1
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
2
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Inhibition of neurogenic contractions in renal arteries and of cholinergic contractions in coronary arteries by the presumed inhibitor of ADP-ribosylation factor 6, NAV2729. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:471-485. [PMID: 35141760 PMCID: PMC8873054 DOI: 10.1007/s00210-022-02218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
NAV2729 is a presumed inhibitor of the monomeric GTPase ADP ribosylation factor 6 (ARF6) and inhibits smooth muscle contraction outside the cardiovascular system. Its effects on vascular smooth muscle contraction or a possible role of ARF6 in vasocontraction have not yet been examined. Here, we report effects of NAV2729 on neurogenic and agonist-induced contractions in renal interlobar and coronary arteries. Contractions of pig interlobar and coronary arteries were induced in an organ bath by agonists or by electric field stimulation (EFS). Owing to divergent characteristics of both vessel types, EFS-induced contractions were only examined in interlobar arteries, and contractions by agonists acting on muscarinic receptors only in coronary arteries. NAV2729 inhibited frequency-dependent EFS-induced contractions of interlobar arteries. The degree of inhibition was similar using 5 µM and 10 µM NAV2729. Inhibition of EFS-induced contractions was resistant to a nitric oxide synthase inhibitor and to diclofenac. The neurogenic and adrenergic character of EFS-induced contractions was confirmed by inhibition by tetrodotoxin and prazosin. In coronary arteries, NAV2729 (5 µM) inhibited concentration-dependent contractions induced by carbachol and methacholine. Contractions induced by α1-adrenergic agonists, endothelin-1, the thromboxane receptor agonist U46619, or serotonin remained unchanged by NAV2729 in both vessel types. NAV2729 inhibits neurogenic contractions in interlobar arteries and contractions induced by cholinergic agonists in coronary arteries. In both vessel types, NAV2729 does not inhibit contractions induced by receptor agonists other than those acting on muscarinic receptors. Addressing effects in other vessels and in other smooth muscle–rich organs merits further attention.
Collapse
|
4
|
Yi C, Cai C, Cheng Z, Zhao Y, Yang X, Wu Y, Wang X, Jin Z, Xiang Y, Jin M, Han L, Zhang A. Genome-wide CRISPR-Cas9 screening identifies the CYTH2 host gene as a potential therapeutic target of influenza viral infection. Cell Rep 2022; 38:110559. [PMID: 35354039 DOI: 10.1016/j.celrep.2022.110559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
Host genes critical for viral infection are effective antiviral drug targets with tremendous potential due to their universal characteristics against different subtypes of viruses and minimization of drug resistance. Accordingly, we execute a genome-wide CRISPR-Cas9 screen with multiple rounds of survival selection. Enriched in this screen are several genes critical for host sialic acid biosynthesis and transportation, including the cytohesin 2 (CYTH2), tetratricopeptide repeat protein 24 (TTC24), and N-acetylneuraminate synthase (NANS), which we confirm are responsible for efficient influenza viral infection. Moreover, we reveal that CYTH2 is required for the early stage of influenza virus infection by mediating endosomal trafficking. Furthermore, CYTH2 antagonist SecinH3 blunts influenza virus infection in vivo. In summary, these data suggest that CYTH2 is an attractive target for developing host-directed antiviral drugs and therapeutics against influenza virus infection.
Collapse
Affiliation(s)
- Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Cong Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ze Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yifan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yue Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaoping Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Zehua Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200000, China
| | - Meilin Jin
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Wu LN, Zhu ZJ, Sun LY. Genetic Factors and Their Role in the Pathogenesis of Biliary Atresia. Front Pediatr 2022; 10:912154. [PMID: 35844731 PMCID: PMC9277099 DOI: 10.3389/fped.2022.912154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Biliary Atresia, a common basis for neonatal cholestasis and primary indication for Liver Transplantation, accounts for 60% of pediatric Liver Transplantations. While the pathogenesis of Biliary Atresia remains obscure, abnormalities within bile ducts and the liver, inflammation, fibrosis and cilia defects are thought to comprise the pathological basis for this condition. The findings of genetic variants in Biliary Atresia, such as Copy Number Variations and Single Nucleotide Polymorphism, are considered as essential factors in the development of this condition. In this review, we summarize and analyze these Biliary Atresia variants from a perspective of their pathological characteristics. In conclusion, such analyses may offer novel insights into the pathogenesis of Biliary Atresia and provide a foundation for future studies directed toward a better understanding and treatment of Biliary Atresia.
Collapse
Affiliation(s)
- Li-Na Wu
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zhang H, Cheng Z, Li W, Hu J, Zhao L, Chen D, Gao J, Chen J, Yan Y, Lin L, Shi A. WTS-1/LATS regulates endocytic recycling by restraining F-actin assembly in a synergistic manner. J Cell Sci 2021; 134:273738. [PMID: 34817059 DOI: 10.1242/jcs.259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C. elegans involving WTS-1, the homolog of LATS kinases, which is a core component of the Hippo pathway. WTS-1 resides on the sorting endosomes and colocalizes with the actin polymerization regulator PTRN-1 [the homolog of the calmodulin-regulated spectrin-associated proteins (CAMSAPs)]. We observed an increase in PTRN-1-labeled structures in WTS-1-deficient cells, indicating that WTS-1 can limit the endosomal localization of PTRN-1. Accordingly, the actin overaccumulation phenotype in WTS-1-depleted cells was mitigated by the associated PTRN-1 loss. We further demonstrated that recycling defects and actin overaccumulation in WTS-1-deficient cells were reduced by the overexpression of constitutively active UNC-60A(S3A) (a cofilin protein homolog), which aligns with the role of LATS as a positive regulator of cofilin activity. Altogether, our data confirmed previous findings, and we propose an additional model, that WTS-1 acts alongside the UNC-60A-mediated actin disassembly to restrict the assembly of endosomal F-actin by curbing PTRN-1 dwelling on endosomes, preserving recycling transport.
