1
|
Chen J, Zhao L, Xu MF, Huang D, Sun XL, Zhang YX, Li HM, Wu CZ. Novel isobavachalcone derivatives induce apoptosis and necroptosis in human non-small cell lung cancer H1975 cells. J Enzyme Inhib Med Chem 2024; 39:2292006. [PMID: 38086769 DOI: 10.1080/14756366.2023.2292006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, seventeen isobavachalcone (IBC) derivatives (1-17) were synthesised, and evaluated for their cytotoxic activity against three human lung cancer cell lines. Among these derivatives, compound 16 displayed the most potent cytotoxic activity against H1975 and A549 cells, with IC50 values of 4.35 and 14.21 μM, respectively. Compared with IBC, compound 16 exhibited up to 4.11-fold enhancement of cytotoxic activity on human non-small cell lung cancer H1975 cells. In addition, we found that compound 16 suppressed H1975 cells via inducing apoptosis and necroptosis. The initial mechanism of compound 16 induced cell death in H1975 cells involves the increasing of Bax/Bcl-2 ratio and Cyt C protein level, down-regulating of Akt protein level, and cleaving caspase-9 and -3 induced apoptosis; the up-regulation of RIP3, p-RIP3, MLKL, and p-MLKL levels induced necroptosis. Moreover, compound 16 also caused mitochondrial dysfunction, thereby decreasing cellular ATP levels, and resulting in excessive reactive oxygen species (ROS) accumulation.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Long Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Province Biochemical Pharmaceutical Engineering Technology Research Center, Bengbu, Anhui, China
| | - Meng-Fan Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Di Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Long Sun
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu-Xin Zhang
- Anhui Province Biochemical Pharmaceutical Engineering Technology Research Center, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Hong-Mei Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Province Biochemical Pharmaceutical Engineering Technology Research Center, Bengbu, Anhui, China
| | - Cheng-Zhu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Province Biochemical Pharmaceutical Engineering Technology Research Center, Bengbu, Anhui, China
| |
Collapse
|
2
|
Hu K, Li X, Tan Z, Shi Y. Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis. Eur J Pharm Biopharm 2024; 204:114525. [PMID: 39370057 DOI: 10.1016/j.ejpb.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Ovarian cancer is the most common malignant tumor in women. Shikonin (SHK), an herbal extract from Chinese medicine, shows promise in treating ovarian cancer by inducing reactive oxygen species (ROS). However, its clinical use is limited by poor tumor targeting and low bioavailability, and its therapeutic potential is further compromised by the elevated levels of antioxidants such as glutathione (GSH) within tumor cells. In this study, a novel formulation of ROS-responsive micelles loaded with SHK was developed using hyaluronic acid-phenylboronic acid pinacol ester conjugation (HA-PBAP) for targeted therapy of ovarian cancer through disruption of intracellular redox homeostasis. The SHK@HA-PBAP exhibits targeted delivery to ovarian cancer cells through the interaction between HA and CD44 receptors. Upon internalization by cancer cells, the high levels of intracellular ROS triggered the degradation of SHK@HA-PBAP and simultaneously released SHK and generated GSH scavenger quinone methide (QM). The SHK and QM released from the SHK@HA-PBAP effectively induce the production of ROS and deplete intracellular GSH, leading to the disruption of intracellular redox homeostasis and subsequent induction of cell death. These characteristics collectively inhibit the growth of ovarian cancer. In vitro and in vivo studies have demonstrated that SHK@HA-PBAP micelles exhibit superior antitumor efficacy compared to free SHK in both A2780 cells and A2780 tumor-bearing mice. The ROS-responsive SHK@HA-PBA presents a promising therapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Kangyuan Hu
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Xiuhua Li
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Zhaodan Tan
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Yan Shi
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China.
| |
Collapse
|
3
|
Barati A, Moghimi S, Taghavi Zanjani K, Rohani M, Sohrabi Hesar M, Arfaie A, Ghezelche Khamsiyan M, Mahmoudi J, Sadigh-Eteghad S. Acute Administration of Edaravone Improves Cognitive Impairment in a Mouse Model of mPFC Ischemia: Crosstalk Between Necroptosis, Neuroinflammation, and Antioxidant Defense. Mol Neurobiol 2024:10.1007/s12035-024-04541-6. [PMID: 39448519 DOI: 10.1007/s12035-024-04541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Edaravone (Eda), a well-known free radical scavenger, has been reported as a possible therapeutic agent for ischemic stroke patients' recovery. This study aimed to investigate the effects of time-dependent treatment with Eda on medial prefrontal cortex (mPFC) ischemia. Mice were randomly allocated into six groups: control, sham, normal saline, Eda-I, Eda-II, and Eda-III. After induction of a photothrombotic ischemia in the mPFC region, Eda-I, Eda-II, and Eda-III groups received 3 mg/kg Eda intraperitoneally at the times of 0, 2, and 6 h post-surgery. After 1 day of recovery, the mice underwent behavioral tests (open field, novel object recognition, and T-maze). Next, necroptosis, NOD-like receptor protein 3 (NLRP3), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related protein levels were measured in the lesioned area using western blot analysis. For double confirmation, IL-1β and IL-18 were also assessed by immunofluorescence in the area. Further, histological evaluations were performed to measure tissue damage. The results showed that mPFC ischemia impaired recognition and spatial working memory without affecting locomotor activity, while immediate Eda administration improved cognitive impairments. Furthermore, acute Eda treatment reduced RIP1, RIP3, and MLKL levels, inhibited NLRP3 inflammasome proteins (NLRP3, ASC, and Cas1), decreased IL-1β and IL-18, upregulated Nrf2 and its targets (NQO-1 and HO-1), and diminished tissue damage. Our results highlighted the effects of acute administration of Eda post-stroke on improving cognitive impairments by suppressing necroptosis and NLRP3 inflammasome pathways and activating the Nrf2 antioxidant defense mechanism.
Collapse
Affiliation(s)
- Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moghimi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kiana Taghavi Zanjani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mojde Rohani
- Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mehri Sohrabi Hesar
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Arian Arfaie
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Wang Y, Yuan H, Fang R, Zhang R, Wang WJ. Unveiling the cytotoxicity of a new gold(I) complex towards hepatocellular carcinoma by inhibiting TrxR activity. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1537-1548. [PMID: 39314165 DOI: 10.3724/abbs.2024155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is an aggressive malignancy with limited therapeutic options. In this study, we assess a collection of newly designed gold(I) phosphine complexes. Remarkably, the compound GC002 exhibits the greatest toxicity to HCC cells and outperforms established medications, such as sorafenib and auranofin, in terms of antitumor efficacy. GC002 triggers irreversible necroptosis in HCC cells by increasing the intracellular accumulation of reactive oxygen species (ROS). Mechanistically, GC002 significantly suppresses the activity of thioredoxin reductase (TrxR), which plays a crucial role in regulating redox homeostasis and is often overexpressed in HCC by binding directly to the enzyme. Our in vivo xenograft study confirms that GC002 possesses remarkable antitumor activity against HCC without severe side effects. These findings not only highlight the novel mechanism of controlling necroptosis via TrxR and ROS but also identify GC002 as a promising candidate for the further development of antitumor agents targeting HCC.
Collapse
Affiliation(s)
- Yuan Wang
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Haokun Yuan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ruiqin Fang
- The School of Life Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ran Zhang
- Faculty of Science and Engineering, University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Wei-Jia Wang
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361104, China
| |
Collapse
|
5
|
Zhu H, Zhang H, Zhao XJ, Zhang L, Liu X, Zhang ZY, Ren YZ, Feng Y. Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia. J Neuroimmune Pharmacol 2024; 19:48. [PMID: 39196455 DOI: 10.1007/s11481-024-10138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/27/2024] [Indexed: 08/29/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial activation and neuroinflammation are key cellular events that determine the outcome of TBI, especially neuronal and cognitive function. Studies have suggested that the metabolic characteristics of microglia dictate their inflammatory response. The pyruvate kinase isoform M2 (PKM2), a key glycolytic enzyme, is involved in the regulation of various cellular metabolic processes, including mitochondrial metabolism. This suggests that PKM2 may also participate in the regulation of microglial activation during TBI. Therefore, the present study aimed to evaluate the role of PKM2 in regulating microglial activation and neuroinflammation and its effects on cognitive function following TBI. A controlled cortical impact (CCI) mouse model and inflammation-induced primary mouse microglial cells in vitro were used to investigate the potential effects of PKM2 inhibition and regulation. PKM2 was significantly increased during the acute and subacute phases of TBI and was predominantly detected in microglia rather than in neurons. Our results demonstrate that shikonin and TEPP-46 can inhibit microglial inflammation, improving mitochondria, improving mouse behavior, reducing brain defect volume, and alleviating pathological changes after TBI. There is a difference in the intervention of shikonin and TEPP-46 on PKM2. Shikonin directly inhibits General PKM2; TEPP-46 can promote the expression of PKM2 tetramer. In vitro experiments, TEPP-46 can promote the expression of PKM2 tetramer, enhance the interaction between PKM2 and MFN2, improve mitochondria, alleviate neuroinflammation. General inhibition and tetramerization activation of PKM2 attenuated cognitive function caused by TBI, whereas PKM2 tetramerization exhibited a better treatment effect. Our experiments demonstrated the non-metabolic role of PKM2 in the regulation of microglial activation following TBI. Both shikonin and TEPP-46 can inhibit pro-inflammatory factors, but only TEPP-46 can promote PKM2 tetramerization and upregulate the release of anti-inflammatory factors from microglia.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Jing Zhao
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Lingyuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yi-Zhi Ren
- Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China, 262 North Zhongshan Road.
