1
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
2
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
3
|
Meriç N, Kar E, Kar F. 4-Methylthiazole triggers apoptosis and mitochondrial disruption in HL-60 cells. Mol Biol Rep 2024; 51:997. [PMID: 39297923 DOI: 10.1007/s11033-024-09939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.
Collapse
Affiliation(s)
- Neslihan Meriç
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Turkey.
| | - Ezgi Kar
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Kar
- Faculty of Medicine, Department of Biochemistry, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
4
|
Zhang Y, Yu C, Peng C, Peng F. Potential Roles and Mechanisms of Curcumin and its Derivatives in the Regulation of Ferroptosis. Int J Biol Sci 2024; 20:4838-4852. [PMID: 39309443 PMCID: PMC11414380 DOI: 10.7150/ijbs.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered iron-dependent mode of oxidatively regulated cell death. It is not only associated with a wide range of diseases, but it is also a key component of many signaling pathways. In general, ferroptosis is a double-edged sword. On one hand, it induces nonapoptotic destruction of cancer cells, but on the other, it may lead to organ damage. Therefore, ferroptosis can be drug-targeted as a novel means of therapy. The properties of curcumin have been known for many years. It has a positive impact on the treatment of diseases such as cancer and inflammation. In this review, we focus on the regulation of ferroptosis by curcumin and its derivatives and review the main mechanisms by which curcumin affects ferroptosis. In conclusion, curcumin is a ferroptosis inducer with excellent anticancer efficacy, although it also exhibits organ protective and reparative effects by acting as a ferroptosis inhibitor. The differential regulation of ferroptosis by curcumin may be related to dose and cell type.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
6
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
7
|
Zhang MJ, Shi M, Yu Y, Wang H, Ou R, Ge RS. CP41, a novel curcumin analogue, induces apoptosis in endometrial cancer cells by activating the H3F3A/ proteasome-MAPK signaling pathway and enhancing oxidative stress. Life Sci 2024; 338:122406. [PMID: 38176583 DOI: 10.1016/j.lfs.2023.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
AIMS Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mengna Shi
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Kumar M, Jaiswal VD, Pangam DS, Bhatia P, Kulkarni A, Dongre PM. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123469. [PMID: 37778178 DOI: 10.1016/j.saa.2023.123469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Targeted drug delivery (TDD) is a method of delivering optimum concentrations of pharmaceutical substances in the tissue to achieve the desired therapeutic effect. Hence, TDD systems are considered as an emerging strategy to deliver the drug at the specific site of the tissues/cells. The nanoparticle-protein corona as a drug delivery vehicle has demonstrated immense benefits including potential theragnostic, improved pharmacodynamics and targeted drug delivery. In the present investigation, efforts have been to establish stable and functionalized Bovine serum albumin-gold nanoparticle (BSA-GNP) corona (conjugates) using a Direct Current (DC) electric field. With the application of DC electric field (DEF) across the BSA-GNP solution, the formation of BSA-GNP corona/conjugate takes place which was characterized using various biophysical techniques such a Dynamic Light Scattering (DLS), UV Visible spectroscopy, Fluorescence spectroscopy, electrophoresis, etc. Furthermore, the DEF engineered BSA-GNP corona was loaded/interacted with curcumin (CUR). The size of the BSA-GNP corona was increased with increasing DC voltage (5-30 V) at constant concentration of BSA. The strong and stable binding of curcumin with BSA-GNP corona was revealed by the techniques used in the investigation; however, binding affinity of CUR was decreased for 30 V DEF exposed BSA-GNP conjugate. The biocompatible experimental data confirms the nontoxic nature of BSA-GNP corona. This investigation adds a new and novel physical method for the preparation of protein-nanoparticle corona for various applications including drug delivery.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Vinod D Jaiswal
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Dhanashri S Pangam
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Pushpinder Bhatia
- Department of Physics, Guru Nanak College, Sion, Mumbai 400037, India
| | - Amol Kulkarni
- Vasantdada Patil Dental College & Hospital, Kavalpur Sangli 416 306, India
| | - P M Dongre
- Pravara Gramin Education Society's ACS Senior College, Satral, Ta. Rahuri. Dist, Ahmednagar 431711, India(1).
| |
Collapse
|
9
|
Pozdnyakov DI, Vichor AA. [Regulation of mitophagy and mitochondrial biogenesis by monocarbonyl analogues of curcumin in the cerebral cortex of rats in experimental Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:109-114. [PMID: 39435786 DOI: 10.17116/jnevro2024124091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To evaluate the effect of monocarbonyl analogues of curcumin on changes in the processes of mitophagy and mitochondrial biogenesis in the cerebral cortex of rats with experimental Alzheimer's disease. MATERIAL AND METHODS Alzheimer's disease was modeled in Wistar rats of both sexes by injection of β-amyloid fragments into the hippocampus of the animal. Compounds (1E, 4E)-1.5-bis (3.4.5-trimethoxyphenyl) penta-1.4-diene-3-one (AZBAX4 code) and (1E, 4E)-1.5-bis (2.4.6-trimethoxyphenyl) penta-1.4-diene-3-one (AZBAX6 code) at a dose of 20 mg/ kg (orally) and the reference drug donepezil at a dose of 50 mg/kg (orally) were administered for 30 days, after which changes in the activity of succinate dehydrogenase, cytochrome-c oxidase and citrate synthase as enzymatic biomarkers of mitochondrial biogenesis and mitophagy, respectively, were evaluated in the mitochondrial fraction of the cerebral cortex. RESULTS The administration of AZBAX4 and AZBAX6 compounds led to an increase in the activity of succinate dehydrogenase; cytochrome-c oxidase, as well as citrate synthase in relation to the same indicators of the group of untreated animals. The use of the analyzed compounds was equally effective in both female and male rats. At the same time, it should be noted that the analyzed compounds significantly exceeded the activity level of the reference donepezil. CONCLUSION AZBAX4 and AZBAX6 contribute to an increase in the intensity of mitochondrial biogenesis and mitophagy reactions in the cerebral cortex of rats with Alzheimer's disease, which makes them potentially effective neuroprotective compounds.
Collapse
Affiliation(s)
- D I Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of Volgograd State Medical University, Volgograd, Russia
| | - A A Vichor
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
10
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Wu Y, Chen X, Zhu L, Wang D, Li X, Song J, Wang D, Yu X, Li Y, Tang BZ. Endoplasmic Reticulum-Targeted Aggregation-Induced Emission Luminogen for Synergetic Tumor Ablation with Glibenclamide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903083 DOI: 10.1021/acsami.3c10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photodynamic therapy based on fluorescence illumination of subcellular organelles and in situ bursts of reactive oxygen species (ROS) has been recognized as a promising strategy for cancer theranostics. However, the short life of ROS and unclarified anticancer mechanism seriously restrict the application. Herein, we rationally designed and facilely synthesized a 2,6-dimethylpyridine-based triphenylamine (TPA) derivative TPA-DMPy with aggregation-induced emission (AIE) features and production of type-I ROS. Except for its selective binding to the endoplasmic reticulum (ER), TPA-DMPy, in synergy with glibenclamide, a medicinal agent used against diabetes, induced significant apoptosis of cancer cells in vitro and in vivo. Additionally, TPA-DMPy greatly incited the release of calcium from ER upon light irradiation to further aggravate the depolarization of ER membrane potential caused by glibenclamide, thus inducing fatal ER stress and crosstalk between ER and mitochondria. Our study extends the biological design and application of AIE luminogens and provides new insights into discovering novel anticancer targets and agents.
