1
|
Wang C, Wang G, Song F, Zhao J, Liu Q, Xu J. Antioxidant enzyme Prdx1 inhibits osteoclastogenesis via suppressing ROS and NFATc1 signaling pathways. J Cell Physiol 2024:e31431. [PMID: 39263840 DOI: 10.1002/jcp.31431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bone is a dynamic organ which continuously undergoes remodeling throughout one's lifetime. Cellular production of reactive oxygen species (ROS) is essential for regulating bone homeostasis. Osteoclasts, multinucleated giant cells differentiated from macrophage lineage, are responsible for osteolytic bone conditions which are closely linked to ROS signaling pathways. In this study, an anti-ROS enzyme, peroxiredoxin 1 (Prdx1) was found to be expressed both in bone marrow macrophages and osteoclasts. Recombinant Prdx1 protein was found to dose-dependently inhibit ROS production and osteoclast differentiation. Mechanistically, Prdx1 protein also attenuated NFATc1 activation as well as the expression of C-Fos, V-ATPase-d2, Cathepsin K, and Integrin αV. Collectively, Prdx1 is a negative regulator on osteoclast formation via inhibiting RANKL-mediated ROS activity, thus suggesting its potential application for treating osteoclast related disorders.
Collapse
Affiliation(s)
- Chao Wang
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gang Wang
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Bishop F, Wallace JM, Roper RJ. Sex-specific trisomic Dyrk1a-related skeletal phenotypes during development in a Down syndrome model. Dis Model Mech 2024; 17:dmm050914. [PMID: 39136051 PMCID: PMC11449447 DOI: 10.1242/dmm.050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN 46140, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared R Thomas
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew P Blackwell
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabella Crawford
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Flannery Bishop
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Wallace JM, Roper RJ. Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595804. [PMID: 38826419 PMCID: PMC11142220 DOI: 10.1101/2024.05.24.595804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.
Collapse
Affiliation(s)
- Jonathan M. LaCombe
- Department of Biology, Indiana University-Indianapolis, IN, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | - Jared R. Thomas
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN, USA
| | | |
Collapse
|
4
|
Kalc P, Hoffstaedter F, Luders E, Gaser C, Dahnke R. Approximation of bone mineral density and subcutaneous adiposity using T1-weighted images of the human head. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595163. [PMID: 38826477 PMCID: PMC11142097 DOI: 10.1101/2024.05.22.595163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Bones and brain are intricately connected and scientific interest in their interaction is growing. This has become particularly evident in the framework of clinical applications for various medical conditions, such as obesity and osteoporosis. The adverse effects of obesity on brain health have long been recognised, but few brain imaging studies provide sophisticated body composition measures. Here we propose to extract the following bone- and adiposity-related measures from T1-weighted MR images of the head: an approximation of skull bone mineral density (BMD), skull bone thickness, and two approximations of subcutaneous fat (i.e., the intensity and thickness of soft non-brain head tissue). The measures pertaining to skull BMD, skull bone thickness, and intensi-ty-based adiposity proxy proved to be reliable ( r =.93/.83/.74, p <.001) and valid, with high correlations to DXA-de-rived head BMD values (rho=.70, p <.001) and MRI-derived abdominal subcutaneous adipose volume (rho=.62, p <.001). Thickness-based adiposity proxy had only a low retest reliability ( r =.58, p <.001).The outcomes of this study constitute an important step towards extracting relevant non-brain features from available brain scans.
Collapse
|
5
|
Nandy A, Richards A, Thapa S, Akhmetshina A, Narayani N, Rendina-Ruedy E. Altered Osteoblast Metabolism with Aging Results in Lipid Accumulation and Oxidative Stress Mediated Bone Loss. Aging Dis 2024; 15:767-786. [PMID: 37548937 PMCID: PMC10917552 DOI: 10.14336/ad.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/10/2023] [Indexed: 08/08/2023] Open
Abstract
Cellular aging is associated with dysfunction of numerous tissues affecting multiple organ systems. A striking example of this is related to age-related bone loss, or osteoporosis, increasing fracture incidence. Interestingly, the two compartments of bone, cortical and cancellous or trabecular, rely on different mechanisms for development and maintenance during 'normal' aging. At a cellular level, the aging process disturbs a multitude of intracellular pathways. In particular, alterations in cellular metabolic functions thereby impacting cellular bioenergetics have been implicated in multiple tissues. Therefore, this study aimed to characterize how metabolic processes were altered in bone forming osteoblasts in aged mice compared to young mice. Metabolic flux analyses demonstrated both stromal cells and mature, matrix secreting osteoblasts from aged mice exhibited mitochondrial dysfunction. This was also accompanied by a lack of adaptability or metabolic flexibility to utilize exogenous substrates compared to osteoblasts cultured from young mice. Additionally, lipid droplets accumulated in both early stromal cells and mature osteoblasts from aged mice, which was further depicted as increased lipid content within the bone cortex of aged mice. Global transcriptomic analysis of the bone further supported these metabolic data as enhanced oxidative stress genes were up-regulated in aged mice, while osteoblast-related genes were down-regulated when compared to the young mice. Collectively, these data suggest that aging results in altered osteoblast metabolic handling of both exogenous and endogenous substrates which could contribute to age-related osteoporosis.
Collapse
Affiliation(s)
- Ananya Nandy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alison Richards
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Santosh Thapa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alena Akhmetshina
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| | - Nikita Narayani
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
Mengjia W, Jun J, Xin Z, Jiahao Z, Jie G. GPX4-mediated bone ferroptosis under mechanical stress decreased bone formation via the YAP-TEAD signalling pathway. J Cell Mol Med 2024; 28:e18231. [PMID: 38494855 PMCID: PMC10945084 DOI: 10.1111/jcmm.18231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Fracture of the alveolar bone resorption is a common complication in orthodontic treatment, which mainly caused by extreme mechanical loading. However, the ferroptosis with orthodontic tooth movement(OTM) relationship has not been thoroughly described. We here analysed whether ferroptosis is involved in OTM-associated alveolar bone loss. Mouse osteoblasts (MC-3T3) and knockdown glutathione peroxidase 4 (GPX4) MC-3T3 were stimulated with compressive force loading and ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and the changes in lipid peroxidation morphology, expression of ferroptosis-related factors and osteogenesis levels were detected. After establishing the rat experimental OTM model, the changes in ferroptosis-related factors and osteogenesis levels were reevaluated in the same manner. Ferroptosis was involved in mechanical stress regulating osteoblast remodelling, and Fer-1 and erastin affected osteoblasts under compression force loading. Fer-1 regulated ferroptosis and autophagy in MC-3T3 and promoted bone proliferation. GPX4-dependent ferroptosis stimulated the YAP (homologous oncoproteins Yes-associated protein) pathway, and GPX4 promoted ferroptosis via the YAP-TEAD (transcriptional enhanced associate domain) signal pathway under mechanical compression force. The in vivo experiment results were consistent with the in vitro experiment results. Ferroptosis transpires during the motion of orthodontic teeth, with compression force side occurring earlier than stretch side within 4 h. GPX4 plays an important role in alveolar bone loss, while Fer-1 can inhibit the compression force-side alveolar bone loss. GPX4's Hippo-YAP pathway is activated by the lack of compression force in the lateral alveolar bone.
