1
|
Piscitelli J, Reddy MB, Wollenberg L, Del Frari L, Gong J, Matschke K, Williams JH. Evaluation of the effect of modafinil on the pharmacokinetics of encorafenib and binimetinib in patients with BRAF V600-mutant advanced solid tumors. Cancer Chemother Pharmacol 2024; 94:337-347. [PMID: 38878209 PMCID: PMC11420244 DOI: 10.1007/s00280-024-04676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/05/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of multiple doses of modafinil, a moderate CYP3A4 inducer at a 400 mg QD dose, on the multiple oral dose pharmacokinetics (PK) of encorafenib and its metabolite, LHY746 and binimetinib and its metabolite, AR00426032. METHODS This study was conducted in patients with BRAF V600-mutant advanced solid tumors. Treatment of 400 mg QD modafinil was given on Day 15 through Day 21. Encorafenib 450 mg QD and binimetinib 45 mg BID were administered starting on Day 1. PK sampling was conducted from 0 to 8 h on Day 14 and Day 21. Exposure parameters were calculated for each patient by noncompartmental analysis and geometric least-squares mean ratio. Corresponding 90% confidence intervals were calculated to estimate the magnitude of effects. RESULTS Among 11 PK evaluable patients, encorafenib Cmax and AUClast were decreased in presence of steady-state modafinil by 20.2% and 23.8%, respectively. LHY746 exposures were not substantially changed in the presence of steady-state modafinil. CONCLUSION The results from this clinical study indicate modafinil 400 mg QD had a weak effect on encorafenib PK. Based on these results, encorafenib can be coadministered with a moderate CYP3A4 inducer without dosing adjustment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03864042, registered 6 March 2019.
Collapse
|
2
|
Lehmann A, Geburek I, Hessel-Pras S, Enge AM, Mielke H, Müller-Graf C, Kloft C, Hethey C. PBTK model-based analysis of CYP3A4 induction and the toxicokinetics of the pyrrolizidine alkaloid retrorsine in man. Arch Toxicol 2024; 98:1757-1769. [PMID: 38528153 DOI: 10.1007/s00204-024-03698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP)3A4 induction by drugs and pesticides plays a critical role in the enhancement of pyrrolizidine alkaloid (PA) toxicity as it leads to increased formation of hepatotoxic dehydro-PA metabolites. Addressing the need for a quantitative analysis of this interaction, we developed a physiologically-based toxicokinetic (PBTK) model. Specifically, the model describes the impact of the well-characterized CYP3A4 inducer rifampicin on the kinetics of retrorsine, which is a prototypic PA and contaminant in herbal teas. Based on consumption data, the kinetics after daily intake of retrorsine were simulated with concomitant rifampicin treatment. Strongest impact on retrorsine kinetics (plasma AUC24 and C max reduced to 67% and 74% compared to the rifampicin-free reference) was predicted directly after withdrawal of rifampicin. At this time point, the competitive inhibitory effect of rifampicin stopped, while CYP3A4 induction was still near its maximum. Due to the impacted metabolism kinetics, the cumulative formation of intestinal retrorsine CYP3A4 metabolites increased to 254% (from 10 to 25 nmol), while the cumulative formation of hepatic CYP3A4 metabolites was not affected (57 nmol). Return to baseline PA toxicokinetics was predicted 14 days after stop of a 14-day rifampicin treatment. In conclusion, the PBTK model showed to be a promising tool to assess the dynamic interplay of enzyme induction and toxification pathways.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne-Margarethe Enge
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Liu R, Ma B, Mok MM, Murray BP, Subramanian R, Lai Y. Assessing Pleiotropic Effects of a Mixed-Mode Perpetrator Drug, Rifampicin, by Multiple Endogenous Biomarkers in Dogs. Drug Metab Dispos 2024; 52:236-241. [PMID: 38123963 DOI: 10.1124/dmd.123.001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4β-hydroxycholesterol (4β-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration. On the other hand, increased plasma levels of coproporphyrin (CP)-I and III [biomarkers of organic anion transporting polypeptides 1b (Oatp1b) activities] were observed after the first dose of RIF. Plasma CPs started to decline as RIF exposure decreased, and they returned to baseline 3 days after cessation of the RIF administration. The data suggested the acute (inhibitory) and chronic (inductive) effects of RIF on Oatp1b and CYP3A enzymes, respectively, and a 3-day washout period is deemed adequate to remove superimposed Oatp1b inhibition from CYP3A induction. In addition, apparent self-induction of RIF was observed as its terminal half-life was significantly altered after multiple doses. Overall, our investigation illustrated the need for appropriate timing of modulator dosing to differentiate between transporter inhibition and enzyme induction. As further indicated by the CP data, induction of Oatp1b activities was not likely after repeated RIF administration. SIGNIFICANCE STATEMENT: This investigation demonstrated the utility of endogenous biomarkers towards complex drug-drug interactions by rifampicin (RIF) and successfully determined the optimal timing to differentiate between transporter inhibition and enzyme induction. Based on experimental evidence, Oatp1b induction following repeated RIF administration was unlikely, and apparent self-induction of RIF elimination was observed.
Collapse
Affiliation(s)
- Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Bin Ma
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Marilyn M Mok
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | | | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
4
|
Phondeth L, Kamaraj R, Nilles J, Weiss J, Haefeli WE, Pávek P, Theile D. Rifabutin but not rifampicin can partly out-balance P-glycoprotein induction by concurrent P-glycoprotein inhibition through high affinity binding to the inhibitory site. Arch Toxicol 2024; 98:223-231. [PMID: 37833491 PMCID: PMC10761502 DOI: 10.1007/s00204-023-03618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Physiology-based pharmacokinetic modeling suggests that rifabutin can out-balance P-glycoprotein (P-gp) induction by concurrent P-gp inhibition. However, clinical or experimental evidence for this Janus-faced rifabutin effect is missing. Consequently, LS180 cells were exposed to a moderately (2 µM) and strongly (10 µM) P-gp-inducing concentration of rifampicin or rifabutin for 6 days. Cellular accumulation of the fluorescent P-gp substrate rhodamine 123 was evaluated using flow cytometry, either without (induction only) or with adding rifamycin drug to the cells during the rhodamine 123 efflux phase (induction + potential inhibition). Rhodamine 123 accumulation was decreased similarly by both drugs after 6-day exposure (2 µM: 55% residual fluorescence compared to non-induced cells, P < 0.01; 10 µM: 30% residual fluorescence compared to non-induced cells, P < 0.001), indicating P-gp induction. Rhodamine 123 influx transporters mRNA expressions were not affected, excluding off-target effects. Acute re-exposure to rifabutin, however, considerably re-increased rhodamine 123 accumulation (2 µM induction: re-increase by 55%, P < 0.01; 10 µM induction: 49% re-increase, P < 0.001), suggesting P-gp inhibition. In contrast, rifampicin only had weak effects (2 µM induction: no re-increase; 10 µM induction: 16% re-increase; P < 0.05). Molecular docking analysis eventually revealed that rifabutin has a higher binding affinity to the inhibitor binding site of P-gp than rifampicin (ΔG (kcal/mol) = -11.5 vs -5.3). Together, this study demonstrates that rifabutin can at least partly mask P-gp induction by P-gp inhibition, mediated by high affinity binding to the inhibitory site of P-gp.
Collapse
Affiliation(s)
- Lottida Phondeth
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Julie Nilles
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Boissiere C, Francois E, Vabret E, Le Daré B, Bacle A. Spice-drug interactions: a case report on the use of turmeric, curry and ginger in a renal transplant patient on tacrolimus. Eur J Hosp Pharm 2023; 31:68-69. [PMID: 37586787 PMCID: PMC10800271 DOI: 10.1136/ejhpharm-2023-003871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Tacrolimus is a widely used immunosuppressant for the prevention of rejection after transplantation. In vitro studies suggest that interactions exist between spices and tacrolimus. We present the case of a renal transplant patient aged around 70 years who was treated with prednisone, mycophenolate-mofetil and tacrolimus. The patient had a pre-transplant dietary habit of consuming foods spiced with turmeric, curry and ginger. The following protocol was implemented in parallel with close monitoring of plasma tacrolimus concentrations: administration of 10 g/day of turmeric for 4 days, then 10 g/day of curry for 4 days and then 10 g/day of ginger for 4 days. No change in tacrolimus plasma concentrations during and after the implementation of the protocol was observed. The impact of turmeric, curry and ginger on plasma tacrolimus concentrations seems negligible in vivo although further studies are needed. A shared decision to test the impact of spice consumption in a patient with dietary habits involving these spices seems reasonable.
Collapse
Affiliation(s)
- Camille Boissiere
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000, Rennes, France
| | - Elise Francois
- Service de Néphrologie, CHU Rennes, 35000, Rennes, France
| | - Elsa Vabret
- Service de Néphrologie, CHU Rennes, 35000, Rennes, France
| | - Brendan Le Daré
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000, Rennes, France
- INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Réseau PREVITOX, Université de Rennes 1, 35000, Rennes, France
| | - Astrid Bacle
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000, Rennes, France
- Univ Rennes, CHU Rennes, INSERM, EHESP, Irset-UMR_S 1085, 35000, Rennes, France
| |
Collapse
|
6
|
Miyake T, Tsutsui H, Hirabayashi M, Tachibana T. Quantitative Prediction of OATP-Mediated Disposition and Biliary Clearance Using Human Liver Chimeric Mice. J Pharmacol Exp Ther 2023; 387:135-149. [PMID: 37142442 DOI: 10.1124/jpet.123.001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Haruka Tsutsui
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Manabu Hirabayashi
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| |
Collapse
|
7
|
Stemkens R, de Jager V, Dawson R, Diacon AH, Narunsky K, Padayachee SD, Boeree MJ, van Beek SW, Colbers A, Coenen MJH, Svensson EM, Fuhr U, Phillips PPJ, te Brake LHM, Aarnoutse RE. Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2023; 67:e0068323. [PMID: 37768317 PMCID: PMC10583668 DOI: 10.1128/aac.00683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | | | - Kim Narunsky
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherman D. Padayachee
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn W. van Beek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Uwe Fuhr
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lindsey H. M. te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the PanACEA consortium
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- TASK, Cape Town, South Africa
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- UCSF Center for Tuberculosis, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Mukherjee D, Collins M, Dylla DE, Kaur J, Semizarov D, Martinez A, Conway B, Khan T, Mostafa NM. Assessment of Drug-Drug Interaction Risk Between Intravenous Fentanyl and the Glecaprevir/Pibrentasvir Combination Regimen in Hepatitis C Patients Using Physiologically Based Pharmacokinetic Modeling and Simulations. Infect Dis Ther 2023; 12:2057-2070. [PMID: 37470926 PMCID: PMC10505123 DOI: 10.1007/s40121-023-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION An unsafe injection practice is one of the major contributors to new hepatitis C virus (HCV) infections; thus, people who inject drugs are a key population to prioritize to achieve HCV elimination. The introduction of highly effective and well-tolerated pangenotypic direct-acting antivirals, including glecaprevir/pibrentasvir (GLE/PIB), has revolutionized the HCV treatment landscape. Glecaprevir is a weak cytochrome P450 3A4 (CYP3A4) inhibitor, so there is the potential for drug-drug interactions (DDIs) with some opioids metabolized by CYP3A4, such as fentanyl. This study estimated the impact of GLE/PIB on the pharmacokinetics of intravenous fentanyl by building a physiologically based pharmacokinetic (PBPK) model. METHODS A PBPK model was developed for intravenous fentanyl by incorporating published information on fentanyl metabolism, distribution, and elimination in healthy individuals. Three clinical DDI studies were used to verify DDIs within the fentanyl PBPK model. This model was integrated with a previously developed GLE/PIB PBPK model. After model validation, DDI simulations were conducted by coadministering GLE 300 mg + PIB 120 mg with a single dose of intravenous fentanyl (0.5 µg/kg). RESULTS The predicted maximum plasma concentration ratio between GLE/PIB + fentanyl and fentanyl alone was 1.00, and the predicted area under the curve ratio was 1.04, suggesting an increase of only 4% in fentanyl exposure. CONCLUSION The administration of a therapeutic dose of GLE/PIB has very little effect on the pharmacokinetics of intravenous fentanyl. This negligible increase would not be expected to increase the risk of fentanyl overdose beyond the inherent risks related to the amount and purity of the fentanyl received during recreational use.