Collapse
Affiliation(s)
- Hanchong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
7
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
8
|
Wang R, Schneider S, Keppler OT, Li B, Rutz B, Ciotkowska A, Stief CG, Hennenberg M. ADP ribosylation factor 6 promotes contraction and proliferation, suppresses apoptosis and is specifically inhibited by NAV2729 in prostate stromal cells. Mol Pharmacol 2021; 100:356-371. [PMID: 34349027 DOI: 10.1124/molpharm.121.000304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
The presumed ARF6 inhibitor NAV2729 inhibits human prostate smooth muscle contraction and proliferation of stromal cells, which are driving factors of voiding symptoms in benign prostatic hyperplasia (BPH). However, its specificity and a confirmed role of ARF6 for smooth muscle contraction are still pending. Here, we generated monoclonal ARF6 knockouts in human prostate stromal cells (WPMY-1), and characterized phenotypes of contractility, growth-related functions, and susceptibility to NAV2729 in knockout and control clones. ARF6 knockout was verified by Western blot. Knockout clones showed impaired contraction and actin organization, reduced proliferation and viability, and increased apoptosis and cell death. In ARF6-expressing control clones, NAV2729 (5µM) strongly inhibited contraction (67% inhibition accross all three control clones), actin organization (72%), proliferation (97%) and viability (up to 82%), and increased apoptosis (5-fold) and cell death (6-fold). In ARF6 knockouts, effects of NAV2729 (5µM) were widely reduced, including lacking or minor effects on contractions (0% inhibition accross all three knockout clones), actin (18%) and proliferation (13%), and lacking increases of apoptosis and cell death. Viability was reduced by NAV2729 with an IC50 of 3.3µM across all three ARF6 control clones, but of 4.5-8.2µM in ARF6 knockouts. In conclusion, ARF6 promotes prostate smooth muscle contraction and proliferation of stromal cells. Both are inhibited by NAV2729, which showed high specificity for ARF6 up to 5µM and represents an attractive compound in the context of BPH. Considering the relevance of smooth muscle-based diseases, shared roles of ARF6 in other smooth muscle types merit further investigation. Significance Statement By knockout of ARF6 in prostate stromal cells, we demonstrate an involvement of ARF6 in promotion of prostate smooth muscle contraction and stromal growth, and define concentration ranges for their ARF6-specific inhibition by NAV2729. Besides the context of benign prostatic hyperplasia and lower urinary tract symptoms, analog ARF6 functions in contraction and growth appear possible in other smooth muscle-rich organs, which merits further attention considering the high clinical relevance of smooth muscle-based diseases.
Collapse
Affiliation(s)
- Ruixiao Wang
- Urology, University Hospital, LMU Munich, Germany
| | - Stephanie Schneider
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, Germany
| | - Bingsheng Li
- Urology, University Hospital, LMU Munich, Germany
| | - Beata Rutz
- Urology, University Hospital, LMU Munich, Germany
| | | | | | | |
Collapse
|
9
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
10
|
Li B, Wang R, Wang Y, Stief CG, Hennenberg M. Regulation of smooth muscle contraction by monomeric non-RhoA GTPases. Br J Pharmacol 2020; 177:3865-3877. [PMID: 32579705 PMCID: PMC7429483 DOI: 10.1111/bph.15172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle contraction in the cardiovascular system, airways, prostate and lower urinary tract is involved in the pathophysiology of many diseases, including cardiovascular and obstructive lung disease plus lower urinary tract symptoms, which are associated with high prevalence of morbidity and mortality. This prominent clinical role of smooth muscle tone has led to the molecular mechanisms involved being subjected to extensive research. In general smooth muscle contraction is promoted by three major signalling pathways, including the monomeric GTPase RhoA pathway. However, emerging evidence suggests that monomeric GTPases other than RhoA may be involved in signal transduction in smooth muscle contraction, including Rac GTPases, cell division control protein 42 homologue, adenosine ribosylation factor 6, Ras, Rap1b and Rab GTPases. Here, we review these emerging functions of non-RhoA GTPases in smooth muscle contraction, which has now become increasingly more evident and constitutes an emerging and innovative research area of high clinical relevance.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yiming Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Singh V, Davidson AC, Hume PJ, Koronakis V. Arf6 Can Trigger Wave Regulatory Complex-Dependent Actin Assembly Independent of Arno. Int J Mol Sci 2020; 21:ijms21072457. [PMID: 32252226 PMCID: PMC7177560 DOI: 10.3390/ijms21072457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) anchors at the plasma membrane to orchestrate key functions, such as membrane trafficking and regulating cortical actin cytoskeleton rearrangement. A number of studies have identified key players that interact with Arf6 to regulate actin dynamics in diverse cell processes, yet it is still unknown whether Arf6 can directly signal to the wave regulatory complex to mediate actin assembly. By reconstituting actin dynamics on supported lipid bilayers, we found that Arf6 in co-ordination with Rac1(Ras-related C3 botulinum toxin substrate 1) can directly trigger actin polymerization by recruiting wave regulatory complex components. Interestingly, we demonstrated that Arf6 triggers actin assembly at the membrane directly without recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO (ARF nucleotide-binding site opener), which is able to activate Arf1 to enable WRC-dependent actin assembly. Furthermore, using labelled E. coli, we demonstrated that actin assembly by Arf6 also contributes towards efficient phagocytosis in THP-1 macrophages. Taken together, this study reveals a mechanism for Arf6-driven actin polymerization.