Collapse
Affiliation(s)
- Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaohui Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiyong Yu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
12
|
Katebi M, Rahgozar S, Kazemi F, Rahmani S, Najafi Dorcheh S. GingerenoneA overcomes dexamethasone resistance by activating apoptosis and inhibiting cell proliferation in pediatric T-ALL cells. Cancer Sci 2023; 114:3984-3995. [PMID: 37619556 PMCID: PMC10551595 DOI: 10.1111/cas.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Plant-based combination strategies have been widely considered in cancer therapy to attenuate chemotherapeutics side effects. The anti-leukemic effect of the whole ginger extract was previously portrayed by our team, and the current study is centered around the cytotoxicity and mechanism of action of a phenolic subsidiary of ginger, GingerenoneA, on pediatric acute lymphoblastic leukemia. GingernoneA imposed, dose-dependently, inhibitory effects on the viability of T and B leukemia cell lines confirmed by MTT assays. Resistance to Dexamethasone, a mostly used chemotherapeutic in acute lymphoblastic leukemia treatments, was overcome by GingernoneA. A synergistic effect of Dexamethasone and GingrenoneA on T leukemia cell lines and patient primary cells was confirmed. Annexin-V/PI and acridine orange/ethidium bromide staining illustrated dose-dependent apoptosis in CCRF-CEM cells developed by GingerenoneA. The intrinsic and extrinsic apoptosis induction and antiproliferative attribution of GingerenoneA were validated by western blot and qPCR. Despite the supposed loss of function in CCRF-CEM cells, TP53 showed increased expression levels and functional activity upon treatment with GingernoneA. Bioinformatic studies revealed the conceivable impact of GingerenoneA on the reactivity of mutant P53 through its binding to Cys124. Our findings may provide novel strategies for therapeutic intervention to ameliorate pALL outcomes.
Collapse
Affiliation(s)
- Melika Katebi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Farnoosh Kazemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Saeideh Rahmani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Somayeh Najafi Dorcheh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| |
Collapse
|
13
|
Silva Barcelos EC, Rompietti C, Adamo FM, Dorillo E, De Falco F, Del Papa B, Baldoni S, Nogarotto M, Esposito A, Capoccia S, Geraci C, Sorcini D, Stella A, Arcaleni R, Tini V, Imbroisi Valle Errera F, Rosati E, Sportoletti P. NOTCH1-mutated chronic lymphocytic leukemia displays high endoplasmic reticulum stress response with druggable potential. Front Oncol 2023; 13:1218989. [PMID: 37817771 PMCID: PMC10561002 DOI: 10.3389/fonc.2023.1218989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Constitutive activation of NOTCH1-wild-type (NT1-WT) signaling is associated with poor outcomes in chronic lymphocytic leukemia (CLL), and NOTCH1 mutation (c.7541_7542delCT), which potentiates NOTCH1 signaling, worsens the prognosis. However, the specific mechanisms of NOTCH1 deregulation are still poorly understood. Accumulative evidence mentioned endoplasmic reticulum (ER) stress/unfolded protein response (UPR) as a key targetable pathway in CLL. In this study, we investigated the impact of NOTCH1 deregulation on CLL cell response to ER stress induction, with the aim of identifying new therapeutic opportunities for CLL. Methods We performed a bioinformatics analysis of NOTCH1-mutated (NT1-M) and NT1-WT CLL to identify differentially expressed genes (DEGs) using the rank product test. Quantitative real-time polymerase chain reaction (qPCR), Western blotting, cytosolic Ca2+, and annexin V/propidium iodide (PI) assay were used to detect curcumin ER stress induction effects. A median-effect equation was used for drug combination tests. The experimental mouse model Eμ-TCL1 was used to evaluate the impact of ER stress exacerbation by curcumin treatment on the progression of leukemic cells and NOTCH1 signaling. Results and discussion Bioinformatics analysis revealed gene enrichment of the components of the ER stress/UPR pathway in NT1-M compared to those in NT1-WT CLL. Ectopic expression of NOTCH1 mutation upregulated the levels of ER stress response markers in the PGA1 CLL cell line. Primary NT1-M CLL was more sensitive to curcumin as documented by a significant perturbation in Ca2+ homeostasis and higher expression of ER stress/UPR markers compared to NT1-WT cells. It was also accompanied by a significantly higher apoptotic response mediated by C/EBP homologous protein (CHOP) expression, caspase 4 cleavage, and downregulation of NOTCH1 signaling in NT1-M CLL cells. Curcumin potentiated the apoptotic effect of venetoclax in NT1-M CLL cells. In Eμ-TCL1 leukemic mice, the administration of curcumin activated ER stress in splenic B cells ex vivo and significantly reduced the percentage of CD19+/CD5+ cells infiltrating the spleen, liver, and bone marrow (BM). These cellular effects were associated with reduced NOTCH1 activity in leukemic cells and resulted in prolonged survival of curcumin-treated mice. Overall, our results indicate that ER stress induction in NT1-M CLL might represent a new therapeutic opportunity for these high-risk CLL patients and improve the therapeutic effect of drugs currently used in CLL.
Collapse
Affiliation(s)
- Estevão Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Brazil
| | - Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Manuel Nogarotto
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Silvia Capoccia
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Valentina Tini
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | | | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
15
|
Xu J, Du P, Liu X, Xu X, Ge Y, Zhang C. Curcumin supplementation increases longevity and antioxidant capacity in Caenorhabditis elegans. Front Pharmacol 2023; 14:1195490. [PMID: 37346299 PMCID: PMC10279890 DOI: 10.3389/fphar.2023.1195490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Curcumin is well known as a potent antioxidant and free radical scavenger and has great potential for anti-aging applications. In this study, we investigate the molecular mechanism of curcumin in prolonging the lifespan of C. elegans. Four concentrations of curcumin (10, 25, 50, and 100 µM) were administered, and the optimal treatment concentration was determined by analyzing the nematode lifespan, physiology, and biochemistry. Additionally, RNA-seq and qRT-PCR were performed to explore the antioxidant effect of curcumin and its underlying mechanism. Results revealed that curcumin could significantly improve the survival capacity of C. elegans without influencing its growth. Curcumin was observed to significantly decrease the levels of reactive oxygen species (ROS) under extreme conditions such as heat stress and paraquat stress. In addition, curcumin increased the amount of nematode mitochondrial DNA (mtDNA) replication. RNA-seq results revealed that the underlying mechanism of curcumin in C. elegans is related to the mitogen-activated protein kinase (MAPK) pathway. qRT-PCR results confirmed that the expression of oxidative stress-related genes (sod-1, sod-2, sod-3, gst-4) was increased, and the expression of MAPK signaling pathway-related genes (sek-1, pmk-1, nsy-1) was significantly downregulated. Furthermore, the administration of curcumin extended the lifespan of nematodes, potentially through the enhancement of oxidative stress resistance and the downregulation of the MAPK signaling pathway. These findings improve our understanding of both lifespan extension and the potential mechanism of curcumin in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenggang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Caballero-Florán IH, Cortés H, Borbolla-Jiménez FV, Florán-Hernández CD, Del Prado-Audelo ML, Magaña JJ, Florán B, Leyva-Gómez G. PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells. Pharmaceutics 2023; 15:1594. [PMID: 37376043 DOI: 10.3390/pharmaceutics15061594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.
