic cigarette
- Monoamine oxidase
- PBS, phosphate-buffered saline
- PMI, Philip Morris International
- PREP, potential reduced exposure products
- RT, room temperature
- Snus
- THS, Tobacco Heating System
- TPM, total particulate matter (TPM)
- Tobacco heating system
- cDNA, complementary DNA
- pMRTP, potential modified risk tobacco products
Collapse
Affiliation(s)
- Marco van der Toorn
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Kyoko Koshibu
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Shoaib Majeed
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Pavel Pospisil
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Department of Systems Toxicology, PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
7
|
LeSage MG, Smethells JR, Harris AC. Status and Future Directions of Preclinical Behavioral Pharmacology in Tobacco Regulatory Science. ACTA ACUST UNITED AC 2018; 18:252-274. [PMID: 30214916 DOI: 10.1037/bar0000113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioral pharmacology is a branch of the experimental analysis of behavior that has had great influence in drug addiction research and policy. This paper provides an overview of recent behavioral pharmacology research in the field of tobacco regulatory science, which provides the scientific foundation for the Food and Drug Administration Center for Tobacco Products (FDA CTP) to set tobacco control policies. The rationale and aims of tobacco regulatory science are provided, including the types of preclinical operant behavioral models it deems important for assessing the abuse liability of tobacco products and their constituents. We then review literature relevant to key regulatory actions being considered by the FDA CTP, including regulations over nicotine and menthol content of cigarettes, and conclude with suggesting some directions for future research. The current era of tobacco regulatory science provides great opportunities for behavioral pharmacologists to address the leading cause of preventable death and disease worldwide.
Collapse
Affiliation(s)
- Mark G LeSage
- Department of Medicine, Minneapolis Medical Research Foundation
- Departments of Medicine, University of Minnesota
- Department of Psychology, University of Minnesota
| | - John R Smethells
- Department of Medicine, Minneapolis Medical Research Foundation
- Departments of Medicine, University of Minnesota
| | - Andrew C Harris
- Department of Medicine, Minneapolis Medical Research Foundation
- Departments of Medicine, University of Minnesota
- Department of Psychology, University of Minnesota
| |
Collapse
|
8
|
Campion J, Checinski K, Nurse J, McNeill A. Smoking by people with mental illness and benefits of smoke-free
mental health services. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/apt.bp.108.005710] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Smoking is the largest single cause of preventable illness in the UK. Those
with mental health problems smoke significantly more and are therefore at
greater risk. The new Health Act (2006) will require mental health
facilities in England to be completely smoke-free by 1st July 2008. This
article reviews the current literature regarding how smoking affects both
the physical and mental well-being of people with mental health problems. It
also considers the effects of smoke-free policy in mental health
settings.
Collapse
|
9
|
The evaluation of 1,4-benzoquinones as inhibitors of human monoamine oxidase. Eur J Med Chem 2017; 135:196-203. [DOI: 10.1016/j.ejmech.2017.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
|
10
|
Mostert S, Petzer A, Petzer JP. Evaluation of Natural and Synthetic 1,4-naphthoquinones as Inhibitors of Monoamine Oxidase. Chem Biol Drug Des 2016; 87:737-46. [PMID: 26684482 DOI: 10.1111/cbdd.12708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022]
Abstract
Previous reports have documented that 1,4-naphthoquinones act as inhibitors of the monoamine oxidase (MAO) enzymes. In particular, fractionation of the extracts of cured tobacco leafs has led to the characterization of 2,3,6-trimethyl-1,4-naphthoquinone, a non-selective MAO inhibitor. To derive structure-activity relationships for MAO inhibition by the 1,4-naphthoquinone class of compounds, this study investigates the human MAO inhibitory activities of fourteen structurally diverse 1,4-naphthoquinones of natural and synthetic origin. Of these, 5,8-dihydroxy-1,4-naphthoquinone was found to be the most potent inhibitor with an IC50 value of 0.860 μm for the inhibition of MAO-B. A related compound, shikonin, inhibits both the MAO-A and MAO-B isoforms with IC50 values of 1.50 and 1.01 μm, respectively. It is further shown that MAO-A and MAO-B inhibition by these compounds is reversible by dialysis. In this respect, kinetic analysis suggests that the modes of MAO inhibition are competitive. This study contributes to the discovery of novel MAO inhibitors, which may be useful in the treatment for disorders such as Parkinson's disease, depressive illness, congestive heart failure and cancer.
Collapse
Affiliation(s)
- Samantha Mostert
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
11
|
Sikarwar B, Sharma PK, Tripathi BK, Boopathi M, Singh B, Jaiswal YK. Enzyme Based Electrochemical Biosensor for Ethanolamine. ELECTROANAL 2015. [DOI: 10.1002/elan.201501046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Hogg RC. Contribution of Monoamine Oxidase Inhibition to Tobacco Dependence: A Review of the Evidence. Nicotine Tob Res 2015; 18:509-23. [PMID: 26508396 DOI: 10.1093/ntr/ntv245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND There is a hypothesis that substances present in, or derived from, tobacco smoke inhibit monoamine oxidase (MAO) in the brains of smokers, reducing the degradation of catecholamine neurotransmitters involved in central reward pathways and acting synergistically with nicotine to increase its addictive effects. OBJECTIVE The objective of this review was to evaluate the evidence for a role of MAO inhibition by tobacco-derived substances in tobacco dependence. INVESTIGATIONAL PLAN Relevant studies on the effects of tobacco use on MAO levels or activity in humans were identified by electronic searches. RESULTS The identified data show a clear association between smoking and lower density of MAO-A and MAO-B binding sites in the brains of smokers and strong evidence that MAO is inhibited by a substance or substances in, or derived from, tobacco smoke. There was little evidence to support the hypothesis that low MAO levels/activity is a predictive factor for tobacco use. Substances that inhibit MAO in in vitro assays have been isolated from tobacco leaves and tobacco smoke; however, no single substance has been shown to be absorbed from tobacco smoke and to inhibit MAO in the brains of human smokers. Nevertheless, it is possible that MAO inhibition in smokers could result from additive or synergistic effects of several tobacco-derived substances. MAO inhibition potentiates the reinforcing effects of intravenous nicotine in rodents; however, no data were identified to support the hypothesis that MAO inhibitors in or derived from tobacco or tobacco additives affect tobacco dependence in human smokers. IMPLICATIONS This comprehensive review describes the available evidence for the role of MAO inhibition in tobacco dependence and points the way for further research in this field. In view of the large number of MAO inhibitors identified in tobacco and tobacco smoke, identification of the putative inhibitors responsible for the lower level/activity of MAO in smokers may be impractical. Future studies must address whether the lower level/activity of MAO observed in smokers is also seen in users of other tobacco products and if this change is implicated in their dependence-inducing effects.