Collapse
Affiliation(s)
| | | | | | | | | | - Anthony Martinez
- Jacobs School of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Brian Conway
- Vancouver Infectious Diseases Centre, Vancouver, Canada
- Simon Fraser University, Burnaby, Canada
| | - Tipu Khan
- Ventura County Medical Center, Ventura, CA, USA
- USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Salerno SN, Capparelli EV, McIlleron H, Gerhart JG, Dumond JB, Kashuba AD, Denti P, Gonzalez D. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy 2023; 43:638-649. [PMID: 35607886 PMCID: PMC9684348 DOI: 10.1002/phar.2703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022]
Abstract
STUDY OBJECTIVE Treatment of HIV and tuberculosis co-infection leads to significant mortality in pediatric patients, and treatment can be challenging due to the clinically significant drug-drug interaction (DDI) between lopinavir/ritonavir (LPV/RTV) and rifampin. Doubling LPV/RTV results in insufficient lopinavir trough concentrations in pediatric patients. The objective of this study was to leverage physiologically based pharmacokinetic (PBPK) modeling to optimize the adjusted doses of LPV/RTV in children receiving the WHO-revised doses of rifampin (15 mg/kg daily). DESIGN Adult and pediatric PBPK models for LPV/RTV with rifampin were developed, including CYP3A and P-glycoprotein inhibition and induction. SETTING (OR DATA SOURCE) Data for LPV/RTV model development and evaluation were available from the pediatric AIDS Clinical Trials Group. PATIENTS Dosing simulations were next performed to optimize dosing in children (2 months to 8 years of age). INTERVENTION Exposure following super-boosted LPV/RTV with 10 and 15 mg/kg PO daily rifampin was simulated. MEASUREMENTS AND MAIN RESULTS Simulated parameters were within twofold observations for LPV, RTV, and rifampin in adults and children ≥2 weeks old. The model predicted that, in healthy adults receiving 400/100 mg oral LPV/RTV twice daily (BID), co-treatment with 600 mg oral rifampin daily decreased the steady-state area under the concentration vs. time curve of LPV by 79%, in line with the observed change of 75%. Simulated and observed concentration profiles were comparable for LPV/RTV (230/57.5 mg/m2 ) PO BID without rifampin and 230/230 mg/m2 LPV/RTV PO BID with 10 mg/kg PO daily rifampin in pediatric patients. Sixteen mg/kg of super-boosted LPV (LPV/RTV 1:1) PO BID with 15 mg/kg PO daily rifampin achieved simulated LPV troughs >1 mg/L in ≥93% of virtual children weighing 3.0-24.9 kg, which was comparable with 10 mg/kg PO daily rifampin. CONCLUSIONS Super-boosted LPV/RTV with 15 mg/kg rifampin achieves therapeutic LPV troughs in HIV/TB-infected simulated children.
Collapse
Affiliation(s)
- Sara N. Salerno
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edmund V. Capparelli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie B. Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [ 123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2023; 50:1974-1987. [PMID: 36847827 PMCID: PMC10199883 DOI: 10.1007/s00259-023-06171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE In routine practice, dopamine transporter (DAT) imaging is frequently used as a diagnostic tool to support the diagnosis of Parkinson's disease or dementia with Lewy bodies. In 2008, we published a review on which medications and drugs of abuse may influence striatal [123I]I-FP-CIT binding and consequently may influence the visual read of an [123I]I-FP-CIT SPECT scan. We made recommendations on which drugs should be withdrawn before performing DAT imaging in routine practice. Here, we provide an update of the original work based on published research since 2008. METHODS We performed a systematic review of literature without language restriction from January 2008 until November 2022 to evaluate the possible effects of medications and drugs of abuse, including the use of tobacco and alcohol, on striatal DAT binding in humans. RESULTS The systematic literature search identified 838 unique publications, of which 44 clinical studies were selected. Using this approach, we found additional evidence to support our original recommendations as well as some new findings on potential effect of other medications on striatal DAT binding. Consequently, we updated the list of medications and drugs of abuse that may influence the visual read of [123I]I-FP-CIT SPECT scans in routine clinical practice. CONCLUSION We expect that a timely withdrawal of these medications and drugs of abuse before DAT imaging may reduce the incidence of false-positive reporting. Nevertheless, the decision to withdraw any medication must be made by the specialist in charge of the patient's care and considering the pros and cons of doing so.
Collapse
Affiliation(s)
- Youssef Chahid
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Clinical Pharmacy, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Zulfiqar H Sheikh
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Max Mitropoulos
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Jan Booij
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kosloski MP, Li H, Wang S, Mensa F, Kort J, Liu W. Characterizing complex and competing drug-drug interactions between the antiviral regimen of glecaprevir and pibrentasvir with rifampin or carbamazepine. Clin Transl Sci 2023; 16:593-605. [PMID: 36597378 PMCID: PMC10087067 DOI: 10.1111/cts.13471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The fixed-dose combination of the direct acting antivirals glecaprevir (GLE) and pibrentasvir (PIB) is an oral, once-daily treatment for all six major genotypes of chronic hepatitis C virus infection. A single and multiple-dose rifampin study (N = 12) and a carbamazepine study (N = 12) were conducted in healthy subjects to evaluate the effects of CYP3A/P-gp induction and OATP inhibition on the pharmacokinetics of GLE and PIB. In study 1, GLE 300 mg + PIB 120 mg was administered as a single dose either alone, after single and multiple daily doses of rifampin 600 mg, or 24 h after the last rifampin dose. In study 2, GLE 300 mg + PIB 120 mg was administered as a single dose either alone or after multiple doses of carbamazepine 200 mg. Relative to GLE + PIB alone, exposure of GLE was significantly increased by the first co-administered rifampin dose due to OATP inhibition, significantly decreased 24 h after the last rifampin dose due to CYP3A/P-gp induction, and slightly increased when co-administered with steady-state rifampin due to a combination of inhibition and induction forces. Exposure of PIB was not affected when co-administered with the first rifampin dose but was significantly decreased with steady-state rifampin co-administration, or 24 h after the last rifampin dose due to P-gp induction. Carbamazepine significantly decreased GLE and PIB exposure, mainly attributed to P-gp induction. The regimens tested were generally well-tolerated by the subjects and no new safety issues were identified.
Collapse
Affiliation(s)
| | - Hong Li
- Data and Statistical Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Stanley Wang
- Infectious Disease, AbbVie Inc., North Chicago, Illinois, USA
| | - Federico Mensa
- Infectious Disease, AbbVie Inc., North Chicago, Illinois, USA
| | - Jens Kort
- Medical Affairs, AbbVie Inc., North Chicago, Illinois, USA
| | - Wei Liu
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| |
Collapse
|
12
|
Effects of rifampin on the pharmacokinetics and pharmacodynamics of milvexian, a potent, selective, oral small molecule factor XIa inhibitor. Sci Rep 2022; 12:22239. [PMID: 36564395 PMCID: PMC9789074 DOI: 10.1038/s41598-022-25936-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Milvexian (BMS-986177/JNJ-70033093) is a potent, oral small molecule that inhibits the active form of factor XI with high affinity and selectivity. This study assessed the single-dose pharmacokinetic and pharmacodynamic properties of milvexian co-administered with rifampin, an organic anion transport protein (OATP) inhibitor and potent cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp) inducer. In this open-label, nonrandomized, single-sequence study, healthy participants (N = 16) received single doses of milvexian on Day 1 (100 mg), milvexian and rifampin (600 mg) on Day 4, rifampin on Days 5-11, milvexian and rifampin on Day 12, and rifampin on Days 13-14. Pharmacokinetic data were summarized using descriptive statistics. Administration of milvexian, alone or in combination with rifampin, was generally safe and well tolerated. Single-dose co-administration of rifampin and milvexian demonstrated no meaningful changes in milvexian exposure versus milvexian alone (Cmax, 110%; AUC[0-T], 102%; AUC[INF], 101%). After multiple doses of rifampin and milvexian, peak and total milvexian exposure substantially decreased versus milvexian alone (Cmax, 22%; AUC[0-T], 15%; AUC[INF], 15%). Results were consistent with preclinical data, indicating that milvexian is a substrate for CYP3A4/5 and P-gp but not OATP. The implications of these results on the need for dose adjustment of milvexian will be further elucidated following the completion of phase 2 and 3 trials.Trial registration The study was registered with ClinicalTrials.gov (NCT02959060; submitted 7/11/2016, first posted 8/11/2016).
Collapse
|
13
|
Shin Y, Choi C, Oh ES, Kim CO, Park K, Park MS. Effect of Rifampicin on the Pharmacokinetics of Evogliptin in Healthy Volunteers. Drug Des Devel Ther 2022; 16:4301-4310. [PMID: 36573067 PMCID: PMC9789683 DOI: 10.2147/dddt.s383157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Evogliptin (DA-1229) is a novel, potent, and selective dipeptidyl peptidase 4 (DPP-4) inhibitor for treating type 2 diabetes mellitus. This study investigates the effect of rifampicin on evogliptin pharmacokinetics. Patients and Methods An open-label, crossover, one-sequence study was conducted on 12 healthy subjects. Reference baseline pharmacokinetic samples were collected on day 1 after the subjects were administered a single dose of 5 mg evogliptin. After a washout period, the subjects were administered 600 mg rifampicin once daily for 10 days, from days 8 to 17, for full induction of hepatic enzyme activity. On day 17, single doses of evogliptin (5 mg) were administered along with rifampicin (600 mg). The test pharmacokinetic samples were collected with a sampling schedule identical to that used for the reference. Results Maximum concentration (Cmax) and area under the plasma drug concentration-time curve (AUC0-96h) of evogliptin with and without co-administration of rifampicin were compared. Reference and test Cmax and AUC0-96h values of evogliptin were 4.70 ng/mL vs 4.86 ng/mL and 153.97 ng∙h/mL vs 58.83 ng∙h/mL, respectively. All adverse events were mild in intensity and considered unrelated to evogliptin administration. Conclusion Rifampicin decreased the AUC0-96h of evogliptin by 61.8% without significantly affecting Cmax. The mechanism underlying the decrease in AUC0-96h is thought to be the induction of cytochrome P450 (CYP), especially 3A, by rifampicin. The adverse events, none of which were serious, were not significantly altered by the concomitant administration of evogliptin and rifampicin. Nevertheless, it would be prudent that evogliptin dosing should be carefully considered when co-administered with CYP3A inducers.
Collapse
Affiliation(s)
- Yesong Shin
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Chungam Choi
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Eun Sil Oh
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea,Department of Pharmaceutical Medicine and Regulatory Science, Graduate Inter Program, Yonsei University College of Medicine, Seoul, Korea
| | - Choon Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea,Department of Pharmaceutical Medicine and Regulatory Science, Graduate Inter Program, Yonsei University College of Medicine, Seoul, Korea,Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea,Correspondence: Min Soo Park, Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea, Tel +82-2-2228-0400, Fax +82-31-787-4045, Email
| |
Collapse
|
14
|
Naidoo A, Dooley KE, Naidoo K, Padayatchi N, Yende-Zuma N, Perumal R, Dorse G, Boodhram R, Osuala EC. INSTIs for the management of HIV-associated TB (INSIGHT study): a phase 2b study to evaluate the efficacy, safety and pharmacokinetics of a combination of bictegravir, emtricitabine and tenofovir alafenamide fumarate for the treatment of HIV-1 infection in patients with drug-susceptible tuberculosis on a rifampicin-based treatment regimen: a phase 2b open-label randomised controlled trial. BMJ Open 2022; 12:e067765. [PMID: 36356989 PMCID: PMC9660663 DOI: 10.1136/bmjopen-2022-067765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Cotreatment of HIV and tuberculosis (TB) reduces morbidity and mortality in coinfected patients. Availability of antiretroviral treatment (ART) drug options, including within drug classes, is important, particularly in high HIV/TB burden low and middle-income countries. METHODS AND ANALYSIS This is a phase 2b, open-label, non-comparative randomised controlled trial to assess the antiretroviral activity of a fixed-drug, single tablet, combination of bictegravir (BIC) 50 mg/emtricitabine (FTC) 200 mg/tenofovir alafenamide (TAF) 25 mg (Biktarvy). The primary objective is to determine the efficacy, safety and pharmacokinetics of two times per day, coformulated BIC 50 mg/FTC 200 mg/TAF 25 mg in HIV-positive ART-naïve patients with TB who are receiving a rifampicin-based treatment regimen and to characterise viral suppression rates at week 24 through to week 48 in the BIC/FTC/TAF arm. We will enrol 120 patients randomised in a 2:1 ratio to the intervention or control arm of the study. A non-comparative contemporaneous control arm in which participants receive a dolutegravir-based regimen (standard of care) will also be enrolled. ETHICS AND DISSEMINATION The University of KwaZulu-Natal Biomedical Research Ethics Committee (BREC) and the South African Health Products Regulatory Authority (SAHPRA) have granted regulatory approval (trial reference numbers: BREC/00001300/2020 and SAHPRA 20200810). Trial results will be disseminated through conference presentations, peer-reviewed publications and the clinical trial registry. TRIAL REGISTRATION NUMBER Clinicaltrials.gov; Trial registration number: NCT04734652; South African National Clinical Trials Register (SANCTR DOH-27-012021-6789).
