1
|
Huang YJ, Jia RP, Chen YQ, Zhou LJ, Gou CY, Fan MQ, Li S, Chen M, Lin HM, Gao Y. Microdeletion 3q13.33-3q21.2: A Rare Cause of Neurodevelopmental Disorder. J Pediatr Genet 2024; 13:283-290. [PMID: 39502849 PMCID: PMC11534423 DOI: 10.1055/s-0044-1788031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/22/2024] [Indexed: 11/08/2024]
Abstract
Chromosomal sub-microscopic imbalances, such as microdeletions and microduplications, are associated with multiple genetic disorders. Here, we illustrate microdeletion 3q13.33q21.2 might be responsible for neurodevelopmental disorder in two patients. There are two patients with neurodevelopmental disorder in a family of seven. We used chromosomal microarray analysis to identify the microdeletion 3q13.33q21.2. Next-generation sequencing was utilized to exclude the presence of allelic mutations within the microdeletion region 3q13.33q21.2, which may have a potential role in the development of disease in patients affected with secondary genetic alterations. Patient 4 was diagnosed with dilated left third ventricle, neurodevelopmental disorder, and mild abnormalities in electroencephalogram through a series of clinical examinations. Patient 6 was diagnosed with attention deficit hyperactivity disorder, short stature, intellectual disability, and concurrent epilepsy. By investigating the 3q13.33q21.2 band of the University of California, Santa Cruz database, we screened out the genes related to developmental delay and intellectual disability, including ADCY5 SEMA5B andKPNA1, which were highly suspected to be related to intelligence. This region also involves CASR, a gene that has been reported to be associated with epilepsy. The ADCY5 and SEMA5B genes may be key genes to cause neurodevelopmental disorder. Abnormal expression of the CASR gene may lead to the occurrence of epilepsy.
Collapse
Affiliation(s)
- Yi Juan Huang
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Pu Jia
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Qiu Chen
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Ji Zhou
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chen Yu Gou
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Qiong Fan
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Maofa Chen
- DAAN Clinical Laboratory Center, Guangzhou, China
| | - Hua Ming Lin
- DAAN Clinical Laboratory Center, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Tenorio-Castano J, Mansilla Aparicio E, García Santiago FA, Klotz CM, Regojo RM, Anguita E, Ryan E, Juusola J, Herrero B, Arias P, Parra A, Pascual P, Gallego N, Cazalla M, Rodriguez-González R, Antolín E, Nevado J, Ruiz-Perez VL, Lapunzina P. Non-immune hydrops fetalis is associated with bi-allelic pathogenic variants in the MYB Binding Protein 1a (MYBBP1A) gene. Clin Genet 2024; 106:713-720. [PMID: 39191491 DOI: 10.1111/cge.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
Non-immune hydrops fetalis (NIHF) is a rare entity characterized by excessive accumulation of fluid within the fetal extravascular compartments and body cavities. Here we present two intrauterine fetal demises with NIHF presenting with oligohydramnios, cystic hygroma, pleural effusion, and generalized hydrops with predominance of subcutaneous edema. The fetuses also presented with ascites, severe and precocious IUGR and skeletal anomalies. Whole exome sequencing was applied in order to screen for a possible genetic cause. The results identified biallelic variants in MYBBP1A in both fetuses. A previous report described another case with a similar phenotype having compound heterozygous variants in the same gene. The protein encoded by MYBBP1A is involved in several cellular processes including the synthesis of ribosomal DNA, the response to nucleolar stress, and tumor suppression. Our functional protein analysis through immunohistochemistry indicates that MYBBP1A is a gene expressed during fetal stages. Altogether, we concluded that MYBBP1A is associated with the development of hydrops fetalis. More cases and further studies are necessary to understand the role of this gene and the mechanism associated with NIHF.
Collapse
Affiliation(s)
- Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Elena Mansilla Aparicio
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Fe Amalia García Santiago
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Cherise M Klotz
- Swedish Medical Center, Maternal and Fetal Specialty Center, Seattle, Washington, USA
| | | | - Estefanía Anguita
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | | | | | - Beatriz Herrero
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Pedro Arias
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Alejandro Parra
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Patricia Pascual
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Natalia Gallego
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Mario Cazalla
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Roberto Rodriguez-González
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Eugenia Antolín
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Julián Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Víctor L Ruiz-Perez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| |
Collapse
|
3
|
Ziegler A, Koval-Burt C, Kay DM, Suchy SF, Begtrup A, Langley KG, Hernan R, Amendola LM, Boyd BM, Bradley J, Brandt T, Cohen LL, Coffey AJ, Devaney JM, Dygulska B, Friedman B, Fuleihan RL, Gyimah A, Hahn S, Hofherr S, Hruska KS, Hu Z, Jeanne M, Jin G, Johnson DA, Kavus H, Leibel RL, Lobritto SJ, McGee S, Milner JD, McWalter K, Monaghan KG, Orange JS, Pimentel Soler N, Quevedo Y, Ratner S, Retterer K, Shah A, Shapiro N, Sicko RJ, Silver ES, Strom S, Torene RI, Williams O, Ustach VD, Wynn J, Taft RJ, Kruszka P, Caggana M, Chung WK. Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions. JAMA 2024:2825327. [PMID: 39446378 PMCID: PMC11503470 DOI: 10.1001/jama.2024.19662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 10/27/2024]
Abstract
Importance The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood. Objective To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program. Design, Setting, and Participants The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100 000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis. Exposure Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional. Main Outcomes and Measures The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing. Results Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS. Conclusions and Relevance These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT05990179.