Collapse
Affiliation(s)
- Ron C Hogg
- Medical Writing, OmniScience Ltd, Geneva, Switzerland
| |
Collapse
|
13
|
Zhang Y, Piao X, Wu J, Li Y, Liang Q. A meta-analysis on relationship of MAOB intron 13 polymorphisms, interactions with smoking/COMT H158L polymorphisms with the risk of PD. Int J Neurosci 2015; 126:400-7. [DOI: 10.3109/00207454.2015.1028057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Follmer C. Monoamine oxidase and α-synuclein as targets in Parkinson’s disease therapy. Expert Rev Neurother 2014; 14:703-16. [DOI: 10.1586/14737175.2014.920235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Coelho-Cerqueira E, Netz PA, do Canto VP, Pinto AC, Follmer C. Beyond Topoisomerase Inhibition: Antitumor 1,4-Naphthoquinones as Potential Inhibitors of Human Monoamine Oxidase. Chem Biol Drug Des 2014; 83:401-10. [DOI: 10.1111/cbdd.12255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/24/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Coelho-Cerqueira
- Department of Physical Chemistry; Institute of Chemistry; Federal University of Rio de Janeiro; Rio de Janeiro 21941-909 Brazil
| | - Paulo A. Netz
- Institute of Chemistry; Federal University of Rio Grande do Sul; Porto Alegre 91501-970 Brazil
| | - Vanessa P. do Canto
- Institute of Chemistry; Federal University of Rio Grande do Sul; Porto Alegre 91501-970 Brazil
| | - Angelo C. Pinto
- Department of Organic Chemistry; Institute of Chemistry; Federal University of Rio de Janeiro; Rio de Janeiro 21941-909 Brazil
| | - Cristian Follmer
- Department of Physical Chemistry; Institute of Chemistry; Federal University of Rio de Janeiro; Rio de Janeiro 21941-909 Brazil
| |
Collapse
|
16
|
Lau WKW, Li X, Yeung DSC, Chan KH, Ip MSM, Mak JCW. The involvement of serotonin metabolism in cigarette smoke-induced oxidative stress in rat lung in vivo. Free Radic Res 2012; 46:1413-9. [PMID: 22900927 DOI: 10.3109/10715762.2012.721928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, we have reported the dysregulation of circulating serotonin (5-hydroxytryptamine, 5-HT) homeostasis in patients with chronic obstructive pulmonary disease (COPD). An increase in metabolism of 5-HT has been reported to induce oxidative stress via monoamine oxidase (MAO)-dependent pathway. The present study aimed at investigating the effect of cigarette smoke exposure on the systemic circulation and local airway 5-HT levels as well as MAO-mediated oxidative pathway using a cigarette smoke-exposed rat model. Male Sprague-Dawley rats (150-200 g) were exposed to either sham air or 4% (v/v, smoke/air) cigarette smoke for 1 hour daily for 56 consecutive days. Sera, bronchoalveolar larvage (BAL) and lung tissues were collected 24 hours after the last exposure. We found a significant reduction in the reduced glutathione (rGSH) and an elevation in advanced oxidation protein products (AOPP), a protein oxidation marker, in the lung of cigarette smoke-exposed group (p < 0.05). A significant increase in 5-HT was found in serum (p < 0.05), but not in the BAL or lung, after cigarette smoke exposure. MAO-A activity was significantly elevated in the lung of cigarette smoke-exposed group (p < 0.05). Furthermore, increased superoxide anion levels were found in lung homogenates of cigarette smoke-exposed rats after incubation with 5-HT (p < 0.05), which was positively associated with the increase in MAO-A activity (r = 0.639, p < 0.05). Our findings supported the presence of GSH disruption and protein oxidation in the lung after cigarette smoke exposure. The metabolism of 5-HT by MAO-A in the lung enhanced cigarette smoke-induced superoxides, which might contribute to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Way Kwok-Wai Lau
- Departments of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
A selective reversible monoamine oxidase B inhibitor in smoking cessation: effects on its own and in association with transdermal nicotine patch. Psychopharmacology (Berl) 2012; 223:89-98. [PMID: 22451094 DOI: 10.1007/s00213-012-2692-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Monoamine oxidase B (MAO-B) activity is reduced in smokers. A MAO-B inhibitor alone or co-administered with nicotine may mimic the effects of smoking and be a candidate drug for smoking cessation. OBJECTIVE This study aims to determine the efficacy and safety of EVT302, a selective reversible MAO-B inhibitor, alone and on top of nicotine patch (NP) in smoking cessation. METHODS This was a randomised, double blind, placebo-controlled phase II, multicentre trial. Smokers (≥10 cigarettes/day) received either EVT302 (N = 145) or placebo (N = 145), or EVT302 (N = 61) or placebo (N = 61) on top of open label NP 21 mg/day for 8 weeks. The main comparison was between EVT302 and placebo without NP. The primary outcome measure was end-of-treatment 4-week continuous abstinence rate (CAR). SECONDARY OUTCOME MEASURES point prevalence abstinence rate, saliva cotinine concentrations in the groups without NP, urge to smoke, nicotine withdrawal symptoms and assessment of subjective effects of cigarettes. RESULTS The 4-week CAR was 15.2 % in the placebo, 17.2 % in the EVT302, 26.8 % in the NP + placebo and 32.8 % in the NP + EVT302 groups, respectively. There was no difference between EVT302 and placebo either alone (adjusted OR: 1.45, 95 % CI: 0.65-3.26) or when co-administered with NP. No statistically significant difference occurred for the secondary outcome measures. CONCLUSIONS The selective, reversible MAO-B inhibitor EVT302 was not superior to placebo in helping smokers quit, in line with data with selegiline and confirms that MAO-B inhibitors are not effective in smoking cessation. Co-administration of NP does not provide a supplementary benefit.