Collapse
Affiliation(s)
- Isaac H Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Carla D Florán-Hernández
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
17
|
Milani M, Pihán P, Hetz C. Calcium signaling in lysosome-dependent cell death. Cell Calcium 2023; 113:102751. [PMID: 37178674 DOI: 10.1016/j.ceca.2023.102751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.
Collapse
Affiliation(s)
- Mateus Milani
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, United States of America.
| |
Collapse
|
18
|
Abaquita TAL, Damulewicz M, Tylko G, Pyza E. The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosophila melanogaster. Front Physiol 2023; 14:1060175. [PMID: 36860519 PMCID: PMC9969482 DOI: 10.3389/fphys.2023.1060175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Accumulating evidence from mammalian studies suggests the dual-faced character of heme oxygenase (HO) in oxidative stress-dependent neurodegeneration. The present study aimed to investigate both neuroprotective and neurotoxic effects of heme oxygenase after the ho gene chronic overexpression or silencing in neurons of Drosophila melanogaster. Our results showed early deaths and behavioral defects after pan-neuronal ho overexpression, while survival and climbing in a strain with pan-neuronal ho silencing were similar over time with its parental controls. We also found that HO can be pro-apoptotic or anti-apoptotic under different conditions. In young (7-day-old) flies, both the cell death activator gene (hid) expression and the initiator caspase Dronc activity increased in heads of flies when ho expression was changed. In addition, various expression levels of ho produced cell-specific degeneration. Dopaminergic (DA) neurons and retina photoreceptors are particularly vulnerable to changes in ho expression. In older (30-day-old) flies, we did not detect any further increase in hid expression or enhanced degeneration, however, we still observed high activity of the initiator caspase. In addition, we used curcumin to further show the involvement of neuronal HO in the regulation of apoptosis. Under normal conditions, curcumin induced both the expression of ho and hid, which was reversed after exposure to high-temperature stress and when supplemented in flies with ho silencing. These results indicate that neuronal HO regulates apoptosis and this process depends on ho expression level, age of flies, and cell type.
Collapse
Affiliation(s)
- Terence Al L. Abaquita
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
19
|
Equine Muscle Derived Mesenchymal Stem Cells Loaded with Water-Soluble Curcumin: Modulation of Neutrophil Activation and Enhanced Protection against Intracellular Oxidative Attack. Int J Mol Sci 2023; 24:ijms24021030. [PMID: 36674546 PMCID: PMC9865820 DOI: 10.3390/ijms24021030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
We investigated the antioxidant potential of equine mesenchymal stem cells derived from muscle microbiopsies (mdMSCs), loaded by a water-soluble curcumin lysinate incorporated into hydroxypropyl-β-cyclodextrin (NDS27). The cell loading was rapid and dependent on NDS27 dosage (14, 7, 3.5 and 1 µM). The immunomodulatory capacity of loaded mdMSCs was evaluated by ROS production, on active and total myeloperoxidase (MPO) degranulation and neutrophil extracellular trap (NET) formation after neutrophil stimulation. The intracellular protection of loaded cells was tested by an oxidative stress induced by cumene hydroperoxide. Results showed that 10 min of mdMSC loading with NDS27 did not affect their viability while reducing their metabolism. NDS27 loaded cells in presence of 14, 7 µM NDS27 inhibited more intensively the ROS production, the activity of the MPO released and bound to the NET after neutrophil stimulation. Furthermore, loaded cells powerfully inhibited intracellular ROS production induced by cumene as compared to control cells or cyclodextrin-loaded cells. Our results showed that the loading of mdMSCs with NDS27 significantly improved their antioxidant potential against the oxidative burst of neutrophil and protected them against intracellular ROS production. The improved antioxidant protective capacity of loaded mdMSCs could be applied to target inflammatory foci involving neutrophils.
Collapse
|
20
|
Wolnicka-Glubisz A, Olchawa M, Duda M, Pabisz P, Wisniewska-Becker A. The Role of Singlet Oxygen in Photoreactivity and Phototoxicity of Curcumin. Photochem Photobiol 2023; 99:57-67. [PMID: 35713484 DOI: 10.1111/php.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023]
Abstract
Curcumin is a plant-derived yellow-orange compound widely used as a spice, dye and food additive. It is also believed to have therapeutic effects against different disorders. On the other hand, there are data showing its phototoxicity against bacteria, fungi and various mammalian cells. Since the mechanism of its phototoxic action is not fully understood, we investigated here the phototoxic potential of curcumin in liposomal model membranes and in HaCaT cells. First, detection of singlet oxygen (1 O2 ) luminescence proved that curcumin generates 1 O2 upon blue light irradiation in organic solvent and in liposomes. Then, HPLC-EC(Hg) measurements revealed that liposomal and cellular cholesterol is oxidized by 1 O2 photogenerated by curcumin. Enrichment of liposome membranes with curcumin significantly increased the oxygen photo-consumption rate compared to the control liposomes as determined by EPR oximetry. Cytotoxicity measurements, mitochondrial membrane potential analyses and protein hydroperoxides detection confirmed strong phototoxic effects of curcumin in irradiated HaCaT cells. These data show that since curcumin is advertised as a valuable dietary supplement, or a component of cosmetics for topical use, caution should be recommended especially when skin is exposed to light.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Duda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Pabisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Wisniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 121] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
22
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
23
|
Yakub G, Manolova NE, Rashkov IB, Markova N, Toshkova R, Georgieva A, Mincheva R, Toncheva A, Raquez JM, Dubois P. Pegylated Curcumin Derivative: Water-Soluble Conjugates with Antitumor and Antibacterial Activity. ACS OMEGA 2022; 7:36403-36414. [PMID: 36278048 PMCID: PMC9583079 DOI: 10.1021/acsomega.2c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
During the past years, the synthesis of polymer prodrug structures, based on natural phytochemical compounds with a great range of valuable biological properties, has become a promising solution in cancer prevention, imaging, and detection. Curcumin (Curc) remains one of the most studied natural products, due to the impressive palette of biological properties and the possibility to be easily loaded in various micro- and nanostructures and chemically modified. In this study, pegylated curcumin derivatives were prepared by a direct esterification reaction between poly(ethylene glycol)diacid (PEG of 600 g/mol molar mass, PEG600) and Curc in the presence of N,N'-dicyclohexylcarbodiimide (PEG600-Curc). The successful reaction resulted in a water-soluble stable product that was characterized by infrared spectroscopy (Fourier transform infrared (FT-IR)) and proton (1H) and carbon (13C) NMR. The effect of the pH values of buffer solutions on PEG600-Curc spectral properties (absorption and photoluminescence) was investigated by UV-vis and fluorescence spectrophotometry. Based on the biological tests, it was confirmed that PEG600-Curc exhibits cytotoxic activity against Graffi cell lines, as a function of the Curc concentration in the conjugate and the incubation time. PEG600-Curc antibacterial activity was validated in microbiological tests against pathogenic microorganisms such as Staphylococcus aureus. Most importantly, despite the covalent attachment of Curc to PEG and the slight reduction in the therapeutic index of the conjugate, both the anticancer and antimicrobial activities remain the highest reported, thus opening the gate for further, more clinically oriented studies.