Collapse
Affiliation(s)
- Alban Ziegler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Carrie Koval-Burt
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Denise M. Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | | | | | | | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Brenna M. Boyd
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Bradley
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | | | | | | | | | - Beata Dygulska
- NewYork-Presbyterian Brooklyn Methodist Hospital, New York
| | | | - Ramsay L. Fuleihan
- Division of Allergy, Immunology & Rheumatology, Columbia University Irving Medical Center, New York, New York
| | - Awura Gyimah
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Sihoun Hahn
- Department of Pediatrics, Biochemical Genetics, University of Washington, Seattle Children’s Hospital, Seattle
| | | | | | - Zhanzhi Hu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - Médéric Jeanne
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Guanjun Jin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Haluk Kavus
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Rudolph L. Leibel
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Steven J. Lobritto
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Joshua D. Milner
- Division of Allergy, Immunology & Rheumatology, Columbia University Irving Medical Center, New York, New York
| | | | | | - Jordan S. Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Nicole Pimentel Soler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yeyson Quevedo
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Samantha Ratner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Ankur Shah
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | | | - Robert J. Sicko
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | - Eric S. Silver
- Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | | | - Olatundun Williams
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | | | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Ariolli A, Agolini E, Mazza T, Petrizzelli F, Petrini S, D’Oria V, Cudini A, Nardella C, Pesce V, Comparcola D, Cappa M, Fierabracci A. The Putative Role of TIM-3 Variants in Polyendocrine Autoimmunity: Insights from a WES Investigation. Int J Mol Sci 2024; 25:10994. [PMID: 39456777 PMCID: PMC11506967 DOI: 10.3390/ijms252010994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune polyglandular syndrome (APS) comprises a complex association of autoimmune pathological conditions. APS Type 1 originates from loss-of-function mutations in the autoimmune regulator (AIRE) gene. APS2, APS3 and APS4 are linked to specific HLA alleles within the major histocompatibility complex, with single-nucleotide polymorphisms (SNPs) in non-HLA genes also contributing to disease. In general, variability in the AIRE locus and the presence of heterozygous loss-of-function mutations can impact self-antigen presentation in the thymus. In this study, whole-exome sequencing (WES) was performed on a sixteen-year-old female APS3A/B patient to investigate the genetic basis of her complex phenotype. The analysis identified two variants (p.Arg111Trp and p.Thr101Ile) of the hepatitis A virus cell receptor 2 gene (HAVCR2) encoding for the TIM-3 (T cell immunoglobulin and mucin domain 3) protein. These variants were predicted, through in silico analysis, to impact protein structure and stability, potentially influencing the patient's autoimmune phenotype. While confocal microscopy analysis revealed no alteration in TIM-3 fluorescence intensity between the PBMCs isolated from the patient and those of a healthy donor, RT-qPCR showed reduced TIM-3 expression in the patient's unfractionated PBMCs. A screening conducted on a cohort of thirty APS patients indicated that the p.Thr101Ile and p.Arg111Trp mutations were unique to the proband. This study opens the pathway for the search of TIM-3 variants possibly linked to complex autoimmune phenotypes, highlighting the potential of novel variant discovery in contributing to APS classification and diagnosis.
Collapse
Affiliation(s)
- Andrea Ariolli
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy;
| | - Tommaso Mazza
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
- Laboratory of Bioinformatics, Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 70013 San Giovanni Rotondo, Foggia, Italy;
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 70013 San Giovanni Rotondo, Foggia, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (S.P.); (V.D.)
| | - Valentina D’Oria
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (S.P.); (V.D.)
| | - Annamaria Cudini
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Caterina Nardella
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Vanessa Pesce
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Donatella Comparcola
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Marco Cappa
- Research Unit Innovative Therapies for Endocrinopathies, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy;
| | - Alessandra Fierabracci
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| |
Collapse
|
5
|
Valenzuela I, Codina-Solà M, Vazquez E, Cueto-González A, Leno-Colorado J, Lasa-Aranzasti A, Trujillano L, Masotto B, Masas M, Escobar M, García-Arumí E, Tizzano EF. Deep phenotyping of 11 individuals with pathogenic variants in RNU4-2 reveals a clinically recognizable syndrome. Genet Med 2024; 26:101288. [PMID: 39369315 DOI: 10.1016/j.gim.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE Despite ever-increasing knowledge of the genetic etiologies of neurodevelopmental disorders, approximately half remain undiagnosed after exome or genome sequencing. Here, we provide a deep clinical characterization of 11 previously unreported patients with a recently described neurodevelopmental disorder (NDD) due to pathogenic variants in RNU4-2. METHODS The 11 patients were identified in a pool of 70 patients selected for targeted RNU4-2 sequencing on the basis of their clinical phenotypes from a cohort of 1032 individuals with a NDD and without a prior genetic diagnosis. RESULTS The 11 patients were aged between 13 months and 36 years. All patients showed moderate to severe developmental delay and/or intellectual disability. Height and weight were below 10th percentile and most showed microcephaly. In almost 50% of the patients, intrauterine growth retardation was detected. All patients showed a distinctive pattern of dysmorphic features, including hooded upper eyelid and epicanthus, full cheeks, tented philtrum, mouth constantly slightly open with an everted lower lip vermilion, high palate, and profuse drooling. Of 11 patients, 64% also presented with ophthalmological problems (mainly strabismus, nystagmus, and refraction errors) and 64% had musculoskeletal features (joint hypermobility, mild scoliosis, and easy fractures). CONCLUSION This work provides an improved characterization of the phenotypic spectrum of RNU4-2 syndrome across different age groups and demonstrates that thorough clinical assessment of patients with an NDD can be enhanced significantly for this novel syndrome.
Collapse
Affiliation(s)
- Irene Valenzuela
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
| | - Marta Codina-Solà
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Elida Vazquez
- Department of Pediatric Radiology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Cueto-González
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jordi Leno-Colorado
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Laura Trujillano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Bárbara Masotto
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Miriam Masas
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mar Escobar
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Elena García-Arumí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
6
|
Earnshaw R, Zhang YT, Heymann G, Fujisawa K, Hui S, Kapadia M, Kalia LV, Kalia SK. Disease-associated mutations in C-terminus of HSP70 interacting protein (CHIP) impair its ability to negatively regulate mitophagy. Neurobiol Dis 2024; 200:106625. [PMID: 39117117 DOI: 10.1016/j.nbd.2024.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Collapse
Affiliation(s)
- Rebecca Earnshaw
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yu Tong Zhang
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Gregory Heymann
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Sarah Hui
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, 399 Bathurst Street, Toronto M5T 2S8, ON, Canada.
| |
Collapse
|
7
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
8
|
Vaseghi P, Habibi L, Neidich JA, Cao Y, Fattahi N, Rashidi-Nezhad R, Salehnezhad T, Dalili H, Rahimi Sharbaf F, Zarkesh MR, Malekian M, Mokhberdezfuli M, Mehrtash A, Ardeshirdavani A, Kariminejad R, Ghorbansabagh V, Sadeghimoghadam P, Naddaf A, Esmaeilnia Shirvany T, Mosayebi Z, Sahebdel B, Golshahi F, Shirazi M, Shamel S, Moeini R, Heidari A, Daneshmand MA, Ghasemi R, Akrami SM, Rashidi-Nezhad A. Towards solving the genetic diagnosis odyssey in Iranian patients with congenital anomalies. Eur J Hum Genet 2024; 32:1238-1249. [PMID: 38278869 PMCID: PMC11499880 DOI: 10.1038/s41431-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024] Open
Abstract
Understanding the underlying causes of congenital anomalies (CAs) can be a complex diagnostic journey. We aimed to assess the efficiency of exome sequencing (ES) and chromosomal microarray analysis (CMA) in patients with CAs among a population with a high fraction of consanguineous marriage. Depending on the patient's symptoms and family history, karyotype/Quantitative Fluorescence- Polymerase Chain Reaction (QF-PCR) (n = 84), CMA (n = 81), ES (n = 79) or combined CMA and ES (n = 24) were performed on 168 probands (66 prenatal and 102 postnatal) with CAs. Twelve (14.28%) probands were diagnosed by karyotype/QF-PCR and seven (8.64%) others were diagnosed by CMA. ES findings were conclusive in 39 (49.36%) families, and 61.90% of them were novel variants. Also, 64.28% of these variants were identified in genes that follow recessive inheritance in CAs. The diagnostic rate (DR) of ES was significantly higher than that of CMA in children from consanguineous families (P = 0·0001). The highest DR by CMA was obtained in the non-consanguineous postnatal subgroup and by ES in the consanguineous prenatal subgroup. In a population that is highly consanguineous, our results suggest that ES may have a higher diagnostic yield than CMA and should be considered as the first-tier test in the evaluation of patients with congenital anomalies.