Collapse
Affiliation(s)
- Wang Mengjia
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Ji Jun
- Department of OrthodonticsNanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing UniversityNanjingChina
| | - Zhang Xin
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Zhang Jiahao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Guo Jie
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| |
Collapse
|
7
|
Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol 2024; 15:1364694. [PMID: 38529481 PMCID: PMC10961341 DOI: 10.3389/fphys.2024.1364694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Low bone mass is a pervasive global health concern, with implications for osteoporosis, frailty, disability, and mortality. Lifestyle factors, including sedentary habits, metabolic dysfunction, and an aging population, contribute to the escalating prevalence of osteopenia and osteoporosis. The application of mechanical load to bone through physical activity and exercise prevents bone loss, while sufficient mechanical load stimulates new bone mass acquisition. Osteocytes, cells embedded within the bone, receive mechanical signals and translate these mechanical cues into biological signals, termed mechano-transduction. Mechano-transduction signals regulate other bone resident cells, such as osteoblasts and osteoclasts, to orchestrate changes in bone mass. This review explores the mechanisms through which osteocyte-mediated response to mechanical loading regulates osteoblast differentiation and bone formation. An overview of bone cell biology and the impact of mechanical load will be provided, with emphasis on the mechanical cues, mechano-transduction pathways, and factors that direct progenitor cells toward the osteoblast lineage. While there are a wide range of clinically available treatments for osteoporosis, the majority act through manipulation of the osteoclast and may have significant disadvantages. Despite the central role of osteoblasts to the deposition of new bone, few therapies directly target osteoblasts for the preservation of bone mass. Improved understanding of the mechanisms leading to osteoblastogenesis may reveal novel targets for translational investigation.
Collapse
Affiliation(s)
| | - Joseph Paul Stains
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
8
|
Hendrixson JA, James A, Akel NS, Laster DJ, Crawford JA, Berryhill SB, Onal M. Loss of chaperone-mediated autophagy does not alter age-related bone loss in male mice. FASEB Bioadv 2024; 6:73-84. [PMID: 38463697 PMCID: PMC10918985 DOI: 10.1096/fba.2023-00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosome-dependent degradation pathway that eliminates proteins that are damaged, partially unfolded, or targeted for selective proteome remodeling. CMA contributes to several cellular processes, including stress response and proteostasis. Age-associated increase in cellular stressors and decrease in CMA contribute to pathologies associated with aging in various tissues. CMA contributes to bone homeostasis in young mice. An age-associated reduction in CMA was reported in osteoblast lineage cells; however, whether declining CMA contributes to skeletal aging is unknown. Herein we show that cellular stressors stimulate CMA in UAMS-32 osteoblastic cells. Moreover, the knockdown of an essential component of the CMA pathway, LAMP2A, sensitizes osteoblasts to cell death caused by DNA damage, ER stress, and oxidative stress. As elevations in these stressors are thought to contribute to age-related bone loss, we hypothesized that declining CMA contributes to the age-associated decline in bone formation by sensitizing osteoblast lineage cells to elevated stressors. To test this, we aged male CMA-deficient mice and controls up to 24 months of age and examined age-associated changes in bone mass and architecture. We showed that lack of CMA did not alter age-associated decline in bone mineral density as measured by dual x-ray absorptiometry (DXA). Moreover, microCT analysis performed at 24 months of age showed that vertebral cancellous bone volume, cortical thickness, and porosity of CMA-deficient and control mice were similar. Taken together, these results suggest that reduction of CMA does not contribute to age-related bone loss.
Collapse
Affiliation(s)
- James A. Hendrixson
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Alicen James
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Nisreen S. Akel
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Dominique J. Laster
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Julie A. Crawford
- Center for Musculoskeletal Disease Research (CMDR)University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of EndocrinologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Stuart B. Berryhill
- Center for Musculoskeletal Disease Research (CMDR)University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of EndocrinologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Melda Onal
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
9
|
Nance RL, Wang X, Sandey M, Matz BM, Thomas A, Smith BF. Single-Nuclei Multiome (ATAC + Gene Expression) Sequencing of a Primary Canine Osteosarcoma Elucidates Intra-Tumoral Heterogeneity and Characterizes the Tumor Microenvironment. Int J Mol Sci 2023; 24:16365. [PMID: 38003552 PMCID: PMC10671194 DOI: 10.3390/ijms242216365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human counterpart, making it an invaluable translational model for uncovering the disease's complexities and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses significant challenges to effective treatment due to the evolution of diverse cell populations that influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity, opening new avenues for therapeutic interventions in both human and canine patients. This study pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the context of a single individual's tumor.
Collapse
Affiliation(s)
- Rebecca L. Nance
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Xu Wang
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Maninder Sandey
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Brad M. Matz
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - AriAnna Thomas
- Department of Nursing, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Bruce F. Smith
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| |
Collapse
|
10
|
Huang HL, Wu CK, Wu DJ, Liu WH, Lee YS, Wu CL. Apoptosis pathways and osteoporosis: An approach to genomic analysis. J Gene Med 2023; 25:e3555. [PMID: 37461161 DOI: 10.1002/jgm.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Osteoporosis is a disease of the bone system that causes a decrease in skeletal density and degrades skeletal tissue. Decreased bone quality, so that bones are easily broken, damaged and fractured, is an important public health problem. Previous studies have shown that the maintenance of adult bone mass is not only due to changes in bone marrow and bone cells. By regulating apoptosis, they change the lifespan of each individual. This study influences understanding of the function of apoptosis in the pathogenesis of osteoporosis and the importance of controlling the mechanisms of osteoporosis. METHODS On the National Institute of Biotechnology Information website, Gene Expression Omnibus (GEO) microarray data and GSE551495 GEO profiles were collected. The gene set enrichment analysis tool was used to confirm the enrichment of genetic sets in relation to the gene set. The collection of C2 gene sets is compiled from the KEGG (https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://www.kegg.jp/kegg/) online database and REACTOME (https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://reactome.org/) pathway analysis. The Search Tool for the Retrieval of Interaction Genes (STRING) website was used to construct and select proteins and genes. The comparative toxicological genomic database (CTD) tools can be used to predict the relationship between apoptosis, osteoporosis-related genes and interactions between central genes and osteoporosis. RESULTS These results generally expand our understanding of the path of apoptosis in osteoporosis. We have discovered genes CASP9, CASP8, CASP3, BAX and TP53 associated with osteoporosis. In activation of KEGG apoptosis and REACTOME, caspase activation through the extrinsic apoptotic signaling pathway is characterized by the identification of a subcollection of C2. Other STRINGs show the formation of protein networks and central gene selection, and CTD can accurately predict the relationship between these apoptosis pathways and central genes. CONCLUSIONS Our research has highlighted the importance of the osteoporosis pathway associated with osteoporosis apoptosis with several analytical approaches. These results have broadened our understanding of the pathways of osteoporosis apoptosis. It is particularly possible to predict the sensitivity and vulnerability to osteoporosis.
Collapse
Affiliation(s)
- Hsiao-Ling Huang
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chung-Ken Wu
- The PhD Program for Aging, China Medical University, Taichung City, Taiwan
| | - Dai-Jia Wu
- Department of Nursing, Lin Shin Hospital, Taichung City, Taiwan
| | - Wen-Hsiu Liu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Shiung Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Office of the Dean, General Institute, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chi-Ling Wu
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli County, Taiwan
| |
Collapse
|
11
|
Rose JP, Schurman CA, King CD, Bons J, Patel SK, Burton JB, O’Broin A, Alliston T, Schilling B. Deep coverage and quantification of the bone proteome provides enhanced opportunities for new discoveries in skeletal biology and disease. PLoS One 2023; 18:e0292268. [PMID: 37816044 PMCID: PMC10564166 DOI: 10.1371/journal.pone.0292268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Dysregulation of cell signaling in chondrocytes and in bone cells, such as osteocytes, osteoblasts, osteoclasts, and an elevated burden of senescent cells in cartilage and bone, are implicated in osteoarthritis (OA). Mass spectrometric analyses provides a crucial molecular tool-kit to understand complex signaling relationships in age-related diseases, such as OA. Here we introduce a novel mass spectrometric workflow to promote proteomic studies of bone. This workflow uses highly specialized steps, including extensive overnight demineralization, pulverization, and incubation for 72 h in 6 M guanidine hydrochloride and EDTA, followed by proteolytic digestion. Analysis on a high-resolution Orbitrap Eclipse and Orbitrap Exploris 480 mass spectrometer using Data-Independent Acquisition (DIA) provides deep coverage of the bone proteome, and preserves post-translational modifications, such as hydroxyproline. A spectral library-free quantification strategy, directDIA, identified and quantified over 2,000 protein groups (with ≥ 2 unique peptides) from calcium-rich bone matrices. Key components identified were proteins of the extracellular matrix (ECM), bone-specific proteins (e.g., secreted protein acidic and cysteine rich, SPARC, and bone sialoprotein 2, IBSP), and signaling proteins (e.g., transforming growth factor beta-2, TGFB2), and lysyl oxidase homolog 2 (LOXL2), an important protein in collagen crosslinking. Post-translational modifications (PTMs) were identified without the need for specific enrichment. This includes collagen hydroxyproline modifications, chemical modifications for collagen self-assembly and network formation. Multiple senescence factors were identified, such as complement component 3 (C3) protein of the complement system and many matrix metalloproteinases, that might be monitored during age-related bone disease progression. Our innovative workflow yields in-depth protein coverage and quantification strategies to discover underlying biological mechanisms of bone aging and to provide tools to monitor therapeutic interventions. These novel tools to monitor the bone proteome open novel horizons to investigate bone-specific diseases, many of which are age-related.