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kogieleum Naidoo
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Nesri Padayatchi
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | - Rubeshan Perumal
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Gillian Dorse
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | - Resha Boodhram
- Centre for the Aids Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | | |
Collapse
|
15
|
Iversen DB, Andersen NE, Dalgård Dunvald A, Pottegård A, Stage TB. Drug metabolism and drug transport of the 100 most prescribed oral drugs. Basic Clin Pharmacol Toxicol 2022; 131:311-324. [PMID: 35972991 PMCID: PMC9804310 DOI: 10.1111/bcpt.13780] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023]
Abstract
Safe and effective use of drugs requires an understanding of metabolism and transport. We identified the 100 most prescribed drugs in six countries and conducted a literature search on in vitro data to assess contribution of Phase I and II enzymes and drug transporters to metabolism and transport. Eighty-nine of the 100 drugs undergo drug metabolism or are known substrates for drug transporters. Phase I enzymes are involved in metabolism of 67 drugs, while Phase II enzymes mediate metabolism of 18 drugs. CYP3A4/5 is the most important Phase I enzyme involved in metabolism of 43 drugs followed by CYP2D6 (23 drugs), CYP2C9 (23 drugs), CYP2C19 (22 drugs), CYP1A2 (14 drugs) and CYP2C8 (11 drugs). More than half of the drugs (54 drugs) are known substrates for drug transporters. P-glycoprotein (P-gp) is known to be involved in transport of 30 drugs, while breast cancer resistance protein (BCRP) facilitates transport of 11 drugs. A considerable proportion of drugs are subject to a combination of Phase I metabolism, Phase II metabolism and/or drug transport. We conclude that the majority of the most frequently prescribed drugs depend on drug metabolism or drug transport. Thus, understanding variability of drug metabolism and transport remains a priority.
Collapse
Affiliation(s)
- Ditte B. Iversen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Nanna Elman Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Ann‐Cathrine Dalgård Dunvald
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Anton Pottegård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Tore B. Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
16
|
Grover S, Laxmi R, Jagota G. Drug interaction between anti-tubercular medication and clozapine leading to relapse of psychosis: A case report. Asian J Psychiatr 2022; 77:103279. [PMID: 36202004 DOI: 10.1016/j.ajp.2022.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sandeep Grover
- Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| | - Raj Laxmi
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Gopika Jagota
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
17
|
Li T, Li X, Jiang X, Wang C, Sun F, Liu Y, Lin P, Shi P, Fu Y, Gao X, Zhang Y, Cao Y. The effect of rifampin on the pharmacokinetics of famitinib in healthy subjects. Cancer Chemother Pharmacol 2022; 90:409-415. [PMID: 36107220 PMCID: PMC9556364 DOI: 10.1007/s00280-022-04474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Abstract
Background
Famitinib is an oral, small-molecule, multi-targeted tyrosine kinase inhibitor under clinical investigation for the treatment of solid tumors. As famitinib is metabolized mainly by cytochrome P450 3A4 (CYP3A4), the study was conducted to investigate the effect of potent CYP3A4 inducer rifampin on the pharmacokinetics of famitinb.
Methods
This single-center, single-arm and fixed-sequence drug–drug interaction study enrolled 21healthy Chinese male subjects. Subjects received a single oral dose of famitinib 25 mg on days 1 and 16 and repeated administration of oral rifampin 600 mg once daily on days 10–23. Blood samples were collected and plasma concentrations of famitinib were measured by validated liquid chromatography-tandem mass spectrometry (LC–MS/MS) method. Pharmacokinetic parameters were calculated using noncompartmental analysis and safety was assessed.
Results
In the presence of rifampin, the famitinib geometric mean maximum plasma concentration (Cmax) and area under the plasma concentration–time curve from time zero to infinity (AUC0–∞) decreased by 48% and 69%, respectively, and the mean elimination half-life was shortened from 33.9 to 18.2 h. The geometric mean ratio (GMR) of famitinib Cmax and AUC0–∞ and their 90% CI were 0.52 (0.50, 0.54) and 0.31 (0.29, 0.33). Single dose of famitinib 25 mg was well tolerated and eight subjects (38.1%) reported treatment emergent adverse events, which were all grade 1–2 in severity.
Conclusion
Co-administration of rifampin considerably reduces plasma concentration of famitinb due to CYP3A4 induction. Concomitant administration of famitinib and strong CYP3A4 inducers should be avoided, whereas when simultaneous use with inducers of CYP3A4, dose adjustment of famitinb is recommended.
Clinical trial registration number
NCT04494659 (July 31, 2020).
Collapse
Affiliation(s)
- Ting Li
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xin Li
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xin Jiang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chenjing Wang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Feifei Sun
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yanping Liu
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Pingping Lin
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ping Shi
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yao Fu
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaomeng Gao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yanyan Zhang
- Clinical Pharmacology Department, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Jiangsu, China
| | - Yu Cao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
18
|
Li C, Horton JK, Sale M, Curd L, Goti V, Tao W, Beelen A. Pharmacokinetic Drug-Drug Interaction Studies Between Trilaciclib and Midazolam, Metformin, Rifampin, Itraconazole, and Topotecan in Healthy Volunteers and Patients with Extensive-Stage Small-Cell Lung Cancer. Clin Drug Investig 2022; 42:679-692. [PMID: 35842567 PMCID: PMC9338108 DOI: 10.1007/s40261-022-01179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
Background and Objective Trilaciclib is a cyclin-dependent kinase 4/6 inhibitor indicated to decrease the incidence of chemotherapy-induced myelosuppression in patients with extensive-stage small-cell lung cancer. Trilaciclib is a substrate and time-dependent inhibitor of cytochrome P450 3A4 and an inhibitor of multidrug and toxin extrusion 1, multidrug and toxin extrusion 2-K, organic cation transporter 1, and organic cation transporter 2. Here, we investigate the pharmacokinetic drug–drug interaction potential of trilaciclib. Methods Two phase I studies were conducted as prospective, open-label, fixed-sequence drug–drug interaction studies in healthy subjects (n = 57, n = 20) to investigate potential interactions between intravenously administered trilaciclib (200 or 240 mg/m2) and orally administered midazolam (5 mg), metformin (1000 mg), itraconazole (200 mg), and rifampin (600 mg). A population pharmacokinetic model was fit to phase Ib/IIa data in patients with extensive-stage small-cell lung cancer (n = 114) to assess the impact of trilaciclib dose and exposure (area under the plasma concentration–time curve) on topotecan clearance. Results Coadministration with trilaciclib had minimal effects on the exposure (area under the plasma concentration–time curve from time 0 to infinity) of midazolam (geometric least-square mean ratio [GMR] vs midazolam alone 1.065; 90% confidence interval [CI] 0.984–1.154) but statistically significantly increased plasma exposure (GMR 1.654; 90% CI 1.472–1.858) and decreased renal clearance (GMR 0.633; 90% CI 0.572–0.701) of metformin. Coadministration of trilaciclib with rifampin or itraconazole decreased trilaciclib area under the plasma concentration–time curve from time 0 to infinity by 17.3% (GMR 0.827; 90% CI 0.785–0.871) and 14.0% (GMR 0.860; 0.820–0.902), respectively, vs trilaciclib alone. Population pharmacokinetic modeling showed no significant effect of trilaciclib on topotecan clearance. Conclusions Overall, the drug–drug interaction and safety profiles of trilaciclib in these studies support its continued use in patients with extensive-stage small-cell lung cancer. Clinical Trial Registration Study 106: EudraCT number: 2019-002303-18; Study 114: not applicable; Study 03: Clinicaltrials.org: NCT02514447; August 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s40261-022-01179-x.
Collapse
Affiliation(s)
- Chao Li
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
- Fosun Pharma USA, Inc., Lexington, MA, USA
| | - Janet K Horton
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
| | | | | | - Vineet Goti
- Nuventra, LLC., Durham, NC, USA
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Wenli Tao
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA
- , Cary, NC, USA
| | - Andrew Beelen
- G1 Therapeutics, Inc., 700 Park Offices Dr Ste 200, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
19
|
Asaumi R, Nunoya K, Yamaura Y, Taskar KS, Sugiyama Y. Robust physiologically based pharmacokinetic model of rifampicin for predicting
drug–drug
interactions via P‐glycoprotein induction and inhibition in the intestine, liver, and kidney. CPT Pharmacometrics Syst Pharmacol 2022; 11:919-933. [PMID: 35570332 PMCID: PMC9286720 DOI: 10.1002/psp4.12807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryuta Asaumi
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Ken‐ichi Nunoya
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Kunal S. Taskar
- Drug Metabolism and Pharmacokinetics In Vitro In Vivo Translation GlaxoSmithKline R&D Stevenage UK
| | - Yuichi Sugiyama
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of Pharmacy Josai International University Tokyo Japan
| |
Collapse
|
20
|
Mukker JK, Dukes G, Tolkoff M, Wang L, Almansa C, Huh SY, Nishihara M, Ramsden D, Chen C. The pharmacokinetics of oral trazpiroben (TAK-906) after organic anion transporting polypeptide 1B1/1B3 inhibition: A phase I, randomized study. Clin Transl Sci 2022; 15:1532-1543. [PMID: 35460165 PMCID: PMC9199876 DOI: 10.1111/cts.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Trazpiroben is a dopamine D2/D3 receptor antagonist under development for the treatment of gastroparesis. This phase I, open‐label, randomized, two‐way crossover study (NCT04121078) evaluated the effect of single‐dose intravenous rifampin, a potent inhibitor of the organic anion transporting polypeptides (OATPs) 1B1 and 1B3, on the pharmacokinetics and safety of trazpiroben in healthy adults. The utility of coproporphyrin (CP) I and CPIII as biomarkers of OATP inhibition was also assessed. Overall, 12 participants were enrolled and randomized (1:1) into one of two treatment sequences (AB and BA). Participants received either a single oral dose of trazpiroben 25 mg (treatment A) or a single oral dose of trazpiroben 25 mg immediately after a single 30‐min intravenous infusion of rifampin 600 mg (treatment B). After a washout period of at least 7 days, participants received the other treatment. Geometric mean area under the curve from time 0 extrapolated to infinity (AUC∞) and maximum serum concentration (Cmax) of plasma trazpiroben were higher in participants receiving treatment B than those receiving treatment A (AUC∞, 168.5 vs. 32.68 ng*h/ml; Cmax, 89.62 vs. 14.37 ng/ml); corresponding geometric mean ratios (90% confidence interval) showed 5.16 (4.25–6.25) and 6.24 (4.62–8.42)‐fold increases in these parameters, respectively. In this study, trazpiroben was confirmed as a substrate of OATP1B1/1B3, and therefore co‐administration of trazpiroben with moderate to strong inhibitors of OATP1B1/1B3 is not recommended. This is also the first assessment of the utility of CPI and CPIII as endogenous biomarkers of OATP1B1/1B3 inhibition after a single intravenous dose of rifampin.
