1
|
|
2
|
Westbrook AM. A review of the neurophysiology of the turtle retina: Horizontal and bipolar cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb03001.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
4
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Light adaptation in the chick retina: Dopamine, nitric oxide, and gap-junction coupling modulate spatiotemporal contrast sensitivity. Exp Eye Res 2020; 195:108026. [PMID: 32246982 DOI: 10.1016/j.exer.2020.108026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Adaptation to changes in ambient light intensity, in retinal cells and circuits, optimizes visual functions. In the retina, light-adaptation results in changes in light-sensitivity and spatiotemporal tuning of ganglion cells. Under light-adapted conditions, contrast sensitivity (CS) of ganglion cells is a bandpass function of spatial frequency; in contrast, dark-adaptation reduces CS, especially at higher spatial frequencies. In this work, we aimed to understand intrinsic neuromodulatory mechanisms that underlie retinal adaptation to changes in ambient light level. Specifically, we investigated how CS is affected by dopamine (DA), nitric oxide (NO), and modifiers of electrical coupling through gap junctions, under different conditions of adapting illumination. Using the optokinetic response as a behavioral readout of direction-selective ganglion cell activity, we characterized the spatial CS of chicks under high- and low-photopic conditions and how it was regulated by DA, NO, and gap-junction uncouplers. We observed that: (1) DA D2R-family agonists and a donor of NO increased CS tested in low-photopic illumination, as if observed in the high-photopic light; whereas (2) removing their effects using either DA antagonists or NO- synthase inhibitors mimicked low-photopic CS; (3) simulation of high-photopic CS by DA agonists was abolished by NO-synthase inhibitors; and (4) selectively blocking coupling via connexin 35/36-containing gap junctions, using a "designer" mimetic peptide, increased CS, as does strong illumination. We conclude that, in the chicken retina: (1) DA and NO induce changes in spatiotemporal processing, similar to those driven by increasing illumination, (2) DA possibly acts through stimulating NO synthesis, and (3) blockade of coupling via gap junctions containing connexin 35/36 also drives a change in retinal CS functions. As a noninvasive method, the optokinetic response can provide rapid, conditional, and reversible assessment of retinal functions when pharmacological reagents are injected into the vitreous humor. Finally, the chick's large eyes, and the many similarities between their adaptational circuit functions and those in mammals such as the mouse, make them a promising model for future retinal research.
Collapse
|
6
|
Yadav SC, Tetenborg S, Dedek K. Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells. Front Mol Neurosci 2019; 12:99. [PMID: 31065239 PMCID: PMC6489437 DOI: 10.3389/fnmol.2019.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
In the mammalian retina, amacrine cells represent the most diverse cell class and are involved in the spatio-temporal processing of visual signals in the inner plexiform layer. They are connected to bipolar, other amacrine and ganglion cells, forming complex networks via electrical and chemical synapses. The small-field A8 amacrine cell was shown to receive non-selective glutamatergic input from OFF and ON cone bipolar cells at its bistratified dendrites in sublamina 1 and 4 of the inner plexiform layer. Interestingly, it was also shown to form electrical synapses with ON cone bipolar cells, thus resembling the rod pathway-specific AII amacrine cell. In contrast to the AII cell, however, the electrical synapses of A8 cells are poorly understood. Therefore, we made use of the Ier5-GFP mouse line, in which A8 cells are labeled by GFP, to study the gap junction composition and frequency in A8 cells. We found that A8 cells form <20 gap junctions per cell and these gap junctions consist of connexin36. Connexin36 is present at both OFF and ON dendrites of A8 cells, preferentially connecting A8 cells to type 1 OFF and type 6 and 7 ON bipolar cells and presumably other amacrine cells. Additionally, we show that the OFF dendrites of A8 cells co-stratify with the processes of dopaminergic amacrine cells from which they may receive GABAergic input via GABAA receptor subunit α3. As we found A8 cells to express dopamine receptor D1 (but not D2), we also tested whether A8 cell coupling is modulated by D1 receptor agonists and antagonists as was shown for the coupling of AII cells. However, this was not the case. In summary, our data suggests that A8 coupling is differently regulated than AII cells and may even be independent of ambient light levels and serve signal facilitation rather than providing a separate neuronal pathway.
Collapse
Affiliation(s)
- Shubhash C Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
8
|
Hoshi H, Sato F. The morphological characterization of orientation-biased displaced large-field ganglion cells in the central part of goldfish retina. J Comp Neurol 2018; 526:243-261. [PMID: 28921532 DOI: 10.1002/cne.24331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022]
Abstract
The vertebrate retina has about 30 subtypes of ganglion cells. Each ganglion cell receives synaptic inputs from specific types of bipolar and amacrine cells ramifying at the same depth of the inner plexiform layer (IPL), each of which is thought to process a specific aspect of visual information. Here, we identified one type of displaced ganglion cell in the goldfish retina which had a large and elongated dendritic field. As a population, all of these ganglion cells were oriented in the horizontal axis and perpendicular to the dorsal-ventral axis of the goldfish eye in the central part of retina. This ganglion cell has previously been classified as Type 1.2. However, the circuit elements which synapse with this ganglion cell are not yet characterized. We found that this displaced ganglion cell was directly tracer-coupled only with homologous ganglion cells at sites containing Cx35/36 puncta. We further illustrated that the processes of dopaminergic neurons often terminated next to intersections between processes of ganglion cells, close to where dopamine D1 receptors were localized. Finally, we showed that Mb1 ON bipolar cells had ribbon synapses in the axonal processes passing through the IPL and made ectopic synapses with this displaced ganglion cell that stratified into stratum 1 of the IPL. These results suggest that the displaced ganglion cell may synapse with both Mb1 cells using ectopic ribbon synapses and OFF cone bipolar cells with regular ribbon synapses in the IPL to function in both scotopic and photopic light conditions.
Collapse
Affiliation(s)
- Hideo Hoshi
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
9
|
Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State. Neuron 2017; 93:1275-1295. [PMID: 28334604 DOI: 10.1016/j.neuron.2017.02.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022]
Abstract
Electrical synapses are the functional correlate of gap junctions and allow transmission of small molecules and electrical current between coupled neurons. Instead of static pores, electrical synapses are actually plastic, similar to chemical synapses. In the thalamocortical system, gap junctions couple inhibitory neurons that are similar in their biochemical profile, morphology, and electrophysiological properties. We postulate that electrical synaptic plasticity among inhibitory neurons directly interacts with the switching between different firing patterns in a state-dependent and type-dependent manner. In neuronal networks, electrical synapses may function as a modifiable resonance feedback system that enables stable oscillations. Furthermore, the plasticity of electrical synapses may play an important role in regulation of state, synchrony, and rhythmogenesis in the mammalian thalamocortical system, similar to chemical synaptic plasticity. Based on their plasticity, rich diversity, and specificity, electrical synapses are thus likely to participate in the control of consciousness and attention.