Collapse
Affiliation(s)
- Parisa Vaseghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Laleh Habibi
- Ronash Medical Genetics Laboratory, Tehran, Iran
| | - Julie A Neidich
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang Cao
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Neda Fattahi
- Ronash Medical Genetics Laboratory, Tehran, Iran
| | | | | | - Hossein Dalili
- Breastfeeding Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi Sharbaf
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarkesh
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | | | - Mahdieh Mokhberdezfuli
- Ronash Medical Genetics Laboratory, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Vafa Ghorbansabagh
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvane Sadeghimoghadam
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Naddaf
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilnia Shirvany
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Mosayebi
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrokh Sahebdel
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Golshahi
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Shirazi
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Shamel
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | - Roksana Moeini
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | | | | | - Reza Ghasemi
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chundru VK, Zhang Z, Walter K, Lindsay SJ, Danecek P, Eberhardt RY, Gardner EJ, Malawsky DS, Wigdor EM, Torene R, Retterer K, Wright CF, Ólafsdóttir H, Guillen Sacoto MJ, Ayaz A, Akbeyaz IH, Türkdoğan D, Al Balushi AI, Bertoli-Avella A, Bauer P, Szenker-Ravi E, Reversade B, McWalter K, Sheridan E, Firth HV, Hurles ME, Samocha KE, Ustach VD, Martin HC. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat Genet 2024; 56:2046-2053. [PMID: 39313616 PMCID: PMC11525179 DOI: 10.1038/s41588-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.
Collapse
Affiliation(s)
- V Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Zhancheng Zhang
- GeneDx, Gaithersburg, MD, USA
- Deka Biosciences, Germantown, MD, USA
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- MRC Epidemiology Unit, Cambridge, UK
| | | | - Emilie M Wigdor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rebecca Torene
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | | | | | - Akif Ayaz
- Istanbul Medipol University, Medical School, Department of Medical Genetics, Istanbul, Turkey
| | - Ismail Hakki Akbeyaz
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | - Dilşad Türkdoğan
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | | | | | - Peter Bauer
- Medical Genetics, CENTOGENE GmbH, Rostock, Germany
- Clinic of Internal Medicine, Department of Hematology, Oncology, and Palliative Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | | | - Eamonn Sheridan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
10
|
Gimeno AF, Tinker RJ, Furuta Y, Phillips JA. Prevalence of Individuals With Multiple Diagnosed Genetic Diseases in the Undiagnosed Diseases Network. Am J Med Genet A 2024:e63888. [PMID: 39333051 DOI: 10.1002/ajmg.a.63888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Report the prevalence of multiple genetic diseases in the Undiagnosed Diseases Network (UDN) cohort in the post-exome-sequencing era. UDN subjects underwent genome sequencing before inclusion in the cohort. Records of all UDN subjects until January 2024 were analyzed. The number of diagnoses, proportion of molecular versus nonmolecular (i.e., not attributable to a discretely identifiable genetic change) diagnoses, and the inheritance patterns of the genetic diagnoses were determined. Of 2799 subjects, 766 (27.4%) had diagnoses. Of these 766, 95.4% had one diagnosis, 4.0% had two diagnoses, and 0.5% had three diagnoses. Of the diagnosed subjects, 93.4% had a genetic disease, and 6.5% had a nonmolecular disease. Of subjects with two diagnoses, both diagnoses were molecular in 90.3%, while 9.7% had one molecular and one nonmolecular diagnosis. All four subjects with three diagnoses had three molecular diagnoses. 4.2% of diagnosed subjects in the UDN had more than one molecular diagnosis, with four individuals having three concurrent Mendelian diagnoses. Additionally, three subjects had concurrent molecular and nonmolecular diagnoses. Given that numerous UDN subjects had a negative genome sequence prior to UDN enrollment, multiple molecular diagnoses may contribute to diagnostic uncertainty even with genome sequencing, as may concurrent nonmolecular disease.
Collapse
Affiliation(s)
- Alex F Gimeno
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rory J Tinker
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yutaka Furuta
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Baldo MS, Azevedo L, Coelho MP, Martins E, Vilarinho L. A Comprehensive Approach to the Diagnosis of Leigh Syndrome Spectrum. Diagnostics (Basel) 2024; 14:2133. [PMID: 39410537 PMCID: PMC11475613 DOI: 10.3390/diagnostics14192133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Leigh syndrome spectrum (LSS) is a novel nomenclature that encompasses both classical Leigh syndrome and Leigh-like phenotypes. Given the heterogeneity of disease presentation, a new consensus published recently addressed the main issues and proposed general guidelines towards diagnosis. Based on these recommendations, we developed a simple pipeline that can be useful in the diagnosis of LSS. METHODS We combined previously published criteria with our own experience to achieve a diagnostic framework that can provide faster satisfactory results with fewer resources. RESULTS We suggest adding basic biochemical tests for amino acids, acylcarnitine, and urinary organic acids as parallel investigations, as these results can be obtained in a short time. This approach characterized 80% of our cohort and promoted specific intervention in 10% of confirmed cases. CONCLUSIONS Genetic studies are crucial in the diagnosis of LSS, but they are time-consuming and might delay tailored interventions. Therefore, we suggest adding more affordable and less complex biochemical studies as primary tests when investigating treatable causes of LSS.
Collapse
Affiliation(s)
- Manuela Schubert Baldo
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (M.P.C.); (E.M.)
| | - Luísa Azevedo
- UMIB—Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-346 Porto, Portugal;
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Margarida Paiva Coelho
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (M.P.C.); (E.M.)
- UMIB—Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-346 Porto, Portugal;
- Pediatrics Department, Northern Mother and Child Centre, Reference Centre for Metabolic Disorders, Santo António Hospital University Centre, 4050-651 Porto, Portugal
| | - Esmeralda Martins
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (M.P.C.); (E.M.)