Collapse
Affiliation(s)
- Guldjan Yakub
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nevena E. Manolova
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Iliya B. Rashkov
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nadya Markova
- Institute
of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113Sofia, Bulgaria
| | - Reneta Toshkova
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Ani Georgieva
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Rosica Mincheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Antoniya Toncheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Jean-Marie Raquez
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Philippe Dubois
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| |
Collapse
|
24
|
Optimization of Anti-SARS-CoV-2 Treatments Based on Curcumin, Used Alone or Employed as a Photosensitizer. Viruses 2022; 14:v14102132. [PMID: 36298687 PMCID: PMC9608677 DOI: 10.3390/v14102132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin, the bioactive compound of the spice Curcuma longa, has already been reported as a potential COVID-19 adjuvant treatment due to its immunomodulatory and anti-inflammatory properties. In this study, SARS-CoV-2 was challenged with curcumin; moreover, curcumin was also coupled with laser light at 445 nm in a photodynamic therapy approach. Curcumin at a concentration of 10 μM, delivered to the virus prior to inoculation on cell culture, inhibited SARS-CoV-2 replication (reduction >99%) in Vero E6 cells, possibly due to disruption of the virion structure, as observed using the RNase protection assay. However, curcumin was not effective as a prophylactic treatment on already-infected Vero E6 cells. Notably, when curcumin was employed as a photosensitizer and blue laser light at 445 nm was delivered to a mix of curcumin/virus prior to the inoculation on the cells, virus inactivation was observed (>99%) using doses of curcumin that were not antiviral by themselves. Photodynamic therapy employing crude curcumin can be suggested as an antiviral option against SARS-CoV-2 infection.
Collapse
|
25
|
Curcumin Induces Apoptosis of Chemoresistant Lung Cancer Cells via ROS-Regulated p38 MAPK Phosphorylation. Int J Mol Sci 2022; 23:ijms23158248. [PMID: 35897820 PMCID: PMC9367815 DOI: 10.3390/ijms23158248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to challenge chemoresistance by curcumin (CUR) with drug-selected human lung cancer A549 sublines that continuously proliferate in the present of docetaxel (DOC) and vincristine (VCR). Their sensitivities to CUR were measured by MTT assay and the particular intracellular reactive oxygen species (ROS) was detected by fluorescence activated cell sorting (FACS) analysis. Apoptosis was analyzed by Annexin V assay of the flow cytometry. Inhibitors and RNA interference were used to examine the signaling pathway regulated by the kinases. The obtained data demonstrated that CUR induces chemoresistant cell apoptosis by generating ROS and application of N-acetylcysteine (NAC) blocks ROS production, resulting in apoptosis suppression. Phosphorylation of extracellular regulated kinase (ERK), p38 MAPK, and eIF-2α were increased but c-Jun N-terminal kinase (JNK) did not increase when chemoresistant cells were treated with CUR. Downregulation of ERK and p38 MAPK phosphorylation by their inhibitors had no effect on CUR-induced apoptosis. Interestingly, the knockdown of p38 MAPK with shRNA significantly reduced CUR-induced apoptosis on the chemoresistant sublines. Phosphorylation of the eIF-2α protein was inhibited when p38 MAPK was knocked down in DOC-resistant A549 cells, but a high level of phosphorylated eIF-2α protein remained on the VCR-resistant A549 cells when p38 MAPK was knocked down. These data confirmed that CUR-augmented ROS potently induced apoptosis via upregulated p38 MAPK phosphorylation. Therefore, activated p38 MAPK is considered a pro-apoptotic signal for CUR-induced apoptosis of chemoresistant human lung cancer cells.
Collapse
|
26
|
Flory S, Benz AK, Frank J. Uptake and time-dependent subcellular localization of native and micellar curcumin in intestinal cells. Biofactors 2022; 48:897-907. [PMID: 35170815 DOI: 10.1002/biof.1828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022]
Abstract
Uptake into intestinal cells and intracellular distribution into metabolically competent organelles, such as the endoplasmic reticulum, are important processes potentially limiting the bioavailability of xenobiotics. The incorporation of curcumin into polysorbate 80 micelles improves its naturally low oral bioavailability in humans. Here, we investigated uptake and time-dependent localization of curcumin in intestinal cells when administered as native or micellar formulation. Differentiated Caco-2 cells were incubated with 200 μmol/L native or micellar curcumin for up to 180 min and cellular uptake was quantified. Intracellular curcumin was detected already after 30 min and did not differ significantly between formulations or over time. Subcellular localization of native and micellar curcumin in Caco-2 cells was studied by density gradient centrifugation. After 30 min, curcumin from both formulations was mainly associated with mitochondria and lysosomes, after 180 min native curcumin was associated with mitochondria and peroxisomes, micellar curcumin with peroxisomes only. Uptake and localization of native and micellar curcumin in intestinal cells do not differ significantly and consequently do not explain differences in bioavailability in humans. The temporary co-localization with lysosomes is in agreement with the previously proposed role of endocytosis in cellular uptake of curcumin and warrants further investigation.
Collapse
Affiliation(s)
- Sandra Flory
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Ann-Kathrin Benz
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
27
|
Khan N, Afghah Z, Baral A, Geiger JD, Chen X. Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.923018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) continues to take a huge toll on global health. Although improving, currently there are only limited therapies against SARS-CoV-2. Curcumin, a natural polyphenol, exerts antiviral effects against a wide variety of viruses and can inhibit SARS-CoV-2 entry. However, undesirable physicochemical and pharmacokinetic properties of curcumin limit its clinical application. Here, we determined the effects of dimethoxycurcumin (DiMC), a methylated analog of curcumin with improved bioavailability, on the entry of SARS-CoV-2. DiMC blocked entry of pseudo-SARS-CoV-2 into Calu-3 human non-small cell lung adenocarcinoma cells and Vero E6 green monkey kidney epithelial cells. Mechanistically, DiMC acidified lysosomes, enhanced lysosome degradation capabilities, and promoted lysosome degradation of angiotensin converting enzyme 2 (ACE2), a major receptor for SARS-CoV-2 entry, as well as pseudo-SARS-CoV-2 and the SARS-CoV-2 S1 protein. Furthermore, other lysosome acidifying agents, including the TRPML1 agonist ML-SA1 and the BK channel activator NS1619, also blocked the entry of pseudo-SARS-CoV-2. Thus, the anti-SARS-CoV-2 potential of DiMC and lysosome acidifying agents might be explored further as possible effective therapeutic strategies against COVID-19.
Collapse
|
28
|
Guéguinou M, Ibrahim S, Bourgeais J, Robert A, Pathak T, Zhang X, Crottès D, Dupuy J, Ternant D, Monbet V, Guibon R, Flores-Romero H, Lefèvre A, Lerondel S, Le Pape A, Dumas JF, Frank PG, Girault A, Chautard R, Guéraud F, García-Sáez AJ, Ouaissi M, Emond P, Sire O, Hérault O, Fromont-Hankard G, Vandier C, Tougeron D, Trebak M, Raoul W, Lecomte T. Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cell Mol Life Sci 2022; 79:284. [PMID: 35526196 PMCID: PMC11072810 DOI: 10.1007/s00018-022-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Collapse
Affiliation(s)
- Maxime Guéguinou
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
| | | | | | - Alison Robert
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - David Crottès
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Jacques Dupuy
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, Tours, France
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Valérie Monbet
- IRMAR Mathematics Research Institute of Rennes, UMR-CNRS 6625, Rennes, France
| | - Roseline Guibon
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Hector Flores-Romero
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | | | | | - Jean-François Dumas
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Philippe G Frank
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Alban Girault
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens, France
| | | | - Françoise Guéraud
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ana J García-Sáez
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Mehdi Ouaissi
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Olivier Sire
- IRDL Institut de Recherche Dupuy de Lôme, UMR-CNRS, 06027, Vannes, France
| | | | - Gaëlle Fromont-Hankard
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Christophe Vandier
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital and Faculty of Medicine of Poitiers, 86000, Poitiers, France
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - William Raoul
- EA 7501 GICC, Université de Tours, Tours, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Thierry Lecomte
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours, France.