Collapse
|
18
|
Abbott LC, Winzer-Serhan UH. Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 2012; 42:279-303. [DOI: 10.3109/10408444.2012.658506] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Lau WKW, Chan-Yeung MMW, Yip BHK, Cheung AHK, Ip MSM, Mak JCW. The role of circulating serotonin in the development of chronic obstructive pulmonary disease. PLoS One 2012; 7:e31617. [PMID: 22319639 PMCID: PMC3272036 DOI: 10.1371/journal.pone.0031617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/10/2012] [Indexed: 01/23/2023] Open
Abstract
Background Cigarette smoking is a major risk factor in the development of age-related chronic obstructive pulmonary disease (COPD). The serotonin transporter (SERT) gene polymorphism has been reported to be associated with COPD, and the degree of cigarette smoking has been shown to be a significant mediator in this relationship. The interrelation between circulating serotonin (5-hydroxytyptamine, 5-HT), cigarette smoking and COPD is however largely unknown. The current study aimed at investigating the mediation effects of plasma 5-HT on cigarette smoking-induced COPD and the relation between plasma 5-HT levels and age. Methods The association between plasma 5-HT, age and COPD was analyzed in a total of 62 COPD patients (ever-smokers) and 117 control subjects (healthy non-smokers and ever-smokers). Plasma 5-HT levels were measured by enzyme-linked immuno assay (EIA). Results The elevated plasma 5-HT levels were significantly associated with increased odds for COPD (OR = 1.221, 95% CI = 1.123 to 1.319, p<0.0001). The effect remained significant after being adjusted for age and pack-years smoked (OR = 1.271, 95% CI = 1.134 to 1.408, p = 0.0003). Furthermore, plasma 5-HT was found to mediate the relation between pack-years smoked and COPD. A positive correlation (r = 0.303, p = 0.017) was found between plasma 5-HT levels and age in COPD, but not in the control subjects (r = −0.149, p = 0.108). Conclusion Our results suggest that cigarette smoke-induced COPD is partially mediated by the plasma levels of 5-HT, and that these become elevated with increased age in COPD. The elevated plasma 5-HT levels in COPD might contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Way K. W. Lau
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Moira M. W. Chan-Yeung
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benjamin H. K. Yip
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Amy H. K. Cheung
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mary S. M. Ip
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judith C. W. Mak
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| | | |
Collapse
|
20
|
Mitchell MR, Mendez IA, Vokes CM, Damborsky JC, Winzer-Serhan UH, Setlow B. Effects of developmental nicotine exposure in rats on decision-making in adulthood. Behav Pharmacol 2012; 23:34-42. [PMID: 22123182 PMCID: PMC3253892 DOI: 10.1097/fbp.0b013e32834eb04a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposure to tobacco smoke during pregnancy is associated with a range of adverse outcomes in offspring, including cognitive deficits and increased incidence of attention deficit-hyperactivity disorder, but there is a considerable controversy with regard to the causal role of tobacco smoke in these outcomes. To determine whether developmental exposure to the primary psychoactive ingredient in tobacco smoke, nicotine, may cause long-lasting behavioral alterations analogous to those in attention deficit-hyperactivity disorder, male Sprague-Dawley rats underwent a chronic neonatal nicotine administration regimen, which models third-trimester human exposure. Male rat pups were administered nicotine (6 mg/kg/day) by oral gastric intubation on postnatal days 1-7. In adulthood, rats were tested in two decision-making tasks (risky decision-making and delay discounting) as well as in free-operant responding for food reward and the elevated plus maze. Chronic neonatal nicotine attenuated weight gain during nicotine exposure, but there were no effects on performance in the decision-making task, and only a modest decrease in arm entries in the elevated plus maze in one subgroup of rats. These data are consistent with previous findings that developmental nicotine exposure has no effect on delay discounting, and they extend these findings to risky decision-making as well. They further suggest that at least some neurocognitive alterations associated with prenatal tobacco smoke exposure in humans may be due to genetic or other environmental factors, including non-nicotine components of tobacco smoke.
Collapse
Affiliation(s)
- Marci R Mitchell
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Ian A. Mendez
- Department of Neurobiology and Behavior, University of California, Irvine, CA
| | - Colin M. Vokes
- Department of Psychology, Texas A&M University, College Station, TX
| | - Joanne C. Damborsky
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX
| | - Ursula H. Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
21
|
Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO. Bioorg Med Chem 2011; 19:7416-24. [PMID: 22071524 DOI: 10.1016/j.bmc.2011.10.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/09/2011] [Accepted: 10/16/2011] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.
Collapse
|
22
|
Lotfipour S, Arnold MM, Hogenkamp DJ, Gee KW, Belluzzi JD, Leslie FM. The monoamine oxidase (MAO) inhibitor tranylcypromine enhances nicotine self-administration in rats through a mechanism independent of MAO inhibition. Neuropharmacology 2011; 61:95-104. [PMID: 21419142 PMCID: PMC3105177 DOI: 10.1016/j.neuropharm.2011.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/05/2011] [Accepted: 03/09/2011] [Indexed: 11/16/2022]
Abstract
Our current study aims to evaluate the mechanisms of tranylcypromine (TCP)-mediated enhancement of nicotine self-administration. We replicated our previous findings which demonstrate that 1 h pretreatment with TCP (3 mg/kg, i.p.) enhances nicotine self-administration (7.5 μg/kg/inj, i.v.) when compared with vehicle-treated rodents. We tested whether TCP-mediated enhancement of nicotine self-administration was due to MAO inhibition or off-target effects by (i) extending the TCP pretreatment time from 1 to 20 h, and (ii) evaluating the role of the individual TCP stereoisomers in nicotine self-administration studies. While 20 h and (-)TCP pretreatment induced significant inhibition of MAO (60-90%), animals found nicotine only weakly reinforcing. Furthermore, while both (+) and (±)TCP treatment induced nearly 100% MAO inhibition, (+)TCP pretreated animals took longer to acquire nicotine self-administration compared to (±)TCP pretreated animals. Stable nicotine self-administration in (+)TCP pretreated animals was influenced by nicotinic receptor activation but not nicotine-paired cues. The opposite was found in (±)TCP pretreated animals. Treatment with (-) or (±)TCP increased dopamine and serotonin overflow, while the (+) and (±)TCP treatment enhanced monoamine overflow subsequent to nicotine. Together, our data suggests TCP enhancement of nicotine self-administration are mediated through mechanisms independent of MAO inhibition, including nicotine-paired cues and monoamine uptake inhibition.