Collapse
Affiliation(s)
- Philippe Coulon
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| | - Carole E Landisman
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| |
Collapse
|
10
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Electrical synapses are an omnipresent feature of nervous systems, from the simple nerve nets of cnidarians to complex brains of mammals. Formed by gap junction channels between neurons, electrical synapses allow direct transmission of voltage signals between coupled cells. The relative simplicity of this arrangement belies the sophistication of these synapses. Coupling via electrical synapses can be regulated by a variety of mechanisms on times scales ranging from milliseconds to days, and active properties of the coupled neurons can impart emergent properties such as signal amplification, phase shifts and frequency-selective transmission. This article reviews the biophysical characteristics of electrical synapses and some of the core mechanisms that control their plasticity in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Sebastian Curti
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
12
|
Qiao M, Sanes JR. Genetic Method for Labeling Electrically Coupled Cells: Application to Retina. Front Mol Neurosci 2016; 8:81. [PMID: 26778956 PMCID: PMC4703850 DOI: 10.3389/fnmol.2015.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
Understanding how the nervous system functions requires mapping synaptic connections between neurons. Several methods are available for imaging neurons connected by chemical synapses, but few enable marking neurons connected by electrical synapses. Here, we demonstrate that a peptide transporter, Pept2, can be used for this purpose. Pept2 transports a gap junction-permeable fluorophore-coupled dipeptide, beta-alanine-lysine-N-7-amino-4-methyl coumarin-3-acid (βALA). Cre-dependent expression of pept2 in specific neurons followed by incubation in βALA labeled electrically coupled synaptic partners. Using this method, we analyze light-dependent modulation of electrical connectivity among retinal horizontal cells.
Collapse
Affiliation(s)
- Mu Qiao
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
13
|
Connaughton VP, Wetzell B, Arneson LS, DeLucia V, L. Riley A. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism. J Neurochem 2015. [DOI: 10.1111/jnc.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Bradley Wetzell
- Department of Psychology; American University; Washington District of Columbia USA
| | - Lynne S. Arneson
- Department of Biology; American University; Washington District of Columbia USA
| | - Vittoria DeLucia
- Department of Biology; American University; Washington District of Columbia USA
| | - Anthony L. Riley
- Department of Psychology; American University; Washington District of Columbia USA
| |
Collapse
|
14
|
Retinal dysfunction of contrast processing in major depression also apparent in cortical activity. Eur Arch Psychiatry Clin Neurosci 2015; 265:343-50. [PMID: 25567477 DOI: 10.1007/s00406-014-0573-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 12/19/2022]
Abstract
Depressive disorder is often associated with the subjective experience of altered visual perception. Recent research has produced growing evidence for involvement of the visual system in the pathophysiology of depressive disorder. Using the pattern electroretinogram (PERG), we found reduced retinal contrast response in patients with major depression. Based on this observation, the question arises whether this change has a cortical correlate. To evaluate this, we analyzed the visual evoked potential (VEP) of the occipital cortex in 40 patients with depressive disorder and 28 healthy controls. As visual stimuli, checkerboard stimuli of 0.51° check size, 12.5 reversals per second and a contrast of 3-80% was used. In addition to the PERG, we recorded the VEP with an Oz versus FPz derivation. The amplitude versus contrast transfer function was compared across the two groups and correlated with the severity of depression, as measured by the Hamilton Depression Rating Scale and the Beck Depression Inventory. Patients with major depression displayed significantly reduced VEP amplitudes at all contrast levels compared to control subjects (p = 0.029). The VEP amplitude correlated with psychometric measures for severity of depression. The degree of depression reduced the contrast transfer function in the VEP to a lesser extent than in the PERG: While the PERG is reduced to ≈50%, the VEP is reduced to 75%. Our results suggest that depression affects the cortical response in major depression, but less so than the retinal responses. Modified contrast adaptation in the lateral geniculate nucleus or cortex possibly moderates the increased losses in the retina.
Collapse
|
15
|
Abstract
Although visual processing impairments are common in schizophrenia, it is not clear to what extent these originate in the eye vs. the brain. This review highlights potential contributions, from the retina and other structures of the eye, to visual processing impairments in schizophrenia and high-risk states. A second goal is to evaluate the status of retinal abnormalities as biomarkers for schizophrenia. The review was motivated by known retinal changes in other disorders (e.g., Parkinson’s disease, multiple sclerosis), and their relationships to perceptual and cognitive impairments, and disease progression therein. The evidence reviewed suggests two major conclusions. One is that there are multiple structural and functional disturbances of the eye in schizophrenia, all of which could be factors in the visual disturbances of patients. These include retinal venule widening, retinal nerve fiber layer thinning, dopaminergic abnormalities, abnormal ouput of retinal cells as measured by electroretinography (ERG), maculopathies and retinopathies, cataracts, poor acuity, and strabismus. Some of these are likely to be illness-related, whereas others may be due to medication or comorbid conditions. The second conclusion is that certain retinal findings can serve as biomarkers of neural pathology, and disease progression, in schizophrenia. The strongest evidence for this to date involves findings of widened retinal venules, thinning of the retinal nerve fiber layer, and abnormal ERG amplitudes. These data suggest that a greater understanding of the contribution of retinal and other ocular pathology to the visual and cognitive disturbances of schizophrenia is warranted, and that retinal changes have untapped clinical utility.