Collapse
|
12
|
Angiotensin II promotes podocyte injury by activating Arf6-Erk1/2-Nox4 signaling pathway. PLoS One 2020; 15:e0229747. [PMID: 32119711 PMCID: PMC7051060 DOI: 10.1371/journal.pone.0229747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 11/20/2022] Open
Abstract
Angiotensin II (Ang II) is a key contributor to glomerular disease by predominantly resulting in podocyte injury, whereas the underlying molecular mechanisms has not been fully understood. This study aimed to investigate if and how ADP-ribosylation factor 6 (Arf6), a small GTP-binding protein, involves Ang II-induced cellular injury in cultured human podocytes. Cellular injury was evaluated with caspase 3 activity, reactive oxygen species (ROS) level and TUNEL assay. Arf6 activity was measured using an Arf6-GTP Pull-Down Assay. Ang II significantly enhanced Arf6 expressions accompanied by increase of Arf6-GTP. The TUNEL-positive cells as well as activated caspase 3, NADPH oxidase 4 protein (Nox4) and ROS levels were dramatically increased in Ang II-treated podocytes, which was prevented by secinH3, an Arf6 activity inhibitor. Induction of ROS by Ang II was inhibited in podocytes with Nox4 knockdown. Ang II-induced elevation of Nox4 and ROS was prevented by Arf6 knockdown. Phpspho-Erk1/2Thr202/Tyr204 levels were upregulated remarkably following Ang II treatment, and Erk inhibitor LY3214996 significantly downregulated Nox4 expression. In addition, Ang II decreased CD2AP expression. Overexpression of CD2AP prevented Ang II-induced upregulation of Arf6-GTP. Our data demonstrated that Ang II promotes ROS production and podocytes injury through activation of Arf6-Erk1/2-Nox4 signaling. We also provided evidence that Ang II activates Arf6 by degradation of CD2AP.
Collapse
|
13
|
de la Cruz L, Traynor-Kaplan A, Vivas O, Hille B, Jensen JB. Plasma membrane processes are differentially regulated by type I phosphatidylinositol phosphate 5-kinases and RASSF4. J Cell Sci 2020; 133:jcs.233254. [PMID: 31831523 DOI: 10.1242/jcs.233254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide lipids regulate many cellular processes and are synthesized by lipid kinases. Type I phosphatidylinositol phosphate 5-kinases (PIP5KIs) generate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2]. Several phosphoinositide-sensitive readouts revealed the nonequivalence of overexpressing PIP5KIβ, PIP5KIγ or Ras association domain family 4 (RASSF4), believed to activate PIP5KIs. Mass spectrometry showed that each of these three proteins increased total cellular phosphatidylinositol bisphosphates (PtdInsP 2) and trisphosphates (PtdInsP 3) at the expense of phosphatidylinositol phosphate (PtdInsP) without changing lipid acyl chains. Analysis of KCNQ2/3 channels and PH domains confirmed an increase in plasma membrane PtdIns(4,5)P 2 in response to PIP5KIβ or PIP5KIγ overexpression, but RASSF4 required coexpression with PIP5KIγ to increase plasma membrane PtdIns(4,5)P 2 Effects on the several steps of store-operated calcium entry (SOCE) were not explained by plasma membrane phosphoinositide increases alone. PIP5KIβ and RASSF4 increased STIM1 proximity to the plasma membrane, accelerated STIM1 mobilization and speeded onset of SOCE; however, PIP5KIγ reduced STIM1 recruitment but did not change induced Ca2+ entry. These differences imply actions through different segregated pools of phosphoinositides and specific protein-protein interactions and targeting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA.,Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Jill B Jensen
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| |
Collapse
|
14
|
Bhatt JM, Hancock W, Meissner JM, Kaczmarczyk A, Lee E, Viktorova E, Ramanadham S, Belov GA, Sztul E. Promiscuity of the catalytic Sec7 domain within the guanine nucleotide exchange factor GBF1 in ARF activation, Golgi homeostasis, and effector recruitment. Mol Biol Cell 2019; 30:1523-1535. [PMID: 30943106 PMCID: PMC6724685 DOI: 10.1091/mbc.e18-11-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A-inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF's targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William Hancock
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aneta Kaczmarczyk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ekaterina Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
15
|
Song X, Liu W, Yuan X, Jiang J, Wang W, Mullen M, Zhao X, Zhang Y, Liu F, Du S, Rehman A, Tian R, Li J, Frost A, Song Z, Green HN, Henry C, Liu X, Ding X, Wang D, Yao X. Acetylation of ACAP4 regulates CCL18-elicited breast cancer cell migration and invasion. J Mol Cell Biol 2018; 10:559-572. [PMID: 30395269 PMCID: PMC6692856 DOI: 10.1093/jmcb/mjy058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor metastasis represents the main causes of cancer-related death. Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis, but the underlying mechanisms remain less clear. Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation. CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation. ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation. The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses. Importantly, dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion, as overexpression of the persistent acetylation-mimicking or non-acetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion. Mechanistically, the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6-ACAP4 complex with plasma membrane in response to CCL18 stimulation. Thus, these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoyu Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wei Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiao Yuan
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jiying Jiang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - McKay Mullen
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xuannv Zhao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Yin Zhang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fusheng Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shihao Du
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Adeel Rehman
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jian Li
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Andra Frost
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Zhenwei Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Hadiyah-Nicole Green
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Calmour Henry
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xia Ding
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Dongmei Wang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
16
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
17
|
Gong T, Yan Y, Zhang J, Liu S, Liu H, Gao J, Zhou X, Chen J, Shi A. PTRN-1/CAMSAP promotes CYK-1/formin-dependent actin polymerization during endocytic recycling. EMBO J 2018; 37:embj.201798556. [PMID: 29567645 DOI: 10.15252/embj.201798556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN-1 is required for the recycling of clathrin-independent cargo hTAC-GFP The N-terminal calponin homology (CH) domain and central coiled-coils (CC) region of PTRN-1 can synergistically sustain the flow of hTAC-GFP We identified CYK-1/formin as a binding partner of PTRN-1. The N-terminal GTPase-binding domain (GBD) of CYK-1 serves as the binding interface for the PTRN-1 CH domain. The presence of the PTRN-1 CH domain promoted CYK-1-mediated actin polymerization, which suggests that the PTRN-1-CH:CYK-1-GBD interaction efficiently relieves autoinhibitory interactions within CYK-1. As expected, the overexpression of the CYK-1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC-GFP overaccumulation phenotype in ptrn-1 mutants. We conclude that the PTRN-1 CH domain is required to stimulate CYK-1 to facilitate actin dynamics during endocytic recycling.
