1
|
Lin Y, Quan M, Wang X, Miao W, Xu H, He B, Liu B, Zhang Y, Chen Y, Zhou B, Xu M, Dong L, Jin X, Lou Z, Zhang JS, Chen C. Parkin deficiency exacerbates particulate matter-induced injury by enhancing airway epithelial necroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175922. [PMID: 39218088 DOI: 10.1016/j.scitotenv.2024.175922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Exposure to fine particulate matter (PM) disrupts the function of airway epithelial barriers causing cellular stress and damage. However, the precise mechanisms underlying PM-induced cellular injury and the associated molecular pathways remain incompletely understood. In this study, we used intratracheal instillation of PM in C57BL6 mice and PM treatment of the BEAS-2B cell line as in vivo and in vitro models, respectively, to simulate PM-induced cellular damage and inflammation. We collected lung tissues and bronchoalveolar lavage fluids to assess histopathological changes, necroptosis, and airway inflammation. Our findings reveal that PM exposure induces necroptosis in mouse airway epithelial cells. Importantly, concurrent administration of a receptor interacting protein kinases 3 (RIPK3) inhibitor or the deletion of the necroptosis effector mixed-lineage kinase domain-like protein (MLKL) effectively attenuated PM-induced airway inflammation. PM exposure dose-dependently induces the expression of Parkin, an E3 ligase we recently reported to play a pivotal role in necroptosis through regulating necrosome formation. Significantly, deletion of endogenous Parkin exacerbates inflammation by enhancing epithelial necroptosis. These results indicate that PM-induced Parkin expression plays a crucial role in suppressing epithelial necroptosis, thereby reducing airway inflammation. Overall, these findings offer valuable mechanistic insights into PM-induced airway injury and identify a potential target for clinical intervention.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meiyu Quan
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xibin Wang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wanqi Miao
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haibo Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baiqi He
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bin Liu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanxia Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yijing Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Binqian Zhou
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengying Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Dong
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
2
|
Kim H, Ronai ZA. Parkin paves the path to antitumor immunity: Expanding Parkin's role as a tumor suppressor. J Clin Invest 2024; 134:e185838. [PMID: 39545411 DOI: 10.1172/jci185838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Parkin, a ring-between-ring-type E3 ubiquitin ligase, first shown to play a critical role in autosomal recessive juvenile Parkinsonism, has recently emerged as a key player in cancer biology. Parkin is now known to serve as a tumor suppressor, and its deregulation frequently promotes tumorigenesis. In this issue of the JCI, Perego et al. expand that role by showing that Parkin expression stimulated an interferon (IFN) response to modulate CD8+ T cell activity. These findings suggest that, in addition to directly inhibiting tumor progression, Parkin enhances antitumor immune responses, highlighting it as a promising therapeutic target for cancer treatment.
Collapse
|
3
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Tian Z, Zhang Q, Wang L, Li M, Li T, Wang Y, Cao Z, Jiang X, Luo P. Progress in mechanism of pain associated with neurodegenerative diseases. Ageing Res Rev 2024; 102:102579. [PMID: 39542176 DOI: 10.1016/j.arr.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs) represent a class of neurological disorders characterized by the progressive degeneration or loss of neurons, impacting millions of individuals globally. In addition to the typical manifestations, pain is a prevalent symptom associated with NDDs, seriously impacting the quality of life for patients. The pathogenesis of pain associated with NDDs is intricate and multifaceted. Currently, the clinical management of NDDs-related pain symptoms predominantly relies on conventional pharmacological agents or physical therapy. However, these approaches often fail to produce satisfactory outcomes. This article summarizes the underlying mechanisms of major NDDs-associated pain: Neuroinflammation, Brain and spinal cord dysfunctions, Mitochondrial dysfunction, Risk gene and pathological protein, as well as Receptor, channel, and neurotransmitter. While numerous studies have investigated the downstream pathological processes associated with these mechanisms, there remains a significant gap in identifying the key initiating factors. Specifically, there is insufficient evidence for the upstream elements that activate microglia and astrocytes in neuroinflammation leading to pain in NDDs. Likewise, there is an absence of upstream factors elucidating how dysfunctions in the brain and spinal cord, as well as mitochondrial impairments, contribute to the development of pain. Furthermore, the specific mechanisms through which hallmark pathological proteins related to NDD contribute to these pathological processes remain inadequately understood. The objective of this article is to synthesize the existing mechanisms underlying pain associated with NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, amyotrophic lateral sclerosis, and multiple sclerosis, while also identifying gaps and deficiencies in these mechanisms. This paper offers insights for future research trajectories. Given the intricate pathogenesis of NDD-related pain, it emphasizes that a promising short-term strategy is combination therapy-intervening concurrently in multiple pathological processes-akin to the cocktail approach utilized in treating acquired immunodeficiency syndrome (AIDS). For long-term advancements, achieving breakthroughs in the treatment of the NDDs themselves will remain essential for alleviating accompanying pain symptoms.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Wang
- Xi'an Children's Hospital, Xi'an 710002, China
| | - Mengxiang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yujie Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Roy M, Nandy S, Marchesan E, Banerjee C, Mondal R, Caicci F, Ziviani E, Chakraborty J. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). Autophagy 2024. [PMID: 39513197 DOI: 10.1080/15548627.2024.2426116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.