- UMIB—Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-346 Porto, Portugal;
- Pediatrics Department, Northern Mother and Child Centre, Reference Centre for Metabolic Disorders, Santo António Hospital University Centre, 4050-651 Porto, Portugal
| | - Laura Vilarinho
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- Neonatal Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
| |
Collapse
|
12
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Calame DG, Wong JH, Panda P, Nguyen DT, Leong NCP, Sangermano R, Patankar SG, Abdel-Hamid MS, AlAbdi L, Safwat S, Flannery KP, Dardas Z, Fatih JM, Murali C, Kannan V, Lotze TE, Herman I, Ammouri F, Rezich B, Efthymiou S, Alavi S, Murphy D, Firoozfar Z, Nasab ME, Bahreini A, Ghasemi M, Haridy NA, Goldouzi HR, Eghbal F, Karimiani EG, Begtrup A, Elloumi H, Srinivasan VM, Gowda VK, Du H, Jhangiani SN, Coban-Akdemir Z, Marafi D, Rodan L, Isikay S, Rosenfeld JA, Ramanathan S, Staton M, Oberg KC, Clark RD, Wenman C, Loughlin S, Saad R, Ashraf T, Male A, Tadros S, Boostani R, Abdel-Salam GMH, Zaki M, Mardi A, Hashemi-Gorji F, Abdalla E, Manzini MC, Pehlivan D, Posey JE, Gibbs RA, Houlden H, Alkuraya FS, Bujakowska K, Maroofian R, Lupski JR, Nguyen LN. Biallelic variation in the choline and ethanolamine transporter FLVCR1 underlies a severe developmental disorder spectrum. Genet Med 2024:101273. [PMID: 39306721 DOI: 10.1016/j.gim.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE FLVCR1 encodes a solute carrier protein implicated in heme, choline, and ethanolamine transport. Although Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits, including macrocytic anemia and skeletal malformations, with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
| | - Jovi Huixin Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puravi Panda
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dat Tuan Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nancy C P Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Sohil G Patankar
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sylvia Safwat
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt; Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chaya Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Varun Kannan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Timothy E Lotze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Boys Town National Research Hospital, Boys Town, NE
| | - Farah Ammouri
- Boys Town National Research Hospital, Boys Town, NE; The University of Kansas Health System, Westwood, KS
| | - Brianna Rezich
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | | | - Mahya Ebrahimi Nasab
- Meybod Genetic Research Center, Yazd, Iran; Yazd Welfare Organization, Yazd, Iran
| | - Amir Bahreini
- KaryoGen, Isfahan, Iran; Department of Human Genetics, University of Pittsburgh, PA
| | - Majid Ghasemi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nourelhoda A Haridy
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hamid Reza Goldouzi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | | | | | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Sedat Isikay
- Gaziantep Islam Science and Technology University, Medical Faculty, Department of Pediatric Neurology, Gaziantep, Turkey
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Subhadra Ramanathan
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Michael Staton
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA
| | - Robin D Clark
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Catharina Wenman
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sam Loughlin
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ramy Saad
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Tazeen Ashraf
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alison Male
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Shereen Tadros
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Genetics and Genomic Medicine Department, University College London, United Kingdom
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ali Mardi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kinga Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - James R Lupski
- Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX.
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Zhuang J, Wei Q, Jiang Y, Zeng S, Lou H, Zhang N, Chen C. Molecular cytogenetic characterization of isolated recurrent 4q35.2 microduplication in Chinese population: a seven-year single-center retrospective study. BMC Pregnancy Childbirth 2024; 24:606. [PMID: 39294589 PMCID: PMC11411749 DOI: 10.1186/s12884-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND With the extensive use of chromosomal microarray analysis (CMA), an increasing number of variants of uncertain significance (VOUS) have been detected. The objective of the present study was to elucidate the pathogenicity and clinical variability associated with isolated recurrent 4q35.2 microduplications within the Chinese population. METHODS The present study involved 14 cases of isolated recurrent 4q35.2 microduplication (including 12 fetuses and 2 cases of pediatric patients) out of 5,188 subjects who sought genetic consultation at our hospital and received CMA detection. WES technology was subsequently utilized to identify additional sequence variants in a patient with multiple clinical anomalies. RESULTS All 14 cases exhibited isolated recurrent 4q35.2 microduplications spanning a 1.0-Mb region encompassing the ZFP42 gene. Among the 12 fetuses, 11 displayed normal clinical features, while one was born with renal duplication and hydronephrosis. Additionally, in the two pediatric patients, WES was performed for Case 1, who presented with congenital cataracts, severe intellectual disability, and seizures. This patient inherited the 4q35.2 microduplication from his phenotypically normal mother. WES identified a novel NM_000276:c.2042G > T (p.G681V) variant in the OCRL gene, which is associated with Lowe syndrome and may account for the observed phenotypic variability within this family. CONCLUSION A series of 14 cases with isolated recurrent 4q35.2 microduplications were investigated, highlighting a potential association with increased susceptibility to renal abnormalities. Further, the present findings may expand the mutation spectrum of the OCRL gene associated with Lowe syndrome and provide valuable insights for the genetic etiological diagnosis of patients with unexplained copy number variants.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Qiulan Wei
- Medical laboratory department, The First People's Hospital of Nanning, Nanning, 530022, China
| | - Yuying Jiang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Shuhong Zeng
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Haijuan Lou
- Be creative Lab Co., Ltd, Beijing, 101100, China
| | - Na Zhang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
15
|
Zelley K, Schienda J, Gallinger B, Kohlmann WK, McGee RB, Scollon SR, Schneider KW. Update on Genetic Counselor Practice and Recommendations for Pediatric Cancer Predisposition Evaluation and Surveillance. Clin Cancer Res 2024; 30:3983-3989. [PMID: 39037753 DOI: 10.1158/1078-0432.ccr-24-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
In July 2023, the American Association for Cancer Research held the second Childhood Cancer Predisposition Workshop, at which international experts in pediatric cancer predisposition met to update the previously published 2017 consensus statements on pediatric cancer predisposition syndromes. Since 2017, advances in tumor and germline genetic testing and increased understanding of cancer predisposition in patients with pediatric cancer have led to significant changes in clinical care. Here, we provide an updated genetic counseling framework for pediatric oncology professionals. The framework includes referral indications and timing, somatic and germline genetic testing options, testing for adult-onset cancer predisposition syndromes in children with and without cancer, evolving genetic counseling models to meet the increased demand for genetic testing, barriers to cancer genetic testing and surveillance in children, and psychosocial and equity considerations regarding cancer genetic testing and surveillance in children. Adaptable genetic counseling services are needed to provide support to pediatric oncology provider teams and diverse patients with pediatric cancer, cancer predisposition, and their families.