Collapse
Affiliation(s)
- Ting Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Caldieri G, Barbieri E, Nappo G, Raimondi A, Bonora M, Conte A, Verhoef LGGC, Confalonieri S, Malabarba MG, Bianchi F, Cuomo A, Bonaldi T, Martini E, Mazza D, Pinton P, Tacchetti C, Polo S, Di Fiore PP, Sigismund S. Reticulon 3-dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science 2018; 356:617-624. [PMID: 28495747 DOI: 10.1126/science.aah6152] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 11/02/2022]
Abstract
The integration of endocytic routes is critical to regulate receptor signaling. A nonclathrin endocytic (NCE) pathway of the epidermal growth factor receptor (EGFR) is activated at high ligand concentrations and targets receptors to degradation, attenuating signaling. Here we performed an unbiased molecular characterization of EGFR-NCE. We identified NCE-specific regulators, including the endoplasmic reticulum (ER)-resident protein reticulon 3 (RTN3) and a specific cargo, CD147. RTN3 was critical for EGFR/CD147-NCE, promoting the creation of plasma membrane (PM)-ER contact sites that were required for the formation and/or maturation of NCE invaginations. Ca2+ release at these sites, triggered by inositol 1,4,5-trisphosphate (IP3)-dependent activation of ER Ca2+ channels, was needed for the completion of EGFR internalization. Thus, we identified a mechanism of EGFR endocytosis that relies on ER-PM contact sites and local Ca2+ signaling.
Collapse
Affiliation(s)
- Giusi Caldieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Elisa Barbieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Gilda Nappo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Andrea Raimondi
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alexia Conte
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Lisette G G C Verhoef
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Stefano Confalonieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Fabrizio Bianchi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Alessandro Cuomo
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Tiziana Bonaldi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Emanuele Martini
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Davide Mazza
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy. .,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy.,Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
19
|
Herlemann A, Keller P, Schott M, Tamalunas A, Ciotkowska A, Rutz B, Wang Y, Yu Q, Waidelich R, Strittmatter F, Stief CG, Gratzke C, Hennenberg M. Inhibition of smooth muscle contraction and ARF6 activity by the inhibitor for cytohesin GEFs, secinH3, in the human prostate. Am J Physiol Renal Physiol 2017; 314:F47-F57. [PMID: 28855187 DOI: 10.1152/ajprenal.00125.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prostate smooth muscle contraction is critical for etiology and treatment of male lower urinary tract symptoms (LUTS) and is promoted by small monomeric GTPases (RhoA and Rac). GTPases may be activated by guanosine nucleotide exchange factors (GEFs). GEFs of the cytohesin family may indirectly activate Rac, or ADP ribosylation factor (ARF) GTPases directly. Here we investigated the expression of cytohesin family GEFs and effects of the cytohesin inhibitor Sec7 inhibitor H3 (secinH3) on smooth muscle contraction and GTPase activities in human prostate tissues. Of all four cytohesin isoforms, cytohesin-1 and -2 showed the highest expression in real-time PCR. Western blot and fluorescence staining suggested that cytohesin-2 may be the predominant isoform in prostate smooth muscle cells. Contractions induced by norepinephrine, the α1-adrenoceptor agonist phenylephrine, the thromboxane A2 analog U-46619 , and endothelin-1 and -3, as well as neurogenic contractions induced by electric field stimulation (EFS), were reduced by secinH3 (30 µM). Inhibition of EFS-induced contractions appeared to have efficacy similar to that of inhibition by the α1-adrenoceptor antagonist tamsulosin (300 nM). Combined application of secinH3 plus tamsulosin caused larger inhibition of EFS-induced contractions than tamsulosin alone. Pull-down assays demonstrated inhibition of the small monomeric GTPase ARF6 by secinH3, but no inhibition of RhoA or Rac1. In conclusion, we suggest that a cytohesin-ARF6 pathway takes part in smooth muscle contraction. This may open attractive new possibilities in medical treatment of male LUTS.
Collapse
Affiliation(s)
- Annika Herlemann
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Patrick Keller
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Melanie Schott
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Alexander Tamalunas
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Beata Rutz
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Yiming Wang
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Qingfeng Yu
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Raphaela Waidelich
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Frank Strittmatter
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| | - Martin Hennenberg
- Department of Urology, Ludwig-Maximilians-Universität München, Munich , Germany
| |
Collapse
|
20
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
21
|
Jiang Y, Sverdlov MS, Toth PT, Huang LS, Du G, Liu Y, Natarajan V, Minshall RD. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 2016; 291:20729-38. [PMID: 27510034 DOI: 10.1074/jbc.m116.752485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid.
Collapse
Affiliation(s)
- Ying Jiang
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China, the Departments of Anesthesiology
| | | | | | - Long Shuang Huang
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Guangwei Du
- the Departments of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Yiyao Liu
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Viswanathan Natarajan
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | |
Collapse
|
22
|
Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, Yang Z, Wang H, Shi A, Grant BD. RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes. PLoS Genet 2016; 12:e1006093. [PMID: 27272733 PMCID: PMC4894640 DOI: 10.1371/journal.pgen.1006093] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation. Endosomes are intracellular organelles that sort protein and lipid components integral to the membrane, as well as more loosely associated lumenal content, for delivery to distinct intracellular destinations. Endosomes associated with recycling cargo back to the plasma membrane are often tubular in morphology, and this morphology is thought to be essential for recycling function. Our previous work identified a particularly dramatic network of endosomal tubules involved in membrane protein recycling in the basolateral intestinal epithelial cells of C. elegans. Our subsequent genetic analysis of basolateral recycling in this system identified a number of key regulators of these endosomes, including the small GTPase RAB-10 and its effector EHBP-1. Our new work presented here shows that EHBP-1 promotes endosomal tubulation by linking the membrane lipid PI(4,5)P2 to the actin cytoskeleton, and that the linkage of EHBP-1 to actin is enhanced by the interaction of EHBP-1 with RAB-10. This work has broad implications for how endosomal tubulation occurs in all cells, and has specific implications for the role of EHBP-1 in related processes such as insulin-stimulated recycling of glucose transporters in human adipocytes, a process intimately linked to type II diabetes.