| |
Collapse
|
29
|
Toxicity of curcumin nanoparticles towards alveolar macrophage: Effects of surface charges. Food Chem Toxicol 2022; 163:112976. [PMID: 35364129 DOI: 10.1016/j.fct.2022.112976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/21/2022]
Abstract
Curcumin has been used for chronic lung diseases management due to its diversified molecular actions. However, the potential cytotoxicity which occurs in cells following the exposure to high concentrations of curcumin has been overlooked. This study evaluated the toxic events of curcumin nanoparticles (Cur-NPs) with alterable surface polarity in alveolar macrophages (NR8383). We aimed to establish the correlation between the toxicity of Cur-NPs with different surface charges and the internalization mechanisms of the NPs. Toxicity data showed that positively charged Cur-NPs (IC50: 9.77 ± 0.5 μg/mL) was the most potent against NR8383, followed by negatively charged Cur-NPs (IC50:13.33 ± 0.9 μg/mL) and neutral Cur-NPs (IC50:18.68 ± 1.2 μg/mL). Results from mitochondrial membrane potential, ATP content and intracellular ROS in NR8383 showed similar ranking to the toxicity assay. The predominant uptake pathway for positively and negatively charged Cur-NPs was via clathrin-mediated endocytosis, while neutral Cur-NPs was internalized via phagocytosis, micropinocytosis and clathrin-mediated endocytosis. Positively charged Cur-NPs mediates the cytotoxicity of NR8383 via lysosomal and mitochondrial-associated destabilization upon entry. In conclusion, the cytotoxicity of Cur-NPs on NR8383 is surface-charge dependent, which in turn is associated to the uptake pathway and localization of Cur-NPs in cells.
Collapse
|
30
|
Encapsulation of Alpha-Lipoic Acid in Functional Hybrid Liposomes: Promising Tool for the Reduction of Cisplatin-Induced Ototoxicity. Pharmaceuticals (Basel) 2022; 15:ph15040394. [PMID: 35455391 PMCID: PMC9030957 DOI: 10.3390/ph15040394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, in order to address the drawback of cisplatin (CDDP)-induced ototoxicity, we propose a straightforward strategy based on the delivery of a sulfur-based antioxidant, such as lipoic acid (LA), to HEI-OC1 cells. To this aim, hybrid liposomes (LA@PCGC) with a spherical shape and a mean diameter of 25 nm were obtained by direct sonication of LA, phosphatidylcholine and a gelatin-curcumin conjugate in a physiological buffer. LA@PCGC were found to be stable over time, were quickly (i.e., by 1 h) taken up by HEI-OC1 cells, and guaranteed strong retention of the bioactive molecule, since LA release was less than 20%, even after 100 h. Cell viability studies showed the efficiency of LA@PCGC for stabilizing the protective activity of LA. Curcumin residues within the functional liposomes were indeed able to maintain the biological activity of LA, significantly improving (up to 2.19-fold) the viability of HEI-OC1 cells treated with 5 μM CDDP. Finally, LA@PCGC was incorporated within an alginate-based injectable hydrogel carrier to create a formulation with physical chemical features suitable for potential ear applications.
Collapse
|
31
|
Upadhyay A, Kundu P, Ramu V, Kondaiah P, Chakravarty AR. BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorg Chem 2022; 61:1335-1348. [PMID: 34990135 DOI: 10.1021/acs.inorgchem.1c02745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Pt(RB)(Cur)]NO3 (RBC), [Pt(IRB)(Cur)]NO3 (IRBC), and [Pt(L)(Cur)]NO3 (PBC), where HCur is curcumin, L is 1-benzyl-2-(2-pyridyl)benzimidazole, and RB and IRB are red-light-active non-iodo and diiodo-BODIPY tagged to L, respectively, were synthesized and characterized, and their anticancer activities were studied (BODIPY, boron-dipyrromethene). RBC and IRBC displayed BODIPY-centered absorption bands within 615-635 nm along with the respective curcumin bands at 445 and 492 nm in 10% dimethyl sulfoxide (DMSO)-Dulbecco's phosphate-buffered saline (DPBS). Emission bands were observed at 723 and 845 nm for RBC and IRBC, respectively, in 10% DMSO-DPBS. RBC (ΦΔ, 0.27) and IRBC (ΦΔ, 0.40) generated singlet oxygen in red light (λ = 642 nm) as evidenced from 1,3-diphenylisobenzofuran (DPBF) titrations. The formation of 1O2 from BODIPY and HO• from the curcumin was evidenced from the mechanistic pUC19 DNA photocleavage studies. The BODIPY complexes showed photocytotoxicity in A549, HeLa, and MDA-MB-231 cells while being less toxic in the dark [IC50: 1.3-6.9 μM, red light; 7.2-12.8 μM, 400-700 nm visible light]. The emissive RBC displayed localization in the endoplasmic reticulum (ER). Apoptotic cell death was evidenced from the Annexin-V/fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay and green fluorescence in red light in the Fluo-4 AM assay due to ER stress, and mitochondrial dysfunction was evidenced from the 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) assay in A549 cells.
Collapse
|
32
|
Shahbaz SK, Koushki K, Sathyapalan T, Majeed M, Sahebkar A. PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:309-323. [PMID: 34429054 PMCID: PMC9413791 DOI: 10.2174/1570159x19666210823103020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Progressive degeneration and dysfunction of the nervous system because of oxidative stress, aggregations of misfolded proteins, and neuroinflammation are the key pathological features of neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. However, the clinical application of curcumin is limited due to its low aqueous solubility and bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these limitations effectively. This review article discusses the effects and potential mechanisms of curcumin-loaded PLGA nanoparticles in Alzheimer's disease.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | | | - Amirhossein Sahebkar
- BARUiotechnol Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila. Antioxidants (Basel) 2021; 10:antiox10111716. [PMID: 34829587 PMCID: PMC8614956 DOI: 10.3390/antiox10111716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO) is one of the cytoprotective enzymes that can mitigate the effects of oxidative stress. Here, we found that the ho mRNA level oscillates in the brain of Drosophila melanogaster with two minima at the beginning of the day and night. This rhythm was partly masked by light as its pattern changed in constant darkness (DD). It followed a similar trend in the clock mutant per01 under light/dark regime (LD12:12); however, differences between time points were not statistically significant. In older flies (20 days old), the rhythm was vanished; however, 15 days of curcumin feeding restored this rhythm with an elevated ho mRNA level at all time points studied. In addition, flies exposed to paraquat had higher ho expression in the brain, but only at a specific time of the day which can be a protective response of the brain against stress. These findings suggest that the expression of ho in the fly’s brain is regulated by the circadian clock, light, age, exposure to stress, and the presence of exogenous antioxidants. We also found that HO cross-talks with apoptosis and autophagy under different conditions. Induction of neuronal ho was accompanied by increased transcription of apoptosis and autophagy-related genes. However, this trend changed after exposure to curcumin and paraquat. Our results suggest that HO is involved in the control of apoptotic and autophagic key processes protecting the brain against oxidative damage.