Collapse
Affiliation(s)
- Jatinder K Mukker
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - George Dukes
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA.,Takeda Pharmaceutical Company, Limited, Fujisawa, Japan
| | - Max Tolkoff
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Lisi Wang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Cristina Almansa
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Susanna Y Huh
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | | | - Diane Ramsden
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Chunlin Chen
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Asari K, Ishii M, Yoshitsugu H, Wakana A, Fancourt C, Yoon E, Furihata K, McCrea JB, Stoch SA, Iwamoto M. Pharmacokinetics, Safety, and Tolerability of Letermovir Following Single- and Multiple-Dose Administration in Healthy Japanese Subjects. Clin Pharmacol Drug Dev 2022; 11:938-948. [PMID: 35238179 DOI: 10.1002/cpdd.1081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Letermovir is a human cytomegalovirus terminase inhibitor for the prophylaxis of cytomegalovirus infection and disease in allogeneic hematopoietic stem cell transplant recipients. The pharmacokinetics, safety, and tolerability of letermovir were assessed in healthy Japanese subjects in 2 phase 1 trials: trial 1-single ascending oral doses (240, 480, and 720 mg) and intravenous (IV) doses (240, 480, and 960 mg), and trial 2-multiple oral doses (240 and 480 mg once daily for 7 days). Following administration of oral single and multiple doses, letermovir was absorbed with a median time to maximum plasma concentration of 2 to 4 hours, and concentrations declined in a biphasic manner with a terminal half-life of ≈10 to 13 hours. The post absorption plasma concentration-time profile of letermovir following oral administration was similar to the profile observed with IV dosing. There was minimal accumulation with multiple-dose administration. Letermovir exposure in healthy Japanese subjects was ≈1.5- to 2.5-fold higher than that observed in non-Japanese subjects. Based on the population pharmacokinetic analysis, weight differences primarily accounted for the higher exposures observed in Asians. Letermovir was generally well tolerated following oral and IV administration to healthy Japanese subjects.
Collapse
Affiliation(s)
| | | | | | | | | | - Esther Yoon
- PAREXEL International Early Phase Research Physicians, Glendale, California, USA
| | | | | | | | | |
Collapse
|
22
|
Naidoo A, Naidoo K, Padayatchi N, Dooley KE. Use of integrase inhibitors in HIV-associated tuberculosis in high-burden settings: implementation challenges and research gaps. Lancet HIV 2022; 9:e130-e138. [PMID: 35120633 PMCID: PMC8970050 DOI: 10.1016/s2352-3018(21)00324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
People living with HIV have a higher risk of developing tuberculosis, and tuberculosis is one of the leading causes of death among people living with HIV globally. Treating HIV and tuberculosis concurrently has morbidity and mortality benefits. However, HIV and tuberculosis co-treatment is challenging due to drug-drug interactions, overlapping toxicities, tuberculosis-associated immune reconstitution syndrome, and concerns for treatment failure or drug resistance. Drug-drug interactions between antiretrovirals and tuberculosis drugs are driven mainly by the rifamycins (for example, the first-line tuberculosis drug rifampicin), and dose adjustments or drug switches during co-treatment are commonly required. Several implementation challenges and research gaps exist when combining the integrase strand transfer inhibitors (INSTIs), highly potent antiretroviral drugs recommended as first-line treatment of HIV, and drugs used for the treatment and prevention of tuberculosis. Ongoing and planned studies will address some critical questions on the use of INSTIs in settings with a high tuberculosis burden, including dosing of dolutegravir, bictegravir, and cabotegravir when used with the rifamycins for both tuberculosis treatment and prevention. Failure, in the past, to include people with tuberculosis in HIV clinical treatment trials has been responsible for some of the research gaps still evident for informing optimisation of HIV and tuberculosis co-treatment.
Collapse
|
23
|
Wang Y, Sparidans RW, Wang J, Li W, Lebre MC, Beijnen JH, Schinkel AH. Rifampin and ritonavir increase oral availability and elacridar enhances overall exposure and brain accumulation of the NTRK inhibitor larotrectinib. Eur J Pharm Biopharm 2021; 170:197-207. [PMID: 34952136 DOI: 10.1016/j.ejpb.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Larotrectinib is an FDA-approved oral small-molecule inhibitor for neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive cancer treatment. Here larotrectinib pharmacokinetic behavior upon co-administration with prototypical inhibitors of the efflux transporters ABCB1/ABCG2 (elacridar), the SLCO1A/1B (OATP1A/1B) uptake transporters (rifampin), and the drug-metabolizing enzyme CYP3A (ritonavir), respectively, was investigated. METHODS Inhibitors were orally administered prior to oral larotrectinib (10 mg/kg) to relevant genetically modified mouse models. Larotrectinib plasma and tissue homogenate concentrations were measured by a liquid chromatography-tandem mass spectrometric assay. RESULTS Elacridar increased oral availability (2.7-fold) and markedly improved brain-to-plasma ratios (5.0-fold) of larotrectinib in wild-type mice. Mouse (m)Oatp1a/1b but not hepatic transgenic human (h)OATP1B1 or -1B3 restricted larotrectinib oral availability and affected its tissue distribution. Rifampin enhanced larotrectinib oral availability not only in wild-type mice (1.9-fold), but surprisingly also in Slco1a/1b-/- mice (1.7-fold). Similarly, ritonavir increased the larotrectinib plasma exposure in both wild-type (1.5-fold) and Cyp3a-/- mice (1.7-fold). Intriguingly, both rifampin and ritonavir decreased liver and/or intestinal larotrectinib levels in all related experimental groups, suggesting additional inhibition of enterohepatic Abcb1a/1b activity. CONCLUSIONS Elacridar enhances both larotrectinib plasma and tissue exposure and especially relative brain penetration, which might be therapeutically relevant. Hepatic mOatp1a/1b but not hOATP1B1 or -1B3 transported larotrectinib. Additionally, rifampin enhances larotrectinib systemic exposure, most likely by inhibiting mOatp1a/1b, but probably also hepatic and/or intestinal mAbcb1. Similar to rifampin, dual-inhibition functions of ritonavir affecting both CYP3A enzymes and enterohepatic Abcb1 transporters enhanced larotrectinib oral availability. The obtained insights may be used to further optimize the clinical-therapeutic application of larotrectinib.
Collapse
Affiliation(s)
- Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jing Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Robbins JA, Menzel K, Lassman M, Zhao T, Fancourt C, Chu X, Mostoller K, Witter R, Marceau West R, Stoch SA, McCrea JB, Iwamoto M. Acute and Chronic Effects of Rifampin on Letermovir Suggest Transporter Inhibition and Induction Contribute to Letermovir Pharmacokinetics. Clin Pharmacol Ther 2021; 111:664-675. [PMID: 34888851 DOI: 10.1002/cpt.2510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Rifampin has acute inhibitory and chronic inductive effects that can cause complex drug-drug interactions. Rifampin inhibits transporters including organic-anion-transporting polypeptide (OATP)1B and P-glycoprotein (P-gp), and induces enzymes and transporters including cytochrome P450 3A, UDP-glucuronosyltransferase (UGT)1A, and P-gp. This study aimed at separating inhibitory and inductive effects of rifampin on letermovir disposition and elimination (indicated for cytomegalovirus prophylaxis in hematopoietic stem cell transplant recipients). Letermovir is a substrate of UGT1A1/3, P-gp, and OATP1B, with its clearance primarily mediated by OATP1B. Letermovir (single-dose) administered with rifampin (single-dose) resulted in increased letermovir exposure through transporter inhibition. Chronic coadministration with rifampin (inhibition plus potential OATP1B induction) resulted in modestly decreased letermovir exposure versus letermovir alone. Letermovir administered 24 hours after last rifampin dose (potential OATP1B induction) resulted in markedly decreased letermovir exposure. These data suggest rifampin may induce transporters that clear letermovir; the modestly reduced letermovir exposure with chronic rifampin coadministration likely reflects the net effect of inhibition and induction. OATP1B endogenous biomarkers coproporphyrin (CP) I and glycochenodeoxycholic acid-sulfate (GCDCA-S) were also analyzed; their exposures increased after single-dose rifampin plus letermovir, consistent with OATP1B inhibition and prior reports of inhibition by rifampin alone. CP I and GCDCA-S exposures were substantially reduced with letermovir administered 24 hours after the last dose of rifampin versus letermovir plus chronic rifampin coadministration, This study suggests that OATP1B induction may contribute to reduced letermovir exposure after chronic rifampin administration, although given the complexity of letermovir disposition, alternative mechanisms are not fully excluded.
Collapse
Affiliation(s)
| | | | | | - Tian Zhao
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wendl T, Frechen S, Gerisch M, Heinig R, Eissing T. Physiologically-based pharmacokinetic modeling to predict CYP3A4-mediated drug-drug interactions of finerenone. CPT Pharmacometrics Syst Pharmacol 2021; 11:199-211. [PMID: 34783193 PMCID: PMC8846632 DOI: 10.1002/psp4.12746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 12/17/2022] Open
Abstract
Finerenone is a nonsteroidal, selective mineralocorticoid receptor antagonist that recently demonstrated its efficacy to delay chronic kidney disease (CKD) progression and reduce cardiovascular events in patients with CKD and type 2 diabetes. Here, we report the development of a physiologically‐based pharmacokinetic (PBPK) model for finerenone and its application as a victim drug of cytochrome P450 3A4 (CYP3A4)‐mediated drug‐drug interactions (DDIs) using the open‐source PBPK platform PK‐Sim, which has recently been qualified for this application purpose. First, the PBPK model for finerenone was developed using physicochemical, in vitro, and clinical (including mass balance) data. Subsequently, the finerenone model was validated regarding the contribution of CYP3A4 metabolism to total clearance by comparing to observed data from dedicated clinical interaction studies with erythromycin (simulated geometric mean ratios of the area under the plasma concentration‐time curve [AUCR] of 3.46 and geometric mean peak plasma concentration ratios [CmaxRs] of 2.00 vs. observed of 3.48 and 1.88, respectively) and verapamil (simulated AUCR of 2.91 and CmaxR of 1.86 vs. observed of 2.70 and 2.22, respectively). Finally, the finerenone model was applied to predict clinically untested DDI studies with various CYP3A4 modulators. An AUCR of 6.31 and a CmaxR of 2.37 was predicted with itraconazole, of 5.28 and 2.25 with clarithromycin, 1.59 and 1.40 with cimetidine, 1.57 and 1.38 with fluvoxamine, 0.19 and 0.32 with efavirenz, and 0.07 and 0.14 with rifampicin. This PBPK analysis provides a quantitative basis to guide the label and clinical use of finerenone with concomitant CYP3A4 modulators.
Collapse
Affiliation(s)
- Thomas Wendl
- Pharmaceuticals R&D, Pharmacometrics, Bayer AG, Leverkusen, Germany
| | | | - Michael Gerisch
- Pharmaceuticals R&D, Drug Metabolism and Pharmacokinetics, Bayer AG, Wuppertal, Germany.,Pharmaceuticals R&D, Clinical Pharmacology, Bayer AG, Wuppertal, Germany
| | - Roland Heinig
- Pharmaceuticals R&D, Clinical Pharmacology, Bayer AG, Wuppertal, Germany
| | - Thomas Eissing
- Pharmaceuticals R&D, Pharmacometrics, Bayer AG, Leverkusen, Germany
| |
Collapse
|
26
|
Liu S, Sodhi JK, Benet LZ. Analyzing Potential Intestinal Transporter Drug-Drug Interactions: Reevaluating Ticagrelor Interaction Studies. Pharm Res 2021; 38:1639-1644. [PMID: 34729703 DOI: 10.1007/s11095-021-03105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous studies evaluating ticagrelor drug-drug interactions have not differentiated intestinal versus systemic mechanisms, which we do here. METHODS Using recently published methodologies from our laboratory to differentiate metabolic- from transporter-mediated drug-drug interactions, a critical evaluation of five published ticagrelor drug-drug interactions was carried out to investigate the purported clinical significance of enzymes and transporters in ticagrelor disposition. RESULTS The suggested CYP3A4 inhibitors, ketoconazole and diltiazem, displayed unchanged mean absorption time (MAT) and time of maximum concentration (Tmax) values as was expected, i.e., the interactions were mainly mediated by metabolic enzymes. The potential CYP3A4/P-gp inhibitor cyclosporine also showed an unchanged MAT value. Further analysis assuming there was no P-gp effect suggested that the increased AUC and unchanged t1/2 for ticagrelor after cyclosporine administration were attributed to the inhibition of intestinal CYP3A4 rather than P-gp. Rifampin, an inducer of CYP3As after multiple dosing, unexpectedly showed decreased MAT and Tmax values, which cannot be completely explained. In contrast, grapefruit juice, an intestinal CYP3A/P-gp/OATP inhibitor, significantly increased MAT and Tmax values for ticagrelor, which may be due to activation of P-gp or inhibition of OATPs expressed in intestine. CONCLUSIONS This study provides new insight into the role of transporter pathways in ticagrelor intestinal absorption by examining potential MAT and Tmax changes mediated by drug-drug interactions.