Collapse
Affiliation(s)
- Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Bailey Gallinger
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Wendy K Kohlmann
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Rose B McGee
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah R Scollon
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas
| | - Kami Wolfe Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Children's Hospital of Colorado, Aurora, Colorado
| |
Collapse
|
16
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Yang H, Zhang YJ, Zhu L, Zheng WY, Shi MY, Zhao WR, Zhao HC. A novel compound heterozygous PCDH15 variants is associated with arRP in a Chinese pedigree. BMC Ophthalmol 2024; 24:373. [PMID: 39187782 PMCID: PMC11345949 DOI: 10.1186/s12886-024-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases. However, it is still not well understand about the relationship between PCDH15 variants and RP. METHODS In this study, we enrolled a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree and identified the causative gene in the proband by targeted whole exome sequencing (WES). The variants were validated in the family members by Sanger sequencing and co-segregation analysis. RESULTS Novel compound heterozygous, Frame shift variants of the PCDH15 gene, NM_001384140.1:c.4368 - 2147_4368-2131del and NM_001384140.1:c exon19:c.2505del: p. T836Lfs*6 were identified in the arRP pedigree, which co-segregated with the clinical RP phenotypes. The PCDH15 protein is highly conserved among species. CONCLUSION This is the first study to identify novel compound heterozygous variants c.4368 - 2147_4368-2131del and c.2505del(p.T836Lfs*6) in the PCDH15 gene which might be disease-causing variants, and extending the variant spectra. All above findings may be contribute to genetic counseling, molecular diagnosis and clinical management of arRP disease.
Collapse
Affiliation(s)
- Hong Yang
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Ya-Juan Zhang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Li Zhu
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Wei-Yi Zheng
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Mei-Yu Shi
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | | | - Hong-Chao Zhao
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China.
| |
Collapse
|
18
|
Wallis M, Bodek SD, Munro J, Rafehi H, Bennett MF, Ye Z, Schneider A, Gardiner F, Valente G, Murdoch E, Uebergang E, Hunter J, Stutterd C, Huq A, Salmon L, Scheffer I, Eratne D, Meyn S, Fong CY, John T, Mullen S, White SM, Brown NJ, McGillivray G, Chen J, Richmond C, Hughes A, Krzesinski E, Fennell A, Chambers B, Santoreneos R, Le Fevre A, Hildebrand MS, Bahlo M, Christodoulou J, Delatycki M, Berkovic SF. Experience of the first adult-focussed undiagnosed disease program in Australia (AHA-UDP): solving rare and puzzling genetic disorders is ageless. Orphanet J Rare Dis 2024; 19:288. [PMID: 39095811 PMCID: PMC11297648 DOI: 10.1186/s13023-024-03297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.
Collapse
Affiliation(s)
- Mathew Wallis
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon D Bodek
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia.
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia.
| | - Jacob Munro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Haloom Rafehi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mark F Bennett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy Schneider
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Fiona Gardiner
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Giulia Valente
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Emma Murdoch
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Eloise Uebergang
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
| | - Jacquie Hunter
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Chloe Stutterd
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Aamira Huq
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetic Medicine Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lucinda Salmon
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetics Service, Royal Prince Alfred Hospital, Melbourne, Australia
| | - Ingrid Scheffer
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Austin Health, Melbourne, Australia
| | - Dhamidhu Eratne
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Stephen Meyn
- Centre for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chun Y Fong
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Tom John
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Saul Mullen
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Melbourne, Australia
- Genetics Service, Mercy Hospital for Women, Melbourne, Australia
| | - Jesse Chen
- Neurology Service, Austin Health, Melbourne, Australia
| | - Chris Richmond
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Hughes
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | | | - Andrew Fennell
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Monash Health Genetics Clinic, Melbourne, Australia
| | - Brian Chambers
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | - Renee Santoreneos
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Anna Le Fevre
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Martin Delatycki
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Samuel F Berkovic
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
19
|
Sajan SA, Gradisch R, Vogel FD, Coffey AJ, Salyakina D, Soler D, Jayakar P, Jayakar A, Bianconi SE, Cooper AH, Liu S, William N, Benkel-Herrenbrück I, Maiwald R, Heller C, Biskup S, Leiz S, Westphal DS, Wagner M, Clarke A, Stockner T, Ernst M, Kesari A, Krenn M. De novo variants in GABRA4 are associated with a neurological phenotype including developmental delay, behavioral abnormalities and epilepsy. Eur J Hum Genet 2024; 32:912-919. [PMID: 38565639 PMCID: PMC11291759 DOI: 10.1038/s41431-024-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alison J Coffey
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana Soler
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Anuj Jayakar
- Department of Neurology, Division of Epilepsy, Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | | | | - Robert Maiwald
- Medizinisches Versorgungszentrum für Gerinnungsdiagnostik und Medizinische Genetik Köln, Köln, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amy Clarke
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Yin T, Liao Y, Li X, Wang H, Wu B, Dong X. Characterization of a human induced pluripotent stem cell line (FDCHi015-A) derived from PBMCs of a patient harbouring ALDOB mutation. Stem Cell Res 2024; 78:103451. [PMID: 38820866 DOI: 10.1016/j.scr.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease associated with a mutation in the aldolase B gene on chromosome 9q31. In this study, we generated a human-induced pluripotent stem cell (hiPSC) line, FDCHi015-A, from peripheral blood mononuclear cells (PBMCs) of a patient carrying the compound heterozygous mutations c.360_364delCAAA and c.1013C > T in exons 4 and 9 of the ALDOB gene, respectively. The iPSCs with the confirmed patient-specific mutation demonstrate pluripotency markers expression, a normal karyotype, and the ability to differentiate into derivatives of three germ layers.
Collapse
Affiliation(s)
- Tingting Yin
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yunfei Liao
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China; Director of the Functional Genomics Research Laboratory, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
21
|
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, Wagner M. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat Genet 2024; 56:1644-1653. [PMID: 39039281 PMCID: PMC11319204 DOI: 10.1038/s41588-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Magdalena Danyel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Grundmann
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institut für Medizinische Biometrie, Informatik und Epidemiologie, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Shahida Moosa
- Institute for Medical Genetics, Stellenbosch University, Cape Town, South Africa
| | - Luisa Averdunk
- Department of Pediatrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Lisa Sczakiel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina Schwartzmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Manuel Holtgrewe
- Core Uni Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annemarie Bösch
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Weiß
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Weinhold
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aude-Annick Suter
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tillmann Kallinich
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Holzhauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schülke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Corinna Grasemann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Tobias Rothoeft
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Nora Matar
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martina Kreiss
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Lorenz Grigull
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tim Bender
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Christiane Stieber
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexandra Marzena Morawiec
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Valentin S Schäfer
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Patrick Weydt
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ahmad Aziz
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Marcus Grobe-Einsler
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Demet Önder
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pawel Tacik
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Meghna Ahuja Basin
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pietro Incardona
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Min Ae Lee-Kirsch
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Reinhard Berner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia Körholz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tanita Kretschmer
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nataliya Di Donato
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - André Heinen
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrike Reuner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Amalia-Mihaela Hanßke
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Eva Manka
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Martin Munteanu
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Kiewert Cordula
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Raphael Hirtz
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Elena Schlapakow
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina Weiler-Normann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Rillig
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Groffmann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ania Muntau
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Michal Zawada
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Pamela M Okun
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annekatrin Ripke
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martje Pauly
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Neurogenetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Rebecca Herzog
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Yorck Hellenbroich
- Department of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Tim Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Reka Kovacs
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | | | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | - Ulrich Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Christine Makowski
- Department of Paediatrics, Adolescent Medicine and Neonatology, München, Germany
| | - Heike Weigand
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Sebastian Schröder
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Katharina Vill
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | | | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Kehrer
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holm Graessner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lena Zeltner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ludger J Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
| | - Janine Magg
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Kehrer
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Nadja Kaiser
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Heiko Krude
- Berlin Centre for Rare Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany.