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210009, China, Baiziting 42.
| |
Collapse
|
6
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
8
|
Robert M, Kennedy BK, Crasta KC. Therapy-induced senescence through the redox lens. Redox Biol 2024; 74:103228. [PMID: 38865902 PMCID: PMC11215421 DOI: 10.1016/j.redox.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.
Collapse
Affiliation(s)
- Matius Robert
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Depierre P, Ginet V, Truttmann AC, Puyal J. Neuronal autosis is Na +/K +-ATPase alpha 3-dependent and involved in hypoxic-ischemic neuronal death. Cell Death Dis 2024; 15:363. [PMID: 38796484 PMCID: PMC11127954 DOI: 10.1038/s41419-024-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.
Collapse
Affiliation(s)
- Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
10
|
Gautam S, Lapčík L, Lapčíková B. Pharmacological Significance of Boraginaceae with Special Insights into Shikonin and Its Potential in the Food Industry. Foods 2024; 13:1350. [PMID: 38731721 PMCID: PMC11082953 DOI: 10.3390/foods13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Shikonin is a naphthoquinone pigment present in the hairy roots of the plant species from the Boraginaceae family. The compound has been well investigated for its highly efficient medicinal, antioxidant, and antimicrobial properties. Various extraction methodologies have been employed to maximise yield while minimising waste production of shikonin and its derivatives. Despite substantial research on shikonin and Boraginaceae plants, a research gap persists in the food industry and extraction technologies. This review addresses crucial aspects of shikonin deserving of further exploration. It begins by elucidating the attributes of the Boraginaceae plants and their medicinal traits in folklore. It proceeds to focus on the roots of the plant and its medicinal properties, followed by extraction procedures explored in the last fifteen years, emphasising the novel technologies that have been chosen to improve the yield extract while minimising extraction times. Furthermore, this review briefly outlines studies employing cell culture techniques to enhance in vitro shikonin production. Lastly, attention is directed towards research in the food industry, particularly on shikonin-loaded biodegradable films and the antioxidant activity of shikonin. This review concludes by summarising the future potential in food science and prominent research gaps in this field.
Collapse
Affiliation(s)
- Shweta Gautam
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 76001 Zlín, Czech Republic; (S.G.); or (B.L.)
| | - Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 76001 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Barbora Lapčíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 76001 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
11
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
12
|
Xie W, Li Y, Guo Z, Lu J, Li G, Zhang Z, Zhang F, Wei Y, Wang X, Zhao L. FePd Nanozyme- and SKN-Encapsulated Functional Lipid Nanoparticles for Cancer Nanotherapy via ROS-Boosting Necroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18411-18421. [PMID: 38584383 DOI: 10.1021/acsami.3c18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell necroptosis has presented great potential, acting as an effective approach against tumor apoptotic resistance, and it could be further enhanced via accompanying reactive oxygen species (ROS) overexpression. However, whether overproduced ROS assists the necroptotic pathway remains unclear. Thus, iron-palladium nanozyme (FePd NZ)- and shikonin (SKN)-encapsulated functional lipid nanoparticles (FPS-LNPs) were designed to investigate the ROS overexpression-enhanced SKN-induced necroptosis. In this system, SKN acts as an effective necroptosis inducer for cancer cells, and FePd NZ, a sensitive Fenton reaction catalyst, produces extra-intracellular ROS to reinforce the necroptotic pathway. Both in vitro and in vivo antitumor evaluation revealed that FPS-LNPs presented the best tumor growth inhibition efficacy compared with FP-LNPs or SKN-LNPs alone. Meanwhile, induced necroptosis by FPS-LNPs can further trigger the release of damage-associated molecular patterns (DAMPs) and antigens from dying tumor cells to activate the innate immune response. Taking biosafety into consideration, this study has provided a potential nanoplatform for cancer nanotherapy via inducing necroptosis to avoid apoptosis resistance and activate CD8+ T cell immune response.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fangming Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
14
|
Ye Y, Liu B, Wang Z, Liu L, Zhang Q, Zhang Q, Jiang W. Sodium p-perfluorous nonenoxybenzene sulfonate induces ROS-mediated necroptosis by directly targeting catalase in HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168446. [PMID: 37949132 DOI: 10.1016/j.scitotenv.2023.168446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used as a substitute for perfluorooctane sulfonic acid (PFOS) because of its high surface activity and low cost, but the knowledge of its biological effects is still limited. In this study, we compared the toxic effects of OBS and PFOS on human hepatoma cells (HepG2). OBS resulted in lower cell viability, higher ROS levels, and more severe necrosis than PFOS, indicating that OBS caused higher cytotoxicity than PFOS. In this process, OBS induced a burst of ROS and downregulation of catalase (CAT). OBS-induced oxidative stress was recovered after the CAT overexpression, but the CAT levels were not reversed after N-acetylcysteine (NAC) pretreatment. This indicates that the downregulated CAT is an upstream signal of the ROS burst. Moreover, drug affinity targeting assay, spectroscopic analysis and molecular docking were conducted, showing that OBS directly targeted CAT and therefore downregulated CAT. In addition, we found that OBS-induced necrosis is RIP1/RIP3-dependent programmed necroptosis. In summary, OBS directly targets CAT to reduce CAT levels and induces oxidative stress and necroptosis. Our findings are helpful to understand the toxicity of OBS and to evaluate the safety of OBS as a substitute for PFOS.