Collapse
Affiliation(s)
- Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Lenka DR, Chaurasiya S, Ratnakar L, Kumar A. Mechanism of phospho-Ubls' specificity and conformational changes that regulate Parkin activity. Structure 2024; 32:2107-2122.e3. [PMID: 39368463 DOI: 10.1016/j.str.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
PINK1 and Parkin mutations lead to the early onset of Parkinson's disease. PINK1-mediated phosphorylation of ubiquitin (Ub), ubiquitin-like protein (NEDD8), and ubiquitin-like (Ubl) domain of Parkin activate autoinhibited Parkin E3 ligase. The mechanism of various phospho-Ubls' specificity and conformational changes leading to Parkin activation remain elusive. Herein, we show that compared to Ub, NEDD8 is a more robust binder and activator of Parkin. Structures and biophysical/biochemical data reveal specific recognition and underlying mechanisms of pUb/pNEDD8 and pUbl domain binding to the RING1 and RING0 domains, respectively. Also, pUb/pNEDD8 binding in the RING1 pocket promotes allosteric conformational changes in Parkin's catalytic domain (RING2), leading to Parkin activation. Furthermore, Parkinson's disease mutation K211N in the RING0 domain was believed to perturb Parkin activation due to loss of pUb binding. However, our data reveal allosteric conformational changes due to N211 that lock RING2 with RING0 to inhibit Parkin activity without disrupting pNEDD8/pUb binding.
Collapse
Affiliation(s)
- Dipti Ranjan Lenka
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Shradha Chaurasiya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Loknath Ratnakar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Atul Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India.
| |
Collapse
|
7
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024:S0896-6273(24)00734-7. [PMID: 39515322 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
9
|
Ren Y, Guo F, Wang L. Imaging Findings and Toxicological Mechanisms of Nervous System Injury Caused by Diquat. Mol Neurobiol 2024; 61:9272-9283. [PMID: 38619744 PMCID: PMC11496334 DOI: 10.1007/s12035-024-04172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Diquat (DQ) is a nonselective bipyridine herbicide with a structure resembling paraquat (PQ). In recent years, the utilization of DQ as a substitute for PQ has grown, leading to an increase in DQ poisoning cases. While the toxicity mechanism of DQ remains unclear, it is primarily attributed to the intracellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the process of reduction oxidation. This results in oxidative stress, leading to a cascade of clinical symptoms. Notably, recent reports on DQ poisoning have highlighted a concerning trend: an upsurge in cases involving neurological damage caused by DQ poisoning. These patients often present with severe illness and a high mortality rate, with no effective treatment available thus far. Imaging findings from these cases have shown that neurological damage tends to concentrate on the brainstem. However, the specific mechanisms behind this poisoning remain unclear, and no specific antidote exists. This review summarizes the research progress on DQ poisoning and explores potential mechanisms. By shedding light on the nerve damage associated with DQ poisoning, we hope to raise awareness, propose new avenues for investigating the mechanisms of DQ poisoning, and lay the groundwork for the development of treatment strategies for DQ poisoning. Trial registration number: 2024PS174K.
Collapse
Affiliation(s)
- Yanguang Ren
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Adriaenssens E, Nguyen TN, Sawa-Makarska J, Khuu G, Schuschnig M, Shoebridge S, Skulsuppaisarn M, Watts EM, Csalyi KD, Padman BS, Lazarou M, Martens S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat Struct Mol Biol 2024; 31:1717-1731. [PMID: 38918639 DOI: 10.1038/s41594-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Thanh Ngoc Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Stephen Shoebridge
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Maria Watts
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kitti Dora Csalyi
- Max Perutz Labs BioOptics FACS Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus (VBC), Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Chen M, Wang X, Bao S, Wang D, Zhao J, Wang Q, Liu C, Zhao H, Zhang C. Orchestrating AMPK/mTOR signaling to initiate melittin-induced mitophagy: A neuroprotective strategy against Parkinson's disease. Int J Biol Macromol 2024; 281:136119. [PMID: 39343259 DOI: 10.1016/j.ijbiomac.2024.136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Apitherapy has a long history in treating Parkinson's disease (PD) in humans, with evidence suggesting that bee venom (BV) can mitigate Parkinson's symptoms. Central to BV's effects is melittin (MLT), a principal peptide whose neuroprotective mechanisms in PD are not fully understood. The study investigated the effects of MLT on an experimental PD model in mice and dopaminergic neuron cells, induced by MPTP or MPP+. We concentrate on the autophagic response elicited by MLT during PD pathogenesis. The findings showed that MLT was shown to protect against MPP+/MPTP cytotoxicity and preserve tyrosine hydroxylase (TH) levels, indicating neuronal safeguarding. Remarkably, MLT instigated mitophagy, enhancing mitochondrial homeostasis in MPP+-exposed SH-SY5Y cells. Further, MLT's promotion of mitophagy was confirmed to be AMPK/mTOR signaling-dependent. Validation using Bafilomycin A1, an autophagy inhibitor, confirmed MLT's neuroprotective role, with autophagy inhibition negating MLT's benefits and reducing TH preservation. These findings illuminate MLT's therapeutic potential, particularly its modulation of mitochondrial dysfunction in PD pathology. Our research advances the understanding of MLT's mechanistic action, emphasizing its role in mitochondrial autophagy and AMPK/mTOR signaling, offering a novel perspective beyond the symptomatic relief associated with BV.