Collapse
|
16
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
17
|
Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 2013; 75:567-82. [PMID: 23499663 DOI: 10.1016/j.neuropharm.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Coordinated interaction among cells is critical to develop the extremely complex and dynamic tasks performed by the central nervous system (CNS). Cell synchronization is in part mediated by connexins and pannexins; two different protein families that form gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activities, hemichannels communicate intra- and extra-cellular compartments and serve as diffusional pathways for ions and small molecules. Cells in the CNS depend on paracrine/autocrine communication via several extracellular signaling molecules, such as, cytokines, growth factors, transmitters and free radical species to sense changes in microenvironment as well as to adapt to them. These signaling molecules modulate crucial processes of the CNS, including, cellular migration and differentiation, synaptic transmission and plasticity, glial activation, cell viability and microvascular blood flow. Gap junction channels and hemichannels are affected by different signaling transduction pathways triggered by these paracrine/autocrine signaling molecules. Most of the modulatory effects induced by these signaling molecules are specific to the cell type and the connexin and pannexin subtype expressed in different brain areas. In this review, we summarized and discussed most of the relevant and recently published information on the effects of signaling molecules on connexin or pannexin based channels and their possible relevance in CNS physiology and pathology. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
|
18
|
Cachope R, Pereda AE. Two independent forms of activity-dependent potentiation regulate electrical transmission at mixed synapses on the Mauthner cell. Brain Res 2012; 1487:173-82. [PMID: 22771708 DOI: 10.1016/j.brainres.2012.05.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Mixed (electrical and chemical) synaptic contacts on the Mauthner cells, known as Club endings, constitute a valuable model for the study of vertebrate electrical transmission. While electrical synapses are still perceived by many as passive intercellular channels that lack modifiability, a wealth of experimental evidence shows that gap junctions at Club endings are subject to dynamic regulatory control by two independent activity-dependent mechanisms that lead to potentiation of electrical transmission. One of those mechanisms relies on activation of NMDA receptors and postsynaptic CaMKII. A second mechanism relies on mGluR activation and endocannabinoid production and is indirectly mediated via the release of dopamine from nearby varicosities, which in turn leads to potentiation of the synaptic response via a PKA-mediated postsynaptic mechanism. We review here these two forms of potentiation and their signaling mechanisms, which include the activation of two kinases with well-established roles as regulators of synaptic strength, as well as the functional implications of these two forms of potentiation. Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Roger Cachope
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
19
|
Suppression of electrical synapses between retinal amacrine cells of goldfish by intracellular cyclic-AMP. Brain Res 2012; 1449:1-14. [PMID: 22425185 DOI: 10.1016/j.brainres.2012.01.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 11/23/2022]
Abstract
Retinal amacrine cells of the same class in cyprinid fish are homotypically connected by gap junctions. The permeability of their gap junctions examined by the diffusion of Neurobiotin into neighboring amacrine cells under application of dopamine or cyclic nucleotides to elucidate whether electrical synapses between the cells are regulated by internal messengers. Neurobiotin injected intracellularly into amacrine cells in isolated retinas of goldfish, and passage currents through the electrical synapses investigated by dual whole-patch clamp recordings under similar application of their ligands. Control conditions led us to observe large passage currents between connected cells and adequate transjunctional conductance between the cells (2.02±0.82nS). Experimental results show that high level of intracellular cyclic AMP within examined cells block transfer of Neurobiotin and suppress electrical synapses between the neighboring cells. Transjunctional conductance between examined cells reduced to 0.23nS. However, dopamine, 8-bromo-cyclic AMP or high elevation of intracellular cyclic GMP leaves gap junction channels of the cells permeable to Neurobiotin as in the control level. Under application of dopamine (1.25±0.06nS), 8-bromo-cyclic AMP (1.79±0.51nS) or intracellular cyclic GMP (0.98±0.23nS), the transjunctional conductance also remains as in the control level. These results demonstrate that channel opening of gap junctions between cyprinid retinal amacrine cells is regulated by high level of intracellular cyclic AMP.
Collapse
|
20
|
The light-induced reduction of horizontal cell receptive field size in the goldfish retina involves nitric oxide. Vis Neurosci 2011; 28:137-44. [PMID: 21324227 DOI: 10.1017/s0952523810000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size.
Collapse
|
21
|
Pandarinath C, Bomash I, Victor JD, Prusky GT, Tschetter WW, Nirenberg S. A novel mechanism for switching a neural system from one state to another. Front Comput Neurosci 2010; 4:2. [PMID: 20407612 PMCID: PMC2856633 DOI: 10.3389/fncom.2010.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 02/27/2010] [Indexed: 11/30/2022] Open
Abstract
An animal's ability to rapidly adjust to new conditions is essential to its survival. The nervous system, then, must be built with the flexibility to adjust, or shift, its processing capabilities on the fly. To understand how this flexibility comes about, we tracked a well-known behavioral shift, a visual integration shift, down to its underlying circuitry, and found that it is produced by a novel mechanism – a change in gap junction coupling that can turn a cell class on and off. The results showed that the turning on and off of a cell class shifted the circuit's behavior from one state to another, and, likewise, the animal's behavior. The widespread presence of similar gap junction-coupled networks in the brain suggests that this mechanism may underlie other behavioral shifts as well.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University New York, NY, USA
| | | | | | | | | | | |
Collapse
|
22
|
ZO-1 and the spatial organization of gap junctions and glutamate receptors in the outer plexiform layer of the mammalian retina. J Neurosci 2009; 29:6266-75. [PMID: 19439604 DOI: 10.1523/jneurosci.5867-08.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Information processing in the retina starts at the first synaptic layer, where photoreceptors and second-order neurons exhibit a complex architecture of glutamatergic and electrical synapses. To investigate the composition of this highly organized synaptic network, we determined the spatial relationship of zonula occludens-1 (ZO-1) with different connexins (Cx) and glutamate receptor (GluR) subunits in the outer plexiform layer (OPL) of rabbit, mouse, and monkey retinas. ZO-1 is well known as an intracellular component of tight and adherens junctions, but also interacts with various connexins at gap junctions. We found ZO-1 closely associated with Cx50 on dendrites of A-type horizontal cells in rabbit, and with Cx57 at dendro-dendritic gap junctions of mouse horizontal cells. The spatial arrangement of ZO-1 at the giant gap-junctional plaques in rabbit was particularly striking. ZO-1 formed a clear margin around the large Cx50 plaques instead of being colocalized with the connexin staining. Our finding suggests the involvement of ZO-1 in the composition of tight or adherens junctions around gap-junctional plaques instead of interacting with connexins directly. Furthermore, gap junctions were found to be clustered in close proximity to GluRs at the level of desmosome-like junctions, where horizontal cell dendrites converge before invaginating the cone pedicle. Based on this distinct spatial organization of gap junctions and GluRs, it is tempting to speculate that glutamate released from the photoreceptors may play a role in modulating the conductance of electrical synapses in the OPL.
Collapse
|
23
|
Palacios-Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J Physiol 2009; 587:3251-69. [PMID: 19433576 DOI: 10.1113/jphysiol.2009.171496] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse connexin57 (Cx57) is expressed most abundantly in horizontal cells of the retina, and forms gap junction (GJ) channels, which constitute a structural basis for electrical and metabolic intercellular communication, and unapposed hemichannels (UHCs) that are involved in an exchange of ions and metabolites between the cytoplasm and extracellular milieu. By combining fluorescence imaging and dual whole-cell voltage clamp methods, we showed that HeLa cells expressing Cx57 and C-terminally fused with enhanced green fluorescent protein (Cx57-EGFP) form junctional plaques (JPs) and that only cell pairs exhibiting at least one JP demonstrate cell-to-cell electrical coupling and transfer of negatively and positively charged dyes with molecular mass up to approximately 400 Da. The permeability of the single Cx57 GJ channel to Alexa fluor-350 is approximately 90-fold smaller than the permeability of Cx43, while its single channel conductance (57 pS) is only 2-fold smaller than Cx43 (110 pS). Gating of Cx57-EGFP/Cx45 heterotypic GJ channels reveal that Cx57 exhibit a negative gating polarity, i.e. channels tend to close at negativity on the cytoplasmic side of Cx57. Alkalization of pH(i) from 7.2 to 7.8 increased gap junctional conductance (g(j)) of approximately 100-fold with pK(a) = 7.41. We show that this g(j) increase was caused by an increase of both the open channel probability and the number of functional channels. Function of Cx57 UHCs was evaluated based on the uptake of fluorescent dyes. We found that under control conditions, Cx57 UHCs are closed and open at [Ca(2+)](o) = approximately 0.3 mm or below, demonstrating that a moderate reduction of [Ca(2+)](o) can facilitate the opening of Cx57 UHCs. This was potentiated with intracellular alkalization. In summary, our data show that the open channel probability of Cx57 GJs can be modulated by pH(i) with very high efficiency in the physiologically relevant range and may explain pH-dependent regulation of cell-cell coupling in horizontal cell in the retina.