Collapse
Affiliation(s)
- Shahrdad Lotfipour
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, U.S.A
| | - Monica M. Arnold
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, U.S.A
| | - Derk J. Hogenkamp
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, U.S.A
| | - Kelvin W. Gee
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, U.S.A
| | - James D. Belluzzi
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, U.S.A
| | - Frances M. Leslie
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, U.S.A
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, U.S.A
| |
Collapse
|
23
|
Reactions of 5-oxo-1-phenylpyrrolidine-3-carbohydrazides with 1,4-naphthoquinone derivatives and the properties of the obtained products. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Abstract
The Nicotrol® (Pfizer, USA) nicotine inhaler reduces craving by mimicking the behavioural component of cigarettes and delivering controlled doses of nicotine, which binds to the beta-2 subunit-containing nicotinic acetylcholine receptors (β2*-nAChRs). Previous studies examined β2*-nAChR occupancy after administration of regular and low-nicotine cigarettes. Here, we measured occupancy of β2*-nAChRs after administration of nicotine via inhaler, and the relationship between occupancy and changes in craving for tobacco smoking and withdrawal symptoms. Tobacco smokers participated in [123I]5-IA-85380 SPECT studies with either a nicotine inhaler (n=9) or tobacco cigarette (n=4) challenge. [123I]5-IA was administered as a bolus plus constant infusion. After equilibrium was achieved, three 30-min baseline scans were collected, and subjects either used the nicotine inhaler or a regular cigarette, and up to six additional scans were obtained. Receptor occupancy was determined based on the Lassen plot method. Craving for tobacco smoking and withdrawal symptoms were evaluated pre- and post-challenge. Use of the nicotine inhaler produced an average 55.9±6.4% occupancy of β2*-nAChRs 2-5 h post-challenge, whereas use of a cigarette produced significantly higher receptor occupancy (F=10.6, p=0.009) with an average 67.6±14.1% occupancy 1.5-5 h post-challenge. There was a significant decrease in withdrawal symptoms post-nicotine inhaler use (F=6.13, p=0.04). These results demonstrate significant differences in occupancy of β2*-nAChRs by nicotine after use of the inhaler vs. a cigarette and confirm the ability of the nicotine inhaler to relieve withdrawal symptoms.
Collapse
|
25
|
Hatsukami DK, Perkins KA, Lesage MG, Ashley DL, Henningfield JE, Benowitz NL, Backinger CL, Zeller M. Nicotine reduction revisited: science and future directions. Tob Control 2010; 19:e1-10. [PMID: 20876072 PMCID: PMC4618689 DOI: 10.1136/tc.2009.035584] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Regulation of nicotine levels in cigarettes and other tobacco products is now possible with the passage of the Family Smoking Prevention and Tobacco Control Act (FSPTCA) in 2009, giving the US Food and Drug Administration (FDA) authority to regulate tobacco products, and with Articles 9-11 of the WHO Framework Convention on Tobacco Control. Both regulatory approaches allow establishing product standards for tobacco constituents, including nicotine. The FSPTCA does not allow nicotine levels to be decreased to zero, although the FDA has the authority to reduce nicotine yields to very low, presumably non-addicting levels. The proposal to reduce levels of nicotine to a level that is non-addicting was originally suggested in 1994. Reduction of nicotine in tobacco products could potentially have a profound impact on reducing tobacco-related morbidity and mortality. To examine this issue, two meetings were convened in the US with non-tobacco-industry scientists of varied disciplines, tobacco control policymakers and representatives of government agencies. This article provides an overview of the current science in the area of reduced nicotine content cigarettes and key conclusions and recommendations for research and policy that emerged from the deliberations of the meeting members.
Collapse
Affiliation(s)
- Dorothy K Hatsukami
- Tobacco Use Research Center, University of Minnesota, 717 Delaware St SE, Minneapolis, Minnesota 55414, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Strydom B, Malan SF, Castagnoli N, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues. Bioorg Med Chem 2010; 18:1018-28. [DOI: 10.1016/j.bmc.2009.12.064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/18/2009] [Accepted: 12/28/2009] [Indexed: 10/20/2022]
|
27
|
|
28
|
Venkatakrishnan P, Gairola CG, Castagnoli N, Miller RT. Naphthoquinones and bioactive compounds from tobacco as modulators of neuronal nitric oxide synthase activity. Phytother Res 2009; 23:1663-72. [PMID: 19367663 PMCID: PMC2788052 DOI: 10.1002/ptr.2789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2,3,6-trimethyl-1,4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1,4-naphthoquinone (menadione) as a control. Up to 31 microM, both TMN and menadione stimulated nNOS-catalysed L-citrulline production. However, at higher concentrations of TMN (62.5-500 microM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5-500 microM), the loss of stimulation surpassed that of the control (78+/-0.01% of control activity), indicating a true inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified.
Collapse
Affiliation(s)
- Priya Venkatakrishnan
- Department. of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968 USA
| | - C. Gary Gairola
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 USA
| | - Neal Castagnoli
- Dept. of Chemistry, Virginia Tech., Blacksburg, VA 24061-0212
| | - R. Timothy Miller
- Department. of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968 USA
| |
Collapse
|
29
|
Berlin I, Heilbronner C, Georgieu S, Meier C, Launay JM, Spreux-Varoquaux O. Reduced monoamine oxidase A activity in pregnant smokers and in their newborns. Biol Psychiatry 2009; 66:728-33. [PMID: 19615672 DOI: 10.1016/j.biopsych.2009.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/20/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tobacco smoking is associated with reduced monoamine oxidase A (MAOA) activity. Smoking-associated low MAOA activities in pregnancy and in newborns may have negative perinatal and postnatal consequences. We aimed to compare, in everyday clinical conditions, biomarkers of MAOA activity in smoking (SPW) and lifetime nonsmoking pregnant women (NSPW) and in cord blood and to assess the newborns' behavior during the first 48 hours of life. METHODS Thirty SPW and 29 NSPW in their second trimester of pregnancy were included. Plasma MAOA dependent metabolites of norepinephrine: dihydroxyphenylglycol; dopamine: homovanillic and dihydroxyphenylacetic acid; and serotonin: 5-hydroxy-indol acetic acid were measured at the end of the second trimester, at delivery, and in arterial cord blood along with plasma cotinine. The newborns' discomfort was evaluated every 8 hours by a standardized questionnaire. RESULTS The SPW smoked, on average, 73 cigarettes per week at the end of second trimester and 80 cigarettes per week at delivery. Mean plasma cotinine was 84 ng/mL, 105 ng/mL, and 95 ng/mL at the end of second trimester, at delivery, and in cord blood, respectively (NSPW < 10 ng/mL). Plasma markers of MAOA activity, in particular those reflecting dopamine's catabolism, were significantly lower in SPW and in the arterial cord blood of their newborns than in NSPW and their newborns. Newborns of SPW showed significantly more facial discomfort than those of NSPW. CONCLUSIONS Smoking is associated with MAOA inhibition in pregnant women and in their newborns at birth. Further studies are needed to estimate the behavioral significance of these findings.