Collapse
Affiliation(s)
- Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Xue Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Haiong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
12
|
Cicali KA, Tapia-Rojas C. Synaptic mitochondria: A crucial factor in the aged hippocampus. Ageing Res Rev 2024; 101:102524. [PMID: 39369797 DOI: 10.1016/j.arr.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
Collapse
Affiliation(s)
- Karina A Cicali
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
| |
Collapse
|
13
|
Panda SP, Kesharwani A, Singh B, Marisetti AL, Chaitanya M, Dahiya S, Ponnusankar S, Kumar S, Singh M, Shakya PK, Prasad PD, Guru A. 14-3-3 protein and its isoforms: A common diagnostic marker for Alzheimer's disease, Parkinson's disease and glaucomatous neurodegeneration. Ageing Res Rev 2024; 102:102572. [PMID: 39489380 DOI: 10.1016/j.arr.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
There is a molecular coupling between neurodegenerative diseases, including glaucomatous neurodegeneration (GN), Alzheimer's disease (AD), and Parkinson's disease (PD). Many cells in the eye and the brain have the right amount of 14-3-3 proteins (14-3-3 s) and their isoforms, such as β, ε, γ, η, θ, π, and γ. These cells include keratocytes, endothelial cells, corneal epithelial cells, and primary conjunctival epithelial cells. 14-3-3 s regulate autophagy and mitophagy, help break down built-up proteins, and connect to other proteins to safeguard against neurodegeneration in AD, PD, GN, and glioblastoma. By interacting with these proteins, 14-3-3 s stop Bad and Bax proteins from entering mitochondria and make them less effective. These interactions inhibit neuronal apoptosis. They play many important roles in managing the breakdown of lysosomal proteins, tau, and Aβ, which is why the 14-3-3 s could be used as therapeutic targets in AD. Furthermore, researchers have discovered 14-3-3 s in Lewy bodies, which are associated with various proteins like LRRK2, ASN, and Parkin, all of which play a role in developing Parkinson's disease (PD). The 14-3-3 s influence the premature aging and natural wrinkles of human skin. Studies have shown that lowering 14-3-3 s in the brain can lead to an increase in cell-death proteins like BAX and ERK, which in turn causes excitotoxicity-induced neurodegeneration. This review aimed to clarify the role of 14-3-3 s in the neuropathology of AD, PD, and GN, as well as potential diagnostic markers for improving neuronal survival and repair.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Bhoopendra Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Mvnl Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, Panjab 144411, India
| | - Saurabh Dahiya
- Department of Pharmaceutical Chemistry and Quality Assurance, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - S Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and ResearchOoty, Tamil Nadu 643001, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Shakya
- Shri Santanpal Singh Pharmacy College, Mirjapur, Shahjahanpur, Uttar Pradesh 242221, India
| | - P Dharani Prasad
- Department of Pharmacology, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
14
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Bernardo G, Prado MA, Dashtmian AR, Favaro M, Mauri S, Borsetto A, Marchesan E, Paulo JA, Gygi SP, Finley DJ, Ziviani E. USP14 inhibition enhances Parkin-independent mitophagy in iNeurons. Pharmacol Res 2024; 210:107484. [PMID: 39486496 DOI: 10.1016/j.phrs.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson's Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration. We recently reported that inhibition of the deubiquitinating enzyme USP14, which is known to enhance both the UPS and autophagy, increases lifespan and rescues the pathological phenotype of two Drosophila models of PD. Studies on the effects of USP14 inhibition in mammalian neurons have not yet been conducted. To close this gap, we exploited iNeurons differentiated from human embryonic stem cells (hESCs), and investigated the effect of inhibiting USP14 in these cultured neurons. Quantitative global proteomics analysis performed following genetic ablation or pharmacological inhibition of USP14 demonstrated that USP14 loss of function specifically promotes mitochondrial autophagy in iNeurons. Biochemical and imaging data also showed that USP14 inhibition enhances mitophagy. The mitophagic effect of USP14 inhibition proved to be PINK1/Parkin- independent, instead relying on expression of the mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5. Notably, USP14 inhibition normalized the mitochondrial defects of Parkin KO human neurons.
Collapse
Affiliation(s)
- Greta Bernardo
- Department of Biology, University of Padova, Padova, Italy
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, USA; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | | | - Sofia Mauri
- Department of Biology, University of Padova, Padova, Italy
| | - Alice Borsetto
- Department of Biology, University of Padova, Padova, Italy
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Daniel J Finley
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Bova V, Mannino D, Capra AP, Lanza M, Palermo N, Filippone A, Esposito E. CK and LRRK2 Involvement in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:11661. [PMID: 39519213 PMCID: PMC11546471 DOI: 10.3390/ijms252111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer's disease (AD), dementia, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD)-all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Nicoletta Palermo
- Department of Biochemical, Dental, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| |
Collapse
|
17
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Zhou ZD, Kihara AH. Neurodegenerative Diseases: Molecular Mechanisms and Therapies 2nd Edition. Int J Mol Sci 2024; 25:11334. [PMID: 39518887 PMCID: PMC11546998 DOI: 10.3390/ijms252111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are multiple chronic neurological diseases that pose a serious public health risk to our society, especially among the aging population [...].