Collapse
Affiliation(s)
- Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Christina D. King
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Sandip K. Patel
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Jordan B. Burton
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Amy O’Broin
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, Unted States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
12
|
Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020297. [PMID: 36837498 PMCID: PMC9962586 DOI: 10.3390/medicina59020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives. Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serve complication of long-term administration of glucocorticoids. Previous experimental studies have shown that ferroptosis might be involved in the pathological process of GIONFH. The purpose of this study is to identify the ferroptosis-related genes and pathways of GIONFH by bioinformatics to further illustrate the mechanism of ferroptosis in SONFH through bioinformatics analysis. Materials and Methods. The GSE123568 mRNA expression profile dataset, including 30 GIONFH samples and 10 non-GIONFH samples, was downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related genes were obtained from the FerrDb database. First, differentially expressed genes (DEGs) were identified between the serum samples from GIONFH cases and those from controls. Ferroptosis-related DEGs were obtained from the intersection of ferroptosis-related genes and DEGs. Only ferroptosis DEGs were used for all analyses. Then, we conducted a Kyoto encyclopedia of genome (KEGG) and gene ontology (GO) pathway enrichment analysis. We constructed a protein-protein interaction (PPI) network to screen out hub genes. Additionally, the expression levels of the hub genes were validated in an independent dataset GSE10311. Results. A total of 27 ferroptosis-related DEGs were obtained between the peripheral blood samples of GIONFH cases and non-GIONFH controls. Then, GO, and KEGG pathway enrichment analysis revealed that ferroptosis-related DEGs were mainly enriched in the regulation of the apoptotic process, oxidation-reduction process, and cell redox homeostasis, as well as HIF-1, TNF, FoxO signaling pathways, and osteoclast differentiation. Eight hub genes, including TLR4, PTGS2, SNCA, MAPK1, CYBB, SLC2A1, TXNIP, and MAP3K5, were identified by PPI network analysis. The expression levels of TLR4, TXNIP and MAP3K5 were further validated in the dataset GSE10311. Conclusion. A total of 27 ferroptosis-related DEGs involved in GIONFH were identified via bioinformatics analysis. TLR4, TXNIP, and MAP3K5 might serve as potential biomarkers and drug targets for GIONFH.
Collapse
|
13
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Matsuzaki K, Hossain S, Wakatsuki H, Tanabe Y, Ohno M, Kato S, Shido O, Hashimoto M. Perilla seed oil improves bone health by inhibiting bone resorption in healthy Japanese adults: A 12-month, randomized, double-blind, placebo-controlled trial. Phytother Res 2023. [PMID: 36637040 DOI: 10.1002/ptr.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
Accumulating evidence suggests the beneficial effect of omega-3 polyunsaturated fatty acids (PUFAs) on bone mineral density (BMD). However, the effects of perilla (Perilla frutescens) seed oil (PO), a rich source of α-linoleic acid (LNA), on human bone have not yet been elucidated. This randomized, double-blind, placebo-controlled trial investigated the effects of long-term PO intake on bone health in Japanese adults. After screening for eligibility, 52 participants (mean age 54.2 ± 6.4 years) were randomly assigned to placebo (n = 25) and PO (n = 27) groups, which received 7.0 ml of olive oil and PO daily, respectively. At baseline and 12-month, quantitative ultrasound of the right calcaneus was measured with an ultrasound bone densitometer and percentage of the Young Adult Mean (%YAM) was calculated. Serum levels of tartrate-resistant acid phosphatase 5b (TRACP-5b), and bone alkaline phosphatase (BALP) were evaluated. In addition, PUFA levels in the erythrocyte plasma membrane (RBC-PM), serum biological antioxidant potential (BAP), and diacron reactive oxygen metabolites (d-ROM) were evaluated. Compared with the placebo group, %YAM levels increased and serum TRACP-5b levels decreased significantly in the PO group at 12-month, while serum BALP levels remained unchanged. Moreover, RBC-PM LNA levels and BAP/d-ROM ratios increased significantly in the PO compared with the placebo group. These results suggest that long-term PO intake may improve age-related BMD decline by suppressing bone resorption and increasing LNA levels.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Bangladesh
| | - Harumi Wakatsuki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yoko Tanabe
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Miho Ohno
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Japan
| | - Setsushi Kato
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
15
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Metzger C, Rau J, Stefanov A, Joseph RM, Allaway HC, Allen MR, Hook MA. Inflammaging and bone loss in a rat model of spinal cord injury. J Neurotrauma 2022; 40:901-917. [PMID: 36226413 DOI: 10.1089/neu.2022.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age and sex matched sham-operated controls. Skeletal parameters, locomotor function and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI-groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that while younger rats may re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared to middle-aged SCI rats with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, while both young and middle-aged female SCI rats had lower bone formation in the subchronic but not chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, while aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex and age dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.
Collapse
Affiliation(s)
- Corinne Metzger
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Josephina Rau
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Parkway, Bryan, Texas, United States, 77807-3260;
| | - Alexander Stefanov
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Pkwy, Bryan, Texas, United States, 77807.,Texas A&M Institute for Neuroscience, 464968, College Station, Texas, United States;
| | - Rose M Joseph
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| | - Heather C Allaway
- Louisiana State University, 5779, School of Kinesiology, Baton Rouge, Louisiana, United States;
| | - Matthew R Allen
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Michelle A Hook
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| |
Collapse
|
17
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Chen JR, Lazarenko OP, Blackburn ML, Chen JF, Randolph CE, Zabaleta J, Schroder K, Pedersen KB, Ronis MJJ. Nox4 expression in osteo-progenitors controls bone development in mice during early life. Commun Biol 2022; 5:583. [PMID: 35701603 PMCID: PMC9198054 DOI: 10.1038/s42003-022-03544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Oxana P. Lazarenko
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Jennifer F. Chen
- grid.411017.20000 0001 2151 0999Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR 72701 USA
| | - Christopher E. Randolph
- grid.488749.eCenter for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Jovanny Zabaleta
- grid.279863.10000 0000 8954 1233Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Katrin Schroder
- grid.7839.50000 0004 1936 9721Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - Kim B. Pedersen
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| | - Martin J. J. Ronis
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| |
Collapse
|
19
|
Hipps D, Dobson PF, Warren C, McDonald D, Fuller A, Filby A, Bulmer D, Laude A, Russell O, Deehan DJ, Turnbull DM, Lawless C. Detecting respiratory chain defects in osteoblasts from osteoarthritic patients using imaging mass cytometry. Bone 2022; 158:116371. [PMID: 35192969 DOI: 10.1016/j.bone.2022.116371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/14/2023]
Abstract
Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of about 30 years onwards. Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. Once the concentration of any pathogenic mitochondrial genome variant exceeds a threshold, respiratory chain deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model is a knock-in mutant that expresses a proof-reading-deficient version of PolgA, a nuclear encoded subunit of mtDNA polymerase. These mice are a useful model of age-related accumulation of mtDNA mutations in humans since their defective proof-reading mechanism leads to a mitochondrial DNA mutation rate 3-5 times higher than in wild-type mice. These mice showed enhanced levels of age-related osteoporosis along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts, we developed a protocol and analysis framework for imaging mass cytometry in bone tissue sections to analyse osteoblasts in situ. By comparing bone tissue sampled at one timepoint from femoral neck of 10 older healthy volunteers aged 40-85 with samples from young patients aged 1-19, we have identified complex I defect in osteoblasts from 6 out of 10 older volunteers, complex II defect in 2 out of 10 older volunteers, complex IV defect in 1 out of 10 older volunteers and complex V defect in 4 out of 10 older volunteers. These observations are consistent with findings from the PolgD257A/D257A mouse model and suggest that respiratory chain deficiency, as a consequence of the accumulation of age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.