| | - Tobias Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| |
Collapse
|
22
|
Sun G, Huang W, Wang L, Wu J, Zhao G, Ren H, Liu L, Kong X. Molecular findings in patients for whole exome sequencing and mitochondrial genome assessment. Clin Chim Acta 2024; 561:119774. [PMID: 38852791 DOI: 10.1016/j.cca.2024.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Whole exome sequencing (WES) is becoming more widely used as a diagnostic tool in the field of medicine. In this article, we reported the diagnostic yield of WES and mitochondrial genome assessment in 2226 consecutive cases in a single clinical laboratory. MATERIALS AND METHODS We retrospectively analyzed consecutive WES reports from 2226 patients with various genetic disorders. WES-process was focused exclusively on the probands and aimed at a higher diagnostic capacity. We determined the diagnostic rate of WES overall and by phenotypic category, mode of inheritance, mitochondrial genome variant, and copy number variants (CNVs). RESULTS Among the 2226 patients who had diagnostic WES proband-only, the overall diagnostic yield of WES was 34.59% (770/2226). The highest diagnostic yield was observed in autosomal dominant disorders, at 45.58% (351/770), followed by autosomal recessive at 31.95%(246/770), X-linked disorder at 9.61%(74/770), and mitochondrial diseases at a notably lower 0.65%(5/770). The 12.21% (94/770) diagnoses were based on a total of 94 copy number variants reported from WES data. CNVs in children accounted for 67.02% of the total CNVs. While majority of the molecular diagnoses were related to nuclear genes, the inclusion of mitochondrial genome sequencing in the WES test contributed to five diagnoses. all mitochondrial diseases were identified in adults. CONCLUSIONS The proband-only WES provided a definitive molecular diagnosis for 34.59% of a large cohort of patients while analysis of WES simultaneously analyzed the SNVs, exons, mitochondrial genome, and CNVs, thereby improving the diagnostic yield significantly compared to the single-detection WES method; and facilitating the identification of novel candidate genes.
Collapse
Affiliation(s)
- Gege Sun
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Wu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ganye Zhao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanan Ren
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Sun H, Li K, Wang L, Zhao L, Yan C, Kong X, Liu N. Fetal agenesis of the corpus callosum: Clinical and genetic analysis in a series of 40 patients. Eur J Obstet Gynecol Reprod Biol 2024; 298:146-152. [PMID: 38756055 DOI: 10.1016/j.ejogrb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study aimed to explore the genetic causes of agenesis of the corpus callosum (ACC) and assess the utility of karyotype analysis, copy number variation sequencing (CNV-seq), and whole-exome sequencing (WES) to genetically diagnose fetal ACC. METHODS We retrospectively examined 40 fetuses diagnosed with ACC who underwent prenatal ultrasonography or magnetic resonance imaging between January 2019 and October 2023. Genetic tests were conducted on the fetuses using karyotype analysis or CNV-seq as the first-line diagnosis. WES was performed if aneuploid and pathogenic CNVs were excluded. RESULTS Among the 40 fetuses, 29 (72 %) had non-isolated ACC and 11 (28 %) had isolated ACC. Cerebellar dysplasia and hydrocephalus were the most common abnormal developments in the central nervous system. Twenty-eight patients underwent karyotype analysis, with a detection rate of 14 % (4/28). Twenty-six patients underwent CNV-seq; three patients were found to have pathogenic CNVs, with a detection rate of 12 % (3/26). Thirty-three fetuses with no findings of karyotype analysis or CNV-seq were subsequently tested using WES, with a detection rate of 36 % (12/33). Overall, the total diagnostic yield was 48 % (19/40), and monogenic etiology accounted for 30 % (12/40). The genetic detection rate of fetal non-isolated ACC (62 %, 18/29) was higher than that of isolated ACC (9 %, 1/11). CONCLUSION Prenatal genetic analysis of fetuses with ACC is clinically significant, with monogenic disorders being the main cause. WES may enhance the detection rate of fetuses with ACC with negative karyotype analysis or CNV-seq results.
Collapse
Affiliation(s)
- Hengqing Sun
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ke Li
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Wang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lijuan Zhao
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenyu Yan
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Liu
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Gippert S, Wagner M, Brunet T, Berruti R, Brugger M, Schwaibold EMC, Haack TB, Hoffmann GF, Bettendorf M, Choukair D. Exome sequencing (ES) of a pediatric cohort with chronic endocrine diseases: a single-center study (within the framework of the TRANSLATE-NAMSE project). Endocrine 2024; 85:444-453. [PMID: 37940764 PMCID: PMC11246252 DOI: 10.1007/s12020-023-03581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Endocrine disorders are heterogeneous and include a significant number of rare monogenic diseases. METHODS We performed exome sequencing (ES) in 106 children recruited from a single center within the TRANSLATE‑NAMSE project. They were categorized into subgroups: proportionate short stature (PSS), disproportionate short stature (DSS), hypopituitarism (H), differences in sexual development (DSD), syndromic diseases (SD) and others. RESULTS The overall diagnostic yield was 34.9% (n = 37/106), including 5 patients with variants in candidate genes, which have contributed to collaborations to identify gene-disease associations. The diagnostic yield varied significantly between subgroups: PSS: 16.6% (1/6); DSS: 18.8% (3/16); H: 17.1% (6/35); DSD: 37.5% (3/8); SD: 66.6% (22/33); others: 25% (2/8). Confirmed diagnoses included 75% ultrarare diseases. Three patients harbored more than one disease-causing variant, resulting in dual diagnoses. CONCLUSIONS ES is an effective tool for genetic diagnosis in pediatric patients with complex endocrine diseases. An accurate phenotypic description, including comprehensive endocrine diagnostics, as well as the evaluation of variants in multidisciplinary case conferences involving geneticists, are necessary for personalized diagnostic care. Here, we illustrate the broad spectrum of genetic endocrinopathies that have led to the initiation of specific treatment, surveillance, and family counseling.
Collapse
Affiliation(s)
- Sebastian Gippert
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Riccardo Berruti
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany and Centre for Rare Diseases, University of Tuebingen, Tübingen, Germany
| | - Georg F Hoffmann
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
Morales-Romero B, Muñoz-Pujol G, Artuch R, García-Cazorla A, O'Callaghan M, Sykut-Cegielska J, Campistol J, Moreno-Lozano PJ, Oud MM, Wevers RA, Lefeber DJ, Esteve-Codina A, Yepez VA, Gagneur J, Wortmann SB, Prokisch H, Ribes A, García-Villoria J, Tort F. Genome and RNA sequencing were essential to reveal cryptic intronic variants associated to defective ATP6AP1 mRNA processing. Mol Genet Metab 2024; 142:108511. [PMID: 38878498 DOI: 10.1016/j.ymgme.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.