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
| |
Collapse
|
19
|
Ye X, Kotaru S, Lopes R, Cravens S, Lasagna M, Wand AJ. Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin. Biomolecules 2024; 14:1338. [PMID: 39456270 PMCID: PMC11506642 DOI: 10.3390/biom14101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise control of its catalytic activity. Though its allosterically controlled structural reorganization has been extensively characterized by crystallography, the energetics and mechanisms of allosteric regulation of Parkin are much less well understood. Allostery is fundamentally linked to the energetics of the cooperative (sub)structure of the protein. Herein, we examine the mechanism of allosteric activation by phosphorylated ubiquitin binding to the enzymatic core of Parkin, which lacks the antagonistic Ubl domain. In this way, the allosteric effects of the agonist phosphorylated ubiquitin can be isolated. Using native-state hydrogen exchange monitored by mass spectrometry, we find that the five structural domains of the core of Parkin are energetically distinct. Nevertheless, association of phosphorylated ubiquitin destabilizes structural elements that bind the ubiquitin-like domain antagonist while promoting the dissociation of the catalytic domain and energetically poises the protein for transition to the fully activated structure.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sravya Kotaru
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosana Lopes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shannen Cravens
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Mauricio Lasagna
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A. Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
20
|
Yang M, Mo Z, Walsh K, Liu W, Guo X. The Integrated Stress Response Suppresses PINK1-dependent Mitophagy by Preserving Mitochondrial Import Efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.617214. [PMID: 39463933 PMCID: PMC11507992 DOI: 10.1101/2024.10.16.617214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mitophagy is crucial for maintaining mitochondrial health, but how its levels adjust to different stress conditions remains unclear. In this study, we investigated the role of the DELE1-HRI axis of integrated stress response (ISR) in regulating mitophagy, a key mitochondrial stress pathway. Our findings show that the ISR suppresses mitophagy under non-depolarizing mitochondrial stress by positively regulating mitochondrial protein import, independent of ATF4 activation. Mitochondrial protein import is regulated by the rate of protein synthesis under both depolarizing and non-depolarizing stress. Without ISR, increased protein synthesis overwhelms the mitochondrial import machinery, reducing its efficiency. Under depolarizing stress, mitochondrial import is heavily impaired even with active ISR, leading to significant PINK1 accumulation. In contrast, non-depolarizing stress allows more efficient protein import in the presence of ISR, resulting in lower mitophagy. Without ISR, mitochondrial protein import becomes severely compromised, causing PINK1 accumulation to reach the threshold necessary to trigger mitophagy. These findings reveal a novel link between ISR-regulated protein synthesis, mitochondrial import, and mitophagy, offering potential therapeutic targets for diseases associated with mitochondrial dysfunction.
Collapse
|
21
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
22
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
23
|
Silvera MC, Cantera R, Ferreiro MJ. Absence of pretaporter restrains features of the parkin phenotype in Drosophila. Exp Neurol 2024; 383:114997. [PMID: 39393670 DOI: 10.1016/j.expneurol.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Scientific research based on model organisms can help to understand the biology of Parkinson's Disease, the second most prevalent neurodegenerative disease. Drosophila melanogaster mutant for the gene parkin, homologous to human's PARK2, exhibit well-characterized phenotypes including loss of dopaminergic neurons, lower survival and motor defects. Through the transcriptomic analysis of an exceptional case of reversible neurodegeneration in Drosophila, our group identified that the gene pretaporter, homologous to TXNDC5 of humans, was downregulated in the reversal phase. Here, we explore the hypothesis that the lack of expression of pretaporter will restrain phenotypes observed in Drosophila parkin mutants. METHODS After establishing by immunochemistry that Pretaporter is expressed in PPL1 dopaminergic neurons, we constructed pretaporter-parkin double mutants flies to investigate the hypothesis through immunohistochemistry, survival and climbing assays. CONCLUSIONS It was found that the loss-of-function mutation in pretaporter significatively restrains the phenotype caused by the loss-of-function mutation in parkin in several key aspects: it abolished the loss of PPL1 neurons normally seen in parkin mutant flies, promoted their survival in both sexes and reduced the decay in motor ability in parkin female flies. We propose that the absence of Pretaporter in parkin mutant flies prevents the death of dopaminergic neurons by rendering them resistant to Draper-mediated-phagocytosis.
Collapse
Affiliation(s)
- María Constanza Silvera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay; Departamento de Neurofisiología Celular y Molecular, IIBCE, Avenida Italia 3318, 11600 Montevideo, Uruguay
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, IIBCE, Avenida Italia 3318, 11600 Montevideo, Uruguay; Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
24
|
Poplawska-Domaszewicz K, Qamar MA, Falup Pecurariu C, Chaudhuri KR. Recognition and characterising non-motor profile in early onset Parkinson's disease (EOPD). Parkinsonism Relat Disord 2024:107123. [PMID: 39489627 DOI: 10.1016/j.parkreldis.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 11/05/2024]
Abstract
Early onset Parkinson's disease (EOPD) has been recently defined as a clinical entity with subjects presenting with Parkinson's disease (PD) between the ages of 21-50 and replaces the term Young Onset PD (YOPD). Presentations in this age group are somewhat different to the typical Late Onset sporadic PD (LOPD) and genetic basis may play an important role. The presentations are however, to be differentiated from other causes of juvenile onset or early onset parkinsonism, which are often driven by rare genetic, brain metal deposition, or metabolic progressive disorders with a levolevodopa unresponsive or poorly responsive phenotype. Specific genetic mutations can also underpin EOPD and include nonmotor symptoms of EOPD, which have not been studied extensively. However, some real-life comparator studies with LOPD suggest a nonmotor profile in EOPD dominated by neuropsychiatric symptoms (anxiety), pain, sexual dysfunction, and a higher risk of impulse control disorders and segregation to the recently described noradrenergic and Park-sleep nonmotor endophenotypes may occur. Awareness of the phenotypic variants and nonmotor expression will pave the way for future precision and personalised medicine.