Collapse
Affiliation(s)
- Shuaibing Liu
- Department of Bioengineering and Therapeutics Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, 94143-0912, San Francisco, USA
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutics Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, 94143-0912, San Francisco, USA
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, South San Francisco, California, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutics Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, 94143-0912, San Francisco, USA.
| |
Collapse
|
27
|
Analysis of Drug-Drug Interaction Labeling Language and Clinical Recommendations for Newly Approved Drugs Evaluated With Digoxin, Midazolam, and S-Warfarin. Clin Ther 2021; 43:2032-2039. [PMID: 34579970 DOI: 10.1016/j.clinthera.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE To best promote drug tolerability and efficacy in the clinic, data from drug-drug interaction (DDI) evaluations and subsequent translation of the results to DDI prevention and/or management strategies must be incorporated into the US Food and Drug Administration (FDA) product labeling in a consistent manner because differences in language might result in varied interpretations. This analysis aimed to assess the consistency in DDI labeling language in New Drug Applications (NDAs). METHODS NDAs of recently approved drugs (2012-2020) that increase the exposure of digoxin, midazolam, and S-warfarin, index substrates of P-glycoprotein, cytochrome P450 (CYP) 3A, and CYP2C9 activity, respectively, were fully reviewed. Noninhibitors were also evaluated to appreciate the extent of mechanistic extrapolation in case of negative index studies. FINDINGS After a systematic review of the DDI studies available in NDAs, FDA-approved labeling, and commonly used clinical tertiary resources, differences in DDI results presentation and resulting clinical recommendations were found, even for inhibitors that affect similarly the exposure of the same index substrate. Studies with negative results were often reported in the labels without providing mechanistic interpretation, thus limiting the possible extrapolation of this information to other known substrates. IMPLICATIONS The variability in language affects how the information was presented to clinicians in tertiary resources. Strategies that aim to improve the translation of mechanistic DDI index studies into consistent labeling recommendations are briefly discussed in this review.
Collapse
|
28
|
Litjens CHC, Verscheijden LFM, Bolwerk C, Greupink R, Koenderink JB, van den Broek PHH, van den Heuvel JJMW, Svensson EM, Boeree MJ, Magis-Escurra C, Hoefsloot W, van Crevel R, van Laarhoven A, van Ingen J, Kuipers S, Ruslami R, Burger DM, Russel FGM, Aarnoutse RE, Te Brake LHM. Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 62:385-396. [PMID: 34554580 PMCID: PMC9297990 DOI: 10.1002/jcph.1972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 02/03/2023]
Abstract
Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
Collapse
Affiliation(s)
- Carlijn H C Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Celine Bolwerk
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Wiebe ST, Giessmann T, Hohl K, Schmidt-Gerets S, Hauel E, Jambrecina A, Bader K, Ishiguro N, Taub ME, Sharma A, Ebner T, Mikus G, Fromm MF, Müller F, Stopfer P. Validation of a Drug Transporter Probe Cocktail Using the Prototypical Inhibitors Rifampin, Probenecid, Verapamil, and Cimetidine. Clin Pharmacokinet 2021; 59:1627-1639. [PMID: 32504272 PMCID: PMC7716890 DOI: 10.1007/s40262-020-00907-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Objective A novel cocktail containing four substrates of key drug transporters was previously optimized to eliminate mutual drug–drug interactions between the probes digoxin (P-glycoprotein substrate), furosemide (organic anion transporter 1/3), metformin (organic cation transporter 2, multidrug and toxin extrusion protein 1/2-K), and rosuvastatin (organic anion transporting polypeptide 1B1/3, breast cancer resistance protein). This clinical trial investigated the effects of four commonly employed drug transporter inhibitors on cocktail drug pharmacokinetics. Methods In a randomized open-label crossover trial in 45 healthy male subjects, treatment groups received the cocktail with or without single oral doses of rifampin, verapamil, cimetidine or probenecid. Concentrations of the probe drugs in serial plasma samples and urine fractions were measured by validated liquid chromatography-tandem mass spectrometry assays to assess systemic exposure. Results The results were generally in accordance with known in vitro and/or clinical drug–drug interaction data. Single-dose rifampin increased rosuvastatin area under the plasma concentration–time curve up to the last quantifiable concentration (AUC0–tz) by 248% and maximum plasma concentration (Cmax) by 1025%. Probenecid increased furosemide AUC0–tz by 172% and Cmax by 23%. Cimetidine reduced metformin renal clearance by 26%. The effect of single-dose verapamil on digoxin systemic exposure was less than expected from multiple-dose studies (AUC0–tz unaltered, Cmax + 22%). Conclusions Taking all the interaction results together, the transporter cocktail is considered to be validated as a sensitive and specific tool for evaluating transporter-mediated drug–drug interactions in drug development. Clinical Trial Registration EudraCT number 2017-001549-29. Electronic supplementary material The online version of this article (10.1007/s40262-020-00907-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina T Wiebe
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.,UniversitätsKlinikum Heidelberg-Medizinische Klinik, Abteilung Klinische Pharmakologie and Pharmakoepidemiologie, Heidelberg, Germany
| | - Thomas Giessmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Kathrin Hohl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Sven Schmidt-Gerets
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Edith Hauel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Alen Jambrecina
- CTC North GmbH & Co KG, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Kerstin Bader
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Chuo-ku, Kobe, Japan
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Ashish Sharma
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Thomas Ebner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Gerd Mikus
- UniversitätsKlinikum Heidelberg-Medizinische Klinik, Abteilung Klinische Pharmakologie and Pharmakoepidemiologie, Heidelberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
30
|
Molenaar-Kuijsten L, Van Balen DEM, Beijnen JH, Steeghs N, Huitema ADR. A Review of CYP3A Drug-Drug Interaction Studies: Practical Guidelines for Patients Using Targeted Oral Anticancer Drugs. Front Pharmacol 2021; 12:670862. [PMID: 34526892 PMCID: PMC8435708 DOI: 10.3389/fphar.2021.670862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Many oral anticancer drugs are metabolized by CYP3A. Clinical drug-drug interaction (DDI) studies often only examine the effect of strong CYP3A inhibitors and inducers. The effect of moderate or weak inhibitors or inducers can be examined using physiologically based pharmacokinetic simulations, but data from these simulations are not always available early after approval of a drug. In this review we provide recommendations for clinical practice on how to deal with DDIs of oral anticancer drugs if only data from strong CYP3A inhibitors or inducers is available. These recommendations were based on reviewed data of oral anticancer drugs primarily metabolized by CYP3A and approved for the treatment of solid tumors from January 1st, 2013 to December 31st, 2015. In addition, three drugs that were registered before the new EMA guideline was issued (i.e., everolimus, imatinib, and sunitinib), were reviewed. DDIs are often complex, but if no data is available from moderate CYP3A inhibitors/inducers, a change in exposure of 50% compared with strong inhibitors/inducers can be assumed. No a priori dose adaptations are indicated for weak inhibitors/inducers, because their interacting effect is small. In case pharmacologically active metabolites are involved, the metabolic pathway, the ratio of the parent to the metabolites, and the potency of the metabolites should be taken into account.
Collapse
Affiliation(s)
- Laura Molenaar-Kuijsten
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Dorieke E M Van Balen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
31
|
Berger O, Rector K, Meredith J, Sebaaly J. Evaluation of drug-drug interactions in hospitalized patients on medications for OUD. Ment Health Clin 2021; 11:231-237. [PMID: 34316418 PMCID: PMC8287868 DOI: 10.9740/mhc.2021.07.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Medications used to treat OUD have common metabolic pathways and pharmacodynamic properties that can lead to drug-drug interactions (DDIs) that may go unnoticed in the inpatient setting. The purpose of this study was to identify the frequency of DDIs between medications prescribed for OUD and commonly used inpatient medications. Methods This was a retrospective review of orders for buprenorphine, buprenorphine-naloxone, and methadone to identify potential DDIs. Adult inpatients with an order for one of these medications for OUD were included. Medication regimens were evaluated throughout the inpatient stay and on day of discharge for DDIs. DDIs were classified by severity and type of interaction (increased risk of QT prolongation, additive CNS effects/respiratory depression, and opioid withdrawal). The primary endpoint was the number of potential DDIs. Other endpoints included number of each classification/severity of DDI, duration of therapy of interacting medications, and modifications made to OUD medications because of DDIs. Results A total of 102 patients were included, with 215 inpatient interactions and 83 interactions at discharge identified. While inpatient, 85% of patients were on an interacting medication, and 46% of patients were on an interacting medication at discharge. The most common classification of DDI was additive CNS effects/respiratory depression (68.8% inpatient, 50.6% discharge), followed by QT prolongation (24.2% inpatient, 45.8% discharge). The majority of DDIs were classified as requiring close monitoring rather than contraindicated. Discussion There are opportunities to optimize the prescribing practices surrounding OUD medications in both the inpatient setting and at discharge to ensure patient safety.
Collapse
Affiliation(s)
- Olivia Berger
- Pain Management and Palliative Care PGY-2 Pharmacy Resident, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Katherine Rector
- Clinical Team Leader, Internal Medicine, Atrium Health's Carolinas Medical Center, Charlotte, North Carolina
| | - Jacqueline Meredith
- Clinical Pharmacy Specialist, Infectious Diseases, Clinical Team Leader, Antimicrobial Stewardship (Central Division), Atrium Health's Carolinas Medical Center, Charlotte, North Carolina
| | - Jamielynn Sebaaly
- Pain Management and Palliative Care PGY-2 Pharmacy Resident, The Johns Hopkins Hospital, Baltimore, Maryland.,Clinical Team Leader, Internal Medicine, Atrium Health's Carolinas Medical Center, Charlotte, North Carolina.,Clinical Pharmacy Specialist, Infectious Diseases, Clinical Team Leader, Antimicrobial Stewardship (Central Division), Atrium Health's Carolinas Medical Center, Charlotte, North Carolina
| |
Collapse
|
32
|
Ogasawara K, Kam J, Thomas M, Liu L, Liu M, Xue Y, Surapaneni S, Carayannopoulos LN, Zhou S, Palmisano M, Krishna G. Effects of strong and moderate CYP3A4 inducers on the pharmacokinetics of fedratinib in healthy adult participants. Cancer Chemother Pharmacol 2021; 88:369-377. [PMID: 34019108 DOI: 10.1007/s00280-021-04292-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Fedratinib is an oral and selective Janus kinase 2 inhibitor that is indicated for treatment of adults with intermediate-2 or high-risk primary or secondary myelofibrosis. Fedratinib is metabolized by cytochrome P450s (CYPs), primarily CYP3A4. The objective of this study was to determine the effects of the strong CYP3A4 inducer rifampin and moderate CYP3A4 inducer efavirenz on the pharmacokinetics of single doses of fedratinib. METHODS This Phase 1, open-label, two-part study (Part 1 for rifampin and Part 2 for efavirenz) was conducted in healthy adult men and women. A single dose of fedratinib (500 mg) was administered on Day 1. Participants received rifampin 600 mg daily or efavirenz 600 mg daily on Days 9-18. On Day 17, a single dose of fedratinib (500 mg) was coadministered with rifampin or efavirenz. Plasma fedratinib concentrations were measured using validated liquid chromatography-tandem mass spectrometry. RESULTS Maximum observed plasma fedratinib concentrations were lowered by approximately 70% and 30% during coadministration with rifampin or efavirenz, respectively, compared with fedratinib alone. Geometric means of fedratinib area under the plasma concentration-time curve from 0 to infinity were decreased by 81% (90% confidence interval [CI], 77-83%) and 47% (90% CI, 40-53%) during coadministration with rifampin or efavirenz, respectively. Fedratinib was generally well tolerated when administered alone or in combination with rifampin or efavirenz. CONCLUSION Significant reductions in fedratinib exposure were observed in the presence of strong or moderate CYP3A4 inducers. These results suggest that agents that are strong or moderate inducers of CYP3A4 should be avoided when coadministered with fedratinib. TRIAL REGISTRATION NUMBER NCT03983239 (Registration date: June 12, 2019).