Collapse
Affiliation(s)
- Ivan Berlin
- Faculté de médicine,Université Paris 6, Hôpital Pitié-Salpêtrière, INSERM U894, Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit.
Collapse
Affiliation(s)
- N Hiroi
- Department of Psychiatry and Behavioral Sciences, Laboratory of Molecular Psychobiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - D Scott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Mechanism-based medication development for the treatment of nicotine dependence. Acta Pharmacol Sin 2009; 30:723-39. [PMID: 19434058 DOI: 10.1038/aps.2009.46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.
Collapse
|
32
|
Manley-King CI, Terre’Blanche G, Castagnoli N, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase B by N-methyl-2-phenylmaleimides. Bioorg Med Chem 2009; 17:3104-10. [DOI: 10.1016/j.bmc.2009.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 11/28/2022]
|
33
|
Alves E, Summavielle T, Alves CJ, Custódio JBA, Fernandes E, de Lourdes Bastos M, Tavares MA, Carvalho F. Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A. Addict Biol 2009; 14:185-93. [PMID: 19076925 DOI: 10.1111/j.1369-1600.2008.00143.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The administration of a neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') to the rat results in mitochondrial oxidative damage in the central nervous system, namely lipid and protein oxidation and mitochondrial DNA deletions with subsequent impairment of the correspondent protein expression. Although these toxic effects were shown to be prevented by monoamine oxidase B inhibition, the role of monoamine oxidase A (MAO-A) in MDMA-mediated mitochondrial damage remains to be evaluated. Thus, the aim of the present study was to clarify the potential interference of a specific inhibition of MAO-A by clorgyline, on the deleterious effects produced by a binge administration of a neurotoxic dose of MDMA (10 mg MDMA/kg of body weight, intraperitoneally, every 2 hours in a total of four administrations) to an adolescent rat model. The parameters evaluated were mitochondrial lipid peroxidation, protein carbonylation and expression of the respiratory chain protein subunits II of reduced nicotinamide adenine dinucleotide dehydrogenase (NDII) and I of cytochrome oxidase (COXI). Considering that hyperthermia has been shown to contribute to the neurotoxic effects of MDMA, another objective of the present study was to evaluate the body temperature changes mediated by MDMA with a MAO-A selective inhibition by clorgyline. The obtained results demonstrated that the administration of a neurotoxic binge dose of MDMA to an adolescent rat model previously treated with the specific MAO-A inhibitor, clorgyline, resulted in synergistic effects on serotonin- (5-HT) mediated behaviour and body temperature, provoking high mortality. Inhibition of MAO-A by clorgyline administration had no protective effect on MDMA-induced alterations on brain mitochondria (increased lipid peroxidation, protein carbonylation and decrease in the expression of the respiratory chain subunits NDII and COXI), although it aggravated MDMA-induced decrease in the expression of COXI. These results reinforce the notion that the concomitant use of MAO-A inhibitors and MDMA is counter indicated because of the resulting severe synergic toxicity.
Collapse
Affiliation(s)
- Ema Alves
- Grupo Neurocomportamento, Instituto de Biologia Molecular e Celular (IBMC), University of Porto (UP), Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Golczak M, Maeda A, Bereta G, Maeda T, Kiser PD, Hunzelmann S, von Lintig J, Blaner WS, Palczewski K. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. J Biol Chem 2008; 283:9543-54. [PMID: 18195010 PMCID: PMC2441898 DOI: 10.1074/jbc.m708982200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/20/2007] [Indexed: 11/06/2022] Open
Abstract
In vertebrate retinal photoreceptors, the absorption of light by rhodopsin leads to photoisomerization of 11-cis-retinal to its all-trans isomer. To sustain vision, a metabolic system evolved that recycles all-trans-retinal back to 11-cis-retinal. The importance of this visual (retinoid) cycle is underscored by the fact that mutations in genes encoding visual cycle components induce a wide spectrum of diseases characterized by abnormal levels of specific retinoid cycle intermediates. In addition, intense illumination can produce retinoid cycle by-products that are toxic to the retina. Thus, inhibition of the retinoid cycle has therapeutic potential in physiological and pathological states. Four classes of inhibitors that include retinoid and nonretinoid compounds have been identified. We investigated the modes of action of these inhibitors by using purified visual cycle components and in vivo systems. We report that retinylamine was the most potent and specific inhibitor of the retinoid cycle among the tested compounds and that it targets the retinoid isomerase, RPE65. Hydrophobic primary amines like farnesylamine also showed inhibitory potency but a short duration of action, probably due to rapid metabolism. These compounds also are reactive nucleophiles with potentially high cellular toxicity. We also evaluated the role of a specific protein-mediated mechanism on retinoid cycle inhibitor uptake by the eye. Our results show that retinylamine is transported to and taken up by the eye by retinol-binding protein-independent and retinoic acid-responsive gene product 6-independent mechanisms. Finally, we provide evidence for a crucial role of lecithin: retinol acyltransferase activity in mediating tissue specific absorption and long lasting therapeutic effects of retinoid-based visual cycle inhibitors.