Collapse
Affiliation(s)
- Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
24
|
Mora-Ferrer C, Neumeyer C. Neuropharmacology of vision in goldfish: A review. Vision Res 2009; 49:960-9. [DOI: 10.1016/j.visres.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 07/16/2008] [Accepted: 08/11/2008] [Indexed: 11/27/2022]
|
25
|
HOSHI HIDEO, MILLS STEPHENL. Components and properties of the G3 ganglion cell circuit in the rabbit retina. J Comp Neurol 2009; 513:69-82. [PMID: 19107780 PMCID: PMC2834241 DOI: 10.1002/cne.21941] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Each point on the retina is sampled by about 15 types of ganglion cell, each of which is an element in a circuit also containing specific types of bipolar cell and amacrine cell. Only a few of these circuits are well characterized. We found that intracellular injection of Neurobiotin into a specific ganglion cell type targeted by fluorescent markers also stained an asymmetrically branching ganglion cell. It was also tracer-coupled to an unusual type of amacrine cell whose dendrites were strongly asymmetric, coursing in a narrow bundle from the soma in the dorsal direction only. The dendritic field of the ganglion cell stratifies initially in sublamina b (the ON layers), but with few specializations and branches, and then more extensively in sublamina a (the OFF layers) at the level of the processes of the coupled amacrine cell. Intersections of the ganglion and amacrine cell processes contain puncta immunopositive for Cx36. Additionally, we found that the dopaminergic amacrine cell makes contact with both the ganglion cell and the amacrine cell, and that a bipolar cell immunopositive for calbindin synapses onto the sublamina b processes of the ganglion cell. Dopamine D(1) receptor activation reduced tracer flow to the amacrine cells. We have thus targeted and characterized two poorly understood retinal cell types and placed them with two other cell types in a substantial portion of a new retinal circuit. This unique circuit comprised of pronounced asymmetries in the ganglion cell and amacrine cell dendritic fields may result in a substantial orientation bias.
Collapse
Affiliation(s)
- HIDEO HOSHI
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas 77030
| | - STEPHEN L. MILLS
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas 77030
| |
Collapse
|
26
|
Binder MD, Hirokawa N, Windhorst U. R. ENCYCLOPEDIA OF NEUROSCIENCE 2009. [PMCID: PMC7163931 DOI: 10.1007/978-3-540-29678-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
27
|
Hidaka S. Intracellular cyclic-amp suppresses the permeability of gap junctions between retinal amacrine cells. J Integr Neurosci 2008; 7:29-48. [PMID: 18431817 DOI: 10.1142/s0219635208001769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/15/2008] [Indexed: 11/18/2022] Open
Abstract
Gap junctions are intercellular channels composed of subunit protein connexin and subserve electrotonic transmission between connected neurons. Retinal amacrine cells, as well as horizontal cells of the same class, are homologously connected by gap junctions. The gap junctions between these neurons extend their receptive fields, and may increase the inhibitory postsynaptic effects in the retina. In the present study, we investigated whether gap junctions between the neurons are modulated by internal messengers. The permeability of gap junctions was examined by the diffusion of intracellularly injected biotinylated tracers, biocytin or Neurobiotin, into neighboring cells since gap junctions are permeable to these molecules freely. 4% Lucifer Yellow and 6% biocytin or Neurobiotin were injected intracellularly into horizontal cells and amacrine cells in isolated retinas of carp and goldfish and Japanese dace following electrophysiological identification. In the control condition, the tracer spread into many neighboring cells from the recorded cells. Superfusion of retinas with dopamine (100 microM) suppressed diffusion of the tracer into the neighboring horizontal cells, but not in the case of amacrine cells. Intracellular injection of cyclic AMP (300 mM) completely blocked diffusion of the tracer into neighboring horizontal cells and amacrine cells. However, superfusion of retinas with 8-bromo-cyclic AMP (2 mM), membrane permeable cyclic AMP analog, permitted the tracer to diffuse into the neighboring horizontal cells or amacrine cells. Intracellular injection of cyclic GMP (300 mM) blocked the diffusion between neighboring horizontal cells, but did not suppress the diffusion between amacrine cells. These results show that the permeability of gap junctions between amacrine cells is regulated by high concentration of intracellular cyclic AMP level, but not for intracellular cyclic GMP or applied dopamine or extracellularly applied low concentrations of intracellular cyclic AMP level. The present study suggests that these laterally oriented inhibitory interneurons, horizontal cells and amacrine cells, express different connexins which may be differentially regulated by intercellular messengers.
Collapse
Affiliation(s)
- Soh Hidaka
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
28
|
CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses. Brain Res 2008; 1228:43-57. [PMID: 18601913 DOI: 10.1016/j.brainres.2008.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/02/2008] [Accepted: 06/11/2008] [Indexed: 02/07/2023]
Abstract
Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and glutamatergic components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the glutamatergic component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission.
Collapse
|
29
|
Dedek K, Pandarinath C, Alam NM, Wellershaus K, Schubert T, Willecke K, Prusky GT, Weiler R, Nirenberg S. Ganglion cell adaptability: does the coupling of horizontal cells play a role? PLoS One 2008; 3:e1714. [PMID: 18320035 PMCID: PMC2246161 DOI: 10.1371/journal.pone.0001714] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022] Open
Abstract
Background The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that another mechanism, likely arising in the inner retina, must be responsible.
Collapse
Affiliation(s)
- Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Chethan Pandarinath
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Nazia M. Alam
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Timm Schubert
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Klaus Willecke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Glen T. Prusky
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Reto Weiler
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
- *E-mail:
| |
Collapse
|
30
|
Ciolofan C, Lynn BD, Wellershaus K, Willecke K, Nagy JI. Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience 2007; 148:473-88. [PMID: 17681699 DOI: 10.1016/j.neuroscience.2007.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/29/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Horizontal cells form gap junctions with each other in mammalian retina, and lacZ reporter analyses have recently indicated that these cells express the Cx57 gene, which codes for the corresponding gap junctional protein. Using anti-connexin57 antibodies, we detected connexin57 protein in immunoblots of mouse retina, and found punctate immunolabeling of this connexin co-distributed with calbindin-positive horizontal cells in the retinal outer plexiform layer. Double immunofluorescence labeling was conducted to determine the spatial relationships of connexin36, connexin57, the gap junction-associated protein zonula occludens-1 and the photoreceptor ribbon synapse-associated protein bassoon in the outer plexiform layer. Connexin36 was substantially co-localized with zonula occludens-1 in the outer plexiform layer, and both of these proteins were frequently located in close spatial proximity to bassoon-positive ribbon synapses. Connexin57 was often found adjacent to, but not overlapping with, connexin36-positive and zonula occludens-1-positive puncta, and was also located adjacent to bassoon-positive ribbon synapses at rod spherules, and intermingled with such synapses at cone pedicles. These results suggest zonula occludens-1 interaction with connexin36 but not with Cx57 in the outer plexiform layer, and an absence of connexin57/connexin36 heterotypic gap junctional coupling in mouse retina. Further, an arrangement of synaptic contacts within rod spherules is suggested whereby gap junctions between horizontal cell terminals containing connexin57 occur in very close proximity to ribbon synapses formed by rod photoreceptors, as well as in close proximity to Cx36-containing gap junctions between rods and cones.