Collapse
Affiliation(s)
- Daniel Hipps
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Philip F Dobson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David McDonald
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Fuller
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Filby
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David Bulmer
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Alex Laude
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David J Deehan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
20
|
Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, Riegger J, Tuckermann J, Scharffetter-Kochanek K, Ignatius A. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech 2022; 15:274992. [PMID: 35394023 PMCID: PMC9118037 DOI: 10.1242/dmm.049392] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2−) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging. Summary: Osteoblast-lineage specific Sod2 deficiency in mice leads to increased mtROS, impaired osteoblast function, increased adipogenesis, increased osteoclast activity and increased osteoblast senescence, resulting in bone loss.
Collapse
Affiliation(s)
- Astrid M Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Xiangxu Chen
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan-Moritz Ramge
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jana Riegger
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
21
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Pan W, Zheng L, Gao J, Ye L, Chen Z, Liu S, Pan B, Fang J, Lai H, Zhang Y, Ni K, Lou C, He D. SIS3 suppresses osteoclastogenesis and ameliorates bone loss in ovariectomized mice by modulating Nox4-dependent reactive oxygen species. Biochem Pharmacol 2022; 195:114846. [PMID: 34801525 DOI: 10.1016/j.bcp.2021.114846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Osteoporosis is a metabolic disorder of reduced bone mass, accompanied by the deterioration of the bone microstructure, resulting in increased brittleness and easy fracture. Its pathogenesis can be explained by mainly excessive osteoclast formation or bone resorption hyperfunction. Oxidative stress is intricately linked with bone metabolism, and the maturation and bone resorption of osteoclasts respond to intracellular ROS levels. SIS3 is a small-molecule compound that selectively suppresses Smad3 phosphorylation in the TGF-β/Smad signaling pathway and attenuates the ability to bind to target DNA. Several studies have reported that Smad3 plays a significant role in bone metabolism. However, whether SIS3 can modulate bone metabolism by affecting osteoclastogenesis and the specific molecular mechanisms involved remain unknown. Here, we demonstrated that SIS3 could suppress osteoclastogenesis and ameliorate bone loss in ovariectomized mice. Mechanistically, SIS3 inhibited Smad3 phosphorylation in BMMs, and the deficiency of phosphorylated Smad3 downregulated ROS production and Nox4-dependent expression during osteoclast formation, thereby blocking MAPK phosphorylation and the synthesis of downstream osteoclast marker proteins. Similarly, Nox4 plasmid transfection significantly alleviated osteoclast formation inhibited by SIS3. In addition, we identified the interaction region between Smad3 and Nox4 by ChIP and dual luciferase reporter assays. Collectively, we found that SIS3 could inhibit Smad3 phosphorylation, reduce Nox4-dependent ROS generation induced by RANKL, and prevent osteoclast differentiation and maturation, making it a promising alternative therapy for osteoporosis.
Collapse
Affiliation(s)
- Wenzheng Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Jiawei Gao
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Lin Ye
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Shijie Liu
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Bin Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Jiawei Fang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Hehuan Lai
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Yejin Zhang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Kainai Ni
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Chao Lou
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China
| | - Dengwei He
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China.
| |
Collapse
|
23
|
Yang RZ, Xu WN, Zheng HL, Zheng XF, Li B, Jiang LS, Jiang SD. Exosomes derived from vascular endothelial cells antagonize glucocorticoid-induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. J Cell Physiol 2021; 236:6691-6705. [PMID: 33590921 DOI: 10.1002/jcp.30331] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
High dose and long-term steroid treatment can alter antioxidative ability and decrease the viability and function of osteoblasts, leading to osteoporosis and osteonecrosis. Ferroptosis, a new type of cell death characterized by excessive lipid peroxidation due to the downregulation of GPX4 and system Xc- , is involved in glucocorticoid-induced osteoporosis. Endothelial cell-secreted exosomes (EC-Exos) are important mediators of cell-to-cell communication and are involved in many physiological and pathological processes. However, the effect of EC-Exos on osteoblasts exposed to glucocorticoids has not been reported. Here, we explored the role of EC-Exos in glucocorticoid-induced osteoporosis. In vivo and in vitro experiments indicated that EC-Exos reversed the glucocorticoid-induced osteogenic inhibition of osteoblasts by inhibiting ferritinophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
25
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:e2023999118. [PMID: 34161267 PMCID: PMC8237574 DOI: 10.1073/pnas.2023999118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-β) signaling (TβRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TβRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TβRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| | - Stefaan W Verbruggen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- The Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143;
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| |
Collapse
|
27
|
Chaichit S, Sato T, Yu H, Tanaka YK, Ogra Y, Mizoguchi T, Itoh M. Evaluation of Dexamethasone-Induced Osteoporosis In Vivo Using Zebrafish Scales. Pharmaceuticals (Basel) 2021; 14:ph14060536. [PMID: 34205111 PMCID: PMC8228068 DOI: 10.3390/ph14060536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a major cause of secondary osteoporosis, and the pathogenic mechanisms of GIOP remain to be elucidated. Here, we show a rapid dexamethasone-induced osteoporosis animal model using zebrafish scales. Intraperitoneal injection of dexamethasone over a 5-day period suppressed the regeneration of scales. Furthermore, the circularity of the newly formed regenerated scales was also slightly reduced compared to that of the control group on day 5. The changes in bone-related enzymes, such as cathepsin K, tartrate-resistant acid phosphatase (TRAP) for bone resorption, and alkaline phosphatase (ALP) for bone formation, provide insight into the progression of bone diseases; therefore, we further developed a method to measure the activities of cathepsin K, TRAP, and ALP using zebrafish scales. We found that a lysis buffer with detergent at neutral pH under sonication efficiently helped extract these three enzymes with high activity levels. Interestingly, treatment with a dexamethasone injection produced considerably higher levels of cathepsin K activity and a lower Ca/P ratio than those in the control group, suggesting that dexamethasone increased osteoclast activity, with no significant changes in the activities of TRAP and ALP. Our GIOP model and enzyme assay method could help to design better treatments for GIOP.