Collapse
Affiliation(s)
- Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rybaczyk LA, Bashaw MJ, Pathak DR, Huang K. An indicator of cancer: downregulation of monoamine oxidase-A in multiple organs and species. BMC Genomics 2008; 9:134. [PMID: 18366702 PMCID: PMC2311292 DOI: 10.1186/1471-2164-9-134] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 03/20/2008] [Indexed: 11/10/2022] Open
Abstract
Background Identifying consistent changes in cellular function that occur in multiple types of cancer could revolutionize the way cancer is treated. Previous work has produced promising results such as the identification of p53. Recently drugs that affect serotonin reuptake were shown to reduce the risk of colon cancer in man. Here, we analyze an ensemble of cancer datasets focusing on genes involved in the serotonergic pathway. Genechip datasets consisting of cancerous tissue from human, mouse, rat, or zebrafish were extracted from the GEO database. We first compared gene expression between cancerous tissues and normal tissues for each type of cancer and then identified changes that were common to a variety of cancer types. Results Our analysis found that significant downregulation of MAO-A, the enzyme that metabolizes serotonin, occurred in multiple tissues from humans, rodents, and fish. MAO-A expression was decreased in 95.4% of human cancer patients and 94.2% of animal cancer cases compared to the non-cancerous controls. Conclusion These are the first findings that identify a single reliable change in so many different cancers. Future studies should investigate links between MAO-A suppression and the development of cancer to determine the extent that MAO-A suppression contributes to increased cancer risk.
Collapse
Affiliation(s)
- Leszek A Rybaczyk
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
36
|
Fowler JS, Volkow ND, Kassed CA, Chang L. Imaging the addicted human brain. SCIENCE & PRACTICE PERSPECTIVES 2008; 3:4-16. [PMID: 17514067 PMCID: PMC2851068 DOI: 10.1151/spp07324] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Joanna S Fowler
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Tobacco addiction is the most significant preventable cause of morbidity and mortality in the Western world, with >430,000 deaths annually from tobacco-related diseases being reported in the United States. Although effective treatments are available for cessation of smoking (e.g., nicotine replacement therapies, sustained-release bupropion and varenicline), they do not work for all smokers. Therefore the development of more effective medications for treating tobacco dependence, based on novel mechanisms, is a high priority. This article reviews the links between smoking and monoamine oxidase (MAO) inhibition, which could lead to the development of novel pharmacotherapies to treat tobacco dependence.
Collapse
|
38
|
Siu ECK, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 2007; 324:992-9. [PMID: 18065502 DOI: 10.1124/jpet.107.133900] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selegiline (l-deprenyl) is in clinical treatment trials as a potential smoking cessation drug. We investigated the affect of selegiline and its metabolites on nicotine metabolism. In mice, selegiline was a potent inhibitor of nicotine metabolism in hepatic microsomes and cDNA-expressed CYP2A5; the selegiline metabolites desmethylselegiline, l-methamphetamine, and l-amphetamine, also inhibited nicotine metabolism. Pretreatment with selegiline and desmethylselegiline increased inhibition (IC(50)) in microsomes by 3.3- and 6.1-fold, respectively. In mice in vivo, selegiline increased AUC (90.7 +/- 5.8 versus 57.4 +/- 5.3 ng/h/ml, p < 0.05), decreased clearance (4.6 +/- 0.4 versus 7.3 +/- 0.3 ml/min, p < 0.05), and increased elimination half-life (12.5 +/- 6.3 versus 6.6 +/- 1.4 min, p < 0.05) of nicotine. In vitro, selegiline was a potent inhibitor of human nicotine metabolism in hepatic microsomes and cDNA-expressed CYP2A6; desmethylselegiline and l-amphetamine also inhibited nicotine metabolism. Selegiline preincubation increased inhibition in microsomes (3.7-fold) and CYP2A6 (14.8-fold); the K(i) for CYP2A6 was 4.2 muM. Selegiline dose- and time-dependently inhibited nicotine metabolism by CYP2A6 (K(i) = 15.6 +/- 2.7 muM; k(inact) = 0.34 +/- 0.04 min(-1)), and the inhibition was irreversible in the presence of NADPH, indicating that it is a mechanism-based inhibitor of CYP2A6. Thus, inhibition of mouse nicotine metabolism by selegiline was competitive in vitro and significantly increased plasma nicotine in vivo. In humans, where selegiline is both a competitive and mechanism-based inhibitor, it is likely to have even greater effects on in vivo nicotine metabolism. Our findings suggest that an additional potential mechanism of selegiline in smoking cessation is through inhibition of nicotine metabolism.
Collapse
Affiliation(s)
- Eric C K Siu
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Room 4326, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Ogunrombi MO, Malan SF, Terre'blanche G, Castagnoli N, Bergh JJ, Petzer JP. Structure-activity relationships in the inhibition of monoamine oxidase B by 1-methyl-3-phenylpyrroles. Bioorg Med Chem 2007; 16:2463-72. [PMID: 18065227 DOI: 10.1016/j.bmc.2007.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/13/2007] [Accepted: 11/21/2007] [Indexed: 11/26/2022]
Abstract
1-Methyl-3-phenyl-3-pyrrolines are structural analogues of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and like MPTP are selective substrates of monoamine oxidase B (MAO-B). As part of an ongoing investigation into the substrate properties of various 1-methyl-3-phenyl-3-pyrrolinyl derivatives, it is shown in the present study that their respective MAO-B catalyzed oxidation products act as reversible competitive inhibitors of the enzyme. The most potent inhibitor among the oxidation products considered was 1-methyl-3-(4-trifluoromethylphenyl)pyrrole with an enzyme-inhibitor dissociation constant (K(i) value) of 1.30 microM. The least potent inhibitor was found to be 1-methyl-3-phenylpyrrole with a K(i) value of 118 microM. The results of an SAR study established that the potency of MAO-B inhibition by the 1-methyl-3-phenylpyrrolyl derivatives examined here is dependent on the Taft steric parameter (E(s)) and Swain-Lupton electronic constant (F) of the substituents attached to C-4 of the phenyl ring. Electron-withdrawing substituents with a large degree of steric bulkiness appear to enhance inhibition potency. Potency was also found to vary with the substituents at C-3, again with E(s) and F being the principal substituent descriptors.