Collapse
Affiliation(s)
| | - Jeanelle Kam
- Covance Clinical Research Unit, Inc., Dallas, TX, USA
| | | | | | - Mary Liu
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | - Simon Zhou
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | |
Collapse
|
33
|
Doran C, Moro M, Green J, Gardner KN. Rifampin-divalproex drug-drug interaction in an adult patient: A case report. Ment Health Clin 2021; 11:19-22. [PMID: 33505821 PMCID: PMC7800327 DOI: 10.9740/mhc.2021.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The divalproex (DVP) package insert states that rifampin may increase the oral clearance of valproate by 40% and that valproic acid derivative dose adjustments may be required when starting or stopping rifampin. However, the overall clinical significance of this drug-drug interaction remains unclear given that limited clinical outcome data has been published. This case describes a 52-year-old female with bipolar disorder, borderline personality disorder, and PTSD who was previously stable on a medication regimen consisting of DVP delayed-release 500 mg every morning and 1500 mg every evening (baseline steady-state trough 99.8 mcg/mL). Throughout rifampin therapy for latent tuberculosis treatment, she required an increase in both the frequency of DVP administration, from 2 to 3 times daily, and DVP dose by 75% to maintain clinical stability. Valproic acid trough concentrations ranged from 56.4 to 75.9 mcg/mL during the 4-month course of rifampin. This report supports that the DVP-rifampin interaction may be clinically significant and of a greater magnitude than suggested by the package insert.
Collapse
Affiliation(s)
- Christine Doran
- PGY-2 Ambulatory Care Pharmacy Resident, Kaiser Permanente Colorado, Denver, Colorado
| | - Michael Moro
- Doctor of Pharmacy Candidate 2019, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Jennifer Green
- Adult Psychiatrist, Kaiser Permanente Colorado, Denver, Colorado
| | - Kristen N Gardner
- PGY-2 Ambulatory Care Pharmacy Resident, Kaiser Permanente Colorado, Denver, Colorado.,Doctor of Pharmacy Candidate 2019, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, Colorado.,Adult Psychiatrist, Kaiser Permanente Colorado, Denver, Colorado
| |
Collapse
|
34
|
Clinically Relevant Interactions between Atypical Antipsychotics and Anti-Infective Agents. Pharmaceuticals (Basel) 2020; 13:ph13120439. [PMID: 33276675 PMCID: PMC7761579 DOI: 10.3390/ph13120439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
This is a comprehensive review of the literature on drug interactions (DIs) between atypical antipsychotics and anti-infective agents that focuses on those DIs with the potential to be clinically relevant and classifies them as pharmacokinetic (PK) or pharmacodynamic (PD) DIs. PubMed searches were conducted for each of the atypical antipsychotics and most commonly used anti-infective agents (13 atypical antipsychotics by 61 anti-infective agents/classes leading to 793 individual searches). Additional relevant articles were obtained from citations and from prior review articles written by the authors. Based on prior DI articles and our current understanding of PK and PD mechanism, we developed tables with practical recommendations for clinicians for: antibiotic DIs, antitubercular DIs, antifungal DIs, antiviral DIs, and other anti-infective DIs. Another table reflects that in clinical practice, DIs between atypical antipsychotics and anti-infective agents occur in patients also suffering an infection that may also influence the PK and PD mechanisms of both drugs (the atypical antipsychotic and the anti-infective agent(s)). These tables reflect the currently available literature and our current knowledge of the field and will need to be updated as new DI information becomes available.
Collapse
|
35
|
Bunn HT, Rosenthal E, Mathur P, McLaughlin M, Proschan M, Vijan A, Aepfelbacher J, Kottilil S, Masur H, Kattakuzhy S, George JM. The Effect of GS-548351 on the Pharmacokinetics of Midazolam Following Multiple Doses of ANS-6637 in Healthy Adults. J Clin Pharmacol 2020; 60:1598-1605. [PMID: 32578227 PMCID: PMC10833274 DOI: 10.1002/jcph.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
ANS-6637, a pro-drug of GS-548351, is a selective, reversible inhibitor of aldehyde dehydrogenase isoform 2 under development as an anticraving agent for the treatment of substance use disorders. In vitro testing indicates that GS-548351 is an inhibitor and inducer of cytochrome P450 family 3, subfamily A (CYP3A). In this phase 1 single-center, open-label, fixed-sequence drug-drug interaction study we assessed the impact of steady-state GS-548351 on single-dose pharmacokinetics of midazolam, an index substrate for CYP3A. Twelve healthy volunteers received 600 mg of ANS-6637 by mouth daily from study days 3 to 8 and a single 5-mg oral dose of midazolam on days 1 and 8. Pharmacokinetic samples were collected over 24 hours on days 1 and 8, then analyzed using liquid chromatography-tandem mass spectrometry. The prespecified no-effect range for the 90% confidence interval (CI) of the geometric mean ratio (GMR) of midazolam coadministered with ANS-6637 (day 8) compared with midazolam alone (day 1) was 0.7-1.43. There was an increase in midazolam AUC0-∞ (GMR [90%CI]) that was within the no-effect range (1.26 [1.12-1.425]) and an increase in midazolam Cmax that was outside the range (1.22 [1.03-1.45]). The AUC0-∞ (1.08 [0.91-1.27]) and Cmax (0.95 [0.75-1.2]) of 1-hydroxymidazolam, the primary metabolite of midazolam, were also within the no-effect range. A single grade 3 adverse event (alanine aminotransferase elevation) was identified and resolved following discontinuation of the study drug. Overall, multidose ANS-6637 was well tolerated and did not alter the PK of midazolam beyond a small increase in AUC0-∞ that is unlikely to be clinically significant.
Collapse
Affiliation(s)
- Haden T. Bunn
- Clinical Pharmacokinetics Research Laboratory, Clinical Center Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Elana Rosenthal
- Institute of Human Virology, Division of Clinical Care and Research, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- DC PFAP Comorbidities Program, Washington, DC and Baltimore, Maryland, USA
| | - Poonam Mathur
- Institute of Human Virology, Division of Clinical Care and Research, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary McLaughlin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Proschan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arjun Vijan
- Neurocrine Biosciences, San Diego, California, USA
| | - Julia Aepfelbacher
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, Division of Clinical Care and Research, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- DC PFAP Comorbidities Program, Washington, DC and Baltimore, Maryland, USA
| | - Henry Masur
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Sarah Kattakuzhy
- Institute of Human Virology, Division of Clinical Care and Research, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- DC PFAP Comorbidities Program, Washington, DC and Baltimore, Maryland, USA
| | - Jomy M. George
- Clinical Pharmacokinetics Research Laboratory, Clinical Center Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Kirby BJ, Lutz JD, Yue MS, Garrison KL, Qin ARR, Ampaw L, Beysen C, Myers RP, Kearney BP, Mathias A. Organic Anion Transporting Polypeptide Inhibition Dramatically Increases Plasma Exposure but not Pharmacodynamic Effect nor Inferred Hepatic Intracellular Exposure of Firsocostat. Clin Pharmacol Ther 2020; 109:1334-1341. [PMID: 33141923 DOI: 10.1002/cpt.2105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 01/06/2023]
Abstract
Firsocostat (FIR: previously GS-0976), a highly sensitive OATP substrate, reduces hepatic de novo lipogenesis (DNL) by inhibiting acetyl-CoA carboxylases (ACC). Measuring the pharmacodynamic (PD) efficacy of FIR on DNL provides a unique opportunity to determine optimal dosing strategies for liver-targeted OATP substrates in settings of altered OATP function. A randomized, four-way crossover drug-drug interaction study was conducted. Hepatic DNL, a marker for ACC activity, was measured in 28 healthy volunteers after reference, single dose FIR 10 mg, FIR 10 mg plus the OATP inhibitor rifampin (RIF) 300 mg i.v., or RIF 300 mg i.v. (control for DNL effect of RIF), each separated by a 7-day washout. Samples were collected for pharmacokinetic (PK) and PD assessments through 24 hours after each treatment. Hepatic DNL and its inhibition by FIR were assessed. Twenty-four subjects completed the study. All adverse events were mild. RIF alone increased hepatic DNL area under the effect curve from time of administration up to the time of the last quantifiable concentration (AUEClast ; 35.7%). Despite a 5.2-fold increase in FIR plasma exposure (area under the concentration-time curve from zero to infinity (AUCinf )) when administered with RIF, FIR alone, and FIR + RIF had the same hepatic PD effect, 37.1% and 34.9% reduction in DNL AUEClast , respectively, compared with their respective controls. These findings indicate that large decreases in OATP activity do not alter hepatic intracellular exposure (as inferred by no change in PD) for drugs that are primarily eliminated hepatically and permeability rate-limited, such as FIR. These results support PK theory that has been difficult to test and provide practical guidance on administration of liver-targeted drugs in settings of reduced OATP function.
Collapse
Affiliation(s)
- Brian J Kirby
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Justin D Lutz
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Mun Sang Yue
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Kimberly L Garrison
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Ann Ran-Ran Qin
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Lorraine Ampaw
- Department of Clinical Operations, Gilead Sciences Inc., Foster City, California, USA
| | | | - Robert P Myers
- Department of Clinical Research, Gilead Sciences Inc., Foster City, California, USA
| | - Brian P Kearney
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| | - Anita Mathias
- Department of Clinical Pharmacology, Gilead Sciences Inc., Foster City, California, USA
| |
Collapse
|
37
|
Yee KL, Cabalu TD, Kuo Y, Fillgrove KL, Liu Y, Triantafyllou I, McClain S, Dreyer D, Wenning L, Stoch SA, Iwamoto M, Sanchez RI, Khalilieh SG. Physiologically Based Pharmacokinetic Modeling of Doravirine and Its Major Metabolite to Support Dose Adjustment With Rifabutin. J Clin Pharmacol 2020; 61:394-405. [PMID: 32989795 DOI: 10.1002/jcph.1747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/30/2020] [Indexed: 11/09/2022]
Abstract
Doravirine, a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus 1 (HIV-1), is predominantly cleared by cytochrome P450 (CYP) 3A4 and metabolized to an oxidative metabolite (M9). Coadministration with rifabutin, a moderate CYP3A4 inducer, decreased doravirine exposure. Based on nonparametric superposition modeling, a doravirine dose adjustment from 100 mg once daily to 100 mg twice daily during rifabutin coadministration was proposed. However, M9 exposure may also be impacted by induction, in addition to the dose adjustment. As M9 concentrations have not been quantified in previous clinical studies, a physiologically based pharmacokinetic model was developed to investigate the change in M9 exposure when doravirine is coadministered with CYP3A inducers. Simulations demonstrated that although CYP3A induction increases doravirine clearance by up to 4.4-fold, M9 exposure is increased by only 1.2-fold relative to exposures for doravirine 100 mg once daily in the absence of CYP3A induction. Thus, a 2.4-fold increase in M9 exposure relative to the clinical dose of doravirine is anticipated when doravirine 100 mg twice daily is coadministered with rifabutin. In a subsequent clinical trial, doravirine and M9 exposures, when doravirine 100 mg twice daily was coadministered with rifabutin, were found to be consistent with model predictions using rifampin and efavirenz as representative inducers. These findings support the dose adjustment to doravirine 100 mg twice daily when coadministered with rifabutin.