Collapse
Affiliation(s)
- Peixiang Wang
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Liu
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Wang
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ou Liu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jing Zhang
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Adenrele Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Zhenrong Yang
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Medical Genetics, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (AS); (BDG)
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (AS); (BDG)
| |
Collapse
|
23
|
Okada R, Yamauchi Y, Hongu T, Funakoshi Y, Ohbayashi N, Hasegawa H, Kanaho Y. Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis. Sci Rep 2015; 5:14919. [PMID: 26503427 PMCID: PMC4621509 DOI: 10.1038/srep14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2.
Collapse
Affiliation(s)
- Risa Okada
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yohei Yamauchi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
24
|
Pelletán LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, Mayorga LS, Belmonte SA. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation. J Biol Chem 2015; 290:9823-41. [PMID: 25713146 DOI: 10.1074/jbc.m114.629006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 11/06/2022] Open
Abstract
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.
Collapse
Affiliation(s)
- Leonardo E Pelletán
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Laila Suhaiman
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Cintia C Vaquer
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Matías A Bustos
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Gerardo A De Blas
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Nicolas Vitale
- the Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), CNRS et Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg, France
| | - Luis S Mayorga
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Silvia A Belmonte
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| |
Collapse
|
25
|
Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. ANNALS OF BOTANY 2014; 114:1049-57. [PMID: 24769536 PMCID: PMC4195552 DOI: 10.1093/aob/mcu055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/26/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls. SCOPE The eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.
Collapse
Affiliation(s)
- Praveen Krishnamoorthy
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Clara Sanchez-Rodriguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ingo Heilmann
- Martin-Luther-University Halle-Wittenberg, Institute for Biochemistry, Department of Cellular Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Egami Y, Taguchi T, Maekawa M, Arai H, Araki N. Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Front Physiol 2014; 5:374. [PMID: 25324782 PMCID: PMC4179697 DOI: 10.3389/fphys.2014.00374] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/10/2014] [Indexed: 12/26/2022] Open
Abstract
Macropinosome formation requires the sequential activation of numerous signaling pathways that coordinate the actin-driven formation of plasma membrane protrusions (ruffles) and circular ruffles (macropinocytic cups), followed by the closure of these macropinocytic cups into macropinosomes. In the process of macropinosome formation, localized productions of phosphoinositides such as PI(4,5)P2 and PI(3,4,5)P3 spatiotemporally orchestrate actin polymerization and rearrangement through recruiting and activating a variety of actin-associated proteins. In addition, the sequential activation of small GTPases, which are known to be master regulators of the actin cytoskeleton, plays a pivotal role in parallel with phosphoinositides. To complete macropinosome formation, phosphoinositide breakdown and Rho GTPase deactivation must occur in appropriate timings. After the nascent macropinosomes are formed, phosphoinositides and several Rab GTPases control macropinosome maturation by regulating vesicle trafficking and membrane fusion. In this review, we summarize recent advances in our understanding of the critical functions of phosphoinositide metabolism and small GTPases in association with their downstream effectors in macropinocytosis.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Masashi Maekawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| |
Collapse
|
27
|
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190:485-99. [PMID: 24984011 PMCID: PMC4153400 DOI: 10.1016/j.jconrel.2014.06.038] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.
Collapse
Affiliation(s)
- Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Won Il Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Archana Swami
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
28
|
Khaitlina SY. Intracellular transport based on actin polymerization. BIOCHEMISTRY (MOSCOW) 2014; 79:917-27. [DOI: 10.1134/s0006297914090089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Caviston JP, Cohen LA, Donaldson JG. Arf1 and Arf6 promote ventral actin structures formed by acute activation of protein kinase C and Src. Cytoskeleton (Hoboken) 2014; 71:380-94. [PMID: 24916416 DOI: 10.1002/cm.21181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral surface of Beas-2b cells, a lung bronchial epithelial cell line. Ventral actin structures also formed in PMA-treated HeLa cells that had elevated levels of Arf activation. For both cell types, formation of the ventral actin structures was enhanced by expression of active forms of either Arf1 or Arf6 and by the expression of guanine nucleotide exchange factors that activate these Arfs. By contrast, formation of these structures was blocked by inhibitors of PKC and Src and required phosphatidylinositol 4, 5-bisphosphate, Rac, Arf6, and Arf1. Furthermore, expression of ASAP1, an Arf1 GTPase activating protein (GAP) was more effective at inhibiting the ventral actin structures than was ACAP1, an Arf6 GAP. This study adds to the expanding role for Arf1 in the periphery and identifies a requirement for Arf1, a "Golgi Arf," in the reorganization of the cortical actin cytoskeleton on ventral surfaces, against the substratum.