Collapse
|
34
|
Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101591. [PMID: 34679726 PMCID: PMC8533243 DOI: 10.3390/antiox10101591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Anticancer activities of plant polyphenols have been demonstrated in various models of neoplasia. However, evidence obtained in numerous in vitro studies indicates that proliferation arrest and/or killing of cancer cells require quite high micromolar concentrations of polyphenols that are difficult to reach in vivo and can also be (geno)toxic to at least some types of normal cells. The ability of certain polyphenols to synergize with one another at low concentrations can be used as a promising strategy to effectively treat human malignancies. We have recently reported that curcumin and carnosic acid applied at non-cytotoxic concentrations synergistically cooperate to induce massive apoptosis in acute myeloid leukemia cells, but not in normal hematopoietic and non-hematopoietic cells, via sustained cytosolic calcium overload. Here, we show that the two polyphenols can also synergistically suppress the growth of DU145 and PC-3 metastatic prostate cancer cell cultures. However, instead of cell killing, the combined treatment induced a marked inhibition of cell proliferation associated with G0/G1 cell cycle arrest. This was preceded by transient elevation of cytosolic calcium levels and prolonged dissipation of the mitochondrial membrane potential, without generating oxidative stress, and was associated with defective oxidative phosphorylation encompassing mitochondrial dysfunction. The above effects were concomitant with a significant downregulation of mRNA and protein expression of the oncogenic kinase SGK1, the mitochondria-hosted mTOR component. In addition, a moderate decrease in SGK1 phosphorylation at Ser422 was observed in polyphenol-treated cells. The mTOR inhibitor rapamycin produced a similar reduction in SGK1 mRNA and protein levels as well as phosphorylation. Collectively, our findings suggest that the combination of curcumin and carnosic acid at potentially bioavailable concentrations may effectively target different types of cancer cells by distinct modes of action. This and similar combinations merit further exploration as an anticancer modality.
Collapse
|
35
|
Chen S, Lóssio CF, Verbeke I, Verduijn J, Parakhonskiy B, Van der Meeren L, Chen P, De Zaeytijd J, Skirtach AG, Van Damme EJM. The type-1 ribosome-inactivating protein OsRIP1 triggers caspase-independent apoptotic-like death in HeLa cells. Food Chem Toxicol 2021; 157:112590. [PMID: 34601042 DOI: 10.1016/j.fct.2021.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are capable of removing a specific adenine from 28S ribosomal RNA, thus inhibiting protein biosynthesis in an irreversible manner. In this study, recombinant OsRIP1, a type 1 RIP from rice (Oryza sativa L.), was investigated for its anti-proliferative properties. Human cervical cancer HeLa cells were incubated in the presence of OsRIP1 for 24-72 h. OsRIP1 treatment yielded an anti-proliferation response of the HeLa cells and resulted in apoptotic-like blebbing of the plasma membrane without causing DNA fragmentation. OsRIP1 labeled with FITC accumulated at the cell surface. Pull-down assays identified ASPP1 (Apoptosis-Stimulating Protein of p53 1) and IFITM3 (interferon-induced transmembrane protein 3) as potential interaction partners for OsRIP1. Transcript levels for several critical genes related to different signaling pathways were quantified by RT-qPCR. OsRIP1 provoked HeLa cells to undergo caspase-independent cell death, associated with a significant transcriptional upregulation of the apoptotic gene PUMA, interferon regulatory factor 1 (IRF1) and the autophagy-related marker LC3. No changes in caspase activities were observed. Together, these data suggest that apoptotic-like events were involved in OsRIP1-driven caspase-independent cell death that might trigger the IRF1 signaling pathway and LC3-mediated autophagy.
Collapse
Affiliation(s)
- Simin Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Cláudia Figueiredo Lóssio
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Department of Biochemistry and Molecular Biology, The Federal University of Ceará, Fortaleza, Ceará, 2853, Brazil
| | - Isabel Verbeke
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Bogdan Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Louis Van der Meeren
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Pengyu Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Jeroen De Zaeytijd
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - André G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
36
|
Zhang Y, Xiang J, Zhu N, Ge H, Sheng X, Deng S, Chen J, Yu L, Zhou Y, Shen J. Curcumin in combination with homoharringtonine suppresses lymphoma cell growth by inhibiting the TGF-β/Smad3 signaling pathway. Aging (Albany NY) 2021; 13:18757-18768. [PMID: 34324434 PMCID: PMC8351727 DOI: 10.18632/aging.203319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Both homoharringtonine (HHT) and curcumin exhibit anti-proliferative effects on lymphoma cells, but the effects of combined HHT and curcumin treatment remain unclear. Here, we investigated the effects of HHT/curcumin combination on the proliferation, apoptosis, and invasion in lymphoma cells. CCK-8, flow cytometry, and transwell assays were used to assess proliferation, apoptosis, and invasion of U937 and Raji cells. p-Smad3, E-cadherin, and N-cadherin expression were also measured in Raji cells using Western blot assays. Combination of HHT and curcumin synergistically inhibited U937 and Raji cell proliferation and invasion. In addition, the combination treatment markedly increased apoptosis of Raji cells as evidenced by increased Bax, cleaved caspase 3, and cleaved caspase 9 expression. Meanwhile, the combination treatment promoted anti-tumor mechanisms in Raji cells as indicated by decreases in p-Smad3 and N-cadherin and increases in E-cadherin. In vivo experiments showed that the combination treatment suppressed tumor growth in a mouse Raji xenograft model. Our findings indicate that combination of HHT and curcumin inhibited lymphoma cell growth by downregulating the TGF-β/Smad3 pathway. These results suggest that HHT combined with curcumin might be a promising therapeutic approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Xianfu Sheng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Junfa Chen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Lihong Yu
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yan Zhou
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
37
|
Li C, Li J, Li Y, Li L, Luo Y, Li J, Zhang Y, Wang Y, Liu X, Zhou X, Gong H, Jin X, Liu Y. Isorhamnetin Promotes MKN-45 Gastric Cancer Cell Apoptosis by Inhibiting PI3K-Mediated Adaptive Autophagy in a Hypoxic Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8130-8143. [PMID: 34269571 DOI: 10.1021/acs.jafc.1c02620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A tumor-related hypoxic microenvironment can promote the proliferation of gastric cancer cells, and hypoxic-induced autophagy is the main mechanism of protection against hypoxia in gastric cancer cells. Isorhamnetin (ISO) is a chemical substance derived from plants, mainly from the sea buckthorn. Previous studies have shown that ISO has antitumor effects, but the effects of ISO against gastric cancer in a hypoxic environment are still unknown. In this study, we investigated the effects of ISO against gastric cancer in a hypoxic environment and the mechanisms underlying ISO-induced gastric cancer cell death. The results show that ISO targeted PI3K and blocked the PI3K-AKT-mTOR signaling pathway, significantly inhibiting gastric cancer cell autophagy in a hypoxic environment, inhibiting cell proliferation, decreasing mitochondrial membrane potential, and promoting mitochondria-mediated apoptosis. ISO, a functional food component, is a promising candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chenghao Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Yan Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Ling Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Yali Luo
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Junjie Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Yiming Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Xiaotian Zhou
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Hongxia Gong
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
- College of Pharmacy, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, China
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Dun huang Medical and Transformation, Ministry of Education, No. 35 Dingxi East Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
38
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
39
|