Collapse
Affiliation(s)
- Siripat Chaichit
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takuto Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Huiqing Yu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Yu-ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
- Correspondence: ; Tel.: +81-43-226-2890
| |
Collapse
|
28
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
29
|
Li D, Liu J, Yang C, Tian Y, Yin C, Hu L, Chen Z, Zhao F, Zhang R, Lu A, Zhang G, Qian A. Targeting long noncoding RNA PMIF facilitates osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. Am J Cancer Res 2021; 11:5585-5604. [PMID: 33859765 PMCID: PMC8039942 DOI: 10.7150/thno.54477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: The migration of mesenchymal osteoprogenitor cells (OPCs) to bone formation surface is the initial step of osteoblastogenesis before they undergo osteoblast differentiation and maturation for governing bone formation. However, whether the migration capacity of OPCs is compromised during aging and how it contributes to the aging-related bone formation reduction remain unexplored. In the present study, we identified a migration inhibitory factor (i.e., long noncoding RNA PMIF) and examined whether targeting lnc-PMIF could facilitate osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. Methods: Primary OPCs from young (6-momth-old) and aged (18-momth-old) C57BL/6 mice and stable lnc-PMIF knockdown/overexpression cell lines were used for in vitro and in vivo cell migration assay (i.e., wound healing assay, transwell assay and cell intratibial injection assay). RNA pulldown-MS/WB and RIP-qPCR were performed to identify the RNA binding proteins (RBPs) of lnc-PMIF. Truncations of lnc-PMIF and the identified RBP were engaged to determine the interaction motif between them by RNA pulldown-WB and EMSA. By cell-based therapy approach and by pharmacological approach, small interfering RNA (siRNA)-mediated lnc-PMIF knockdown were used in aged mice. The cell migration ability was evaluated by transwell assay and cell intratibial injection assay. The bone formation was evaluated by microCT analysis and bone morphometry analysis. Results: We reported that the decreased bone formation was accompanied by the reduced migration capacity of the bone marrow mesenchymal stem cells (BMSCs, the unique source of OPCs in bone marrow) in aged mice. We further identified that the long non-coding RNA PMIF (postulated migration inhibitory factor) (i.e., lnc-PMIF) was highly expressed in BMSCs from aged mice and responsible for the reduced migration capacity of aged OPCs to bone formation surface. Mechanistically, we found that lnc-PMIF could bind to human antigen R (HuR) for interrupting the HuR-β-actin mRNA interaction, therefore inhibit the expression of β-actin for suppressing the migration of aged OPCs. We also authenticated a functionally conserved human lncRNA ortholog of the murine lnc-PMIF. By cell-based therapy approach, we demonstrated that replenishing the aged BMSCs with small interfering RNA (siRNA)-mediated lnc-PMIF knockdown could promote bone formation in aged mice. By pharmacological approach, we showed that targeted delivery of lnc-PMIF siRNA approaching the OPCs around the bone formation surface could also promote bone formation in aged mice. Conclusion: Toward translational medicine, this study hints that targeting lnc-PMIF to facilitate aged OPCs migrating to bone formation surface could be a brand-new anabolic strategy for aging-related osteoporosis.
Collapse
|
30
|
Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, Jenei-Lanzl Z, Brenner RE, Huber-Lang M, Zaucke F, Schildberg FA, Grässel S. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front Bioeng Biotechnol 2021; 8:624096. [PMID: 33553127 PMCID: PMC7855463 DOI: 10.3389/fbioe.2020.624096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.
Collapse
Affiliation(s)
- Marietta Herrmann
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svitlana Melnik
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Drenka Trivanović
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Shushan Li
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Combalia A, Peris P, Monegal A, Parés A. Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int 2020; 40:2767-2775. [PMID: 32749754 DOI: 10.1111/liv.14630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Osteoporosis is a common complication in patients with primary biliary cholangitis. Both bilirubin and lithocholic acid (LCA) result in detrimental effects on osteoblastic cells, and ursodeoxycholic acid (UDCA) counteracts these outcomes. However, there is no information on the consequences of these retained substances of cholestasis and sera from cholestatic patients in osteocytes. METHODS The impact of bilirubin, LCA, UDCA and serum from jaundiced patients on viability, differentiation, mineralization and apoptosis has been assessed in MLO-Y4 and MLO-A5 osteocyte cell lines. Effects on gene expression were assessed in these cells and in human bone fragments. RESULTS Lithocholic acid 10 μmol/L and bilirubin 50 μmol/L decreased viability in MLO-Y4 and MLO-A5 cells (11% and 53% respectively; P ≤ .01). UDCA alone or combined with LCA or bilirubin increased cell viability. Jaundiced sera decreased cell viability (56%), an effect which was reverted by UDCA. Bilirubin decreased differentiation by 47% in MLO-Y4 (P ≤ .01) and mineralization (87%) after 21 days in MLO-A5 (P ≤ .03). Both bilirubin and LCA increased apoptosis in MLO-Y4, and UDCA diminished the apoptotic effect. Moreover, bilirubin down-regulated RUNX2 and up-regulated RANKL gene expression in bone tissue, MLO-Y4 and MLO-A5 cells, and LCA up-regulated RANKL expression in bone tissue. UDCA 100 μmol/L increased the gene expression of all these genes in bone tissue and MLO-Y4 cells and neutralized the decreased RUNX2 expression induced by bilirubin. CONCLUSION Bilirubin and LCA have damaging consequences in osteocytes by decreasing viability, differentiation and mineralization, increasing apoptosis and modifying gene expression, effects that are neutralized by UDCA.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Núria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Andreu Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Uehara IA, Soldi LR, Silva MJB. Current perspectives of osteoclastogenesis through estrogen modulated immune cell cytokines. Life Sci 2020; 256:117921. [DOI: 10.1016/j.lfs.2020.117921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
|
33
|
Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020; 62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by the loss of bone mass and microarchitecture deterioration of bone tissue, attributed to various factors, including menopause (primary), aging (primary) and adverse effects of relevant medications (secondary). In recent decades, knowledge regarding the etiological mechanisms underpinning osteoporosis emphasizes that bone cellular homeostasis, including the maintenance of cell functions, differentiation, and the response to stress, is tightly regulated by autophagy, which is a cell survival mechanism for eliminating and recycling damaged proteins and organelles. With the important roles in the maintenance of cellular homeostasis and organ function, autophagy has emerged as a potential target for the prevention and treatment of osteoporosis. In this review, we update and discuss the pathophysiology of autophagy in normal bone cell life cycle and metabolism. Then, the alternations of autophagy in primary and secondary osteoporosis, and the accompanied pathological process are discussed. Finally, we discuss current strategies, limitations, and challenges involved in targeting relevant pathways and propose strategies by which such hurdles may be circumvented in the future for their translation into clinical validations and applications for the prevention and treatment of osteoporosis.
Collapse
|
34
|
Makpol S, Abdul Sani NF, Hakimi NH, Ab Rani N, Zakaria SNA, Abd Rasid AF, Gunasekaran G, Mohd Sahardi NFN, Tan JK, Abd Ghafar N, Mad Nordin MF. Zingiber officinale Roscoe Prevents DNA Damage and Improves Muscle Performance and Bone Integrity in Old Sprague Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1-18. [DOI: 10.1155/2020/3823780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Age-related loss of skeletal muscle mass and strength or sarcopenia is attributed to the high level of oxidative stress and inadequate nutritional intake. The imbalance in oxidative status with increased production of free radicals results in damage to the DNA which leads to cell dysfunction. This study aimed to determine the effect of Zingiber officinale Roscoe (ginger) on muscle performance and bone integrity in Sprague Dawley (SD) rats. SD rats aged three (young), nine (adult), and twenty-one (old) months old were treated with either distilled water or ginger extract at a concentration of 200 mg/kg body weight (BW) daily for 3 months via oral gavage. Muscle performance was assessed at 0, 1, 2, and 3 months of treatment by measuring muscle strength, muscle function, and bone integrity while DNA damage was determined by comet assay. Muscle cell histology was analyzed by hematoxylin and eosin (H&E) staining. Young and adult ginger-treated rats showed a significant improvement in muscle strength after 3 months of supplementation. Bone mineral density (BMD) and bone mineral content (BMC) were increased while fat free mass (FMM) was decreased after 3 months of ginger supplementation in young rats but not changed in adult and old ginger supplemented groups. Interestingly, supplementation of ginger for 3 months to the old rats decreased the level of damaged DNA. Histological findings showed reduction in the size of muscle fibre and fascicles with heterogenous morphology of the muscle fibres indicating sarcopenia was evident in old rats. Treatment with ginger extract improved the histological changes even though there was evidence of cellular infiltration (mild inflammation) and dilated blood vessels. In conclusion, Z. officinale Roscoe prevents DNA damage and improves muscle performance and bone integrity in SD rats indicating its potential in alleviating oxidative stress in ageing and thus delaying sarcopenia progression.