Collapse
Affiliation(s)
- Ka Lai Yee
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Yuhsin Kuo
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Yang Liu
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boyle A, Moss CE, Marzolini C, Khoo S. Clinical Pharmacodynamics, Pharmacokinetics, and Drug Interaction Profile of Doravirine. Clin Pharmacokinet 2020; 58:1553-1565. [PMID: 31388941 DOI: 10.1007/s40262-019-00806-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Doravirine is a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) that has demonstrated good efficacy, tolerability, and safety for the treatment of patients with human immunodeficiency virus (HIV)-1 infection in phase III clinical trials. Doravirine achieved non-inferiority when compared with efavirenz- and darunavir/ritonavir-based regimens. Fewer adverse effects, including neuropsychiatric effects were observed with doravirine compared with efavirenz. Key pharmacodynamic and pharmacokinetic characteristics as well as drug-drug interactions and the resistance profile were assessed in this clinical review. Doravirine is a pyridinone NNRTI with potent antiviral activity against wild-type HIV-1 virus and common NNRTI variants. Studies in healthy volunteers and HIV-infected individuals have shown that doravirine has a favorable pharmacokinetic profile for once-daily dosing, with an elimination half-life of around 15 h, median time to maximum plasma concentrations of 1-4 h, and time to steady-state concentration of 7 days. The pharmacokinetics of doravirine are not greatly influenced by sex, age, race, or hepatic impairment. Although no dose adjustment is required for doravirine in renal impairment when given as a single tablet, the fixed-dose combination tablet of doravirine/lamivudine/tenofovir disoproxil fumarate is not recommended in patients with a creatinine clearance of < 50 mL/min. Doravirine has a low potential for drug-drug interactions and does not impact on the pharmacokinetics of other drugs. However, it is metabolized via cytochrome P450 (CYP) 3A enzymes and is thus susceptible to interactions with CYP3A inhibitors and inducers. Strong CYP3A inhibitors can significantly increase doravirine exposure; however, this is not considered to be clinically relevant. Conversely, strong CYP3A inducers, such as rifampin, are contraindicated with doravirine owing to a significant reduction in exposure with potential for impaired virological efficacy. Moderate CYP3A inducers, such as rifabutin, may be co-administered if the doravirine dose is increased to 100 mg twice daily. Doravirine has a unique resistance profile and has demonstrated in vitro activity against some of the most common, clinically relevant NNRTI-resistant mutations. Prevalence of baseline NNRTI resistance to doravirine appears to be low in treatment-naïve cohorts. Further data on the efficacy of doravirine in patients with previous treatment experience and/or transmitted NNRTI resistance are required to further inform its place in the current armamentarium of drugs for the treatment of HIV infection.
Collapse
Affiliation(s)
- Alison Boyle
- Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Catherine E Moss
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Catia Marzolini
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK.
| |
Collapse
|
39
|
Factors Contributing to Fentanyl Pharmacokinetic Variability Among Diagnostically Diverse Critically Ill Children. Clin Pharmacokinet 2020; 58:1567-1576. [PMID: 31168770 DOI: 10.1007/s40262-019-00773-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The objective of this study was to characterize the population pharmacokinetics of fentanyl and identify factors that contribute to exposure variability in critically ill pediatric patients. METHODS We conducted a single-center, retrospective cohort study using electronic record data and remnant blood samples in the setting of a mixed medical/surgical intensive care unit (ICU) at a quaternary children's hospital. Children with a predicted ICU length of stay of at least 3 days and presence of an indwelling central venous or arterial line were included. Serum fentanyl measurements were performed for 278 unique remnant samples from 66 patients. Both one- and two-compartment models were evaluated to describe fentanyl disposition. Covariates were introduced into the model in a forward/backward, stepwise approach and included age, sex, race, weight, cytochrome P450 (CYP) 3A5 genotype, and the presence of CYP3A4 or CYP3A5 inducers or inhibitors. Simulations were performed using the successful model to depict the influence of inducers on fentanyl concentrations. RESULTS A two-compartment base model best described the data. There was good agreement between observed and predicted concentrations in the final model. The typical fentanyl clearance for 70 kg (reference weight) and 20.1 kg (median weight) patients were 34.6 and 13.6 L/h, respectively. The magnitude of the unexplained random inter-individual variability was high for both clearance (60.7%) and apparent volume of the central compartment (V1) (107.2%). Coadministration of the known CYP3A4/5 inducers fosphenytoin and/or phenobarbital was associated with significantly increased fentanyl clearance. Simulations demonstrate that the effect of inducer administration was most pronounced following discontinuation of a fentanyl infusion. CONCLUSIONS In this study we show the feasibility and utility of using electronic record data and remnant blood samples to successfully construct population pharmacokinetic models for a heterogeneous cohort of critically ill children. A clinically relevant effect of concomitant CYP3A4/5 inducers was identified. Scaling this population pharmacokinetic approach is necessary to craft precision approaches to fentanyl administration for critically ill children.
Collapse
|
40
|
Chan G, Houle R, Lin M, Yabut J, Cox K, Wu J, Chu X. Role of transporters in the disposition of a novel β-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother 2020; 74:1894-1903. [PMID: 30891606 DOI: 10.1093/jac/dkz101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To identify the transporters involved in renal elimination of relebactam, and to assess the potential of relebactam as a perpetrator or victim of drug-drug interactions (DDIs) for major drug transporters. METHODS A series of bidirectional transport, uptake and inhibition studies were conducted in vitro using transfected cell lines and membrane vesicles. The inhibitory effects of relebactam on major drug transporters, as well as the inhibitory effects of commonly used antibiotics/antifungals on organic anion transporter (OAT) 3-mediated uptake of relebactam, were assessed. RESULTS Relebactam was shown to be a substrate of OAT3, OAT4, and multidrug and toxin extrusion (MATE) proteins MATE1 and MATE2K. Relebactam did not show profound inhibition across a panel of transporters, including organic anion-transporting polypeptides 1B1 and 1B3, OAT1, OAT3, organic cation transporter 2, MATE1, MATE2K, breast cancer resistance protein, multidrug resistance protein 1 and the bile salt export pump. Among the antibiotics/antifungals assessed for potential DDIs, probenecid demonstrated the most potent in vitro inhibition of relebactam uptake; however, such in vitro data did not translate into clinically relevant DDIs, suggesting that relebactam can be co-administered with OAT inhibitors, such as probenecid. CONCLUSIONS Overall, relebactam has low potential to be a victim or perpetrator of DDIs with major drug transporters.
Collapse
Affiliation(s)
- Grace Chan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Robert Houle
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Meihong Lin
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jocelyn Yabut
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathleen Cox
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jin Wu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
41
|
Mikus G, Foerster KI, Schaumaeker M, Lehmann M, Burhenne J, Haefeli WE. Application of a microdosed cocktail of 3 oral factor Xa inhibitors to study drug-drug interactions with different perpetrator drugs. Br J Clin Pharmacol 2020; 86:1632-1641. [PMID: 32159869 PMCID: PMC7373712 DOI: 10.1111/bcp.14277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Using 3 different perpetrators the impact of voriconazole, cobicistat and rifampicin (single dose), we evaluated the suitability of a microdose cocktail of factor Xa inhibitors (FXaI; rivaroxaban, apixaban and edoxaban; 100 μg in total) to study drug-drug interactions. METHODS Three cohorts of 6 healthy volunteers received 2 treatments with microdoses of rivaroxaban, apixaban and edoxaban alone and with coadministration of 1 of the perpetrators. Plasma and urine concentrations of microdosed apixaban, edoxaban and rivaroxaban were quantified using a validated ultra-performance liquid chromatography-tandem mass spectrometry with a lower limit of quantification of 2.5 pg/mL. RESULTS Voriconazole caused only a minor interaction with apixaban and rivaroxaban, none with edoxaban. Cobicistat significantly increased exposure of all 3 FXaI with area under the plasma concentration-time curve ratios of 1.67 (apixaban), 1.74 (edoxaban) and 2.0 (rivaroxaban). A single dose of rifampicin decreased the volume of distribution and elimination half-life of all 3 FXaI. CONCLUSIONS The microdosed FXaI cocktail approach is able to generate drug interaction data and can help elucidating the mechanism involved in the clearance of the different victim drugs. This is a safe approach to concurrently study drug-drug interactions with a drug class. (EudraCT 2016-003024-23).
Collapse
Affiliation(s)
- Gerd Mikus
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Kathrin I. Foerster
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Marlene Schaumaeker
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Marie‐Louise Lehmann
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity Hospital HeidelbergIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|
42
|
Zamek-Gliszczynski MJ, Patel M, Yang X, Lutz JD, Chu X, Brouwer KLR, Lai Y, Lee CA, Neuhoff S, Paine MF, Sugiyama Y, Taskar KS, Galetin A. Intestinal P-gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clin Pharmacol Ther 2020; 109:55-64. [PMID: 32460379 DOI: 10.1002/cpt.1916] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
There is an increasing interest in transporter induction (i.e., decreased systemic drug exposure due to increased efflux-limited absorption or transporter-mediated clearance) as a mechanism of drug-drug interactions (DDIs), although evidence of clinical relevance is still evolving. Intestinal P-glycoprotein (P-gp) and hepatic organic anion transporting polypeptides 1B (OATP1B) can be important determinants of drug absorption and disposition, as well as targets for DDIs. Current data indicate that intestinal P-gp protein levels can be induced up to threefold to fourfold in humans primarily with pregnane X receptor (PXR) activators, and that this induction can decrease the systemic exposure of drugs with P-gp efflux-limited absorption (e.g., ≤ 67% decrease in the exposure of total dabigatran following rifampin multiple oral dosing). Evaluation of the clinical relevance of P-gp induction as a DDI mechanism must consider the induction potential of the perpetrator drug for P-gp and attenuation of exposure of the victim drug in the context of its therapeutic window. Practical drug development recommendations are provided herein. Reports are contradictory on OATP1B induction by PXR activators in human hepatocytes and liver biopsies. Some clinical investigations demonstrated that rifampin pretreatment decreased exposure of OATP1B substrates, while other studies found no differences, and the potential involvement of other mechanisms in these observed DDIs cannot be definitively ruled out. Thus, further studies are needed to understand hepatic OATP1B induction and potential involvement of other mechanisms contributing to reduced exposure of OATP1B substrates. This review critically summarizes the state-of-the-art on intestinal P-gp and hepatic OATP1B induction, and highlights implications for drug development.
Collapse
Affiliation(s)
| | - Mitesh Patel
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Justin D Lutz
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, California, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & CO., Inc, Kenilworth, New Jersey, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences, Inc., Foster City, California, USA
| | - Caroline A Lee
- Nonclinical Development and Clinical Pharmacology, Arena Pharmaceuticals, San Diego, California, USA
| | | | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone, Program, RIKEN Cluster for Science, RIKEN, Yokohama, Kanagawa, Japan
| | - Kunal S Taskar
- Drug Meabolism and Pharmacokinetics, GlaxoSmithKline, Ware, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Physiologically-Based Pharmacokinetic (PBPK) Modeling of Buprenorphine in Adults, Children and Preterm Neonates. Pharmaceutics 2020; 12:pharmaceutics12060578. [PMID: 32585880 PMCID: PMC7355427 DOI: 10.3390/pharmaceutics12060578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022] Open
Abstract
Buprenorphine plays a crucial role in the therapeutic management of pain in adults, adolescents and pediatric subpopulations. However, only few pharmacokinetic studies of buprenorphine in children, particularly neonates, are available as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling allows the prediction of drug exposure in pediatrics based on age-related physiological differences. The aim of this study was to predict the pharmacokinetics of buprenorphine in pediatrics with PBPK modeling. Moreover, the drug-drug interaction (DDI) potential of buprenorphine with CYP3A4 and P-glycoprotein perpetrator drugs should be elucidated. A PBPK model of buprenorphine and norbuprenorphine in adults has been developed and scaled to children and preterm neonates, accounting for age-related changes. One-hundred-percent of the predicted AUClast values in adults (geometric mean fold error (GMFE): 1.22), 90% of individual AUClast predictions in children (GMFE: 1.54) and 75% in preterm neonates (GMFE: 1.57) met the 2-fold acceptance criterion. Moreover, the adult model was used to simulate DDI scenarios with clarithromycin, itraconazole and rifampicin. We demonstrate the applicability of scaling adult PBPK models to pediatrics for the prediction of individual plasma profiles. The novel PBPK models could be helpful to further investigate buprenorphine pharmacokinetics in various populations, particularly pediatric subgroups.