Collapse
Affiliation(s)
- Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zijian Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
15
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Chen D, Li Q, Xu Y, Wei Y, Li J, Zhu X, Li H, Lu Y, Liu X, Yan D. Leveraging a disulfidptosis‑related lncRNAs signature for predicting the prognosis and immunotherapy of glioma. Cancer Cell Int 2023; 23:316. [PMID: 38066643 PMCID: PMC10709922 DOI: 10.1186/s12935-023-03147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Gliomas, a prevalent form of primary brain tumors, are linked with a high mortality rate and unfavorable prognoses. Disulfidptosis, an innovative form of programmed cell death, has received scant attention concerning disulfidptosis-related lncRNAs (DRLs). The objective of this investigation was to ascertain a prognostic signature utilizing DRLs to forecast the prognosis and treatment targets of glioma patients. METHODS RNA-seq data were procured from The Cancer Genome Atlas database. Disulfidptosis-related genes were compiled from prior research. An analysis of multivariate Cox regression and the least absolute selection operator was used to construct a risk model using six DRLs. The risk signature's performance was evaluated via Kaplan-Meier survival curves and receiver operating characteristic curves. Additionally, functional analysis was carried out using GO, KEGG, and single-sample GSEA to investigate the biological functions and immune infiltration. The research also evaluated tumor mutational burden, therapeutic drug sensitivity, and consensus cluster analysis. Reverse transcription quantitative PCR was conducted to validate the expression level of DRLs. RESULTS A prognostic signature comprising six DRLs was developed to predict the prognosis of glioma patients. High-risk patients had significantly shorter overall survival than low-risk patients. The robustness of the risk model was validated by receiver operating characteristic curves and subgroup survival analysis. Risk model was used independently as a prognostic indicator for the glioma patients. Notably, the low-risk patients displayed a substantial decrease in the immune checkpoints, the proportion of immune cells, ESTIMATE and immune score. IC50 values from the different risk groups allowed us to discern three drugs for the treatment of glioma patients. Lastly, the potential clinical significance of six DRLs was determined. CONCLUSIONS A novel six DRLs signature was developed to predict prognosis and may provide valuable insights for patients with glioma seeking novel immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, 400010, Chongqing, China
| | - Yuan Xu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yanfei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jianguo Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yan Lu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Tian H, Shang H, Chen Y, Wu B, Wang C, Wang X, Cheng W. Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7079-7092. [PMID: 38050474 PMCID: PMC10693983 DOI: 10.2147/ijn.s435104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Background Apoptosis resistance of hepatocellular carcinoma (HCC) often leads to treatment failure. Nonetheless, overcoming the resistance of HCC to apoptosis by inducing necroptosis of tumor cells to bypass the apoptotic pathway may be a promising treatment strategy. Sonodynamic therapy (SDT) has broad prospects in disease treatment because of its noninvasive characteristic and spatiotemporal control. The combination of SDT and shikonin in the treatment of HCC is expected to be a new tumor treatment method that can overcome apoptosis resistance. Methods In this study, the antitumor effect was evaluated using normal liver cell line WRL68, HCC cell line HepG2 and HepG2 xenograft mouse models. Indocyanine green (ICG) was loaded on nanobubbles (NBs) to construct ICG-loaded nanobubbles (ICG-NBs). Combined sonosensitizer nanoplatforms with ultrasound (US) to achieve efficient SDT, the combination of SDT and shikonin in treating HCC can activate shikonin-induced necroptosis. As a result, tumor cells that produced apoptosis resistance were destroyed by necroptosis. Results The results indicated a successful preparation of ICG-NBs with a uniform particle size of 273.0 ± 118.9 nm spherical structures. ICG-NB-mediated SDT, in combination with shikonin treatment, inhibited the viability, invasion, and migration of tumor cells. SDT + shikonin treatment group caused a substantial increase in necroptotic cells. The increased degree of tumor necrosis and the upregulated expression of receptor-interacting protein 3 kinase were observed in vivo studies, which indicated that the antitumor effect was accompanied by enhanced necroptosis in the SDT + shikonin treatment group. Conclusion ICG-NB-mediated SDT combined with shikonin inhibits the growth of HCC by increasing the necroptosis of tumor cells. Therefore, this combination therapy is a promising treatment strategy against the specific cancer.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
18
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
19
|
Du S, Liang H, Zhou L, Chen C, Sun R, Zhang J, Meng X, Gao A. Effect of doramectin on programmed cell death pathway in glioma cells. Clin Transl Oncol 2023; 25:2871-2883. [PMID: 37084153 DOI: 10.1007/s12094-023-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/04/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Doramectin (DRM) is a kind of avermectin drugs, and it has been shown that DRM has anti-cancer effects. However, the molecular mechanism of DRM in programmed cell death (PCD) aspects is still unclear. The objective of this study was to confirm whether DRM induced PCD in glioma cells. METHODS In this experiment, the MTT assay and Ki-67 assay were used to detect in vitro cell viability and in vivo tumor proliferation. Then, the effect of DRM on PCD was analyzed by transcriptome comparison. Next, Endogenous apoptosis was detected by transmission electron microscopy (TEM), the DNA gel electrophoresis, JC-1 assay, western blotting and qRT-PCR. Meanwhile, necroptosis was detected by TEM, Hoechst 33342, FITC and PI staining assay, western blotting. RESULTS We found DRM induced apoptosis through Bcl-2/Bax/Caspase-3 pathway. And, DRM induced ROS overproduction, then ROS caused necroptosis through RIPK1/RIPK3/MLKL pathway, Mitochondria acted as a bridge between the two pathways. CONCLUSION Our research provided new insight with the function of anti-cancer of DRM. These results demonstrated DRM may be used as potential therapeutic agents inducing apoptosis and necroptosis for cancer therapy.
Collapse
Affiliation(s)
- Songlin Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Zhou
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ruimeng Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiangyi Meng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Aili Gao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
21
|
Tong Y, Wu Y, Ma J, Ikeda M, Ide T, Griffin CT, Ding XQ, Wang S. Comparative mechanistic study of RPE cell death induced by different oxidative stresses. Redox Biol 2023; 65:102840. [PMID: 37566944 PMCID: PMC10440584 DOI: 10.1016/j.redox.2023.102840] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Oxidative stress is hypothesized to drive the progression of age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cell layer is important for supporting the function of retina and is particularly susceptible to oxidative stress-induced cell death. How RPE cells die in AMD, especially in geographic atrophy (GA), a late stage of dry AMD, is still controversial. The goal of this study is to compare the features and mechanisms of RPE cell death induced by different oxidative stresses, to identify potential universal therapeutic targets for GA. RPE cell death was induced both in vitro and ex vivo by 4-Hydroxynonenal (4-HNE), a major product of lipid peroxidation, sodium iodate (NaIO3) that has been widely used to model RPE cell death in dry AMD, a ferroptosis inducer RAS-selective lethal 3 (RSL3) or a necroptosis inducer shikonin. We found that RPE necroptosis and ferroptosis show common and distinct features. Common features include receptor-interacting protein kinase (RIPK)1/RIPK3 activation and lipid reactive oxygen species (ROS) accumulation, although lipid ROS accumulation is much milder during necroptosis. This supports cross talk between RPE ferroptosis and necroptosis pathways and is consistent with the rescue of RPE necroptosis and ferroptosis by RIPK1 inhibitor Necrostatin-1 (Nec-1) or in Ripk3-/- RPE explants. Distinct feature includes activated mixed lineage kinase domain like pseudokinase (MLKL) that is translocated to the cell membrane during necroptosis, which is not happening in ferroptosis. This is consistent with the failure to rescue RPE ferroptosis by MLKL inhibitor necrosulfonamide (NSA) or in Mlkl-/- RPE explants. Using this framework, we found that 4-HNE and NaIO3 induced RPE cell death likely through necroptosis based on the molecular features and the rescuing effect by multiple inhibitors. Our studies suggest that multiple markers and inhibitors are required to distinguish RPE necroptosis and ferroptosis, and that necroptosis inhibitor Nec-1 could be a potential therapeutic compound for GA since it inhibits RIPK1/RIPK3 activation and lipid ROS accumulation occurred in both necroptosis and ferroptosis pathways.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yinga Wu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Courtney T Griffin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, 70118, USA; Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
22
|
Gupta P, Singh A, Verma AK, Kant S, Pandey AK, Mishra A, Khare P, Prakash V. Nanoencapsulation of Docetaxel Induces Concurrent Apoptosis and Necroptosis in Human Oral Cancer Cells (SCC-9) via TNF-α/RIP1/RIP3 Pathway. Indian J Clin Biochem 2023; 38:351-360. [PMID: 37234186 PMCID: PMC10205939 DOI: 10.1007/s12291-022-01055-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Human oral squamous cell carcinoma is the sixth most frequent malignant cancer, with an unacceptably high death rate that affects people's health. Albeit, there are several clinical approaches for diagnosing and treating oral cancer they are still far from ideal. We previously synthesised and characterised the docetaxel nanoformulation (PLGA-Dtx) and discovered that docetaxel nanoencapsulation may suppress oral cancer cells. The goal of this study was to figure out the mechanism involved in the suppression of oral cancer cell proliferation. We discovered that PLGA-Dtx inhibited SCC-9 cell growth considerably as compared to free docetaxel (Dtx), and that the viability of SCC-9 cells treated with PLGA-Dtx was decreased dose-dependently. MTT assay showed that PLGA-Dtx selectively inhibited the growth of PBMCs from oral cancer patients while sparing PBMCs from normal healthy controls. Further, flow cytometry analysis showed that PLGA-Dtx induced apoptosis and necroptosis in SCC-9 cells. G2/M cell cycle arrest has been confirmed on exposure of PLGA-Dtx for 24 h in SCC-9 cells. Interestingly, western blot investigation found that PLGA-Dtx increased the amounts of necroptic proteins and apoptosis-related proteins more efficiently than Dtx. Furthermore, PLGA-Dtx was more effective in terms of ROS generation, and mitochondrial membrane potential depletion. Pretreatment with necroptosis inhibitor Nec-1 efficiently reversed the ROS production and further recover MMP caused by PLGA-Dtx. Overall, this study revealed a mechanistic model of therapeutic response for PLGA-Dtx in SCC-9 cells and proposed its potency by inducing cell death via activation of concurrent apoptosis and necroptosis in SCC-9 cells via TNF-α/RIP1/RIP3 and caspase-dependent pathway.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Arpita Singh
- Department of Pharmacology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh 226010 India
| | - Ajay Kumar Verma
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Surya Kant
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Anuj Kumar Pandey
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Anupam Mishra
- Department of Otorhinolaryngology & Head Neck Surgery, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Puneet Khare
- Flow Cytometry Facility, Central Instrumentation Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Ved Prakash
- Department of Pulmonary & Critical Care Medicine, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| |
Collapse
|
23
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
24
|
Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur J Pharmacol 2023:175537. [PMID: 36871663 DOI: 10.1016/j.ejphar.2023.175537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Glioma is the most frequent and most malignant tumor of the central nervous system (CNS),accounting for about 50% of all CNS tumor and approximately 80% of the malignant primary tumors in the CNS. Patients with glioma benefit from surgical resection, chemo- and radio-therapy. However these therapeutical strategies do not significantly improve the prognosis, nor increase survival rates owing to restricted drug contribution in the CNS and to the malignant characteristics of glioma. Reactive oxygen species (ROS) are important oxygen-containing molecules that regulate tumorigenesis and tumor progression. When ROS accumulates to cytotoxic levels, this can lead to anti-tumor effects. Multiple chemicals used as therapeutic strategies are based on this mechanism. They regulate intracellular ROS levels directly or indirectly, resulting in the inability of glioma cells to adapt to the damage induced by these substances. In the current review, we summarize the natural products, synthetic compounds and interdisciplinary techniques used for the treatment of glioma. Their possible molecular mechanisms are also presented. Some of them are also used as sensitizers: they modulate ROS levels to improve the outcomes of chemo- and radio-therapy. In addition, we summarize some new targets upstream or downstream of ROS to provide ideas for developing new anti-glioma therapies.