Collapse
Affiliation(s)
- Blai Morales-Romero
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, CIBERER, Esplugues de Llobregat, Barcelona, Spain.
| | - Angels García-Cazorla
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Mar O'Callaghan
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Jaume Campistol
- Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Hospital Sant Joan de Déu, CIBERER and MetabERN, Esplugues de Llobregat, Barcelona, Spain.
| | - Pedro Juan Moreno-Lozano
- Inherited Metabolic Diseases and Muscle Disorders' Research Group, Department of Internal Medicine, Hospital Clinic de Barcelona, IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| | - Machteld M Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, the Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Dirk J Lefeber
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona, Spain.
| | - Vicente A Yepez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany.
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany.
| | - Saskia B Wortmann
- University Children's Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Department of Pediatrics, Radboudumc, Nijmegen, the Netherlands.
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Judit García-Villoria
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, ISCIII, Barcelona, Spain.
| |
Collapse
|
26
|
Ma M, Ganapathi M, Zheng Y, Tan KL, Kanca O, Bove KE, Quintanilla N, Sag SO, Temel SG, LeDuc CA, McPartland AJ, Pereira EM, Shen Y, Hagen J, Thomas CP, Nguyen Galván NT, Pan X, Lu S, Rosenfeld JA, Calame DG, Wangler MF, Lupski JR, Pehlivan D, Hertel PM, Chung WK, Bellen HJ. Homozygous missense variants in YKT6 result in loss of function and are associated with developmental delay, with or without severe infantile liver disease and risk for hepatocellular carcinoma. Genet Med 2024; 26:101125. [PMID: 38522068 PMCID: PMC11335040 DOI: 10.1016/j.gim.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
PURPOSE YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Kai-Li Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Kevin E Bove
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Norma Quintanilla
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Sebnem O Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | | | | | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY
| | - Jacob Hagen
- Department of Systems Biology, Columbia University Medical Center, New York, NY
| | - Christie P Thomas
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Paula M Hertel
- Texas Children's Hospital, Houston, TX; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX.
| |
Collapse
|
27
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
28
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Vuocolo B, German RJ, Lalani SR, Murali CN, Bacino CA, Baskin S, Littlejohn R, Odom JD, McLean S, Schmid C, Nutter M, Stuebben M, Magness E, Juarez O, El Achi D, Mitchell B, Glinton KE, Robak L, Nagamani SCS, Saba L, Ritenour A, Zhang L, Streff H, Chan K, Kemere KJ, Carter K, Owen N, Vossaert L, Liu P, Bellen H, Wangler MF. Improving access to exome sequencing in a medically underserved population through the Texome Project. Genet Med 2024; 26:101102. [PMID: 38431799 PMCID: PMC11161315 DOI: 10.1016/j.gim.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.
Collapse
Affiliation(s)
- Blake Vuocolo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Ryan J German
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Stephanie Baskin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | | | - John D Odom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Scott McLean
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Carrie Schmid
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Morgan Nutter
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Melissa Stuebben
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Emily Magness
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Olivia Juarez
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Dina El Achi
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Bailey Mitchell
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Laurie Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital Department of Pathology, Houston, TX
| | - Lisa Saba
- Texas Children's Hospital Department of Pathology, Houston, TX
| | - Adasia Ritenour
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital Department of Pathology, Houston, TX
| | - Katie Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - K Jordan Kemere
- Department of Internal Medicine, Section Transition Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kent Carter
- Department of Pediatrics, University of Texas Rio Grande Valley, Harlingen, TX
| | | | | | | | - Hugo Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
30
|
Jiao K, Cheng N, Huan X, Zhang J, Ding Y, Luan X, Liu L, Wang X, Zhu B, Du K, Fan J, Gao M, Xia X, Wang N, Wang T, Xi J, Luo S, Lu J, Zhao C, Yue D, Zhu W. Pseudoexon activation by deep intronic variation in GNE myopathy with thrombocytopenia. Muscle Nerve 2024; 69:708-718. [PMID: 38558464 DOI: 10.1002/mus.28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION/AIMS GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinghua Luan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingChun Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Xilu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiale Fan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| |
Collapse
|
31
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Duman D, Ramzan M, Subasioglu A, Mutlu A, Peart L, Seyhan S, Guo S, Ila K, Balta B, Kalcioglu MT, Bademci G, Tekin M. Identification of novel MYH14 variants in families with autosomal dominant sensorineural hearing loss. Am J Med Genet A 2024; 194:e63563. [PMID: 38352997 PMCID: PMC11060900 DOI: 10.1002/ajmg.a.63563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 05/02/2024]
Abstract
Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.
Collapse
Affiliation(s)
- Duygu Duman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara 06100, Turkiye
| | - Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asli Subasioglu
- Department of Medical Genetics, İzmir Katip Çelebi University, Ataturk Education and Research Hospital, 35360, Turkiye
| | - Ahmet Mutlu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul 34720, Turkiye
- Otorhinolaryngology Clinic of Goztepe Prof.Dr. Suleyman Yalcin City Hospital, Istanbul, 34722 Turkiye
| | - LéShon Peart
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| | - Serhat Seyhan
- Memorial Şişli Hospital, Laboratory of Genetics, Istanbul 34385, Turkiye
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kadri Ila
- Department of Otorhinolaryngology, Umraniye Education and Research Hospital, Istanbul, 34760 Turkiye
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Mahmut Tayyar Kalcioglu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul 34720, Turkiye
- Otorhinolaryngology Clinic of Goztepe Prof.Dr. Suleyman Yalcin City Hospital, Istanbul, 34722 Turkiye
| | - Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| |
Collapse
|
33
|
Busse E, Lee B, Nagamani SCS. Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Curr Osteoporos Rep 2024; 22:308-317. [PMID: 38600318 DOI: 10.1007/s11914-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis. RECENT FINDINGS Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment. Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.
Collapse
Affiliation(s)
- Emily Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
34
|
Duraisamy AJ, Liu R, Sureshkumar S, Rose R, Jagannathan L, da Silva C, Coovadia A, Ramachander V, Chandrasekar S, Raja I, Sajnani M, Selvaraj SM, Narang B, Darvishi K, Bhayal AC, Katikala L, Guo F, Chen-Deutsch X, Balciuniene J, Ma Z, Nallamilli BRR, Bean L, Collins C, Hegde M. Focused Exome Sequencing Gives a High Diagnostic Yield in the Indian Subcontinent. J Mol Diagn 2024; 26:510-519. [PMID: 38582400 DOI: 10.1016/j.jmoldx.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.