Collapse
Affiliation(s)
- Karolina Poplawska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, 60-355, Poznan, Poland; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Mubasher A Qamar
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London, SE5 9RS, UK; Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Cristian Falup Pecurariu
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London, SE5 9RS, UK; Department of Neurology, County Clinic Hospital, Faculty of Medicine, Transilvania University Brasov, 500019, Brasov, Romania; Department of Neurology, Transilvania University Brasov, Brașov, Romania
| | - K Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London, SE5 9RS, UK; Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK.
| |
Collapse
|
25
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
27
|
Sevegnani M, Lama A, Girardi F, Hess MW, Castelo MP, Pichler I, Biressi S, Piccoli G. Parkin R274W mutation affects muscle and mitochondrial physiology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167302. [PMID: 38878834 DOI: 10.1016/j.bbadis.2024.167302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Recessive mutations in the Parkin gene (PRKN) are the most common cause of young-onset inherited parkinsonism. Parkin is a multifunctional E3 ubiquitin ligase that plays a variety of roles in the cell including the degradation of proteins and the maintenance of mitochondrial homeostasis, integrity, and biogenesis. In 2001, the R275W mutation in the PRKN gene was identified in two unrelated families with a multigenerational history of postural tremor, dystonia and parkinsonism. Drosophila models of Parkin R275W showed selective and progressive degeneration of dopaminergic neuronal clusters, mitochondrial abnormalities, and prominent climbing defects. In the Prkn mouse orthologue, the amino acid R274 corresponds to human R275. Here we described an age-related motor impairment and a muscle phenotype in R274W +/+ mice. In vitro, Parkin R274W mutation correlates with abnormal myoblast differentiation, mitochondrial defects, and alteration in mitochondrial mRNA and protein levels. Our data suggest that the Parkin R274W mutation may impact mitochondrial physiology and eventually myoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | - Adriano Lama
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Michael W Hess
- Innsbruck Medical University, Institute of Histology and Embryology, Medical University of Innsbruck, Austria
| | - Maria Paulina Castelo
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | | |
Collapse
|
28
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
29
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
30
|
Peng Y, Liu J, Sun L, Zheng Q, Cao C, Ding W, Yang S, Ma L, Zhang W. GALNT9 enrichment attenuates MPP +-induced cytotoxicity by ameliorating protein aggregations containing α-synuclein and mitochondrial dysfunction. Biol Direct 2024; 19:77. [PMID: 39237967 PMCID: PMC11378468 DOI: 10.1186/s13062-024-00524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND GALNTs (UDP-GalNAc; polypeptide N-acetylgalactosaminyltransferases) initiate mucin-type O-GalNAc glycosylation by adding N-GalNAc to protein serine/threonine residues. Abnormalities in O-GalNAc glycosylation are involved in various disorders such as Parkinson's disease (PD), a neurodegenerative disorder. GALNT9 is potentially downregulated in PD patients. METHODS To determine whether GALNT9 enrichment ameliorates cytotoxicity related to PD-like variations, a pcDNA3.1-GALNT9 plasmid was constructed and transfected into SH-SY5Y cells to establish a GALNT9-overexpressing cell model. RESULTS Downregulation of GALNT9 and O-GalNAc glycosylation was confirmed in our animal and cellular models of PD-like variations. GALNT9 supplementation greatly attenuated cytotoxicity induced by MPP+ (1-Methyl-4-phenylpyridinium iodide) since it led to increased levels of tyrosine hydroxylase and dopamine, reduced rates of apoptosis, and significantly ameliorated MPP+-induced mitochondrial dysfunction by alleviating abnormal levels of mitochondrial membrane potential and reactive oxygen species. A long-lasting mPTP (mitochondrial permeability transition pores) opening and calcium efflux resulted in significantly lower activity in the cytochrome C-associated apoptotic pathway and mitophagy process, signifying that GALNT9 supplementation maintained neuronal cell health under MPP+ exposure. Additionally, it was found that glycans linked to proteins influenced the formation of protein aggregates containing α-synuclein, and GALNT9 supplement dramatically reduced such insoluble protein aggregations under MPP+ treatment. Glial GALNT9 predominantly appears under pathological conditions like PD-like variations. CONCLUSIONS GALNT9 enrichment improved cell survival, and glial GALNT9 potentially represents a pathogenic index for PD patients. This study provides insights into the development of therapeutic strategies for the treatment of PD.
Collapse
Affiliation(s)
- Yuanwen Peng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dalian, China
| | - Lili Sun
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qiuying Zheng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Can Cao
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shufeng Yang
- Department of Microbiology, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
31
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
32
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
33
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024:1-14. [PMID: 39113560 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
34
|
Lenka DR, Dahe SV, Antico O, Sahoo P, Prescott AR, Muqit MMK, Kumar A. Additional feedforward mechanism of Parkin activation via binding of phospho-UBL and RING0 in trans. eLife 2024; 13:RP96699. [PMID: 39221915 PMCID: PMC11368401 DOI: 10.7554/elife.96699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Loss-of-function Parkin mutations lead to early-onset of Parkinson's disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans. Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.