Collapse
Affiliation(s)
- Modupe O Ogunrombi
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | | | | | | | | |
Collapse
|
40
|
Malpass D, Higgs S. Acute psychomotor, subjective and physiological responses to smoking in depressed outpatient smokers and matched controls. Psychopharmacology (Berl) 2007; 190:363-72. [PMID: 17136518 DOI: 10.1007/s00213-006-0612-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Cigarette smoking is highly prevalent in people diagnosed with depression, and depressed smokers are less likely to quit. Examining depressed smokers' responses to smoking will help determine the role of depression in maintaining cigarette smoking. OBJECTIVES To determine the psychomotor, subjective and physiological effects of cigarette smoking in currently depressed smokers versus matched controls. MATERIALS AND METHODS Fourteen currently depressed smokers and 14 never-depressed smokers, matched in age, gender, nicotine dependence and daily cigarette consumption, smoked three cigarettes at half-hourly intervals. All smokers were non-deprived. Self-reported mood and craving for cigarettes, performance on a simple reaction time task, expired-air carbon monoxide, heart rate and blood pressure were assessed before and after smoking each cigarette. Smoking topography was also assessed. RESULTS Depressives and controls did not differ in terms of dependence on cigarettes or expired-air carbon monoxide. Topographic and cardiovascular measures were similar in depressed and control participants, suggesting that they smoke cigarettes in a similar manner. However, depressives displayed enhanced reaction time performance after the first cigarette. Positively reinforced craving was reduced after smoking each cigarette but returned to baseline levels within 30 min in depressed but not in control smokers. Depressed smokers also displayed higher levels of negatively reinforced craving. Both depressives and controls reported improved positive mood after smoking. CONCLUSIONS Cigarette smoking in non-deprived depressed smokers enhances psychomotor performance and the reduction of positively reinforced craving in depressed smokers after smoking is transient, suggesting that enhanced craving may play a role in the maintenance of smoking in depression.
Collapse
Affiliation(s)
- Debra Malpass
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
41
|
van Amsterdam J, Talhout R, Vleeming W, Opperhuizen A. Contribution of monoamine oxidase (MAO) inhibition to tobacco and alcohol addiction. Life Sci 2006; 79:1969-73. [PMID: 16884739 DOI: 10.1016/j.lfs.2006.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/29/2006] [Accepted: 06/11/2006] [Indexed: 11/22/2022]
Abstract
Whole-body PET-scan studies in brains of tobacco smokers have shown a decrease in monoamine oxidase (MAO) activity, which reverts to control level when they quit smoking. The observed decrease in MAO activity in smokers is presumably due to their exposure to tobacco constituents that possess MAO-inhibiting properties. The inhibition of MAO activity seems, however, not to be a unique feature of tobacco smoking as subjects with Type II alcoholism have been reported to show a similar decrease in MAO activity that reverses when they cease to use alcohol. The present review summarizes the data on MAO-inhibiting tobacco constituents and explains that the decrease in MAO activity observed in alcoholics is probably due to concomitant tobacco use. It is concluded that the inhibition of MAO by constituents contained in tobacco and tobacco smoke, enhances the addiction induced by tobacco smoking.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Agatsuma S, Lee M, Zhu H, Chen K, Shih JC, Seif I, Hiroi N. Monoamine oxidase A knockout mice exhibit impaired nicotine preference but normal responses to novel stimuli. Hum Mol Genet 2006; 15:2721-31. [PMID: 16893910 DOI: 10.1093/hmg/ddl206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nicotine is thought to act on brain monoamine systems that normally mediate diverse motivational behaviors. How monoamine-related genes contribute to behavioral traits (e.g. responses to novel stimuli) comorbid with the susceptibility to nicotine addiction is still poorly understood. We examined the impact of constitutive monoamine oxidase A (MAOA) deficiency in mice on nicotine reward and responses to novel stimuli. Age-matched, male Maoa-knockout (KO) mice and wild-type (WT) littermates were tested for nicotine-induced conditioned place preference (CPP); voluntary oral nicotine preference/intake; spontaneous locomotor activity in a novel, inescapable open field; and novelty place preference. Nicotine preference in WT mice was reduced in Maoa-KO mice in the CPP and oral preference/intake tests. Control experiments showed that these phenotypes were not due to abnormalities in nicotine metabolism, fluid intake or response to taste. In contrast, Maoa-KO mice were normal in their behavioral response to a novel, inescapable open field and in their preference for a novel place. The observed phenotypes suggest that a constitutive deficiency of MAOA reduces the rewarding effects of nicotine without altering behavioral responses to novel stimuli in mice. Constitutive MAOA activity levels are likely to contribute to the vulnerability or resiliency to nicotine addiction by altering the rewarding effects of nicotine.
Collapse
Affiliation(s)
- Soh Agatsuma
- Laboratory of Molecular Psychobiology, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Frédérick R, Dumont W, Ooms F, Aschenbach L, Van der Schyf CJ, Castagnoli N, Wouters J, Krief A. Synthesis, Structural Reassignment, and Biological Activity of Type B MAO Inhibitors Based on the 5H-Indeno[1,2-c]pyridazin-5-one Core. J Med Chem 2006; 49:3743-7. [PMID: 16759116 DOI: 10.1021/jm051091j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and enzyme inhibitor properties of reversible type B monoamine oxidase inhibitors are described. These compounds belong to the 5H-indeno[1,2-c]pyridazine family and possess a hydrophobic benzyloxy or 4,4,4-trifluorobutoxy side chain which, in contrast to a previous assignment, has been unambiguously located at C(8) of the heterocyclic moiety. Investigation of the regioisomeric structures establishes that substitution of the 5H-indeno[1,2-c]pyridazin-5-one core at C(7) vs C(8) dramatically influences the MAO-inhibiting properties of these compounds.
Collapse
Affiliation(s)
- Raphaël Frédérick
- Laboratoire de Chimie Biologique Structurale, Drug Design and Discovery Center, Facultés Universitaires N.D de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Khalil AA, Davies B, Castagnoli N. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke. Bioorg Med Chem 2006; 14:3392-8. [PMID: 16458520 DOI: 10.1016/j.bmc.2005.12.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
It is well established that tobacco smokers have reduced levels of monoamine oxidase activities both in the brain and peripheral organs. Furthermore, extensive evidence suggests that smokers are less prone to develop Parkinson's disease. These facts, plus the observation that inhibition of monoamine oxidase B protects against the parkinsonian inducing effects of the nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have prompted studies to identify monoamine oxidase inhibitors in the tobacco plant and tobacco cigarette smoke. Our previous efforts on cured tobacco leaf extracts have led to the characterization of 2,3,6-trimethyl-1,4-naphthoquinone, a non-selective monoamine oxidase inhibitor, and farnesylacetone, a selective monoamine oxidase B inhibitor. We now have extended these studies to tobacco smoke constituents. Fractionation of the smoke extracts has confirmed and extended the qualitative results of an earlier report [J. Korean Soc. Tob. Sci.1997, 19, 136] demonstrating the inhibitory activity of the terpene trans,trans-farnesol on rat brain MAO-B. In the present study, K(i) values for the inhibition of human, baboon, monkey, dog, rat, and mouse liver MAO-B have been determined. Noteworthy is the absence of inhibitory effects on human placental MAO-A and beef liver MAO-B. A limited structure-activity relationship study of analogs of trans,trans-farnesol is reported. Although the health hazards associated with the use of tobacco products preclude any therapeutic opportunities linked to smoking, these results suggest the possibility of identifying novel structures of compounds that could lead to the development of neuroprotective agents.