Collapse
|
30
|
Targeted Materials. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Ouyang S, Hsuchou H, Kastin AJ, Pan W. TNF stimulates nuclear export and secretion of IL-15 by acting on CRM1 and ARF6. PLoS One 2013; 8:e69356. [PMID: 23950892 PMCID: PMC3737262 DOI: 10.1371/journal.pone.0069356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 12/03/2022] Open
Abstract
Interleukin (IL)-15 is a ubiquitously expressed cytokine that in the basal state is mainly localized intracellularly, including the nucleus. Unexpectedly, tumor necrosis factor-α (TNF) time-dependently induced nuclear export of IL-15Rα and IL15. This process was inhibited by leptomycine B (LMB), a specific inhibitor of nuclear export receptor chromosomal region maintenance 1 (CRM1). In the presence of TNF, LMB co-treatment led to accumulation of both IL-15Rα and IL-15 in the nucleus of HeLa cells, suggesting that CRM1 facilitates nuclear export and that TNF enhances CRM1 activity. Once in the cytoplasm, IL-15 showed partial co-localization with late endosomes but very little with other organelles tested 4 h after TNF treatment. IL-15Rα showed co-localization with both early and late endosomes, and to a lesser extent with endoplasmic reticulum and Golgi. This indicates different kinetics and possibly different trafficking routes of IL-15 from its specific receptor. The TNF-induced secretion of IL-15 was attenuated by pretreatment of cells by brefeldin A that inhibits ER-to-Golgi transport, or by use of domain negative ADP-ribosylation factor 6 (ARF6) that interferes with exocytotic sorting. We conclude that TNF abolishes nuclear localization of IL-15 and IL-15Rα by acting on CRM1, and it facilitates exocytosis of IL-15 with the involvement of ARF6.
Collapse
Affiliation(s)
- Suidong Ouyang
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Abba J. Kastin
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| |
Collapse
|
32
|
Phosphorylation of the Bin, Amphiphysin, and RSV161/167 (BAR) domain of ACAP4 regulates membrane tubulation. Proc Natl Acad Sci U S A 2013; 110:11023-8. [PMID: 23776207 DOI: 10.1073/pnas.1217727110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration.
Collapse
|
33
|
Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013; 21:1118-30. [PMID: 23587924 DOI: 10.1038/mt.2013.54] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.
Collapse
|
34
|
Knizhnik AV, Kovaleva OV, Komelkov AV, Trukhanova LS, Rybko VA, Zborovskaya IB, Tchevkina EM. Arf6 promotes cell proliferation via the PLD-mTORC1 and p38MAPK pathways. J Cell Biochem 2012; 113:360-71. [PMID: 21928324 DOI: 10.1002/jcb.23362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.
Collapse
Affiliation(s)
- Anna V Knizhnik
- Institute of Carcinogenesis, Department of Oncogenes Regulation, NN Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, 115478 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
35
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Merkulova M, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell Physiol 2011; 300:C1442-55. [PMID: 21307348 DOI: 10.1152/ajpcell.00076.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, we demonstrated that the vacuolar-type H(+)-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1-a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: K(D) = 2.84 × 10(-10) M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms.
Collapse
Affiliation(s)
- Maria Merkulova
- Program in Membrane Biology and Nephrology Division, Center for Systems Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Someya A, Moss J, Nagaoka I. The guanine nucleotide exchange protein for ADP-ribosylation factor 6, ARF-GEP100/BRAG2, regulates phagocytosis of monocytic phagocytes in an ARF6-dependent process. J Biol Chem 2010; 285:30698-707. [PMID: 20601426 DOI: 10.1074/jbc.m110.107458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis is a complex multistep process requiring diverse signaling and regulatory molecules. ADP-ribosylation factor 6 (ARF6), a small GTPase, is known to regulate membrane trafficking and the actin cytoskeketon at the plasma membrane and functions as a regulatory molecule of phagocytosis. ARF activity is regulated by cycling between GDP-bound and GTP-bound forms. ARF activation is catalyzed by guanine nucleotide exchange factors (GEFs) that facilitate GTP binding. We had earlier reported a 100-kDa ARF-GEF, termed ARF-guanine nucleotide exchange protein 100, GEP100, that preferentially activates ARF6 and was also described by Dunphy et al. (Dunphy, J. L., Moravec, R., Ly, K., Lasell, T. K., Melancon, P., and Casanova, J. E. (2006) Curr. Biol. 16, 315-320) as brefeldin A-resistant ARF-GEF2 (BRAG2). We have now examined a role for GEP100 in phagocytosis. Stable depletion of GEP100 decreased phagocytosis of serum-treated zymosan and IgG-coated latex beads by human monocyte-macrophage-like U937 cells differentiated with phorbol 12-myristate 13-acetate. Decrease of phagocytic activity by RNAi was not rescued by GEP100ΔSec7, a deletion mutant lacking the ARF-activating domain. GEP100-depleted cells also exhibited reduced F-actin fibers around internalized particles. Attachment of these particles to cells and amounts of C3bi and Fcγ receptors, however, were not affected by GEP100 depletion. On immunofluorescence microscopy, GEP100 and ARF6 were concentrated and partially colocalized around internalized particles. Phagocytosis by GEP100-depleted cells was not further affected by depletion of ARF6. Phagocytic activity of GEP100-depleted cells was, however, rescued by expression of the constitutively active ARF6Q67N mutant but not by the dominant-negative ARF6T27N mutant. These data are consistent with the conclusion that GEP100 functions in phagocytosis via its role in ARF6-dependent actin remodeling.
Collapse
Affiliation(s)
- Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University, School of Medicine, Tokyo 113-8421, Japan.
| | | | | |
Collapse
|
38
|
Role for CD2AP and other endocytosis-associated proteins in enteropathogenic Escherichia coli pedestal formation. Infect Immun 2010; 78:3316-22. [PMID: 20515931 DOI: 10.1128/iai.00161-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are extracellular pathogens that generate actin-rich structures (pedestals) beneath the adherent bacteria as part of their virulence strategy. Pedestals are hallmarks of EPEC infections, and their efficient formation in vitro routinely requires phosphorylation of the EPEC effector protein Tir at tyrosine 474 (Y474). This phosphorylation results in the recruitment and direct attachment of the host adaptor protein Nck to Tir at Y474, which is utilized for actin nucleation through a downstream N-WASP-Arp2/3-based mechanism. Recently, the endocytic protein clathrin was demonstrated to be involved in EPEC pedestal formation. Here we examine the organization of clathrin in pedestals and report that CD2AP, an endocytosis-associated and cortactin-binding protein, is a novel and important component of EPEC pedestal formation that also utilizes Y474 phosphorylation of EPEC Tir. We also demonstrate the successive recruitment of Nck and then clathrin prior to actin polymerization at pedestals during the Nck-dependent pathway of pedestal formation. This study further demonstrates that endocytic proteins are key components of EPEC pedestals and suggests a novel endocytosis subversion strategy employed by these extracellular bacteria.