Collapse
Affiliation(s)
- C Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | |
Collapse
|
31
|
Jouhou H, Yamamoto K, Iwasaki M, Yamada M. Acidification decouples gap junctions but enlarges the receptive field size of horizontal cells in carp retina. Neurosci Res 2007; 57:203-9. [PMID: 17126439 DOI: 10.1016/j.neures.2006.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 11/24/2022]
Abstract
The receptive field size of retinal horizontal cells is much larger than their dendritic field size due to gap junctional coupling between the same sub-types of cell. Thus, horizontal cells form syncytia by electrical coupling. The basic receptive field profile of horizontal cells can be described by an exponential function based on measurement of responses to a slit of light moved tangentially from a recording electrode. The space constant of this exponential function is proportional to (g(s)/g(m))(1/2), where g(s) and g(m) represent gap junctional conductance and non-gap junctional conductance, respectively. Acidifying the superfusing solution by lowering the pH from 7.60 to 7.30 decreased the dye-coupling, hyperpolarised the resting membrane potential and reduced the photoresponses of H1 type horizontal cells. Surprisingly, however, the receptive field size expanded significantly. Raising the pH from 7.30 to 7.60 or 7.90 produced opposite effects. These results were consistent with alkaline extracellular pH producing a greater increase in g(m) than in g(s) and enhancing release of transmitter from cones acting upon horizontal cells.
Collapse
Affiliation(s)
- Hiroshi Jouhou
- Department of Biological Sciences, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino, Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Kolb HA, Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol 2005; 118:1-47. [PMID: 1721723 DOI: 10.1007/bfb0031480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H A Kolb
- University of Konstanz, Faculty of Biology, FRG
| | | |
Collapse
|
33
|
Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MBA. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 2005; 21:2199-208. [PMID: 15869516 DOI: 10.1111/j.1460-9568.2005.04051.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of indirect evidence have suggested that nitric oxide may play an important role during light adaptation of the vertebrate retina. We aimed to verify directly the effect of light on nitric oxide release in the isolated carp retina and to investigate the relationship between nitric oxide and dopamine, an established neuromodulator of retinal light adaptation. Using a biochemical nitric oxide assay, we found that steady or flicker light stimulation enhanced retinal nitric oxide production from a basal level. The metabotropic glutamate receptor agonist L-amino-4-phosphonobutyric acid, inhibited the light adaptation-induced nitric oxide production suggesting that the underlying cellular pathway involved centre-depolarizing bipolar cell activity. Application of exogenous dopamine to retinas in the dark significantly enhanced the basal production of nitric oxide and importantly, inhibition of endogenous dopaminergic activity completely suppressed the light-evoked nitric oxide release. The effect of dopamine was mediated through the D1 receptor subtype. Imaging of the nitric oxide-sensitive fluorescent indicator 4,5-diaminofluorescein di-acetate in retinal slices revealed that activation of D1 receptors resulted in nitric oxide production from two main spatial sources corresponding to the photoreceptor inner segment region and the inner nuclear layer. The results taken together would suggest that during the progression of retinal light adaptation there is a switch from dopaminergic to nitrergic control, probably to induce further neuromodulatory effects at higher levels of illumination and to enable more efficient spreading of the light adaptive signal.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, W6 8RF, UK.
| | | | | | | | | |
Collapse
|
34
|
Moss BL, Fuller AD, Sahley CL, Burrell BD. Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech. J Neurophysiol 2005; 94:2575-89. [PMID: 15987763 DOI: 10.1152/jn.00322.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S cells form a chain of electrically coupled neurons that extends the length of the leech CNS and plays a critical role in sensitization during whole-body shortening. This process requires serotonin, which acts in part by altering the pattern of activity in the S-cell network. Serotonin-containing axons and varicosities were observed in Faivre's nerve where the S-to-S-cell electrical synapses are located. To determine whether serotonin modulates these synapses, S-cell action-potential (AP) propagation was studied in a two-ganglion chain containing one electrical synapse. Suction electrodes were placed on the cut ends of the connectives to stimulate one S cell while recording the other, coupled S cell's APs. A third electrode, placed en passant, recorded the APs near the electrical synapse before they propagated through it. Low concentrations of the gap junction inhibitor octanol increased AP latency across the two-ganglion chain, and this effect was localized to the region of axon containing the electrical synapse. At higher concentrations, APs failed to propagate across the synapse. Serotonin also increased AP latency across the electrical synapse, suggesting that serotonin reduced coupling between S cells. This effect was independent of the direction of propagation and increased with the number of electrical synapses in progressively longer chains. Furthermore, serotonin modulated instantaneous AP frequency when APs were initiated in separate S cells and in a computational model of S-cell activity after mechanosensory input. Thus serotonergic modulation of S-cell electrical synapses may contribute to changes in the pattern of activity in the S-cell network.
Collapse
Affiliation(s)
- Brenda L Moss
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, 57069, USA
| | | | | | | |
Collapse
|
35
|
Pereda AE, Rash JE, Nagy JI, Bennett MVL. Dynamics of electrical transmission at club endings on the Mauthner cells. ACTA ACUST UNITED AC 2005; 47:227-44. [PMID: 15572174 DOI: 10.1016/j.brainresrev.2004.06.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 11/28/2022]
Abstract
Identifiable mixed electrical and chemical synapses on Mauthner cells, the club endings, have historically provided a window for the study of electrical transmission in vertebrates because of their accessibility for both physiological and ultrastructural characterization. Recent data show that electrical transmission at these terminals is mediated by connexin35 (Cx35), the fish ortholog of the mammalian neuronal gap junction protein, connexin36 (Cx36). While electrical synapses are still perceived by many as passive intercellular channels that lack modifiability, a wealth of experimental evidence shows that electrical synapses at club endings are very plastic and subject to dynamic regulatory control by several mechanisms. The widespread distribution of connexin35 and connexin36 and the ubiquity of some of the proposed regulatory elements suggest that other electrical synapses may be similarly regulated.