Collapse
Affiliation(s)
- Dipti Ranjan Lenka
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) BhopalBhopalIndia
| | - Shakti Virendra Dahe
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) BhopalBhopalIndia
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Pritiranjan Sahoo
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) BhopalBhopalIndia
| | - Alan R Prescott
- Division of Cell Signalling and Immunology, Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Miratul MK Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Atul Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) BhopalBhopalIndia
| |
Collapse
|
35
|
Wei L, Gok MO, Svoboda JD, Kozul KL, Forny M, Friedman JR, Niemi NM. Dual-localized PPTC7 limits mitophagy through proximal and dynamic interactions with BNIP3 and NIX. Life Sci Alliance 2024; 7:e202402765. [PMID: 38991726 PMCID: PMC11239977 DOI: 10.26508/lsa.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
PPTC7 is a mitochondrial-localized phosphatase that suppresses BNIP3- and NIX-mediated mitophagy, but the mechanisms underlying this regulation remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. Loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels, which requires an intact catalytic motif but is surprisingly independent of its targeting to mitochondria. Consistently, we find that PPTC7 is dual-localized to the outer mitochondrial membrane and the matrix. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments demonstrate that PPTC7 dynamically associates with BNIP3 and NIX within the native cellular environment. Collectively, these data reveal that a fraction of PPTC7 localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX, limiting basal mitophagy.
Collapse
Affiliation(s)
- Lianjie Wei
- https://ror.org/04cf69335 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mehmet Oguz Gok
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jordyn D Svoboda
- https://ror.org/04cf69335 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Keri-Lyn Kozul
- https://ror.org/04cf69335 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Merima Forny
- https://ror.org/04cf69335 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalie M Niemi
- https://ror.org/04cf69335 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
36
|
Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N. Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson's disease. Neurobiol Dis 2024; 199:106571. [PMID: 38901781 DOI: 10.1016/j.nbd.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most common gene responsible for familial Parkinson's disease (PD). The gene product of LRRK2 contains multiple protein domains, including armadillo repeat, ankyrin repeat, leucine-rich repeat (LRR), Ras-of-complex (ROC), C-terminal of ROC (COR), kinase, and WD40 domains. In this study, we performed genetic screening of LRRK2 in our PD cohort, detecting sixteen LRRK2 rare variants. Among them, we selected seven variants that are likely to be familial and characterized them in terms of LRRK2 protein function, along with clinical information and one pathological analysis. The seven variants were S1120P and N1221K in the LRR domain; I1339M, S1403R, and V1447M in the ROC domain; and I1658F and D1873H in the COR domain. The kinase activity of the LRRK2 variants N1221K, S1403R, V1447M, and I1658F toward Rab10, a well-known phosphorylation substrate, was higher than that of wild-type LRRK2. LRRK2 D1873H showed enhanced self-association activity, whereas LRRK2 S1403R and D1873H showed reduced microtubule-binding activity. Pathological analysis of a patient with the LRRK2 V1447M variant was also performed, which revealed Lewy pathology in the brainstem. No functional alterations in terms of kinase activity, self-association activity, and microtubule-binding activity were detected in LRRK2 S1120P and I1339M variants. However, the patient with PD carrying LRRK2 S1120P variant also had a heterozygous Glucosylceramidase beta 1 (GBA1) L444P variant. In conclusion, we characterized seven LRRK2 variants potentially associated with PD. Five of the seven variants in different LRRK2 domains exhibited altered properties in kinase activity, self-association, and microtubule-binding activity, suggesting that each domain variant may contribute to disease progression in different ways.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Ishiguro
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ehoto Osogaguchi
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Faculty of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Jun Ogata
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Ishii
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Aya Ikeda
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Taro Matsui
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kenichi Kaida
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Fumihisa Kumazawa
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyasu Matsubara
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
37
|
Morandini AC, Ramos-Junior ES. Mitochondrial function in oral health and disease. J Immunol Methods 2024; 532:113729. [PMID: 39067635 DOI: 10.1016/j.jim.2024.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring mitochondrial function and mitochondrial quality control in tissues is a crucial aspect of understanding cellular health and dysfunction, which may inform about the pathogenesis of several conditions associated with aging, including chronic inflammatory conditions, neurodegenerative disorders and metabolic diseases. This process involves assessing the functionality, integrity, and abundance of mitochondria within cells. Several lines of evidence have explored techniques and methods for monitoring mitochondrial quality control in tissues. In this review, we summarize and provide our perspective considering the latest evidence in mitochondrial function and mitochondrial quality control in oral health and disease with a particular focus in periodontal inflammation. This research is significant for gaining insights into cellular health and the pathophysiology of periodontal disease, a dysbiosis-related, immune mediated and age-associated chronic condition representing a significant burden to US elderly population. Approaches for assessing mitochondrial health status reviewed here include assessing mitochondrial dynamics, mitophagy, mitochondrial biogenesis, oxidative stress, electron transport chain function and metabolomics. Such assessments help researchers comprehend the role of mitochondrial function in cellular homeostasis and its implications for oral diseases.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA; Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, USA.