Collapse
|
39
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
40
|
|
41
|
Galletta BJ, Cooper JA. Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 2009; 21:20-7. [PMID: 19186047 DOI: 10.1016/j.ceb.2009.01.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/29/2022]
Abstract
The regulated assembly of actin filament networks is a crucial part of endocytosis, with crucial temporal and spatial relationships between proteins of the endocytic and actin assembly machinery. Of particular importance has been a wealth of studies in budding and fission yeast. Cell biology approaches, combined with molecular genetics, have begun to uncover the complexity of the regulation of actin dynamics during the endocytic process. In a wide range of organisms, clathrin-mediated endocytosis appears to be linked to Arp2/3-mediated actin assembly. The conservation of the components, across a wide range eukaryotic species, suggests that the partnership between endocytosis and actin may be evolutionarily ancient.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology, Washington University Medical School, St Louis, MO, USA
| | | |
Collapse
|
42
|
Abstract
Macropinocytosis represents a distinct pathway of endocytosis in mammalian cells. This actin-driven endocytic process is not directly co-ordinated by the presence of cargo but can be induced upon activation of growth factor signalling pathways. The capacity to dissect the contribution of macropinocytosis to cellular processes has been hampered by a lack of unique molecular markers and defining features. While aspects of macropinosome formation and maturation are common to those shared by the other endocytic pathways, a number of key differences have recently begun to emerge and will be discussed in this study. It is now well established that macropinocytosis significantly contributes to antigen presentation by the immune system and is exploited by a range of pathogens for cellular invasion and avoidance of immune surveillance.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
43
|
Abstract
Endocytosis is essential for virtually all eukaryotic cells to internalize nutrients, antigens, pathogens, and cell surface receptors from the plasma membrane into membrane-bounded, endocytic vesicles to regulate cell homeostasis, cell signaling, and development. Distinct mechanisms mediate endocytic uptake of a large variety of distinctly sized cargoes ranging from small molecules to viruses or bacteria. Common to all of these endocytic pathways is the deformation of the plasma membrane by intracellular factors including scaffolding proteins, amphipathic peripheral membrane proteins, and lipid-modifying enzymes. In this review we summarize how different cargoes exploit distinct pathways for cell entry, and how proteins assist the generation of curved membrane domains during internalization.
Collapse
Affiliation(s)
- M Krauss
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195 Berlin, Germany.
| | | |
Collapse
|
44
|
Vorland M, Holmsen H. Phospholipase D in human platelets: presence of isoenzymes and participation of autocrine stimulation during thrombin activation. Platelets 2008; 19:211-24. [PMID: 18432522 DOI: 10.1080/09537100701777329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phospholipase D (PLD), which hydrolyzes phosphatidylcholine to phosphatidic acid (PA) and choline, is present in human platelets. Thrombin and other agonists have been shown to activate PLD but the precise mechanisms of activation and PLDs role in platelet activation remains unclear. We measured thrombin-stimulated PLD activity in platelets as formation of phosphatidylethanol. Since no specific PLD inhibitors exist, we investigated possible roles for PLD in platelets by correlating PLD activity with platelet responses such as thrombin-mediated secretion and F-actin formation (part of platelet shape change). Extracellular Ca2+ potentiated thrombin-stimulated PLD, but did not stimulate PLD in the absence of thrombin. Thrombin-induced PLD activity was enhanced by secreted ADP and binding of fibrinogen to its receptors. In contrast to others, we also found a basal PLD activity. Comparison of time courses and dose responses of platelets with PLD showed many points of correlation between PLD activation and lysosomal secretion and F-actin formation. The finding of different PLD activities suggested that different PLD isoenzymes exist in platelets as reported for other cells. Here we present evidence for the presence of both PLD1 and PLD2 in platelets by use of specific antibodies with immunoblotting and immunohistochemistry. Both isoforms were randomly localized in resting platelets, but became rapidly translocated to the proximity of the plasma membrane upon thrombin stimulation, thus indicating a role for PLD in platelet activation.
Collapse
Affiliation(s)
- M Vorland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway.
| | | |
Collapse
|
45
|
Girao H, Geli MI, Idrissi FZ. Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 2008; 582:2112-9. [PMID: 18420037 DOI: 10.1016/j.febslet.2008.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.