Collapse
Affiliation(s)
- Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fathiah Abdul Sani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siti Nor Asyikin Zakaria
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Fais Abd Rasid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fatin Nabilah Mohd Sahardi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Level 18 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Department of Chemical Process Engineering, Universiti Teknologi Malaysia (UTM) Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
35
|
Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:430. [PMID: 32719657 PMCID: PMC7347755 DOI: 10.3389/fendo.2020.00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The field of cell therapy and regenerative medicine can hold the promise of restoring normal tissues structure and function. Additionally, the main targets of stem cell-based therapies are chronic diseases and lifelong disabilities without definite cures such as osteoporosis. Osteoporosis as one of the important causes of morbidity in older men and post-menopausal women is characterized by reduced bone quantity or skeletal tissue atrophy that leads to an increased risk of osteoporotic fractures. The common therapeutic methods for osteoporosis only can prevent the loss of bone mass and recover the bone partially. Nevertheless, stem cell-based therapy is considered as a new approach to regenerate the bone tissue. Herein, mesenchymal stem cells as pivotal candidates for regenerative medicine purposes especially bone regeneration are the most common type of cells with anti-inflammatory, immune-privileged potential, and less ethical concerns than other types of stem cells which are investigated in osteoporosis. Based on several findings, the mesenchymal stem cells effectiveness near to a great extent depends on their secretory function. Indeed, they can be involved in the establishment of normal bone remodeling via initiation of specific molecular signaling pathways. Accordingly, the aim herein was to review the effects of stem cell-based therapies in osteoporosis.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Wei Y, Fu J, Wu W, Wu J. Comparative profiles of DNA methylation and differential gene expression in osteocytic areas from aged and young mice. Cell Biochem Funct 2020; 38:721-732. [PMID: 32526817 DOI: 10.1002/cbf.3539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Altered DNA methylation upon ageing may result in many age-related diseases such as osteoporosis. However, the changes in DNA methylation that occur in cortical bones, the major osteocytic areas, remain unknown. In our study, we extracted total DNA and RNA from the cortical bones of 6-month-old and 24-month-old mice and systematically analysed the differentially methylated regions (DMRs), differentially methylated promoters (DMPs) and differentially expressed genes (DEGs) between the mouse groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DMR-related genes revealed that they were mainly associated with metabolic signalling pathways, including glycolysis, fatty acid and amino acid metabolism. Other genes with DMRs were related to signalling pathways that regulate the growth and development of cells, including the PI3K-AKT, Ras and Rap1 signalling pathways. The gene expression profiles indicated that the DEGs were mainly involved in metabolic pathways and the PI3K-AKT signalling pathway, and the profiles were verified through real-time quantitative PCR (RT-qPCR). Due to the pivotal roles of the affected genes in maintaining bone homeostasis, we suspect that these changes may be key factors in age-related bone loss, either together or individually. Our study may provide a novel perspective for understanding the osteocyte and its relationship with osteoporosis during ageing. SIGNIFICANCE OF THE STUDY: Our study identified age-related changes in gene expressions in osteocytic areas through whole-genome bisulfite sequencing (WGBS) and RNA-seq, providing new theoretical foundations for the targeted treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenjing Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
37
|
Li Y, Zhang Y, Zhang X, Lu W, Liu X, Hu M, Wang D. Aucubin exerts anti-osteoporotic effects by promoting osteoblast differentiation. Aging (Albany NY) 2020; 12:2226-2245. [PMID: 32023550 PMCID: PMC7041723 DOI: 10.18632/aging.102742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a metabolic disease characterized by reduced osteoblast differentiation and proliferation. Oxidative stress plays a role in the pathogenesis of osteoporosis. Aucubin (AU), an iridoid glycoside, was previously shown to promote osteoblast differentiation. We investigated the effects of AU on MG63 human osteoblast-like cells treated with dexamethasone (Dex) or hydrogen peroxide (H2O2) to induce oxidative damage. AU protected MG63 cells against apoptosis, and promoted increased expression of cytokines associated with osteoblast differentiation, including collagen I, osteocalcin (OCN), osteopontin (OPN), and osterix. In Dex- and H2O2-treated MG63 cells, AU also enhanced the expression of anti-oxidative stress-associated factors in the nuclear respiratory factor 2 signaling pathway, including superoxide dismutases 1 and 2, heme oxygenases 1 and 2, and catalase. In vivo, using a Dex-induced mouse model of osteoporosis, AU promoted increased cortical bone thickness, increased bone density, and tighter trabecular bone. Additionally, it stimulated an increase in the expression of collagen I, OCN, OPN, osterix, and phosphorylated Akt and Smads in bone tissue. Finally, AU stimulated the expression of cytokines associated with osteoblast differentiation in bone tissue and serum. Our data indicate AU may have therapeutic efficacy in osteoporosis.
Collapse
Affiliation(s)
- Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqian Lu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
38
|
Broulík P. Sarcoporosis Is a Part of Aging. Prague Med Rep 2019; 120:84-94. [PMID: 31586507 DOI: 10.14712/23362936.2019.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ageing is associated with the accumulation of damage to all the macromolecules within and outside cells leading to progressively more cellular and tissue defects and resulting in age-related frailty, disability and disease. As a result of the aging process the bone deteriorates in composition, structure and function. Age-related musculoskeletal losses are a major public health burden because they can cause physical disability and increased mortality. We tried to find out on a small set of old women, without risk factors for osteoporosis, what caused them the loss of bone minerals. All 492 women had just only one risk factor - the old age. Laboratory findings have shown a decreased serum C telopeptide and low serum alkaline phosphatase circulating markers, used to quantify bone resorption and formation, and very low level of vitamin D. Very low level of vitamin D that disrupted calcium absorption through the intestine, and decreased calcemia increased parathyroid hormone levels with resulting bone effect. The manifestation of physiological aging is worsening eyesight, peripheral neuropathy, depression, worsening of physical condition, skin aging, sarcopenia and bone mineral loss. Senile osteoporosis, which is not caused by known risk factors for osteoporosis, does not appear to be a separate disease, but is part of the physiological process of aging. Treatment of senile osteoporosis should be focused on the control of secondary hyperparathyroidism by administration of vitamin D and calcium. The risk of fractures in the advanced age is determined by a large number of factors ranging from hazards in the home environment to frailty and poor balance.
Collapse
Affiliation(s)
- Petr Broulík
- 3rd Department of Medicine - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
39
|
Lacava G, Laus F, Amaroli A, Marchegiani A, Censi R, Di Martino P, Yanagawa T, Sabbieti MG, Agas D. P62 deficiency shifts mesenchymal/stromal stem cell commitment toward adipogenesis and disrupts bone marrow homeostasis in aged mice. J Cell Physiol 2019; 234:16338-16347. [PMID: 30740681 DOI: 10.1002/jcp.28299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
With advancing age have been observed bone and bone marrow phenotypic alterations due to the impaired bone tissue homeostatic features, involving bone remodeling, and bone marrow niche ontogeny. The complex "inflamm-aging" pathological scenario that culminates with osteopenia and mesenchymal/stromal and hematopoietic stem cell commitment breakdown, is controlled by cellular and molecular intramural components comprising adapter proteins such as the sequestosome 1 (p62/SQSTM1). p62, a "multiway function" protein, has been reported as an effective anti-inflammatory, bone-building factor. In this view, we considered for the first time the involvement of p62 in aging bone and bone marrow of 1 year and 2 years p62-/- mice. Interestingly, p62 deficiency provoked accelerated osteopenia and impaired niche operational activities within the bone marrow. The above findings unearthed the importance of p62 in mesenchymal stem cell maintenance/differentiation schedule in old animals and provide, at least in part, a mechanistic scenario of p62 action.