Collapse
Affiliation(s)
- Ashraf A Khalil
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212, USA
| | | | | |
Collapse
|
45
|
Fowler JS, Logan J, Volkow ND, Wang GJ. Translational neuroimaging: positron emission tomography studies of monoamine oxidase. Mol Imaging Biol 2006; 7:377-87. [PMID: 16265597 DOI: 10.1007/s11307-005-0016-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and L -deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs.
Collapse
|
46
|
Herraiz T, Chaparro C. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee. Life Sci 2006; 78:795-802. [PMID: 16139309 DOI: 10.1016/j.lfs.2005.05.074] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/18/2005] [Indexed: 11/28/2022]
Abstract
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recent epidemiological studies have consistently shown that coffee drinkers have an apparently lower incidence of Parkinson's disease (PD), suggesting that coffee might somehow act as a purported neuroprotectant. In this paper, "ready to drink" coffee brews exhibited inhibitory properties on recombinant human MAO A and B isozymes catalyzing the oxidative deamination of kynuramine, suggesting that coffee contains compounds acting as MAO inhibitors. MAO inhibition was reversible and competitive for MAO A and MAO B. Subsequently, the pyrido-indole (beta-carboline) alkaloids, norharman and harman, were identified and isolated from MAO-inhibiting coffee, and were good inhibitors on MAO A (harman and norharman) and MAO B (norharman) isozymes. beta-carbolines isolated from ready-to-drink coffee were competitive and reversible inhibitors and appeared up to 210 microg/L, confirming that coffee is the most important exogenous source of these alkaloids in addition to cigarette smoking. Inhibition of MAO enzymes by coffee and the presence of MAO inhibitors that are also neuroactive, such as beta-carbolines and eventually others, might play a role in the neuroactive actions including a purported neuroprotection associated with coffee consumption.
Collapse
Affiliation(s)
- Tomas Herraiz
- Spanish Council for Scientific Research. CSIC. Instituto de Fermentaciones Industriales, Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | |
Collapse
|
47
|
Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 2005; 326:378-86. [PMID: 15582589 DOI: 10.1016/j.bbrc.2004.11.033] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Indexed: 11/29/2022]
Abstract
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.
Collapse
|
48
|
Lowe ER, Everett AC, Lee AJ, Lau M, Dunbar AY, Berka V, Tsai AL, Osawa Y. Time-dependent inhibition and tetrahydrobiopterin depletion of endothelial nitric-oxide synthase caused by cigarettes. Drug Metab Dispos 2005; 33:131-8. [PMID: 15470159 DOI: 10.1124/dmd.104.001891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smoking causes a dysfunction in endothelial nitric-oxide synthase (eNOS), which is ameliorated, in part, by administration of tetrahydrobiopterin (BH(4)). The exact mechanism by which the nitric oxide deficit occurs is unknown. We have previously shown that aqueous extracts of chemicals in cigarettes (CE) cause the suicide inactivation of neuronal NO synthase (nNOS) by interacting at the substrate-binding site. In the current study, we have found that CE directly inactivates eNOS by a process that is not affected by the natural substrate l-arginine and is distinct from the mechanism of inactivation of nNOS. We discovered that CE causes a time-, concentration-, and NADPH-dependent inactivation of eNOS in an in vitro system containing the purified enzyme, indicating a metabolic component to the inactivation. The CE-treated eNOS but not nNOS was nearly fully reactivated upon incubation with excess BH(4), suggesting that BH(4) depletion is a potential mechanism of inactivation. Moreover, in the presence of CE, eNOS catalyzed the oxidation of BH(4) to dihydrobiopterin and biopterin by a process attenuated by high concentrations of superoxide dismutase but not catalase. We speculate that a redox active component in CE, perhaps a quinone compound, causes oxidative uncoupling of eNOS to form superoxide, which in turn oxidizes BH(4). The discovery of a direct inactivation of eNOS by a compound(s) present in tobacco provides a basis not only for further study of the mechanisms responsible for the biological effects of tobacco but also a search for a potentially novel inactivator of eNOS.
Collapse
Affiliation(s)
- Ezra R Lowe
- Department of Pharmacology, University of Michigan Medical School, 1301 Medical Science Research Building III, Ann Arbor, MI 48109-0632, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dittmann K, Riese U, Hamburger M. HPLC-based bioactivity profiling of plant extracts: a kinetic assay for the identification of monoamine oxidase-A inhibitors using human recombinant monoamine oxidase-A. PHYTOCHEMISTRY 2004; 65:2885-2891. [PMID: 15501256 DOI: 10.1016/j.phytochem.2004.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 07/13/2004] [Indexed: 05/24/2023]
Abstract
An assay for the HPLC-based search for monoamine oxidase-A (MAO-A) inhibitors in plant extracts was established. It combines human recombinant MAO-A, expressed as GST-fusion protein in yeast, with a kinetic measurement of the conversion of kynuramine to 4-hydroxyquinoline. Substrate selectivity and kinetic parameters of the GST-fusion protein were comparable to the wild-type enzyme. The applicability of the assay to HPLC-based activity profiling was tested with plant extracts spiked with small amounts of known MAO inhibitors.
Collapse
Affiliation(s)
- Kathrin Dittmann
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Semmelweisstrasse 10, D-07743 Jena, Germany
| | | | | |
Collapse
|
50
|
Abstract
The relationship between smoking and depression is bidirectional. Recent research has focused on nicotine's neurobiologic impact on the brain as it relates to depression. Genetic factors are also important and may account for up to 67% of smoking initiation, maintenance, and dependence. Because nicotine withdrawal may mimic and induce depression, appropriate clinical evaluation and treatment are essential to reduce the high morbidity and mortality associated with smoking and depression and maximize smoking cessation rates.
Collapse
Affiliation(s)
- Khatija N Paperwalla
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 23rd Street, Glen Oaks, NY 11004, USA
| | | | | | | |
Collapse
|