Collapse
|
25
|
Ushijima H, Monzaki R. An in vitro evaluation of the antioxidant activities of necroptosis and apoptosis inhibitors: the potential of necrostatin-1 and necrostatin-1i to have radical scavenging activities. Pharmacol Rep 2023; 75:490-497. [PMID: 36719636 DOI: 10.1007/s43440-023-00450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Necroptosis inhibitors, including necrostatin-1 (Nec-1), are attracting attention as potential therapeutic agents against various diseases, such as acute lung injury, chronic obstructive pulmonary disease, acute kidney injury, nonalcoholic fatty liver, and neurodegenerative disease, where necroptosis is thought to act as a contributing factor. Nec-1 suppresses necroptosis by inhibiting receptor-interacting protein (RIP) 1 kinase and can also reduce reactive oxygen species (ROS) production; however, the underlying molecular mechanisms mediating ROS reduction remain unclear. METHODS The antioxidant effects of necroptosis inhibitors, including Nec-1 and apoptosis inhibitors, were quantified by performing a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Nec-1-related compounds were subsequently assayed for cupric ion-reducing capacity and superoxide dismutase (SOD)-like activity. RESULTS Considering all examined apoptosis and necroptosis inhibitors, Nec-1and Nec-1i exhibited antioxidant activity in DPPH radical scavenging assay. In the cupric ion-reducing capacity assay, Nec-1i showed stronger antioxidant capacity than Nec-1. In the SOD-like activity assay, both Nec-1 and Nec-1i were found to have stronger antioxidant capacity than ascorbic acid (IC50 = 4.6 ± 0.040 and 61 ± 0.54 µM, respectively). CONCLUSION These results suggest that Nec-1 and Nec-1i may exhibit direct radical scavenging ability against superoxide anions, independent of RIP1 inhibition.
Collapse
Affiliation(s)
- Hironori Ushijima
- Department of Analytical Biochemistry, School of Pharmacy, Iwate Medical University, 1-1-1, Idaidori, Shiwa-Gun, Yahaba, Iwate, 0283694, Japan.
| | - Rina Monzaki
- Department of Analytical Biochemistry, School of Pharmacy, Iwate Medical University, 1-1-1, Idaidori, Shiwa-Gun, Yahaba, Iwate, 0283694, Japan
| |
Collapse
|
26
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Ju X, Zhang H, Wang J, Sun Z, Guo L, Wang Q. Shikonin triggers GSDME-mediated pyroptosis in tumours by regulating autophagy via the ROS-MAPK14/p38α axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154596. [PMID: 36610142 DOI: 10.1016/j.phymed.2022.154596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Shikonin (SK), a botanical drug extracted from Lithospermum erythrorhizon, has been shown to inhibit tumour growth through apoptosis and necrosis. However, whether SK induces pyroptosis in cancer cells is still unknown. PURPOSE This study aims to investigated the mechanisms of SK-induced pyroptosis in tumour cells and mice. METHODS In vivo and in vitro methods were used in this study. Cell deaths were analysed by LDH and CCK-8 assay and western blotting. To investigated the signalling pathway of SK-induced pyroptosis, various genes expressions were supressed by shRNA or inhibitors. High-sensitivity mass spectrometry assay was used to identified potential factors that regulate GSDME-mediated pyroptosis. Finally, a mouse model was used to investigate the effect of SK administration on tumour growth in vivo. RESULTS The activation of BAX/caspase-3 signalling was essential for GSDME-mediated pyroptosis by SK. Mechanistically, the intracellular reactive oxygen species (ROS) generation induced by SK treatment initiated GSDME-dependant pyroptosis. SK stimulation induced protective autophagy in a ROS-dependant manner, and repressed autophagy significantly enhanced SK-induced pyroptosis. Moreover, MAPK14/p38α, a ROS sensor, modulated SK-induced autophagy and ultimately affected GSDME-dependant pyroptosis. CONCLUSION Here, for the first time we demonstrated that SK treatment induced GSDME-dependant pyroptosis in tumour cells. Our results demonstrated that SK initiates ROS signalling to drive pyroptosis in cancer cells.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jiayou Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
29
|
Cao Y, Wang HB, Ni CJ, Chen SL, Wang WT, Wang LR. Necrostatin-1 prevents skeletal muscle ischemia reperfusion injury by regulating Bok-mediated apoptosis. J Chin Med Assoc 2023; 86:26-33. [PMID: 36599139 DOI: 10.1097/jcma.0000000000000806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Receptor interacting serine/threonine kinase 1 (RIPK1) mediates apoptosis by regulating the classic proapoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Although Bcl-2-related ovarian killer (Bok) is structurally similar to Bak and Bax, it is unclear whether it mediates apoptosis in skeletal muscle ischemia reperfusion (IR) injury. We hypothesized that by regulating Bok-mediated apoptosis, inhibiting RIPK1 with necrostatin-1 would reduce skeletal muscle IR injury. METHODS Rats were randomized into four groups: sham (SM), IR, IR treated with necrostatin-1 (NI), or vehicle dimethyl sulfoxide (DI). For the IR group, the right femoral artery was clamped for 4 hours and then reperfused for 4 hours, and for the NI and DI groups, necrostatin-1 (1.65 mg/kg) and the equal volume of dimethyl sulfoxide were intraperitoneally administered prior to IR induction. The structural damage of muscle tissue and protein expression of Bok, Bcl-2, and cleaved caspase-3 were investigated, and apoptotic cells were identified with terminal dUTP nick-end labeling (TUNEL) staining. In vitro, human skeletal muscle cells (HSMCs) were exposed to 6 hours of oxygen-glucose deprivation followed by normoxia for 6 hours to establish an oxygen-glucose deprivation/reoxygenation (OGD/R) model. To determine the role of Bok, cell viability, lactate dehydrogenase (LDH) release, and flow cytometry were examined to demonstrate the effects of necrostatin-1 and Bok knockdown on the OGD/R insult of HSMCs. RESULTS Necrostatin-1 pretreatment markedly reduced IR-induced muscle damage and RIPK1, Bok, and cleaved caspase-3 expression, whereas upregualted Bcl-2 expression (p < 0.05). Furthermore, necrostatin-1 prevented mitochondrial damage and decreased TUNEL-positive muscle cells (p < 0.05). In vitro, HSMCs treated with necrostatin-1 showed reduced Bok expression, increased cell viability, and reduced LDH release in response to OGD/R (p < 0.05), and Bok knockdown significantly blunted the OGD/R insult in HSMCs. CONCLUSION Necrostatin-1 prevents skeletal muscle from IR injury by regulating Bok-mediated apoptosis.