Collapse
Affiliation(s)
- Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
40
|
Przybylska S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14260] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylwia Przybylska
- Department Food Science and Technology Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. No. 3 Szczecin 71‐459 Poland
| |
Collapse
|
41
|
Hawkes CP, Mostoufi-Moab S. Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone 2019; 119:57-64. [PMID: 29550266 PMCID: PMC6139083 DOI: 10.1016/j.bone.2018.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
Abstract
The relationship between fat, bone and systemic metabolism is a growing area of scientific interest. Marrow adipose tissue is a well-recognized component of the bone marrow milieu and is metabolically distinct from current established subtypes of adipose tissue. Despite recent advances, the functional significance of marrow adipose tissue is still not clearly delineated. Bone and fat cells share a common mesenchymal stem cell (MSC) within the bone marrow, and hormones and transcription factors such as growth hormone, leptin, and peroxisomal proliferator-activated receptor γ influence MSC differentiation into osteoblasts or adipocytes. MSC osteogenic potential is more vulnerable than adipogenic potential to radiation and chemotherapy, and this confers a risk for an abnormal fat-bone axis in survivors following cancer therapy and bone marrow transplantation. This review provides a summary of data from animal and human studies describing the relationship between marrow adipose tissue and hematopoiesis, bone mineral density, bone strength, and metabolic function. The significance of marrow adiposity in other metabolic disorders such as osteoporosis, diabetes mellitus, and estrogen and growth hormone deficiency are also discussed. We conclude that marrow adipose tissue is an active endocrine organ with important metabolic functions contributing to bone energy maintenance, osteogenesis, bone remodeling, and hematopoiesis. Future studies on the metabolic role of marrow adipose tissue may provide the critical insight necessary for selecting targeted therapeutic interventions to improve altered hematopoiesis and augment skeletal remodeling in cancer survivors.
Collapse
Affiliation(s)
- C P Hawkes
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - S Mostoufi-Moab
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA; Perelman School of Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
42
|
Starup-Linde J, Hygum K, Harsløf T, Langdahl B. Type 1 Diabetes and Bone Fragility: Links and Risks. Diabetes Metab Syndr Obes 2019; 12:2539-2547. [PMID: 31819579 PMCID: PMC6899065 DOI: 10.2147/dmso.s191091] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with an increased fracture risk, which is present at young and old age. Reductions in bone mineral density do not explain the increased fracture risk. Novel scanning modalities suggest that structural deficits may contribute to the increased fracture risk. Furthermore, T1D may due to insulinopenia be a state of low bone turnover. However, diabetes complications and comorbidities may influence fracture risk. Patients with T1D are fearful of falls. The diabetes related complications, hypoglycemic events, and antihypertensive treatment may all lead to falls. Thus, the increased fracture risk in T1D seems to be multifactorial, and earlier intervention with antiosteoporotic medication and focus on fall prevention is needed. This systematic review addresses the epidemiology of fractures and osteoporosis in patients with T1D and the factors that influence fracture risk.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Medicine, Region Hospital Horsens, Aarhus, Denmark
- Correspondence: Jakob Starup-Linde Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, Aarhus NDK-8200, DenmarkTel +45 29926952 Email
| | - Katrine Hygum
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Ichimura S, Fukuchi M, Takahara K, Nakaya M, Yoshida K, Mochizuki Y, Fujii K. Autologous bone dust technique for one burr hole surgery to prevent severe skin depression. Clin Neurol Neurosurg 2019; 176:41-43. [DOI: 10.1016/j.clineuro.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/22/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
44
|
Choi JY, Lai JK, Xiong ZM, Ren M, Moorer MC, Stains JP, Cao K. Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. J Bone Miner Res 2018; 33:2059-2070. [PMID: 30001457 PMCID: PMC7739562 DOI: 10.1002/jbmr.3549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) have low bone mass and an atypical skeletal geometry that manifests in a high risk of fractures. Using both in vitro and in vivo models of HGPS, we demonstrate that defects in the canonical WNT/β-catenin pathway, seemingly at the level of the efficiency of nuclear import of β-catenin, impair osteoblast differentiation and that restoring β-catenin activity rescues osteoblast differentiation and significantly improves bone mass. Specifically, we show that HGPS patient-derived iPSCs display defects in osteoblast differentiation, characterized by a decreased alkaline phosphatase activity and mineralizing capacity. We demonstrate that the canonical WNT/β-catenin pathway, a major signaling cascade involved in skeletal homeostasis, is impaired by progerin, causing a reduction in the active β-catenin in the nucleus and thus decreased transcriptional activity, and its reciprocal cytoplasmic accumulation. Blocking farnesylation of progerin restores active β-catenin accumulation in the nucleus, increasing signaling, and ameliorates the defective osteogenesis. Moreover, in vivo analysis of the Zmpste24-/- HGPS mouse model demonstrates that treatment with a sclerostin-neutralizing antibody (SclAb), which targets an antagonist of canonical WNT/β-catenin signaling pathway, fully rescues the low bone mass phenotype to wild-type levels. Together, this study reveals that the β-catenin signaling cascade is a therapeutic target for restoring defective skeletal microarchitecture in HGPS. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Jim K Lai
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zheng-Mei Xiong
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Margaret Ren
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Megan C Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| |
Collapse
|
45
|
BCPA { N, N'-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1. Int J Mol Sci 2018; 19:ijms19113436. [PMID: 30388885 PMCID: PMC6275020 DOI: 10.3390/ijms19113436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that N,N′-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity. In addition, BCPA attenuated the reduction of Pin1 protein during osteoclast differentiation without changing Pin1 mRNA levels. BCPA repressed the expression of osteoclast-related genes, such as DC-STAMP and osteoclast-associated receptor (OSCAR), without altering the mRNA expression of nuclear factor of activated T cells (NFATc1) and cellular oncogene fos (c-Fos). Furthermore, Tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells were significantly decreased by BCPA treatment compared to treatment with the Pin1 inhibitor juglone. These data suggest that BCPA can inhibit osteoclastogenesis by regulating the expression of the DC-STAMP osteoclast fusion protein by attenuating Pin1 reduction. Therefore, BCPA may be used to treat osteoporosis.
Collapse
|
46
|
Takahashi A, Mulati M, Saito M, Numata H, Kobayashi Y, Ochi H, Sato S, Kaldis P, Okawa A, Inose H. Loss of cyclin-dependent kinase 1 impairs bone formation, but does not affect the bone-anabolic effects of parathyroid hormone. J Biol Chem 2018; 293:19387-19399. [PMID: 30366983 DOI: 10.1074/jbc.ra118.004834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Bone mass is maintained by a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Although recent genetic studies have uncovered various mechanisms that regulate osteoblast differentiation, the molecular basis of osteoblast proliferation remains unclear. Here, using an osteoblast-specific loss-of-function mouse model, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates osteoblast proliferation and differentiation. Quantitative RT-PCR analyses revealed that Cdk1 is highly expressed in bone and is down-regulated upon osteoblast differentiation. We also noted that Cdk1 is dispensable for the bone-anabolic effects of parathyroid hormone (PTH). Cdk1 deletion in osteoblasts led to osteoporosis in adult mice due to low bone formation, but did not affect osteoclast formation in vivo Cdk1 overexpression in osteoblasts promoted proliferation, and conversely, Cdk1 knockdown inhibited osteoblast proliferation and promoted differentiation. Of note, we provide direct evidence that PTH's bone-anabolic effects occur without enhancing osteoblast proliferation in vivo Furthermore, we found that Cdk1 expression in osteoblasts is essential for bone fracture repair. These findings may help reduce the risk of nonunion after bone fracture and identify patients at higher risk for nonresponse to PTH treatment. Collectively, our results indicate that Cdk1 is essential for osteoblast proliferation and that it functions as a molecular switch that shifts osteoblast proliferation to maturation. We therefore conclude that Cdk1 plays an important role in bone formation.