| | - Erivan S Ramos-Junior
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
38
|
Akçimen F, van Midden V, Akerman SC, Makarious MB, Rothstein JD, Fang ZH, Bandres-Ciga S. Investigating the Protective Role of the Mitochondrial 2158 T > C Variant in Parkinson's Disease. Mov Disord 2024; 39:1645-1647. [PMID: 38940474 PMCID: PMC11499029 DOI: 10.1002/mds.29892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vesna van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - S. Can Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- UCL Movement Disorders Centre, University College London, London, United Kingdom
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, DZNE, Tübingen, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Perego M, Yeon M, Agarwal E, Milcarek AT, Bertolini I, Camisaschi C, Ghosh JC, Tang HY, Grandvaux N, Ruscetti M, Kossenkov AV, Preston-Alp S, Tempera I, Auslander N, Altieri DC. Parkin activates innate immunity and promotes antitumor immune responses. J Clin Invest 2024; 134:e180983. [PMID: 39213189 PMCID: PMC11563675 DOI: 10.1172/jci180983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The activation of innate immunity and associated interferon (IFN) signaling have been implicated in cancer, but the regulators are elusive and links to tumor suppression remain undetermined. Here, we found that Parkin, an E3 ubiquitin ligase altered in Parkinson's Disease, was epigenetically silenced in cancer and its reexpression by clinically approved demethylating therapy stimulated transcription of a potent IFN response in tumor cells. This pathway required Parkin E3 ubiquitin ligase activity, involved the subcellular trafficking and release of the alarmin High Mobility Group Box 1 (HMGB1) and was associated with inhibition of NF-κB gene expression. In turn, Parkin-expressing cells released an IFN secretome that upregulated effector and cytotoxic CD8+ T cell markers, lowered the expression of immune inhibitory receptors TIM3 and LAG3, and stimulated high content of the self renewal/stem cell factor, TCF1. PRKN-induced CD8+ T cells selectively accumulated in the microenvironment and inhibited transgenic and syngeneic tumor growth in vivo. Therefore, Parkin is an epigenetically regulated activator of innate immunity and dual mode tumor suppressor, inhibiting intrinsic tumor traits of metabolism and cell invasion, while simultaneously reinvigorating CD8 T cell functions in the microenvironment.
Collapse
Affiliation(s)
- Michela Perego
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Minjeong Yeon
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ekta Agarwal
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Andrew T. Milcarek
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Irene Bertolini
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Chiara Camisaschi
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jagadish C. Ghosh
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology and
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nathalie Grandvaux
- CRCHUM — Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Marcus Ruscetti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology and
- Bioinformatics Shared Resource
| | | | | | - Noam Auslander
- Center for Systems and Computational Biology and
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Dario C. Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Dupont N, Terzi F. Lipophagy and Mitophagy in Renal Pathophysiology. Nephron Clin Pract 2024:1-12. [PMID: 39182483 DOI: 10.1159/000540688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The lysosomal autophagic pathway plays a fundamental role in cellular and tissue homeostasis, and its deregulation is linked to human pathologies including kidney diseases. Autophagy can randomly degrade cytoplasmic components in a nonselective manner commonly referred to as bulk autophagy. In contrast, selective forms of autophagy specifically target cytoplasmic structures such as organelles and protein aggregates, thereby being important for cellular quality control and organelle homeostasis. SUMMARY Research during the past decades has begun to elucidate the role of selective autophagy in kidney physiology and kidney diseases. KEY MESSAGES In this review, we will summarize the knowledge on lipophagy and mitophagy, two forms of selective autophagy important in renal epithelium homeostasis, and discuss how their deregulations contribute to renal disease progression.
Collapse
Affiliation(s)
- Nicolas Dupont
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
41
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
42
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Connelly EM, Rintala-Dempsey AC, Gundogdu M, Freeman EA, Koszela J, Aguirre JD, Zhu G, Kämäräinen O, Tadayon R, Walden H, Shaw GS. Capturing the catalytic intermediates of parkin ubiquitination. Proc Natl Acad Sci U S A 2024; 121:e2403114121. [PMID: 39078678 PMCID: PMC11317638 DOI: 10.1073/pnas.2403114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Parkin is an E3 ubiquitin ligase implicated in early-onset forms of Parkinson's disease. It catalyzes a transthiolation reaction by accepting ubiquitin (Ub) from an E2 conjugating enzyme, forming a short-lived thioester intermediate, and transfers Ub to mitochondrial membrane substrates to signal mitophagy. A major impediment to the development of Parkinsonism therapeutics is the lack of structural and mechanistic detail for the essential, short-lived transthiolation intermediate. It is not known how Ub is recognized by the catalytic Rcat domain in parkin that enables Ub transfer from an E2~Ub conjugate to the catalytic site and the structure of the transthiolation complex is undetermined. Here, we capture the catalytic intermediate for the Rcat domain of parkin in complex with ubiquitin (Rcat-Ub) and determine its structure using NMR-based chemical shift perturbation experiments. We show that a previously unidentified α-helical region near the Rcat domain is unmasked as a recognition motif for Ub and guides the C-terminus of Ub toward the parkin catalytic site. Further, we apply a combination of guided AlphaFold modeling, chemical cross-linking, and single turnover assays to establish and validate a model of full-length parkin in complex with UbcH7, its donor Ub, and phosphoubiquitin, trapped in the process of transthiolation. Identification of this catalytic intermediate and orientation of Ub with respect to the Rcat domain provides important structural insights into Ub transfer by this E3 ligase and explains how the previously enigmatic Parkinson's pathogenic mutation T415N alters parkin activity.