Collapse
Affiliation(s)
- Alberto E Pereda
- Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
| | | | | | | |
Collapse
|
36
|
Wellard JW, Morgan IG. Inhibitory modulation of photoreceptor melatonin synthesis via a nitric oxide-mediated mechanism. Neurochem Int 2004; 45:1143-53. [PMID: 15380624 DOI: 10.1016/j.neuint.2004.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) has been suggested to have many physiological functions in the vertebrate retina, including a role in light-adaptive processes. The aim of this study was to examine the influence of the NO-donor sodium nitroprusside (SNP) on the activity of arylalkylamine-N-acetyltransferase (AA-NAT; EC. 2.3.1.87), the activity of which responds to light and reflects the changes in retinal melatonin synthesis--a key feature of light-adaptive responses in photoreceptors. Incubation of dark-adapted and dark-maintained retinas with SNP lead to the NO-specific suppression of AA-NAT activity, with NO suppressing AA-NAT activity to a level similar to that seen in the presence of dopaminergic agonists or light. Increased levels of cGMP appeared to be causally involved in the suppression of AA-NAT activity by SNP, as non-hydrolysable analogues of cGMP and the cGMP-specific phosphodiesterase (PDE) inhibitor zaprinast also significantly suppressed AA-NAT activity, while an inhibitor of soluble guanylate cyclase blocked the effect of SNP. While this chain of events may not be part of the normal physiology of the retina, it could be important in pathological circumstances that are associated with marked increase in levels of cGMP, as is found to be the case in certain forms photoreceptor degeneration, which are produced by defects in cGMP phosphodiesterase activity.
Collapse
Affiliation(s)
- John W Wellard
- Visual Sciences Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | |
Collapse
|
37
|
O'Brien J, Nguyen HB, Mills SL. Cone photoreceptors in bass retina use two connexins to mediate electrical coupling. J Neurosci 2004; 24:5632-42. [PMID: 15201336 PMCID: PMC2222551 DOI: 10.1523/jneurosci.1248-04.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrical coupling via gap junctions is a common property of CNS neurons. In retinal photoreceptors, coupling plays important roles in noise filtering, intensity coding, and spatial processing. In many vertebrates, coupling is regulated during the course of light adaptation. To understand the mechanisms of this regulation, we studied photoreceptor gap junction proteins. We found that two connexins were expressed in bass cone photoreceptors. Connexin 35 (Cx35) mRNA was present in many cell types, including photoreceptors and amacrine, bipolar, and a few ganglion cells. Antibodies to Cx35 labeled abundant gap junctions in both the inner and outer plexiform layers. In the outer plexiform layer, numerous plaques colocalized with cone telodendria at crossing contacts and tip-to-tip contacts. Cx34.7 mRNA was found predominantly in the photoreceptor layer, primarily in cones. Cx34.7 immunolabeling was limited to small plaques immediately beneath cone pedicles and did not colocalize with Cx35. Cx34.7 plaques were associated with a dense complex of cone membrane beneath the pedicles, including apparent contacts between telodendria and cone pedicles. Tracer coupling studies of the connexins expressed in HeLa cells showed that coupling through Cx35 gap junctions was reduced by protein kinase A (PKA) activation and enhanced by PKA inhibition through a greater than fivefold activity range. Cx34.7 was too poorly expressed to study. PKA regulation suggests that coupling through Cx35 gap junctions can be controlled dynamically through dopamine receptor pathways during light adaptation. If Cx34.7 forms functional cell-cell channels between cones, it would provide a physically separate pathway for electrical coupling.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
38
|
Luft WA, Iuvone PM, Stell WK. Spatial, temporal, and intensive determinants of dopamine release
in the chick retina. Vis Neurosci 2004; 21:627-35. [PMID: 15579225 DOI: 10.1017/s0952523804214110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Indexed: 11/07/2022]
Abstract
The retinal dopaminergic system is a global regulator of retinal
function. Apart from the fact that the rates of dopamine synthesis and
release are increased by increasing illumination, the visual image
parameters that influence dopaminergic function are mostly unknown.
Roles for spatial and temporal frequency and image contrast are
suggested by the effects of form-deprivation with a diffusing goggle.
Form-deprivation reduces the rates of dopamine synthesis and release,
and induces myopia, which is prevented by dopamine agonists. Our
purpose here was to identify visual stimulus parameters that activate
dopaminergic amacrine cells and elicit dopamine release. White Leghorn
cockerels 4–7 days old were exposed to 2 h of form-deprivation,
reduced light intensity, or stimuli of varied temporal or spatial
frequency. Activation of dopaminergic neurons, labeled for tyrosine
hydroxylase (TH), was assessed with immunocytochemistry for c-Fos, and
dopamine release was measured by HPLC analysis of dopamine metabolite
accumulation in the vitreous body. Form-deprivation did not reduce TH+
cell activation or vitreal dopamine metabolite accumulation any more
than did neutral-density filters of approximately equal transmittance.
TH+ cell activation and vitreal metabolite accumulation were not
affected significantly by exposure to 2, 5, 10, 15, or 20 Hz
stroboscopic stimulation on a dark background, or by sine-wave gratings
of 0.089, 0.44, 0.89, 1.04, or 3.13 cycles/deg compared to a
uniform gray target of equal mean luminance. These data indicate that
the retinal dopaminergic system does not respond readily to short-term
changes in visual stimulus parameters, other than light intensity,
under the conditions of these experiments.
Collapse
Affiliation(s)
- W A Luft
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
39
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Ribelayga C, Mangel SC. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol 2003; 467:243-53. [PMID: 14595771 DOI: 10.1002/cne.10927] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In fish and other vertebrate retinas, although dopamine release is regulated by both light and an endogenous circadian (24-hour) clock, light increases dopamine release to a greater extent than the clock. The clock increases dopamine release during the subjective day so that D2-like receptors are activated. It is not known, however, whether the retinal clock also activates D1 receptors, which display a much lower sensitivity to dopamine in intact tissue. Because activation of the D1 receptors on fish cone horizontal (H1) cells uncouples the gap junctions between the cells, we studied whether the clock regulates the extent of biocytin tracer coupling in the goldfish retina. Tracer coupling between H1 cells was extensive under dark-adapted conditions (low scotopic range) and similar in the subjective day, subjective night, day, and night. An average of approximately 180 cells were coupled in each dark-adapted condition. However, bright light stimulation or application of the D1 agonist SKF38393 (10 microM) dramatically reduced H1 cell coupling. The D2 agonist quinpirole (1 microM) or application of the D1 antagonist SCH23390 (10 microM) and/or the D2 antagonist spiperone (10 microM) had no effect on H1 cell coupling in dark-adapted retinas. These observations demonstrate that H1 cell gap junctional coupling and thus D1 receptor activity are not affected by endogenous dopamine under dark-adapted conditions. The results suggest that two different dopamine systems are present in the goldfish retina. One system is controlled by an endogenous clock that activates low threshold D2-like receptors in the day, whereas the second system is controlled by light and involves activation of higher threshold D1 receptors.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
41
|
Massey SC, O'Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O'Brien J. Multiple neuronal connexins in the mammalian retina. CELL COMMUNICATION & ADHESION 2003; 10:425-30. [PMID: 14681052 DOI: 10.1080/cac.10.4-6.425.430] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gap junctions are abundant in the mammalian retina and many neuronal types form neural networks. Several different neuronal connexins have now been identified in the mammalian retina. Cx36 supports coupling in the AII amacrine cell network and is essential for processing rod signals. Cx36 is probably also responsible for photoreceptor coupling. Horizontal cells appear to be extensively coupled by either Cx50 or Cx57. These results indicate that multiple neuronal connexins are expressed in the mammalian retina and that different cell types express different connexins.