Collapse
Affiliation(s)
- Yu Cao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hong-Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chun-Jue Ni
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-Li Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Zhejiang, China
| | - Liang-Rong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
30
|
Liu M, Li H, Yang R, Ji D, Xia X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation 2022; 19:262. [PMID: 36289519 PMCID: PMC9608931 DOI: 10.1186/s12974-022-02626-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2022] Open
Abstract
Background Glaucoma, the major cause of irreversible blindness worldwide, is characterized by progressive degeneration of retinal ganglion cells (RGCs). Current treatments for glaucoma only slow or partially prevent the disease progression, failing to prevent RGCs death and visual field defects completely. Glutamate excitotoxicity via N-methyl-d-aspartic acid (NMDA) receptors plays a vital role in RGCs death in glaucoma, which is often accompanied by oxidative stress and NLRP3 inflammasome activation. However, the exact mechanisms remain unclear. Methods The glutamate-induced R28 cell excitotoxicity model and NMDA-induced mouse glaucoma model were established in this study. Cell counting kit-8, Hoechst 33342/PI dual staining and lactate dehydrogenase release assay were performed to evaluate cell viability. Annexin V-FITC/PI double staining was used to detect apoptosis and necrosis rate. Reactive oxygen species (ROS) and glutathione (GSH) were used to detect oxidative stress in R28 cells. Levels of proinflammatory cytokines were measured by qRT-PCR. Transmission electron microscopy (TEM) was used to detect necroptotic morphological changes in RGCs. Retinal RGCs numbers were detected by immunofluorescence. Hematoxylin and eosin staining was used to detect retinal morphological changes. The expression levels of RIP1, RIP3, MLKL and NLRP3 inflammasome-related proteins were measured by immunofluorescence and western blotting. Results We found that glutamate excitotoxicity induced necroptosis in RGCs through activation of the RIP1/RIP3/MLKL pathway in vivo and in vitro. Administration of the RIP3 inhibitor GSK872 and RIP1 inhibitor necrostatin-1 (Nec-1) prevented glutamate-induced RGCs loss, retinal damage, neuroinflammation, overproduction of ROS and a decrease in GSH. Furthermore, after suppression of the RIP1/RIP3/MLKL pathway by GSK872 and Nec-1, glutamate-induced upregulation of key proteins involved in NLRP3 inflammasome activation, including NLRP3, pro-caspase-1, cleaved-caspase-1, and interleukin-1β (IL-1β), was markedly inhibited. Conclusions Our findings suggest that the RIP1/RIP3/MLKL pathway mediates necroptosis of RGCs and regulates NLRP3 inflammasome activation induced by glutamate excitotoxicity. Moreover, GSK872 and Nec-1 can protect RGCs from necroptosis and suppress NLRP3 inflammasome activation through inhibition of RIP1/RIP3/MLKL pathway, conferring a novel neuroprotective treatment for glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02626-4.
Collapse
Affiliation(s)
- Mengyuan Liu
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Haibo Li
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Rongliang Yang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Dan Ji
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Xiaobo Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| |
Collapse
|
31
|
Li W, Fu H, Fang L, Chai H, Gao T, Chen Z, Qian S. Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy. Front Oncol 2022; 12:1025067. [PMID: 36387145 PMCID: PMC9641271 DOI: 10.3389/fonc.2022.1025067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 10/04/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy that lacks effective therapeutic interventions. Ferroptosis is a newly discovered form of cell death that has shown great potential for MM therapy. As a proteasome inhibitor and necroptosis inducer, shikonin (SHK) performs dual functions in MM cells. However, whether SHK inhibits the development of MM via ferroptosis or any other mechanism remains elusive. Here, we provide evidence that SHK treatment was capable of inducing ferroptosis and immunogenic cell death (ICD) in MM. The results showed that SHK treatment induced lactate dehydrogenase release, triggered cell death, evoked oxidative stress, and enhanced ferrous iron and lipid peroxidation levels. Furthermore, treatment with ferroptosis inhibitors reversed SHK-induced cell death, which indicated that ferroptosis contributed to this phenomenon. Meanwhile, ferroptosis was accompanied by the extracellular release of Adenosine 5'-triphosphate (ATP) and High mobility group protein B1 (HMGB1), which are characteristics of ICD. Further investigation showed that glutamic-oxaloacetic transaminase 1 (GOT1) acted as a critical mediator of SHK-induced ferroptosis by promoting ferritinophagy. In conclusion, our findings suggest that SHK exerts ferroptotic effects on MM by regulating GOT1-mediated ferritinophagy. Thus, SHK is a potential therapeutic agent for MM.
Collapse
Affiliation(s)
- Wenxia Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangjie Fu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyuan Fang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianwen Gao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenzhen Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenxian Qian
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Huang Z, Ding Y, Luo Y, Chen M, Zeng Z, Zhang T, Sun Y, Huang Y, Zhao C. ROS-triggered cycle amplification effect: A prodrug activation nanoamplifier for tumor-specific therapy. Acta Biomater 2022; 152:367-379. [PMID: 36084924 DOI: 10.1016/j.actbio.2022.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Selective in situ activation of prodrugs or generation of bioactive drugs is an important approach to reducing the side effects of chemotherapy. Herein, a tailored ROS-activable prodrug nanomedicine (Cu-SK@DTC-PPB) was developed as the prodrug activation nanoamplifier for highly selective antitumor therapy. Cu-SK@DTC-PPB was rationally constructed by the diethyldithiocarbamate (DTC) prodrug DTC-PPB and the nanoscale coordinated framework Cu-SK based on copper and the ROS generator shikonin (SK). Cu2+, SK and DTC were kept in the inactive state in the fabricated Cu-SK@DTC-PPB. In the presence of ROS within tumors, DTC-PPB can be activated to release less cytotoxic DTC, which can rapidly chelate Cu2+ from the Cu-SK framework to synthesize highly cytotoxic Cu(DTC)2 and induce SK to release in a cascade. The released SK can generate ROS to increase the intracellular ROS level, further activating DTC-PPB to release more DTC. That is, Cu-SK@DTC-PPB can undergo a self-amplifying positive feedback loop to induce numerous bioactive Cu(DTC)2 formation and SK release triggered by a small amount of ROS within the tumor microenvironment, which endows the transformation of "less toxic-to-high toxic" and thus significantly improve its selectivity towards tumors. Therefore, this study provides a new strategy of prodrug activation for tumor therapy with high efficiency and low toxicity. STATEMENT OF SIGNIFICANCE: Owing to the striking difference in ROS level between cancer cells and normal cells, ROS-responsive prodrugs are regarded as a promising approach for tumor-specific therapy. However, the stability and responsiveness of prodrugs are hard to balance. Preferable sensitivity may cause premature activation while favorable stability may lead to incomplete prodrug activation and insufficient active drug release. This study provides a tailored ROS-responsive prodrug activation nanoamplifier with favorable stability and effective prodrug activation capacity. The nanoamplifier can undergo a self-amplifying positive feedback loop to achieve numerous bioactive drugs generation in situ under ROS triggers within the tumor microenvironment, showing the enhanced antitumor therapeutic effect. Thus, this study provides a new strategy for prodrug activation and tumor-specific therapy.
Collapse
Affiliation(s)
- Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yue Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
33
|
Fan Y, Lu J, Yu Z, Qu X, Guan S. 1,3-Dichloro-2-propanol-Induced Renal Tubular Cell Necroptosis through the ROS/RIPK3/MLKL Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10847-10857. [PMID: 36000575 DOI: 10.1021/acs.jafc.2c02619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), as a food pollutant, exists in a variety of foods. Studies have shown that it has nephrotoxicity. In the study, we found that 1,3-DCP caused renal injury with necroptosis in C57BL/6J mice. The mechanism of 1,3-DCP-caused nephrotoxicity was further explored in NRK-52E cells in vitro. We found that 1,3-DCP caused cell necroptosis with the increase in lactate dehydrogenase (LDH) levels and the expressions of RIPK3 and MLKL. But pretreatment with a ROS inhibitor N-acetyl-l-cysteine (NAC), a RIPK3 inhibitor GSK'872, or RIPK3 gene silencing alleviated 1,3-DCP-induced cell necroptosis. The data indicated that 1,3-DCP induced necroptosis through the ROS/RIPK3/MLKL pathway in NRK-52E cells. In further mechanistic studies, we explored how 1,3-DCP induced ROS production. We found that 1,3-DCP inhibited the expressions of nuclear and cytoplasmic Nrf2. But pretreatment with an Nrf2 activator dimethyl fumarate (DMF) up-regulated the expressions of nuclear and cytoplasmic Nrf2 and down-regulated ROS levels and RIPK3 and MLKL expressions. We also examined the effects of mitophagy on 1,3-DCP-induced ROS. The data manifested that 1,3-DCP suppressed mitophagy in NRK-52E cells by decreasing LC3-II, Pink1, and Parkin levels, increasing p62 levels, and decreasing colocalization of LC3 and Mito-Tracker Red. Pretreatment with an autophagy activator rapamycin (Rapa) decreased 1,3-DCP-induced ROS. Taken together, our data identified that 1,3-DCP caused renal necroptosis through the ROS/RIPK3/MLKL pathway.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Zelin Yu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
34
|
Wang X, Fan L, Wang X, Luo T, Liu L. Cyclophilin A contributes to shikonin-induced glioma cell necroptosis and promotion of chromatinolysis. Sci Rep 2022; 12:14675. [PMID: 36038617 PMCID: PMC9424531 DOI: 10.1038/s41598-022-19066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Shikonin induces glioma cell death via necroptosis, a caspase-independent programmed cell death pathway that is chiefly regulated by receptor-interacting serine/threonine protein kinase1 (RIP1) and 3 (RIP3). Chromatinolysis is considered as one of the key events leading to cell death during necroptosis. It is usually accompanied with nuclear translocation of AIF and formation of γ-H2AX. Cyclophilin A (CypA) is reported to participate in the nuclear translocation of AIF during apoptosis. However, it remains unclear whether CypA contributes to necroptosis and regulation of chromatinolysis. In this study, our results revealed for the first time that shikonin promoted time-dependent CypA activation, which contributed to nuclear translocation of AIF and γ-H2AX formation. In vitro studies showed that knockdown of CypA by siRNA or inhibition of CypA by its specific inhibitor, cyclosporine A (CsA), not only significantly mitigated shikonin-induced glioma cell death, but also prevented chromatinolysis. Mechanistically, activated CypA targeted mitochondria and triggered mitochondrial superoxide overproduction, which then promoted AIF translocation from mitochondria into the nucleus by depolarizing the mitochondria and intensified the formation of γ-H2AX by promoting intracellular accumulation of ROS. Additionally, the CypA in the nucleus can form DNA degradation complexes with AIF and γ-H2AX, which also promote the execution of chromatinolysis. Thus, we demonstrate that CypA contributes to shikonin-induced glioma cell necroptosis and promotion of chromatinolysis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Liwen Fan
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Tianfei Luo
- Department of Neurology, First Hospital of Jilin University, Changchun, China.