Szlasa W, Szewczyk A, Drąg-Zalesińska M, Czapor-Irzabek H, Michel O, Kiełbik A, Cierluk K, Zalesińska A, Novickij V, Tarek M, Saczko J, Kulbacka J. Mechanisms of curcumin-based photodynamic therapy and its effects in combination with electroporation: An in vitro and molecular dynamics study. Bioelectrochemistry 2021; 140:107806. [PMID: 33819839 DOI: 10.1016/j.bioelechem.2021.107806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) and electrochemotherapy (ECT) are two methods designed to enhance the anticancer potential of various drugs. Various clinical trials proved the efficacy of both ECT and PDT in melanoma treatment. Curcumin is a natural polyphenolic compound with high anticancer potential against melanoma due to its light absorption properties and toxicity towards cancer cells; however, high reactivity and amphipathic structure of curcumin are limiting its utility. This study aimed to propose the most effective protocol for antimelanoma combination of both therapies (PDT and ECT) in the context of curcumin. The in vitro studies were carried on melanotic melanoma (A375), amelanotic melanoma (C32) and fibroblast (HGF) cell lines. In molecular dynamics studies curcumin presented the single-layer localization in the water-membrane interphase. Further, the mass spectrometry studies exposed that during the PDT treatment curcumin is degraded to vanillin, feruloylmethane, and ferulic acid. Instant ECT with curcumin followed by PDT is the most efficient approach due to its selective genotoxicity towards malignant cells. The metabolic activity of fibroblasts decreased, however, at the same time the fragmentation of DNA did not occur. Additionally, instant PDT with curcumin followed by ECT after 3 h of incubation was a therapy selective towards melanotic melanoma.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department Human Morphology and Embryology, Division Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Hanna Czapor-Irzabek
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
40
|
Colin M, Dechêne L, Ceusters J, Niesten A, Demazy C, Lagneaux L, Zouaoui Boudjeltia K, Franck T, Van Antwerpen P, Renard P, Mathieu V, Serteyn D. Priming of mesenchymal stem cells with a hydrosoluble form of curcumin allows keeping their mesenchymal properties for cell-based therapy development. J Cell Mol Med 2021; 25:4877-4881. [PMID: 33769687 PMCID: PMC8107093 DOI: 10.1111/jcmm.16403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells are increasingly studied for their use as drug‐carrier in addition to their intrinsic potential for regenerative medicine. They could be used to transport molecules with a poor bioavailability such as curcumin in order to improve their clinical usage. This natural polyphenol, well‐known for its antioxidant and anti‐inflammatory properties, has a poor solubility that limits its clinical potential. For this purpose, the use of NDS27, a curcumin salt complexed with hydroxypropyl‐beta‐cyclodextrin (HPβCD), displaying an increased solubility in aqueous solution, is preferred. This study aims to evaluate the uptake of NDS27 into skeletal muscle‐derived mesenchymal stem cells (mdMSCs) and the effects of such uptake onto their mesenchymal properties. It appeared that the uptake of NDS27 into mdMSCs is concentration‐dependent and not time‐dependent. The use of a concentration of 7 µmol/L which does not affect the viability and proliferation also allows preservation of their adhesion, invasion and T cell immunomodulatory abilities.
Collapse
Affiliation(s)
- Margaux Colin
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.,RD3- Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Lola Dechêne
- Department of Clinical Sciences, Anaesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B41, University of Liege, Sart Tilman, Liège, Belgium.,Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| | - Justine Ceusters
- Centre of Oxygen, Research and Development, Institute of Chemistry B6a, University of Liege (ULiège), Sart Tilman, Liège, Belgium
| | - Ariane Niesten
- Centre of Oxygen, Research and Development, Institute of Chemistry B6a, University of Liege (ULiège), Sart Tilman, Liège, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Université libre de Bruxelles, CHU de Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | - Thierry Franck
- Centre of Oxygen, Research and Development, Institute of Chemistry B6a, University of Liege (ULiège), Sart Tilman, Liège, Belgium
| | - Pierre Van Antwerpen
- RD3- Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Didier Serteyn
- Department of Clinical Sciences, Anaesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B41, University of Liege, Sart Tilman, Liège, Belgium.,Centre of Oxygen, Research and Development, Institute of Chemistry B6a, University of Liege (ULiège), Sart Tilman, Liège, Belgium
| |
Collapse
|
41
|
Eckert RW, Wiemann S, Keck CM. Improved Dermal and Transdermal Delivery of Curcumin with SmartFilms and Nanocrystals. Molecules 2021; 26:1633. [PMID: 33804137 PMCID: PMC8000619 DOI: 10.3390/molecules26061633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
Poor aqueous solubility of active compounds is a major issue in today's drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.
Collapse
Affiliation(s)
| | | | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (R.W.E.); (S.W.)
| |
Collapse
|
42
|
Gamre S, Tyagi M, Chatterjee S, Patro BS, Chattopadhyay S, Goswami D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:352-363. [PMID: 33587631 DOI: 10.1021/acs.jnatprod.0c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient synthesis of the Alpinia officinarum-derived diarylheptanoids, viz., enantiomers of a β-hydroxyketone (1) and an α,β-unsaturated ketone (2) was developed starting from commercially available eugenol. Among these, compound 2 showed a superior antiproliferative effect against human breast adenocarcinoma MCF-7 cells. Besides reducing clonogenic cell survival, compound 2 dose-dependently increased the sub G1 cell population and arrested the G2-phase of the cell cycle, as revealed by flow cytometry. Mechanistically, compound 2 acts as an intracellular pro-oxidant by generating copious amounts of reactive oxygen species. Compound 2 also induced both loss of mitochondrial membrane potential (MMP) as well as lysosomal membrane permeabilization (LMP) in the MCF-7 cells. The impaired mitochondrial and lysosomal functions due to reactive oxygen species (ROS)-generation by compound 2 may contribute to its apoptotic property.
Collapse
Affiliation(s)
- Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Sucheta Chatterjee
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| | | | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| |
Collapse
|
43
|
Möller K, Macaulay B, Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:489. [PMID: 33672006 PMCID: PMC7919290 DOI: 10.3390/nano11020489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
The efficiency of anti-cancer drugs is commonly determined by endpoint assays after extended incubation times, often after days. Here we demonstrate that curcumin encapsulated in crosslinked cyclodextrin nanoparticles (CD-NP) acts extremely rapidly on cell metabolism resulting in an immediate and complete inhibition of cell growth and in efficient cancer-cell killing only few hours after incubation. This early onset of anti-cancer action was discovered by live-cell high-throughput fluorescence microscopy using an environmental stage. To date, only very few examples of covalently crosslinked nanoscale CD-based (CD-NP) drug carriers exist. Crosslinking cyclodextrins enables the adsorption of unusually high payloads of hydrophobic curcumin (762 µg CC/mg CD-NP) reflecting a molar ratio of 2.3:1 curcumin to cyclodextrin. We have investigated the effect of CD-NP encapsulated curcumin (CD-CC-NP) in comparison to free, DMSO-derived curcumin nanoparticles (CC-NP) on 4 different cell lines. Very short incubations times as low as 1 h were applied and cell responses after medium change were subsequently followed over two days. We show that cell proliferation is inhibited nearly immediately in all cell lines and that a cell- and concentration dependent cancer-cell killing occurs. Anti-cancer effects were similar with free and encapsulated curcumin, however, encapsulation in CD-NP drastically extends the long-term photostability and anti-cancer activity of curcumin. Curcumin-sensitivity is highest in HeLa cells reaching up to 90% cell death under these conditions. Sensitivity decreased from HeLa to T24 to MDA MB-231 cells. Strikingly, the immortalized non-cancerous cell line MCF-10A was robust against curcumin concentrations that were highly toxic to the other cell lines. Our results underline the potential of curcumin as gentle and yet effective natural anti-cancer agent when delivered solvent-free in stabilizing and biocompatible drug carriers such as CD-NP that enable efficient cellular delivery.