Collapse
|
44
|
Enzymatic deinduction phenomenon and clinical implications with a focus on direct-acting oral anticoagulants. Blood Coagul Fibrinolysis 2020; 31:283-286. [DOI: 10.1097/mbc.0000000000000914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug-Drug Interaction Studies. Clin Pharmacokinet 2020; 59:699-714. [PMID: 32052379 PMCID: PMC7292822 DOI: 10.1007/s40262-020-00867-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding transporter-mediated drug-drug interactions (DDIs) for investigational agents is important during drug development to assess DDI liability, its clinical relevance, and to determine appropriate DDI management strategies. P-glycoprotein (P-gp) is an efflux transporter that influences the pharmacokinetics (PK) of various compounds. Assessing transporter induction in vitro is challenging and is not always predictive of in vivo effects, and hence there is a need to consider clinical DDI studies; however, there is no clear guidance on when clinical evaluation of transporter induction is required. Furthermore, there is no proposed list of index transporter inducers to be used in clinical studies. This review evaluated DDI studies with known P-gp inducers to better understand the mechanism and site of P-gp induction, as well as the magnitude of induction effect on the exposure of P-gp substrates. Our review indicates that P-gp and cytochrome P450 (CYP450) enzymes are co-regulated via the pregnane xenobiotic receptor (PXR) and the constitutive androstane receptor (CAR). The magnitude of the decrease in substrate drug exposure by P-gp induction is generally less than that of CYP3A. Most P-gp inducers reduced total bioavailability with a minor impact on renal clearance, despite known expression of P-gp at the apical membrane of the kidney proximal tubules. Rifampin is the most potent P-gp inducer, resulting in an average reduction in substrate exposure ranging between 20 and 67%. For other inducers, the reduction in P-gp substrate exposure ranged from 12 to 42%. A lower reduction in exposure of the P-gp substrate was observed with a lower dose of the inducer and/or if the administration of the inducer and substrate was simultaneous, i.e. not staggered. These findings suggest that clinical evaluation of the impact of P-gp inducers on the PK of investigational agents that are substrates for P-gp might be warranted only for compounds with a relatively steep exposure-efficacy relationship.
Collapse
Affiliation(s)
- Mohamed Elmeliegy
- Clinical Pharmacology, Global Product Development, Pfizer Inc., 10555 Science Center Dr., San Diego, CA, 92121, USA.
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc., New York, NY, USA
| | - Cen Guo
- Clinical Pharmacology, Global Product Development, Pfizer Inc., 10555 Science Center Dr., San Diego, CA, 92121, USA
| | - Diane D Wang
- Clinical Pharmacology, Global Product Development, Pfizer Inc., 10555 Science Center Dr., San Diego, CA, 92121, USA
| |
Collapse
|
46
|
Elgart A, Greenblatt DJ, Loupe PS, Zur AA, Weiss S, Mimrod D, Spiegelstein O. The Effect of CYP3A Induction and Inhibition on the Pharmacokinetics of Laquinimod, a Novel Neuroimmunomodulator. Clin Pharmacol Drug Dev 2020; 9:1015-1024. [PMID: 32237115 DOI: 10.1002/cpdd.785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/02/2020] [Indexed: 11/10/2022]
Abstract
Laquinimod, a neuroimmunomodulator, is extensively metabolized by cytochrome P450 (CYP) 3A4, and modulations of CYP3A4 activity may lead to alterations in the pharmacokinetics and/or clinical effects of laquinimod. To determine the drug-drug interaction potential of laquinimod with CYP3A inhibitors and inducers, interaction assessments were conducted in healthy volunteers using single-dose administration of laquinimod before and after multiple dosing of CYP3A inhibitors (ketoconazole, fluconazole, and cimetidine) or a CYP3A4 inducer (rifampin). For ketoconazole, subjects (n = 14) received laquinimod 0.6 mg following 1 day of ketoconazole (400 mg daily) pretreatment, a single concomitant dose, and 28 additional days. For fluconazole, subjects (n = 14) received laquinimod 0.6 mg after a single fluconazole dose of 400 mg followed by 200-mg daily fluconazole administration for 20 additional days. For cimetidine, subjects (n = 14) received laquinimod 0.6 mg following 1 day of cimetidine (800 mg twice daily) pretreatment, a single concomitant dose, and 21 additional days. For rifampin, subjects (n = 14) received laquinimod 0.6 mg following 9 days of rifampin (600 mg daily) pretreatment, a single concomitant dose, and 12 additional days. Coadministration of laquinimod with CYP3A inhibitors, ketoconazole, fluconazole, and cimetidine increased laquinimod area under the plasma concentration-time curve from time zero to infinity by approximately 3.1-, 2.5-, and 1.1-fold, respectively. Coadministration of laquinimod with rifampin decreased laquinimod area under the plasma concentration-time curve from time zero to infinity by 5-fold. These results indicate that coadministration of laquinimod with moderate to strong inhibitors of CYP3A or strong inducers of CYP3A may give rise to significant pharmacokinetic drug interactions.
Collapse
Affiliation(s)
- Anna Elgart
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | | | | | - Arik A Zur
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Sivan Weiss
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Dorit Mimrod
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | | |
Collapse
|
47
|
Eagles SK, Gross AS, McLachlan AJ. The Effects of Cruciferous Vegetable-Enriched Diets on Drug Metabolism: A Systematic Review and Meta-Analysis of Dietary Intervention Trials in Humans. Clin Pharmacol Ther 2020; 108:212-227. [PMID: 32086800 DOI: 10.1002/cpt.1811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Relatively few studies exist in the literature that discuss the effects of diet on drug metabolism and how this can affect interindividual differences in systemic drug exposure. Several studies have investigated the effects of cruciferous vegetables (Cruciferae) or their constituents on drug-metabolizing activity, as these vegetables form an important part of many peoples' diets. In general, the ingestion of cruciferous vegetables is associated with induction of cytochrome P450 (CYP) 1A2 activity in vivo; however, there is contention between reports, and the clinical significance of potential diet-drug interactions remains unclear. This study reports a systematic review, critical appraisal, and meta-analysis of the published literature in this area, and discusses the clinical significance of Cruciferae-enriched diets in the context of diet-drug interactions. Twenty-three dietary intervention trials with drug metabolism end points were identified across Embase, Medline, and the Cochrane Controlled Register of Trials (CENTRAL). Cruciferous vegetables represented in the literature included broccoli, Brussels sprout, cabbage, cauliflower, radish, and watercress. A range of phase I and II drug-metabolizing enzymes and phenotyping metrics were represented in the literature. The meta-analyses performed demonstrated a significant effect on CYP1A2 and glutathione S-transferase-alpha (GST-α), with consumption of Cruciferae increasing the activities of these enzymes by 20-40% and 15-35%, respectively. The results herein suggest that patients undergoing pharmacotherapy with CYP1A2 or GST-α substrates could have altered drug exposure profiles if they regularly eat large or variable amounts of cruciferous vegetables. Recommendations regarding the design of future randomized, controlled trials to test hypotheses in this area are included.
Collapse
Affiliation(s)
- Shane K Eagles
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Annette S Gross
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline R & D, Ermington, New South Wales, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
48
|
McFeely SJ, Ritchie TK, Yu J, Nordmark A, Berglund EG, Levy RH, Ragueneau‐Majlessi I. Inhibitors of Organic Anion‐Transporting Polypeptides 1B1 and 1B3: Clinical Relevance and Regulatory Perspective. J Clin Pharmacol 2020; 60:1087-1098. [DOI: 10.1002/jcph.1604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
| | - Tasha K. Ritchie
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | - Jingjing Yu
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | | | - Eva Gil Berglund
- Certara Strategic ConsultingIntegrated Drug Development Oss The Netherlands
| | - Rene H. Levy
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | | |
Collapse
|
49
|
Liu W, Yan T, Chen K, Yang L, Benet LZ, Zhai S. Predicting Interactions between Rifampin and Antihypertensive Drugs Using the Biopharmaceutics Drug Disposition Classification System. Pharmacotherapy 2020; 40:274-290. [PMID: 32100890 DOI: 10.1002/phar.2380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
STUDY OBJECTIVE Lack of blood pressure control is often seen in hypertensive patients concomitantly taking antituberculosis medications due to the complex drug-drug interactions between rifampin and antihypertensive drugs. Therefore, it is of clinical importance to understand the underlying mechanisms of these interactions to help formulate recommendations on the use of antihypertensive drugs in patients taking these medications concomitantly. Our objective was to assess the reliability of the Biopharmaceutics Drug Disposition Classification System (BDDCS) to predict potential interactions between rifampin and antihypertensive drugs and thus provide recommendations on the choice of antihypertensive drugs in patients receiving rifampin. DESIGN Evidence-based in vitro and in vivo predictions of drug-drug interactions. MEASUREMENTS AND MAIN RESULTS We systematically evaluated interactions between rifampin and antihypertensive drugs using the theory of the BDDCS, taking into consideration the role of drug transporters and metabolic enzymes involved in these interactions. We provide recommendations on the selection of antihypertensive drugs for patients with tuberculosis. Antihypertensive drugs approved by the U.S. Food and Drug Administration and the China National Medical Products Administration were included in this study. The drugs were classified into four categories under the BDDCS classification. Detailed information on cytochrome P450 (CYP) enzymes and drug transporters for each antihypertensive drug was searched in PubMed and other electronic databases. This information was combined with the effects of rifampin on CYP enzymes and drug transporters, and the direction and relative extent of the potential interactions between rifampin and antihypertensive drugs were predicted. Recommendations were then made using the theory of BDDCS. A thorough systematic literature review was performed, and data from all published human studies and case reports were summarized for the validation of our predictions. Interventional and observational studies published in PubMed and two Chinese databases (CNKI and WanFang) through December 16, 2019, were included, and data were extracted for validation of the predictions. Using the BDDCS theory, class 3 active drugs were predicted to exhibit minimal interactions with rifampin. On reviewing case reports and pre-post studies, the predictions we made were found to be reliable. When antituberculosis medications that include rifampin are started in patients with hypertension, it is recommended that the use of calcium channel blockers and classes 1 and 2 β-blockers be avoided. Angiotensin-converting enzyme inhibitors, olmesartan, class 3 β-blockers, spironolactone, and hydrochlorothiazide would be preferable because clinically relevant interactions would not be expected. CONCLUSION Application of the BDDCS to predict interactions between rifampin and antihypertensive drugs for patients with both tuberculosis and hypertension was found to be reliable. It should be noted, however, that based on the CYP enzyme and drug transporter information we reviewed, the mechanisms of all of the interactions could not be elucidated, and the predictions are only based on theory. The real effects of rifampin on antihypertensive drugs need to be further observed. More studies in both animals and humans are needed in the future.
Collapse
Affiliation(s)
- Wei Liu
- Pharmacy Department, Peking University Third Hospital, Beijing, China
- Peking University, Therapeutic Drug Monitoring and Clinical Toxicology Center, Beijing, China
| | - Tingting Yan
- Pharmacy Department, Peking University Third Hospital, Beijing, China
| | - Ken Chen
- Pharmacy Department, Peking University Third Hospital, Beijing, China
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Li Yang
- Pharmacy Department, Peking University Third Hospital, Beijing, China
- Peking University, Therapeutic Drug Monitoring and Clinical Toxicology Center, Beijing, China
| | - Leslie Z Benet
- Pharmacy Department, Peking University Third Hospital, Beijing, China
- University of California, San Francisco, San Francisco, California
| | - Suodi Zhai
- Pharmacy Department, Peking University Third Hospital, Beijing, China
- Peking University, Therapeutic Drug Monitoring and Clinical Toxicology Center, Beijing, China
| |
Collapse
|
50
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|