| | - Linlin Liu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
35
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
36
|
Xia P, Huang Y, Chen G. A novel signature based on necroptosis-related long non-coding RNAs for predicting prognosis of patients with glioma. Front Oncol 2022; 12:940220. [PMID: 36033510 PMCID: PMC9399791 DOI: 10.3389/fonc.2022.940220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Necroptosis is closely related to the occurrence and development of tumors, including glioma. A growing number of studies indicate that targeting necroptosis could be an effective treatment strategy against cancer. Long non-coding RNA (lncRNA) is also believed to play a pivotal role in tumor epigenetics. Therefore, it is necessary to identify the functions of necroptosis-related lncRNAs in glioma. In this study, the transcriptome and clinical characteristic data of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were collected, and the differentially expressed necroptosis-related lncRNAs in TCGA that have an impact on overall survival (OS) were screened out to construct risk score (RS) formula, which was verified in CGGA. A nomogram was constructed to predict the prognosis of glioma patients based on clinical characteristics and RS. In addition, Gene Set Enrichment Analysis (GSEA) was used to analyze the main enrichment functions of these necroptosis-related lncRNAs and the immune microenvironment. A total of nine necroptosis-related lncRNAs have been identified to construct the RS formula, and the Kaplan–Meier (K-M) survival analysis showed significantly poorer outcomes in the high RS group in both TCGA and CGGA databases. Moreover, the receiver operating characteristic (ROC) curve shows that our prediction RS model has good predictability. Regarding the analysis of the immune microenvironment, significant differences were observed in immune function and immune checkpoint between the high RS group and the low RS group. In conclusion, we constructed a necroptosis-related lncRNA RS model that can effectively predict the prognosis of glioma patients and provided the theoretical basis and the potential therapeutic targets for immunotherapy against gliomas.
Collapse
Affiliation(s)
- Pengfei Xia
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Gang Chen,
| |
Collapse
|
37
|
Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, Xin Y, Jiang X. Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms. Front Pharmacol 2022; 13:921070. [PMID: 35935861 PMCID: PMC9355528 DOI: 10.3389/fphar.2022.921070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress refers to the imbalance between oxidation and antioxidant activity in the body. Oxygen is reduced by electrons as part of normal metabolism leading to the formation of various reactive oxygen species (ROS). ROS are the main cause of oxidative stress and can be assessed through direct detection. Oxidative stress is a double-edged phenomenon in that it has protective mechanisms that help to destroy bacteria and pathogens, however, increased ROS accumulation can lead to host cell apoptosis and damage. Glioma is one of the most common malignant tumors of the central nervous system and is characterized by changes in the redox state. Therapeutic regimens still encounter multiple obstacles and challenges. Glioma occurrence is related to increased free radical levels and decreased antioxidant defense responses. Oxidative stress is particularly important in the pathogenesis of gliomas, indicating that antioxidant therapy may be a means of treating tumors. This review evaluates oxidative stress and its effects on gliomas, describes the potential targets and therapeutic drugs in detail, and clarifies the effects of radiotherapy and chemotherapy on oxidative stress. These data may provide a reference for the development of precise therapeutic regimes of gliomas based on oxidative stress.
Collapse
Affiliation(s)
- Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
38
|
Sapuleni J, Szymanska M, Meidan R. Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reprod Biol Endocrinol 2022; 20:104. [PMID: 35840944 PMCID: PMC9284863 DOI: 10.1186/s12958-022-00970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.
| |
Collapse
|
39
|
Yu TJ, Shiau JP, Tang JY, Yen CH, Hou MF, Cheng YB, Shu CW, Chang HW. Physapruin A Induces Reactive Oxygen Species to Trigger Cytoprotective Autophagy of Breast Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11071352. [PMID: 35883843 PMCID: PMC9311569 DOI: 10.3390/antiox11071352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Physalis peruviana-derived physapruin A (PHA) is a potent compound that selectively generates reactive oxygen species (ROS) and induces cancer cell death. Autophagy, a cellular self-clearance pathway, can be induced by ROS and plays a dual role in cancer cell death. However, the role of autophagy in PHA-treated cancer cells is not understood. Our study initially showed that autophagy inhibitors such as bafilomycin A1 enhanced the cytotoxic effects of PHA in breast cancer cell lines, including MCF7 and MDA-MB-231. PHA treatment decreased the p62 protein level and increased LC3-II flux. PHA increased the fluorescence intensity of DAPGreen and DALGreen, which are used to reflect the formation of autophagosome/autolysosome and autolysosome, respectively. ROS scavenger N-acetylcysteine (NAC) decreased PHA-elevated autophagy activity, implying that PHA-induced ROS may be required for autophagy induction in breast cancer cells. Moreover, the autophagy inhibitor increased ROS levels and enhanced PHA-elevated ROS levels, while NAC scavenges the produced ROS resulting from PHA and autophagy inhibitor. In addition, the autophagy inhibitor elevated the PHA-induced proportion of annexin V/7-aminoactinmycin D and cleavage of caspase-3/8/9 and poly (ADP-ribose) polymerase. In contrast, NAC and apoptosis inhibitor Z-VAD-FMK blocked the proportion of annexin V/7-aminoactinmycin D and the activation of caspases. Taken together, PHA induced ROS to promote autophagy, which might play an antioxidant and anti-apoptotic role in breast cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
40
|
Li QQ, Chae HS, Kang OH, Kwon DY. Synergistic Antibacterial Activity with Conventional Antibiotics and Mechanism of Action of Shikonin against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23147551. [PMID: 35886892 PMCID: PMC9322759 DOI: 10.3390/ijms23147551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a troublesome pathogen that poses a global threat to public health. Shikonin (SKN) isolated from Lithospermum erythrorhizon (L. erythrorhizon) possesses a variety of biological activities. This study aims to explore the effect of the combined application of SKN and traditional antibiotics on the vitality of MRSA and the inherent antibacterial mechanism of SKN. The synergies between SKN and antibiotics against MRSA and its clinical strain have been demonstrated by the checkerboard assay and the time-kill assay. The effect of SKN on disrupting the integrity and permeability of bacterial cell membranes was verified by a nucleotide and protein leakage assay and a bacteriolysis assay. As determined by crystal violet staining, SKN inhibited the biofilm formation of clinical MRSA strains. The results of Western blot and qRT-PCR showed that SKN could inhibit the expression of proteins and genes related to drug resistance and S. aureus exotoxins. SKN inhibited the ability of RAW264.7 cells to release the pro-inflammatory cytokines TNF-α and IL-6, as measured by ELISA. Our findings suggest that SKN has the potential to be developed as a promising alternative for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
| | - Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| |
Collapse
|
41
|
Dong X, Yang F, Xu X, Zhu F, Liu G, Xu F, Chen G, Cao C, Teng L, Li X, Wang L, Li B. Protective effect of C-phycocyanin and apo-phycocyanin subunit on programmed necrosis of GC-1 spg cells induced by H 2 O 2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1275-1287. [PMID: 35112789 DOI: 10.1002/tox.23482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
C-phycocyanin (C-PC) is an effective antioxidant and has an important value in medical research. Oxidative stress is considered to be one of the main underlying mechanisms of cell death, and reducing oxidative stress is one of the strategies to enhance germ cell viability. Herein, we investigated the protective effect and the mechanism of C-PC and apo-phycocyanin subunit on oxidative stress damage induced by H2 O2 in GC-1 spg cells. C-PC genes were cloned into the pGEX-4T-1 vectorand transformed into Escherichia coli BL21 to achieve the efficient expression of C-PC subunit. GC-1 spg cells were treated with 600 μM H2 O2 for 24 h to establish the oxidative stress damage model. Cell viability was detected by CCK-8. The degree of oxidative stress was detected by testing Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and glutathione (GSH) and Malondialdehyde (MDA) levels. Reactive oxygen species (ROS) was evaluated utilizingby 2', 7'-dichlorofluorescent-diacetate (DCFH-DA). Mitochondrial membrane potential was determined by JC-1. Cell necrosis rate was detected by Annexin V-FITC/PI. Expression of protein was detected by western blot. We found that C-PC and GST-CPC β significantly inhibited H2 O2 -induced oxidative damage of GC-1 spg cells, improved the ability of antioxidation, reduced ROS overproduction, and mitochondrial membrane potential loss, and inhibited the RIP-1/RIP-3/ p-MLKL signaling pathway to reduce the necrosis rate. The results demonstrated that C-PC played a protective role against H2 O2 -induced cell damage, especially its β subunit. This study provides a theoretical basis for C-PC as a potential protective agent of reproductive system.