Collapse
Affiliation(s)
- Karin Möller
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| |
Collapse
|
44
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Phenolic Compounds Cannabidiol, Curcumin and Quercetin Cause Mitochondrial Dysfunction and Suppress Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2020; 22:E204. [PMID: 33379175 PMCID: PMC7795267 DOI: 10.3390/ijms22010204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Anticancer activity of different phenols is documented, but underlying mechanisms remain elusive. Recently, we have shown that cannabidiol kills the cells of acute lymphoblastic leukemia (ALL) by a direct interaction with mitochondria, with their consequent dysfunction. In the present study, cytotoxic effects of several phenolic compounds against human the T-ALL cell line Jurkat were tested by means of resazurin-based metabolic assay. To unravel underlying mechanisms, mitochondrial membrane potential (∆Ψm) and [Ca2+]m measurements were undertaken, and reactive oxygen species generation and cell death were evaluated by flow cytometry. Three out of eight tested phenolics, cannabidiol, curcumin and quercetin, which displayed a significant cytotoxic effect, also dissipated the ∆Ψm and induced a significant [Ca2+]m increase, whereas inefficient phenols did not. Dissipation of the ∆Ψm by cannabidiol was prevented by cyclosporine A and reverted by Ru360, inhibitors of the permeation transition pore and mitochondrial Ca2+ uniporter, respectively. Ru360 prevented the phenol-induced [Ca2+]m rise, but neither cyclosporine A nor Ru360 affected the curcumin- and quercetin-induced ∆Ψm depolarization. Ru360 impeded the curcumin- and cannabidiol-induced cell death. Thus, all three phenols exert their antileukemic activity via mitochondrial Ca2+ overload, whereas curcumin and quercetin suppress the metabolism of leukemic cells by direct mitochondrial uncoupling.
Collapse
Affiliation(s)
| | | | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, Mexico; (M.O.-A.); (L.T.-L.)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, Mexico; (M.O.-A.); (L.T.-L.)
| |
Collapse
|
45
|
Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment. Pharmaceutics 2020; 13:pharmaceutics13010009. [PMID: 33375181 PMCID: PMC7822152 DOI: 10.3390/pharmaceutics13010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effort to develop efficient targeted drug delivery for lung cancer treatment, the outcome remains unsatisfactory with a survival rate of 15% after 5 years of diagnosis. Inhalation formulation is an ideal alternative that could ensure the direct deposition of chemotherapeutics to the lungs. However, the design of an inhalable formulation that could simultaneously achieve a high local chemotherapeutic dose to the solid tumor and exert low pulmonary toxicities is a challenge, as the presence of 10–30% of chemotherapeutics in the lung is sufficient to induce toxicity. Therefore, this study aimed to develop a simple dry powder inhalation (DPI) formulation containing a model chemotherapeutic agent (paclitaxel, PTX) and a natural antioxidant (curcumin, CUR) that acts to protect healthy lung cells from injury during direct lung delivery. The co-jet-milling of CUR and PTX resulted in formulations with suitable aerosol performance, as indicated in the high fine particle fractions (FPF) (>60%) and adequate mass median aerodynamic diameter (MMAD). The CUR/PTX combination showed a more potent cytotoxic effect against lung cancer cells. This is evident from the induction of apoptosis/necrotic cell death and G2/M cell cycle arrests in both A549 and Calu-3 cells. The increased intracellular ROS, mitochondrial depolarization and reduced ATP content in A549 and Calu-3 cells indicated that the actions of CUR and PTX were associated with mitochondrial oxidative stress. Interestingly, the presence of CUR is crucial to neutralize the cytotoxic effects of PTX against healthy cells (Beas-2B), and this is dose-dependent. This study presents a simple approach to formulating an effective DPI formulation with preferential cytotoxicity towards lung cancer.
Collapse
|
46
|
Dias LD, Blanco KC, Mfouo-Tynga IS, Inada NM, Bagnato VS. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100384] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Khaket TP, Singh MP, Khan I, Kang SC. In vitro and in vivo studies on potentiation of curcumin-induced lysosomal-dependent apoptosis upon silencing of cathepsin C in colorectal cancer cells. Pharmacol Res 2020; 161:105156. [DOI: 10.1016/j.phrs.2020.105156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
|
48
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020; 9:antiox9111059. [PMID: 33137966 PMCID: PMC7692341 DOI: 10.3390/antiox9111059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Mery Giantin
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Roberta Tolosi
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Irene Bassan
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Mauro Dacasto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
- Correspondence: ; Tel.: +39-049-827-2935
| |
Collapse
|
49
|
Du B, Du Q, Bai Y, Yu L, Wang Y, Huang J, Zheng M, Shen G, Zhou J, Yao H. Chemotherapy based on "Domino-effect" combined with immunotherapy amplifying the efficacy of an anti-metastatic treatment. J Mater Chem B 2020; 8:9139-9150. [PMID: 32945310 DOI: 10.1039/d0tb01061h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In tumor immunotherapy, Treg cells are immunosuppressive cells. In general, the main strategy of chemo immune-therapy for Treg cells is to eliminate them using chemotherapy drugs combined with immune checkpoint inhibitors. However, the dead Treg cells still exert immunosuppressive effects via the nucleoside adenosine pathway. To improve immunosuppression, we designed a nanosystem to deliver synthetic chemotherapeutics and immune activators. The homemade curcumin analog (CA) was encapsulated by α-lactalbumin (α-LA), and the Treg cell specific antibody (mAb), as a therapeutic agent, was linked to the drug-loaded protein via matrix metalloproteinase-responded peptide (P). After the cleavage peptide responded to matrix metalloproteinase (MMP-2), the CA@α-LA-P-mAb nanoparticles were separated into CA@α-LA and antibody, which can specifically enter cancer cells and Treg cells via membrane fusion and Nrp-1 receptors, respectively. Finally, we found that CA can not only lead to cell death by the chondriosome apoptosis approach but also reduce the production of Treg cells by inhibiting the expression of foxp3 (a key transcription factor of Treg cells). In addition, specific antibodies can improve the immunosuppression of existing Treg cells. The combined effect of CA and antibodies amplifies the role of chemotherapy in metastatic breast cancer.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Qian Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Lili Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Yuehua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Jingshu Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Mei Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Guopeng Shen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
50
|
Ratrey P, Dalvi SV, Mishra A. Enhancing Aqueous Solubility and Antibacterial Activity of Curcumin by Complexing with Cell-Penetrating Octaarginine. ACS OMEGA 2020; 5:19004-19013. [PMID: 32775902 PMCID: PMC7408183 DOI: 10.1021/acsomega.0c02321] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/27/2023]
Abstract
Bacterial resistance to antimicrobial drugs is one of the biggest threats to human health and novel drugs, and strategies are needed to obviate this resistance crisis. An innovative strategy for designing novel antimicrobial drugs is based on the hybridization of an antimicrobial agent with a second functional entity. Here, we use a cell-penetrating peptide-octaarginine (R8) as the second functional entity and develop a complex or hybrid of R8 and curcumin that possibly targets the bacterial cell membrane. Minimum inhibitory concentration assays show that the antibacterial activity of the complex is enhanced in a synergistic manner and rapid killing kinetics are obtained, emphasizing a bactericidal mode of action. In addition, electron microscopy images reveal bacterial membrane disruption by the complex. The R8-curcumin complex also displays activity against HeLa cells.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Sameer V. Dalvi
- Chemical
Engineering, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|