Collapse
Affiliation(s)
- Stephen C Massey
- Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu Y, Luo FJ, Liang PJ. Dopamine effect on the stimulus pattern related changes in response characteristics of R/G horizontal cells in carp retina. Brain Res 2003; 973:190-5. [PMID: 12738062 DOI: 10.1016/s0006-8993(03)02477-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Repetitive red flashes increased the R/G horizontal cells' red response amplitude and induced a hyperpolarization of the cells' dark membrane potential. These phenomena were eliminated in 6-OHDA pretreated retinas and restored by exogenous dopamine, which suggests the involvement of dopamine receptor activity changes instead of dopamine release changes. Furthermore, the phenomena persisted on D(1) receptor antagonist (SKF-83566) application, whereas they diminished on D(2) receptor antagonist (eticlopride) application, indicating that the mechanism is related to a D(2) receptor, possibly located on photoreceptors.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adrenergic Agents/pharmacology
- Animals
- Carps
- Dopamine/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Interactions
- In Vitro Techniques
- Light
- Membrane Potentials/drug effects
- Neurons/drug effects
- Neurons/physiology
- Oxidopamine/pharmacology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/physiology
- Salicylamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|
43
|
Mitropoulou G, Bruzzone R. Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site. J Neurosci Res 2003; 72:147-57. [PMID: 12671989 DOI: 10.1002/jnr.10572] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinal neurons are coupled via gap junctions, which function as electrical synapses that are gated by ambient light conditions. Gap junctions connecting either horizontal cells or AII amacrine cells are inhibited by the neurotransmitter dopamine, via the activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway. Fish connexin35 (Cx35) and its mouse ortholog, Cx36, are good candidates to undergo dopaminergic modulation, because they have been detected in the inner plexiform layer of the retina, where Type II amacrine cells establish synaptic contacts. We have taken advantage of the ability of certain connexins to form functional connexons (hemi-channels), when expressed in Xenopus oocytes, to investigate whether pharmacological elevation of cAMP modulates voltage-activated hemi-channel currents in single oocytes. Injection of perch Cx35 RNA into Xenopus oocytes induced outward voltage-dependent currents that were recorded at positive membrane potentials. Incubation of oocytes with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), a membrane permeable cAMP analog, resulted in a dose-dependent and reversible inhibition of hemi-channel currents at the more positive voltage steps. In contrast, treatment with 8-Br-cAMP did not have any effect on hemi-channel currents induced by skate Cx35. Amino acid sequence comparison of the two fish connexins revealed, in the middle cytoplasmic loop of perch Cx35, the presence of a PKA consensus sequence that was absent in the skate connexin. The results obtained with two constructs in which the putative PKA phosphorylation site was either suppressed (perch Cx35R108Q) or introduced (skate Cx35Q108R) indicate that it is responsible for the inhibition of hemi-channel currents. These studies demonstrate that perch Cx35 is a target of the cAMP/PKA signaling pathway and identify a consensus PKA phosphorylation site that is required for channel gating.
Collapse
|
44
|
Zawilska JB, Bednarek A, Berezińska M, Nowak JZ. Rhythmic changes in metabolism of dopamine in the chick retina: the importance of light versus biological clock. J Neurochem 2003; 84:717-24. [PMID: 12562516 DOI: 10.1046/j.1471-4159.2003.01559.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhythmic changes in dopamine (DA) content and metabolism were studied in retinas of chicks that were adapted to three different lighting conditions: 12-h light : 12-h dark (LD), constant darkness (DD) and continuous light (LL). Retinas of chicks kept under LD conditions exhibited light-dark-dependent variations in the steady-state level of DA and the two metabolites of DA, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Concentrations of DA, DOPAC and HVA were high in light hours and low in dark hours of the LD illumination cycle. In retinas of chicks kept under DD, the content of DA, DOPAC and HVA oscillated in a rhythmic manner for 2 days, with higher values during the subjective light phase than during the subjective dark phase. The amplitudes of the observed oscillations markedly and progressively declined compared with the amplitudes recorded under the LD cycle. In retinas of chicks kept under LL conditions, levels of DA, DOPAC and HVA were similar to those found during the light phase of the LD cycle. Changes in the retinal contents of DA and HVA did not exhibit pronounced daily oscillations, while on the first day of LL the retinal concentrations of DOPAC were significantly higher during the subjective light phase than during the subjective dark phase. Acute exposure of chicks to light during the dark phase of the LD cycle markedly increased DA and DOPAC content in the retina. In contrast, light deprivation during the day decreased the retinal concentrations of DA and DOPAC. It is suggested that of the two regulatory factors controlling the level and metabolism of DA in the retina of chick, i.e. light and biological clock, environmental lighting conditions seem to be of major importance, with light conveying a stimulatory signal for the retinal dopaminergic cells.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Biogenic Amines, Polish Academy of Sciences, POB-225 Lodz-1, 90-950 Poland.
| | | | | | | |
Collapse
|
45
|
|
46
|
Tamalu F, Chiba C, Saito T. Gap junctional coupling between progenitor cells at the retinal margin of adult goldfish. JOURNAL OF NEUROBIOLOGY 2001; 48:204-14. [PMID: 11466707 DOI: 10.1002/neu.1051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We prepared living slice preparations of the peripheral retina of adult goldfish to examine electrical membrane properties of progenitor cells at the retinal margin. Cells were voltage-clamped near resting potential and then stepped to either hyperpolarizing or depolarizing test potentials using whole-cell voltage-clamp recordings. Electrophysiologically examined cells were morphologically identified by injecting both Lucifer Yellow (LY) and biocytin. All progenitor cells examined (n = 37) showed a large amount of passively flowing currents of either sign under suppression of the nonjunctional currents flowing through K(+) and Ca(2+) channels in the cell membrane. They did not exhibit any voltage-gated Na(+) currents. Cells identified by LY fills were typically slender. As the difference between the test potential and the resting potential increased, 13 out of 37 cells exhibited symmetrically voltage- and time-dependent current decline on either sign at the resting potential. The symmetric current profile suggests that the current may be driven and modulated by the junctional potential difference between the clamping cell and its neighbors. The remaining 24 cells did not exhibit voltage dependency. A gap junction channel blocker, halothane, suppressed the currents. A decrease in extracellular pH reduced coupling currents and its increase enhanced them. Dopamine, cAMP, and retinoic acid did not influence coupling currents. Injection of biocytin into single progenitor cells revealed strong tracer coupling, which was restricted in the marginal region. Immature ganglion cells closely located to the retinal margin exhibited voltage-gated Na(+) currents. They did not reveal apparent tracer coupling. These results demonstrate that the marginal progenitor cells couple with each other via gap junctions, and communicate biochemical molecules, which may subserve or interfere with cellular differentiation.