Collapse
Affiliation(s)
- Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lei Teng
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Reproduction, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Hsu SK, Chu YH, Syue WJ, Lin HYH, Chang WT, Chen JYF, Wu CY, Yen CH, Cheng KC, Chiu CC. The Role of Nonapoptotic Programmed Cell Death — Ferroptosis, Necroptosis, and Pyroptosis — in Pancreatic Ductal Adenocarcinoma Treatment. Front Oncol 2022; 12:872883. [PMID: 35664778 PMCID: PMC9160188 DOI: 10.3389/fonc.2022.872883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer, with a dismal 5-year survival rate of less than 10%. It is estimated that approximately 80% of pancreatic ductal carcinoma (PDAC) patients are diagnosed at an advanced or metastatic stage. Hence, most patients are not appropriate candidates for surgical resection and therefore require systemic chemotherapy. However, it has been reported that most patients develop chemoresistance within several months, partly because of antiapoptotic mechanisms. Hence, inducing alternative programmed cell death (PCD), including ferroptosis, necroptosis or pyroptosis, seems to be a promising strategy to overcome antiapoptosis-mediated chemoresistance. In this review, we shed light on the molecular mechanisms of ferroptosis, necroptosis and pyroptosis and suggest several potential strategies (e.g., compounds and nanoparticles [NPs]) that are capable of triggering nonapoptotic PCD to suppress PDAC progression. In conclusion, these strategies might serve as adjuvants in combination with clinical first-line chemotherapies to improve patient survival rates.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Chu
- Department of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wun-Jyun Syue
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- The Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Kai-Chun Cheng, ; Chien-Chih Chiu,
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Kai-Chun Cheng, ; Chien-Chih Chiu,
| |
Collapse
|
43
|
Dai Y, Liu Y, Li J, Jin M, Yang H, Huang G. Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway. Bioengineered 2022; 13:13906-13918. [PMID: 35706397 PMCID: PMC9275963 DOI: 10.1080/21655979.2022.2086378] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active ingredient of the traditional Chinese medicine comfrey is shikonin, a naphthoquinone compound. The focus of this study was to investigate the effect of shikonin on the proliferation, invasion, migration, and chemoresistance of non-small cell lung cancer (NSCLC) cells, and to explore its underlying molecular biological mechanisms. The results show that shikonin inhibited the viability, proliferation, invasion, and migration of NSCLC cells A549 and PC9, and induced apoptosis. As the inhibitor of pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, shikonin inhibited glucose uptake and the production of lactate, the final metabolite of aerobic glycolysis. In vivo chemotherapeutic assay showed that shikonin reduced the tumor volume and weight in NSCLC mice model and increased the sensitivity to cisplatin chemotherapy. Histoimmunology experiments showed the combination of shikonin and cisplatin downregulated the expression of PKM2 and its transcriptionally regulated downstream gene glucose transporter 1 (Glut1) in tumor tissue. In an assessment of glucose metabolism, micro-PET/CT data showed a combination of shikonin and cisplatin inhibited the fluorodeoxy glucose (18F-FDG) uptake into tumor. Since exosomal PKM2 affected the sensitivity to cisplatin in NSCLC cells, we also demonstrated shikonin could inhibit exosome secretion and exosomal PKM2 through the administration of exosomal inhibitor GW4869. Furthermore, shikonin sensitized cisplatin treatment by reducing the extracellular secretion of exosomal PKM2. In conclusion, we suggest that shikonin not only inhibits PKM2 intracellularly but also reduces glycolytic flux and increases cisplatin sensitivity through the exosomal pathway.
Collapse
Affiliation(s)
- Yitian Dai
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuping Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Li
- Qiqihar Medical University, Qiqihar Heilongjiang, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
44
|
Hyaluronic acid-coated shikonin liposomes for the treatment of triple-negative breast cancer via targeting tumor cells and amplification of oxidative stress. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Liu L, Zhao L, Liu Y, Yu X, Qiao X. Rutin Ameliorates Cadmium-Induced Necroptosis in the Chicken Liver via Inhibiting Oxidative Stress and MAPK/NF-κB Pathway. Biol Trace Elem Res 2022; 200:1799-1810. [PMID: 34091842 DOI: 10.1007/s12011-021-02764-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is a recognized toxic metal and exerts serious hepatotoxicity in animals and humans. Rutin (RUT) is a dietary bioflavonoid with strong antioxidant and anti-inflammatory potential. However, little is known about the alleviating effect of RUT against Cd-induced liver necroptosis. The aim of this study was to ascertain the ameliorative mechanism of RUT on necroptosis triggered by Cd in chicken liver. One hundred twenty-eight 100-day-old Isa hens were randomly divided into four groups: the control group, RUT group, Cd + RUT cotreated group, and Cd group. Cd exposure prominently elevated Cd accumulation and the activities of liver function indicators (ALT and AST). Furthermore, the histopathological results, the overexpression of genes (RIPK1, RIPK3, and MLKL) related to the necroptosis pathway, and low Caspase 8 levels in Cd-exposed chicken liver indicated that Cd intoxication induced necroptosis in chicken liver. Meanwhile, Cd administration drastically increased the levels of oxidizing stress biomarkers (ROS production, MDA content, iNOS activity, and NO generation), and obviously reduced the activities of antioxidant enzymes (SOD, GPx, and CAT) and total antioxidant capacity (T-AOC) in chicken liver. Cd treatment promoted the expression of the main members of the MAPK and NF-κB pathways (JNK, ERK, P38, NF-κB, and TNF-α) and activated heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90). However, RUT application remarkably alleviated these Cd-induced variations and necroptosis injury. Overall, our study demonstrated that RUT might prevent Cd-induced necroptosis in the chicken liver by inhibiting oxidative stress and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China.
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China
| | - Xiaoli Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
46
|
Özdemir BH. Tumor Microenvironment: Necroptosis Switches the Subtype of Liver Cancer While Necrosis Promotes Tumor Recurrence and Progression. EXP CLIN TRANSPLANT 2022; 21:291-298. [PMID: 35297332 DOI: 10.6002/ect.2021.0457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver cancer is a heterogeneous group of solid tumors that include mainly epithelial tumors. As with other solid carcinomas, tumor development results from an accumulation of genetic and epigenetic alterations. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma, derived from malignant transformation of hepatocytes and cholangiocytes, respectively, are 2 primary types of liver cancers. However, it has been shown that the same kind of cell can give rise to different types of cancer, depending on manner of cell death in the tumor microenvironment. In a recent animal study, hepatocytes gave rise to both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Oncogenically activated hepatocytes were shown to give rise to intrahepatic cholangiocarcinoma or hepatocellular carcinoma depending on cell death type of neighboring cells. Hepatocytes within the necroptotic microenvironment gave rise to intrahepatic cholangiocarcinoma; however, hepatocytes harboring the same oncogenic driver gave rise to hepatocellular carcinoma within the apoptotic microenvironment. The hepatic cytokine microenvironment structured by the necroptosis can also switch hepatocellular carcinoma to intrahepatic cholangiocarcinoma independently of the oncogenic drivers. Cell death by necrosis in damaged livers can also lead to development of carcinoma. Cancer cells are known to be resistant to apoptosis as a result of p53 mutation. Therefore, necrosis is the primary cell death pathway in cancer therapy. Necrosis is associated with high levels of angiogenesis, tumor-associated macrophages, and increased inflammation in the tumor microenvironment. Patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma characterized by necrosis and tumor-associated macrophages have reduced overall survival and recurrence-free survival. Cytotoxicity from anticancer therapy can also lead to accelerated necrosis. The content of cells undergoing necrosis triggers cytokine secretion, which designs cancer progression via inflammatory and noninflammatory pathways. Thus, the tumor microenvironment and manner of cell death (necrosis, apoptosis, or necroptosis) are crucial factors in the development of primary liver cancers and tumor progression.