Collapse
Affiliation(s)
- Akira Takahashi
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Mieradili Mulati
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masanori Saito
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hoashi Numata
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yutaka Kobayashi
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroki Ochi
- the Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shingo Sato
- the Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Philipp Kaldis
- the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore, and.,the Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore
| | - Atsushi Okawa
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroyuki Inose
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan,
| |
Collapse
|
47
|
Xu M, Su J, Hao J, Zhong N, Zhang Z, Cui R, Li F, Sheng C, Zhang G, Sheng H, Qu S. Positive association between serum uric acid and bone mineral density in Chinese type 2 diabetes mellitus stratified by gender and BMI. J Bone Miner Metab 2018; 36:609-619. [PMID: 29124433 DOI: 10.1007/s00774-017-0877-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has demonstrated that serum uric acid (UA), a natural powerful antioxidant, plays a beneficial role in bone health in the general population. However, few reports are available on the association between serum UA and bone in patients with type 2 diabetes mellitus (T2DM). We therefore investigated whether the benefit of serum UA for bone health was still present in those patients. 626 males and 609 postmenopausal females with T2DM were enrolled in this cross-sectional study. Serum UA concentrations and bone mineral density (BMD) measured at lumbar spine, femoral neck and total hip by dual-energy X-ray absorptiometry were obtained from all subjects. Meanwhile, data on osteoporosis prevalence, glucose metabolism, bone turnover markers and other serum biochemical indexes were collected. After adjustment for potential confounders, the results suggested that serum UA was positively associated with BMD in patients with normal weight, but this positive association varied by gender and skeletal sites in overweight T2DM patients [body mass index (BMI) ≥ 25 kg/m2]. Moreover, significantly lower odds ratios (ORs) for osteoporosis were found in postmenopausal patients with the highest UA tertile and male patients with medium UA tertile [adjusted OR 0.315, 95% confidence interval (CI) 0.170-0.581 for postmenopausal patients; adjusted OR 0.464, 95% CI 0.225-0.955 for male patients]. The positive association between serum UA and BMD found in Chinese T2DM patients may imply that relatively high UA is a protective factor for bone in these patients. Large intervention studies are needed to further confirm the outcomes and provide possible explanations.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junlei Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Hao
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ni Zhong
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyin Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunjun Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Sheng Y, Tang J, Ren K, Manor LC, Cao H. Integrative computational approach to evaluate risk genes for postmenopausal osteoporosis. IET Syst Biol 2018; 12:118-122. [PMID: 29745905 PMCID: PMC8687217 DOI: 10.1049/iet-syb.2017.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 02/01/2024] Open
Abstract
In recent years, numerous studies reported over a hundred of genes playing roles in the etiology of postmenopausal osteoporosis (PO). However, many of these candidate genes were lack of replication and results were not always consistent. Here, the authors proposed a computational workflow to curate and evaluate PO related genes. They integrate large-scale literature knowledge data and gene expression data (PO case/control: 10/10) for the marker evaluation. Pathway enrichment, sub-network enrichment, and gene-gene interaction analysis were conducted to study the pathogenic profile of the candidate genes, with four metrics proposed and validated for each gene. By using the authors' approach, a scalable PO genetic database was developed; including PO related genes, diseases, pathways, and the supporting references. The PO case/control classification supported the effectiveness of the four proposed metrics, which successfully identified eight well-studied top PO genes (e.g. TGFB1, IL6, IL1B, TNF, ESR2, IGF1, HIF1A, and COL1A1) and highlighted one recently reported PO genes (e.g. IFNG). The computational biology approach and the PO database developed in this study provide a valuable resource which may facilitate understanding the genetic profile of PO.
Collapse
Affiliation(s)
- Yingjun Sheng
- Department of Orthopedics, Tongling People's Hospital, Tongling, Anhui Province 244000, People's Republic of China
| | - Jilei Tang
- Department of Orthopedics, Qidong People's Hospital, Nantong 226200, People's Republic of China
| | - Kewei Ren
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400, People's Republic of China.
| | - Lydia C Manor
- Division of Pediatric Surgery, Children's National Health Systems, Washington DC, 20010, USA
| | - Hongbao Cao
- Department of Biology Product, Elsevier Inc, Rockville, MD, 20852, USA
| |
Collapse
|
49
|
Metabolic alterations in the bone tissues of aged osteoporotic mice. Sci Rep 2018; 8:8127. [PMID: 29802267 PMCID: PMC5970270 DOI: 10.1038/s41598-018-26322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related osteoporosis is characterized by reduced bone mineralization and reduced bone strength, which increases the risk of fractures. We examined metabolic changes associated with age-related bone loss by profiling lipids and polar metabolites in tibia and femur bone tissues from young (5 months old) and old (28 months old) male C57BL/6J mice using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. Partial least-squares discriminant analysis showed clear differences in metabolite levels in bone tissues of young and old mice. We identified 93 lipid species, including free fatty acids, sphingolipids, phospholipids, and glycerolipids, that were significantly altered in bone tissues of old mice. In addition, the expression of 26 polar metabolites differed significantly in bone tissues of old mice and young mice. Specifically, uremic toxin metabolite levels (p-cresyl sulfate, hippuric acid, and indoxylsulfate) were higher in bone tissues of old mice than in young mice. The increase in p-cresyl sulfate, hippuric acid, and indoxylsulfate levels were determined using targeted analysis of plasma polar extracts to determine whether these metabolites could serve as potential osteoporosis biomarkers. This study demonstrates that LC-MS-based global profiling of lipid and polar metabolites can elucidate metabolic changes that occur during age-related bone loss and identify potential biomarkers of osteoporosis.
Collapse
|
50
|
Lim R, Li L, Chew N, Yong EL. The prenylflavonoid Icaritin enhances osteoblast proliferation and function by signal transducer and activator of transcription factor 3 (STAT-3) regulation of C-X-C chemokine receptor type 4 (CXCR4) expression. Bone 2017; 105:122-133. [PMID: 28863947 DOI: 10.1016/j.bone.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
In this study, we examined the effects of a natural prenylflavonoid Icaritin (ICT), on human osteoblast proliferation and osteogenic function. We observed that ICT dose-dependently enhanced osteoblast proliferation by ~15% over a 7day period. This increase in cell proliferation was associated with corresponding increases in osteoblast functions as measured by ALP secretion, intracellular calcium ions influx and calcium deposition. These anabolic effects were associated with a 4-fold increase in CXCR4 mRNA and protein expression. Silencing of CXCR4 protein expression using small interfering RNA reversed ICT-induced increase in cell proliferation, ALP activity and calcium deposition. Interestingly, we observed that ICT dose-dependently increased STAT-3 phosphorylation; and this resulted in increased binding of phosphorylated STAT-3 to the promoter region of the CXCR4 gene, to increase CXCR4 protein expression. Furthermore, we found that inhibition of STAT-3 phosphorylation resulted in a decrease in CXCR4 protein expression; whilst increasing phosphorylation of STAT-3 using a constitutive active STAT-3 vector significantly increased CXCR4 levels. Moreover, the chemical inhibition of STAT-3 phosphorylation annulled our previously observed ICT-induced increases of osteoblast proliferation and function. Finally, in a rat model of estrogen-deficient osteoporosis, ICT restored both osteoblasts numbers and CXCR4 expression. Taken together, both cellular and animal models support the novel findings that ICT; through the phosphorylation of STAT-3, up-regulated CXCR4, to increase osteoblast proliferation and function.
Collapse
Affiliation(s)
- Rzl Lim
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| | - L Li
- Department of Medicine, National University of, Singapore, Singapore
| | - N Chew
- Department of Medicine, National University of, Singapore, Singapore; Division of Infectious Diseases, National University Hospital Singapore, Singapore.
| | - E L Yong
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| |
Collapse
|