Collapse
Affiliation(s)
- Henrique Girao
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), PCB, Edifici Hèlix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | |
Collapse
|
46
|
Myers KR, Casanova JE. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 2008; 18:184-92. [PMID: 18328709 DOI: 10.1016/j.tcb.2008.02.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 11/17/2022]
Abstract
Small GTPases of the Arf family are best known for their role in vesicular transport, wherein they nucleate the assembly of coat proteins at sites of carrier vesicle formation. However, accumulating evidence indicates that the Arfs are also important regulators of actin cytoskeleton dynamics and are involved in a variety of actin-based processes, including cell adhesion, migration and neurite outgrowth. The mechanisms of this regulation are remarkably diverse, ranging from the integration of vesicular transport with cytoskeleton assembly to the direct regulation of Rho-family GTPase function. Here, we review recent progress in our understanding of how Arfs and their interacting proteins function to integrate membrane and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Kenneth R Myers
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA
| | | |
Collapse
|
47
|
Frittoli E, Palamidessi A, Pizzigoni A, Lanzetti L, Garrè M, Troglio F, Troilo A, Fukuda M, Di Fiore PP, Scita G, Confalonieri S. The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell 2008; 19:1304-16. [PMID: 18199687 DOI: 10.1091/mbc.e07-06-0594] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The generation of novel genes and proteins throughout evolution has been proposed to occur as a result of whole genome and gene duplications, exon shuffling, and retrotransposition events. The analysis of such genes might thus shed light into the functional complexity associated with highly evolved species. One such case is represented by TBC1D3, a primate-specific gene, harboring a TBC domain. Because TBC domains encode Rab-specific GAP activities, TBC-containing proteins are predicted to play a major role in endocytosis and intracellular traffic. Here, we show that the TBC1D3 gene originated late in evolution, likely through a duplication of the RNTRE locus, and underwent gene amplification during primate speciation. Despite possessing a TBC domain, TBC1D3 is apparently devoid of Rab-GAP activity. However, TBC1D3 regulates the optimal rate of epidermal growth factor-mediated macropinocytosis by participating in a novel pathway involving ARF6 and RAB5. In addition, TBC1D3 binds and colocalize to GGA3, an ARF6-effector, in an ARF6-dependent manner, and synergize with it in promoting macropinocytosis, suggesting that the two proteins act together in this process. Accordingly, GGA3 siRNA-mediated ablation impaired TBC1D3-induced macropinocytosis. We thus uncover a novel signaling pathway that appeared after primate speciation. Within this pathway, a TBC1D3:GGA3 complex contributes to optimal propagation of signals, ultimately facilitating the macropinocytic process.
Collapse
Affiliation(s)
- Emanuela Frittoli
- IFOM, the FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tetè S, Luini A, Buccione R. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci 2008; 121:369-78. [PMID: 18198194 DOI: 10.1242/jcs.008037] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. Although many molecular components have been defined, less is known of the formation and regulation of invadopodia. The multidomain protein cortactin, which is involved in the regulation of actin polymerisation, is one such component, but how cortactin is modulated to control the formation of invadopodia has not been elucidated. Here, a new invadopodia synchronization protocol is used to show that the cortactin N-terminal acidic and SH3 domains, involved in Arp2/3 complex and N-WASP binding and activation, respectively, are both required for invadopodia biogenesis. In addition, through a combination of RNA interference and a wide array of cortactin phosphorylation mutants, we were able to show that three convergent regulatory inputs based on the regulation of cortactin phosphorylation by Src-family kinases, Erk1/Erk2 and PAK are necessary for invadopodia formation and extracellular matrix degradation. These findings suggest that cortactin is a scaffold protein bringing together the different components necessary for the formation of the invadopodia, and that a fine balance between different phosphorylation events induces subtle changes in structure to calibrate cortactin function.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Tumour Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Mettlen M, Platek A, Van Der Smissen P, Carpentier S, Amyere M, Lanzetti L, de Diesbach P, Tyteca D, Courtoy PJ. Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic 2007; 7:589-603. [PMID: 16643281 DOI: 10.1111/j.1600-0854.2006.00412.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We addressed the role of Src on cortical actin dynamics and polarized endocytosis in MDCK cells harboring a thermosensitive v-src mutant. Shifting monolayers established at 40 degrees C (non-permissive temperature) to 34 degrees C (permissive temperature) rapidly reactivated v-Src kinase, but tight junctions and cell polarity resisted for >6 h. At this interval, activated v-src was recruited on apical vesicles, induced cortactin-associated apical circular ruffles productive of macropinosomes, thereby accelerating apical pinocytosis by approximately fivefold. Ruffling and macropinosome formation were selectively abrogated by inhibitors of actin polymerization, phosphoinositide 3-kinase, phospholipase C, and phospholipase D, which all returned apical pinocytosis to the level observed at 40 degrees C, underscoring the distinct control of apical micropinocytosis and macropinocytosis. Src promoted microtubule-dependent fusion of macropinosomes to the apical recycling endosome (ARE), causing its strong vacuolation. However, preservation of tubulation and apical polarity indicated that its function was not affected. The ARE was labeled for v-src, Rab11, and rabankyrin-5 but not early endosome antigen 1, thus distinguishing two separate Rab5-dependent apical pathways. The mechanisms of Src-induced apical ruffling and macropinocytosis could shed light on the triggered apical enteroinvasive pathogens entry and on the apical differentiation of osteoclasts.
Collapse
Affiliation(s)
- Marcel Mettlen
- CELL Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gauthier NC, Monzo P, Gonzalez T, Doye A, Oldani A, Gounon P, Ricci V, Cormont M, Boquet P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. ACTA ACUST UNITED AC 2007; 177:343-54. [PMID: 17438076 PMCID: PMC2064141 DOI: 10.1083/jcb.200609061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed by a clathrin- independent pathway into vesicles named GPI-AP–enriched early endosomal compartments (GEECs). We recently showed that the vacuolating toxin VacA secreted by Helicobacter pylori is endocytosed into the GEECs (Gauthier, N.C., P. Monzo, V. Kaddai, A. Doye, V. Ricci, and P. Boquet. 2005. Mol. Biol. Cell. 16:4852–4866). Unlike GPI-APs that are mostly recycled back to the plasma membrane, VacA reaches early endosomes (EEs) and then late endosomes (LEs), where vacuolation occurs. In this study, we used VacA to study the trafficking pathway between GEECs and LEs. We found that VacA routing from GEECs to LEs required polymerized actin. During this trafficking, VacA was transferred from GEECs to EEs associated with polymerized actin structures. The CD2-associated protein (CD2AP), a docking protein implicated in intracellular trafficking, bridged the filamentous actin (F-actin) structures with EEs containing VacA. CD2AP regulated those F-actin structures and was required to transfer VacA from GEECs to LEs. These results demonstrate that sorting from GEECs to LEs requires dynamic F-actin structures on EEs.
Collapse
Affiliation(s)
- Nils C Gauthier
- Unité 627 and 2Unité 568, Institut National de la Santé et de la Recherche Medicale, Faculty of Medicine, 06107 Nice, Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|