Collapse
Affiliation(s)
- B Handan Özdemir
- From the Pathology Department, Baskent University, Ankara, Turkey
| |
Collapse
|
47
|
Li S, Liu R, Xia S, Wei G, Ishfaq M, Zhang Y, Zhang X. Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113319. [PMID: 35189522 DOI: 10.1016/j.ecoenv.2022.113319] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
This study set out to assess the mitigative effects of curcumin on AFB1-induced necroptosis and inflammation in chicken liver. Ninety-six one-day-old AA broiler chickens were separated into four groups, including control group, AFB1 (1 mg/kg) group, curcumin (300 mg/kg) + AFB1 (1 mg/kg) group and curcumin (300 mg/kg) group. After 28 days treatment, livers were collected for different experimental analyses. The morphological observation results showed obvious necrotic characteristics, including cell swelling, rupture of cell and mitochondrial membranes and inflammation in chicken livers. AFB1 exposure increased oxidative stress index (ROS and MDA) and decreased the antioxidant activity markers (SOD, CAT and GSH) and ATPase activities in chickens' liver. ELISA results showed that AFB1 exposure significantly induced the cytokines (TNF-α, iNOS, IL-6 and IL-1β) release from the liver tissues. While, western blot and qRT-PCR results showed that the protein and mRNA expressions of inflammatory (TLR4/myd88/NF-κB) and necroptosis (RIPK1/RIPK3/MLKL) genes were up-regulated by AFB1 exposure. We suspect that signal crosstalk between TLR4 and TNF-α triggers inflammation and RIPK1/RIPK3 mediating necroptosis in AFB1-induced chicken liver injury. Curcumin can regulate the TLR4/RIPK signaling pathway, reduced oxidative stress biomarkers and inflammatory cytokines levels and attenuated the expression of necroptosis and inflammation genes altered by AFB1 to reduce necroptosis of chicken liver tissue. In conclusion, curcumin can protect against AFB1-induced necroptosis and inflammation by TLR4/RIPK pathway in chicken liver.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Animal Genome Engineering Research Team, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Shun Xia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Huanggang Normal University, 438000 Huanggang, China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
48
|
RIPK1-RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Cell Death Dis 2022; 13:147. [PMID: 35165268 PMCID: PMC8844355 DOI: 10.1038/s41419-022-04587-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are critical regulators of programmed necrosis or necroptosis. However, the role of the RIPK1/RIPK3 signaling pathway in myocardial fibrosis and related diabetic cardiomyopathy is still unclear. We hypothesized that RIPK1/RIPK3 activation mediated myocardial fibrosis by impairing the autophagic flux. To this end, we established in vitro and in vivo models of type 2 diabetes mellitus with high glucose fat (HGF) medium and diet respectively. HGF induced myocardial fibrosis, and impaired cardiac diastolic and systolic function by activating the RIPK1/RIPK3 pathway, which increased the expression of autophagic related proteins such as LC3-II, P62 and active-cathepsin D. Inhibition of RIPK1 or RIPK3 alleviated HGF-induced death and fibrosis of cardiac fibroblasts by restoring the impaired autophagic flux. The autophagy blocker neutralized the effects of the RIPK1 inhibitor necrostatin-1 (Nec-1) and RIPK3 inhibitor GSK872 (GSK). RIPK1/RIPK3 inhibition respectively decreased the levels of RIPK3/p-RIPK3 and RIPK1/p-RIPK1. P62 forms a complex with RIPK1-RIPK3 and promotes the binding of RIPK1 and RIPK3, silencing of RIPK1 decreased the association of RIPK1 with P62 and the binding of P62 to LC3. Furthermore, inhibition of both kinases in combination with a low dose of Nec-1 and GSK in the HGF-treated fibroblasts significantly decreased cell death and fibrosis, and restored the autophagic flux. In the diabetic rat model, Nec-1 (1.65 mg/kg) treatment for 4 months markedly alleviated myocardial fibrosis, downregulated autophagic related proteins, and improved cardiac systolic and diastolic function. In conclusion, HGF induces myocardial fibrosis and cardiac dysfunction by activating the RIPK1-RIPK3 pathway and by impairing the autophagic flux, which is obviated by the pharmacological and genetic inhibition of RIPK1/RIPK3.
Collapse
|
49
|
D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D, Castaldo D, Balestrieri ML. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett 2022; 596:1313-1329. [PMID: 35122251 DOI: 10.1002/1873-3468.14310] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Ergothioneine (Egt) is a dietary amino acid which acts as an antioxidant to protect against aging-related diseases. We investigated the anticancer properties of Egt in colorectal cancer cells (CRC). Egt treatment exerted cytotoxicity in a dose-dependent manner, induced reactive oxygen species accumulation, loss of mitochondrial membrane potential, and upregulation of the histone deacetylase SIRT3. Immunoblotting analysis indicated that the cell death occurred via necroptosis through activation of the RIP1/RIP3/MLKL pathway. An immunoprecipitation assay unveiled that the interaction between the terminal effector in necroptotic signaling MLKL and SIRT3 increased during the Egt treatment. SIRT3 gene silencing blocked the upregulation of MLKL and abolished the ability of Egt to induce necroptosis. The SIRT3-MLKL interaction may mediate the necroptotic effects of Egt in CRC, suggesting the potential of this dietary amino-thione in the prevention of CRC.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy.,Ministero dello Sviluppo Economico (MiSE), Rome, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
50
|
Khamseh ME, Sheikhi A, Shahsavari Z, Ghorbani M, Akbari H, Imani M, Panahi M, Alimohammadi A, Ameri M, Nazem S, Salimi V, Tavakoli-Yaraki M. Evaluation of the expression of necroptosis pathway mediators and its association with tumor characteristics in functional and non-functional pituitary adenomas. BMC Endocr Disord 2022; 22:1. [PMID: 34983494 PMCID: PMC8725329 DOI: 10.1186/s12902-021-00919-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Pituitary adenomas impose a burden of morbidity on patients and characterizing the molecular mechanisms underlying its pathogenesis received remarkable attention. Despite the appealing role of necroptosis as an alternative cell death pathway in cancer pathogenesis, its relevance to pituitary adenoma pathogenesis has yet to be determined that is perused in the current study. METHODS The total number of 109 specimens including pituitary adenomas and cadaveric healthy pituitary tissues were enrolled in the current study. Tumor and healthy pituitary tissues were subjected to RNA extraction and gene analysis using Real-Time PCR. The expression levels of necroptosis markers (RIP1K, RIP3K and, MLKL) and their association with the patient's demographic features were evaluated, also the protein level of MLKL was assessed using immunohistochemistry in tissues. RESULTS Based on our data, the remarkable reduction in RIP3K and MLKL expression were detected in nonfunctional and GH-secreting pituitary tumors compared to pituitary normal tissues. Invasive tumors revealed lower expression of RIP3K and MLKL compared to non-invasive tumors, also the attenuated level of MLKL was associated with the tumor size in invasive NFPA. The simultaneous down-regulation of MLKL protein in pituitary adenoma tissues was observed which was in line with its gene expression. While, RIP1K over-expressed significantly in both types of pituitary tumors which showed no significant correlation with patient's age, gender and tumor size in GHPPA and NFPA group. Notably, MLKL and RIP3K gene expression was significantly correlated in the GHPPA group. CONCLUSIONS According to our data, the reduced expression of necroptosis mediators (RIP3K, MLKL) in pituitary adenoma reinforces the hypothesis that the necroptosis pathway can be effective in regulating the proliferation and growth of pituitary tumor cells and tumor recurrence.
Collapse
Affiliation(s)
- Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Sheikhi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghorbani
- Division of Vascular and Endovascular Neurosurgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Akbari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Imani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Firozgar Hospital, Pathology Department, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Ameri
- Forensic Medicine Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|