Collapse
Affiliation(s)
- Elizabeth M Connelly
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Anne C Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mehmet Gundogdu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - E Aisha Freeman
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Joanna Koszela
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jacob D Aguirre
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Grace Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Outi Kämäräinen
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roya Tadayon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Helen Walden
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
44
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
45
|
Lopriore P, Palermo G, Meli A, Bellini G, Benevento E, Montano V, Siciliano G, Mancuso M, Ceravolo R. Mitochondrial Parkinsonism: A Practical Guide to Genes and Clinical Diagnosis. Mov Disord Clin Pract 2024; 11:948-965. [PMID: 38943319 PMCID: PMC11329577 DOI: 10.1002/mdc3.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMDs) are the most common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. They can result from mutations in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). These disorders are multisystemic and mainly affect high energy-demanding tissues, such as muscle and the central nervous system (CNS). Among many clinical features of CNS involvement, parkinsonism is one of the most common movement disorders in PMDs. METHODS This review provides a pragmatic educational overview of the most recent advances in the field of mitochondrial parkinsonism, from pathophysiology and genetic etiologies to phenotype and diagnosis. RESULTS mtDNA maintenance and mitochondrial dynamics alterations represent the principal mechanisms underlying mitochondrial parkinsonism. It can be present in isolation, alongside other movement disorders or, more commonly, as part of a multisystemic phenotype. Mutations in several nuclear-encoded genes (ie, POLG, TWNK, SPG7, and OPA1) and, more rarely, mtDNA mutations, are responsible for mitochondrial parkinsonism. Progressive external opthalmoplegia and optic atrophy may guide genetic etiology identification. CONCLUSION A comprehensive deep-phenotyping approach is needed to reach a diagnosis of mitochondrial parkinsonism, which lacks distinctive clinical features and exemplifies the intricate genotype-phenotype interplay of PMDs.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Adriana Meli
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Elena Benevento
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Vincenzo Montano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| |
Collapse
|
46
|
Wang Y, Luo S, Su H, Wang Z, Chu L, Zhang C. BL-918 activates PINK1/Parkin signaling pathway to ameliorate the progression of Parkinson's disease. J Biol Chem 2024; 300:107543. [PMID: 38992440 PMCID: PMC11345547 DOI: 10.1016/j.jbc.2024.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The pathogenesis of Parkinson's disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Siyuan Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Huili Su
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhimeng Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Ling Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
47
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
48
|
Pla-Martín D, Reichert AS. Inner membrane turns inside out to exit mitochondrial organelles. Nature 2024; 632:987-988. [PMID: 39169127 DOI: 10.1038/d41586-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
49
|
Weber JJ, Czisch L, Pereira Sena P, Fath F, Huridou C, Schwarz N, Incebacak Eltemur RD, Würth A, Weishäupl D, Döcker M, Blumenstock G, Martins S, Sequeiros J, Rouleau GA, Jardim LB, Saraiva-Pereira ML, França MC, Gordon CR, Zaltzman R, Cornejo-Olivas MR, van de Warrenburg BPC, Durr A, Brice A, Bauer P, Klockgether T, Schöls L, Riess O, Schmidt T. The parkin V380L variant is a genetic modifier of Machado-Joseph disease with impact on mitophagy. Acta Neuropathol 2024; 148:14. [PMID: 39088078 PMCID: PMC11294389 DOI: 10.1007/s00401-024-02762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Leah Czisch
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Priscila Pereira Sena
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Fath
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Natasa Schwarz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Rana D Incebacak Eltemur
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Anna Würth
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Weishäupl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Miriam Döcker
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
| | - Jorge Sequeiros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery and The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, H3A 1A1, Canada
| | - Laura Bannach Jardim
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marcondes C França
- Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, Brazil
| | - Carlos R Gordon
- Department of Neurology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Roy Zaltzman
- Department of Neurology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Mario R Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 15003, Lima, Peru
- Neurogenetics Working Group, Universidad Científica del Sur, 15067, Lima, Peru
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525, Nijmegen, The Netherlands
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, University Hospital Pitié-Salpêtrière, 75013, Paris, France
| | - Alexis Brice
- Department of Genetics and Cytogenetics, 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, University Hospital Pitié-Salpêtrière, 75013, Paris, France
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Centogene GmbH, 18055, Rostock, Germany
- Clinic for Internal Medicine, Department of Hematology, Oncology, Palliative Medicine, University Medicine Rostock, 18057, Rostock, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
50
|
Song P, Krainc D. Diverse Functions of Parkin in Midbrain Dopaminergic Neurons. Mov Disord 2024; 39:1282-1288. [PMID: 38858837 PMCID: PMC11341252 DOI: 10.1002/mds.29890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by preferential degeneration of midbrain dopaminergic neurons that contributes to its typical clinical manifestation. Mutations in the parkin gene (PARK2) represent a relatively common genetic cause of early onset PD. Parkin has been implicated in PINK1-dependent mitochondrial quantity control by targeting dysfunctional mitochondria to lysosomes via mitophagy. Recent evidence suggests that parkin can be activated in PINK1-independent manner to regulate synaptic function in human dopaminergic neurons. Neuronal activity triggers CaMKII-mediated activation of parkin and its recruitment to synaptic vesicles where parkin promotes binding of synaptojanin-1 to endophilin A1 and facilitates vesicle endocytosis. In PD patient neurons, disruption of this pathway on loss of parkin leads to defective recycling of synaptic vesicles and accumulation of toxic oxidized dopamine that at least in part explains preferential vulnerability of midbrain dopaminergic neurons. These findings suggest a convergent mechanism for PD-linked mutations in parkin, synaptojanin-1, and endophilin A1 and highlight synaptic dysfunction as an early pathogenic event in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pingping Song
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA
| |
Collapse
|