Collapse
Affiliation(s)
- F Tamalu
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | | | | |
Collapse
|
47
|
Zhou ZY, Sugawara K, Hashi R, Muramoto K, Mawatari K, Matsukawa T, Liu ZW, Devadas M, Kato S. Reactive oxygen species uncouple external horizontal cells in the carp retina and glutathione couples them again. Neuroscience 2001; 102:959-67. [PMID: 11182257 DOI: 10.1016/s0306-4522(00)00527-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the effect of free radicals on the electrical gap junctions between horizontal cells in the carp retina. In our previous study, L-buthionine sulfoximine, an inhibitor of glutathione synthesis, caused uncoupling of horizontal cells four days after injection. In the present study, we have used paraquat, a generator of exogenous reactive oxygen species, to investigate whether it was the depletion of glutathione or an increase in the level of reactive oxygen species which resulted in horizontal cell uncoupling after L-buthionine sulfoximine injection. Intracellular recordings were made from L-type horizontal cells at various time-points after intravitreal injection of paraquat. Injection of 25nmol paraquat caused an increase in response amplitude to central spot light stimuli by two days after injection, which continued for a further two to three days and had almost disappeared by seven days after injection. There was also a sharp increase in reactive oxygen species production, peaking at four days and disappearing by seven days after injection, and an accompanying depletion and a restoration of glutathione levels with a similar time-course. Marking cells with Lucifer Yellow clearly illustrated uncoupling of horizontal cells after paraquat injection. If paraquat and L-buthionine sulfoximine were injected simultaneously, the increase in response to central spots was observed as early as one day after injection. This response amplitude was not more enhanced than that observed after L-buthionine sulfoximine injection alone, although a dramatic increase in the level of reactive oxygen species was observed. From these results, we suggest that reactive oxygen species are involved in uncoupling, while recovery from uncoupling is dependent on glutathione. Furthermore, we conclude that a balance between glutathione and reactive oxygen species levels is the most important factor controlling gap junctional intercellular communication of L-type horizontal cells in the carp retina.
Collapse
Affiliation(s)
- Z Y Zhou
- Department of Molecular Neurobiology, Graduate School of Medicine, 13-1 Takaramachi, 920-8640, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jenkins A, Hankins MW. Long-term light history modulates the light response kinetics of luminosity (L)-type horizontal cells in the roach retina. Brain Res 2000; 887:230-7. [PMID: 11134611 DOI: 10.1016/s0006-8993(00)03073-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have examined the effects of prolonged periods of darkness on the responses of luminosity-type horizontal cells (L-HCs) in the freshwater cyprinid, Rutilus rutilus. Two groups of retinae were compared, those recorded after 10 min dark adaptation (SA) and those recorded after 3 h dark adaptation (LA). The results suggest that long-term light history does not modify the general responsiveness of the L-HCs in this species. However, there are apparent changes in the receptive field of the cells and modifications to the kinetics of the light-evoked response. The kinetics changes involve both a delay in the onset of light response and a selective effect on the hyperpolarizing light-ON response. Thus the mean time constant (tau) for the SA cells was 32.4+/-2.39 ms (n=62), whilst that for the LA cells was 53.4+/-3.03 ms (n=61). These effects occur in the absence of changes in the relative spectral sensitivity or threshold sensitivity of the HCs. The results suggest that in some vertebrate retinae, prolonged darkness (light-history) may regulate long-term plasticity in the kinetics of the cone-HC pathway.
Collapse
Affiliation(s)
- A Jenkins
- Imperial College School of Medicine, Division of Neuroscience and Psychological Medicine, Department of Integrative and Molecular Neuroscience, Fulham Palace Road, W6 8RF, London, UK
| | | |
Collapse
|
49
|
Choi CY, Takashima F. Molecular cloning and hormonal control in the ovary of connexin 31.5 mRNA and correlation with the appearance of oocyte maturational competence in red seabream. J Exp Biol 2000; 203:3299-306. [PMID: 11023850 DOI: 10.1242/jeb.203.21.3299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gap junctions are aggregates of intercellular channels, composed of the protein connexin (Cx), between adjacent cells. This study examined whether, in the ovary of the red seabream Pagrus major, the connexin gene essential for the production of RNA and protein during the acquisition of oocyte maturational competence is active. Mixed primers for this reaction were designed on the basis of the high sequence homology of selected regions of known connexin genes. Polymerase-chain-reaction-amplified cDNA fragments generated by 3′ and 5′ rapid amplication of cDNA ends were combined to generate full-length cDNA sequences. The resulting 2400 base pair cDNA had an open reading frame encoding a polypeptide containing 275 amino acid residues (31493 Da; Cx31.5). Hydropathicity analysis of the predicted amino acid sequence indicated that red seabream Cx31.5 has four major hydrophobic regions and four major hydrophilic regions indicative of a topology similar to that of known connexins. Typical connexin consensus sequences were also observed in the first and second extracellular loops. During the acquisition of oocyte maturational competence, red seabream Cx31.5 mRNA transcription levels increased after treatment with gonadotropin-II. It is therefore proposed that expression of Cx31.5 contributes to the acquisition of oocyte maturational competence in this species.
Collapse
Affiliation(s)
- C Y Choi
- Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan, Minato-ku, Tokyo 108-8477, Japan.
| | | |
Collapse
|
50
|
Fukuda T, Kosaka T. The dual network of GABAergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex. Neurosci Res 2000; 38:123-30. [PMID: 11000438 DOI: 10.1016/s0168-0102(00)00163-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To know the structural feature of individual nerve cells and of the network they form is essentially important for understanding how the brain works. We have recently shown that a certain subpopulation of hippocampal GABAergic neurons that contain a calcium-binding protein parvalbumin form the dual network connected by both chemical synapses and gap junctions. The mutual chemical synaptic contacts are formed between their axon terminals and somata whereas gap junctions are located between their dendrites. In this article, we demonstrate that the dual network of parvalbumin-containing GABAergic interneurons is not restricted to the hippocampus but found also in the neocortex and, therefore, appears to be a fundamental structure of the cerebral cortex, possibly having some relevance to the synchronized activities observed broadly in various cortical areas.
Collapse
Affiliation(s)
- T Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | |
Collapse
|