Collapse
Affiliation(s)
| | - Ruby Liu
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | - Rajiv Rose
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | - Indu Raja
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | | | - Fen Guo
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | | | | | | - Lora Bean
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
35
|
Betzler IR, Hempel M, Mütze U, Kölker S, Winkler E, Dikow N, Garbade SF, Schaaf CP, Brennenstuhl H. Comparative analysis of gene and disease selection in genomic newborn screening studies. J Inherit Metab Dis 2024. [PMID: 38757337 DOI: 10.1002/jimd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Genomic newborn screening (gNBS) is on the horizon given the decreasing costs of sequencing and the advanced understanding of the impact of genetic variants on health and diseases. Key to ongoing gNBS pilot studies is the selection of target diseases and associated genes to be included. In this study, we present a comprehensive analysis of seven published gene-disease lists from gNBS studies, evaluating gene-disease count, composition, group proportions, and ClinGen curations of individual disorders. Despite shared selection criteria, we observe substantial variation in total gene count (median 480, range 237-889) and disease group composition. An intersection was identified for 53 genes, primarily inherited metabolic diseases (83%, 44/53). Each study investigated a subset of exclusive gene-disease pairs, and the total number of exclusive gene-disease pairs was positively correlated with the total number of genes included per study. While most pairs receive "Definitive" or "Strong" ClinGen classifications, some are labeled as "Refuted" (n = 5) or "Disputed" (n = 28), particularly in genetic cardiac diseases. Importantly, 17%-48% of genes lack ClinGen curation. This study underscores the current absence of consensus recommendations for selection criteria for target diseases for gNBS resulting in diversity in proposed gene-disease pairs, their coupling with gene variations and the use of ClinGen curation. Our findings provide crucial insights into the selection of target diseases and accompanying gene variations for future gNBS program, emphasizing the necessity for ongoing collaboration and discussion about criteria harmonization for panel selection to ensure the screening's objectivity, integrity, and broad acceptance.
Collapse
Affiliation(s)
- Isabel R Betzler
- Institute of Human Genetics, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Maja Hempel
- Institute of Human Genetics, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Mütze
- Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Winkler
- Section of Translational Medical Ethics, National Center for Tumour Diseases, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Institute of Human Genetics, Heidelberg University and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Ciancia S, Madeo SF, Calabrese O, Iughetti L. The Approach to a Child with Dysmorphic Features: What the Pediatrician Should Know. CHILDREN (BASEL, SWITZERLAND) 2024; 11:578. [PMID: 38790573 PMCID: PMC11120268 DOI: 10.3390/children11050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
The advancement of genetic knowledge and the discovery of an increasing number of genetic disorders has made the role of the geneticist progressively more complex and fundamental. However, most genetic disorders present during childhood; thus, their early recognition is a challenge for the pediatrician, who will be also involved in the follow-up of these children, often establishing a close relationship with them and their families and becoming a referral figure. In this review, we aim to provide the pediatrician with a general knowledge of the approach to treating a child with a genetic syndrome associated with dysmorphic features. We will discuss the red flags, the most common manifestations, the analytic collection of the family and personal medical history, and the signs that should alert the pediatrician during the physical examination. We will offer an overview of the physical malformations most commonly associated with genetic defects and the way to describe dysmorphic facial features. We will provide hints about some tools that can support the pediatrician in clinical practice and that also represent a useful educational resource, either online or through apps downloaded on a smartphone. Eventually, we will offer an overview of genetic testing, the ethical considerations, the consequences of incidental findings, and the main indications and limitations of the principal technologies.
Collapse
Affiliation(s)
- Silvia Ciancia
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Simona Filomena Madeo
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Olga Calabrese
- Medical Genetics Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| |
Collapse
|
37
|
Wang Y, He Y, Shi Y, Qian DC, Gray KJ, Winn R, Martin AR. Aspiring toward equitable benefits from genomic advances to individuals of ancestrally diverse backgrounds. Am J Hum Genet 2024; 111:809-824. [PMID: 38642557 PMCID: PMC11080611 DOI: 10.1016/j.ajhg.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Advancements in genomic technologies have shown remarkable promise for improving health trajectories. The Human Genome Project has catalyzed the integration of genomic tools into clinical practice, such as disease risk assessment, prenatal testing and reproductive genomics, cancer diagnostics and prognostication, and therapeutic decision making. Despite the promise of genomic technologies, their full potential remains untapped without including individuals of diverse ancestries and integrating social determinants of health (SDOHs). The NHGRI launched the 2020 Strategic Vision with ten bold predictions by 2030, including "individuals from ancestrally diverse backgrounds will benefit equitably from advances in human genomics." Meeting this goal requires a holistic approach that brings together genomic advancements with careful consideration to healthcare access as well as SDOHs to ensure that translation of genetics research is inclusive, affordable, and accessible and ultimately narrows rather than widens health disparities. With this prediction in mind, this review delves into the two paramount applications of genetic testing-reproductive genomics and precision oncology. When discussing these applications of genomic advancements, we evaluate current accessibility limitations, highlight challenges in achieving representativeness, and propose paths forward to realize the ultimate goal of their equitable applications.
Collapse
Affiliation(s)
- Ying Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Yixuan He
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yue Shi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - David C Qian
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Robert Winn
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA
| | - Alicia R Martin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Heebner M, Mainali G, Wei S, Kumar A, Naik S, Pradhan S, Kandel P, Tencer J, Carney P, Paudel S. Importance of Genetic Testing in Children With Generalized Epilepsy. Cureus 2024; 16:e59991. [PMID: 38854234 PMCID: PMC11162283 DOI: 10.7759/cureus.59991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.
Collapse
Affiliation(s)
| | - Gayatra Mainali
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sharon Wei
- Neurology, Penn State University, Hershey, USA
| | - Ashutosh Kumar
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sunil Naik
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | | | - Prakash Kandel
- Biostatistics, Penn State College of Medicine, Hershey, USA
| | - Jaclyn Tencer
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Paul Carney
- Pediatrics and Neurology, University of Missouri, Columbia, USA
| | - Sita Paudel
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
39
|
Burrill N, Khalek N, Oliver ER, Linn R, Victoria T, Yates C, Moldenhauer JS. Case report of fetus with Lowe syndrome: Expanding the prenatal phenotype. Prenat Diagn 2024; 44:665-668. [PMID: 38554254 DOI: 10.1002/pd.6563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Oculocerebrorenal syndrome (Lowe syndrome) is a rare X-linked disorder affecting 1/500,000 males that most frequently affects the eyes, central nervous system, and kidneys. Phenotypic presentation includes congenital cataracts, developmental delay, intellectual disability, and Fanconi-type renal dysfunction. Lowe Syndrome is caused by hemizygous loss of function variants in the OCRL gene. While individuals may live into the third and fourth decade of life, some will die in the first few years of either renal failure or infection. While early diagnosis is important, few cases have documented the prenatal phenotype of this condition, which has included bilateral cataracts and variable neurological abnormalities. We report a case of a family with an extensive history of congenital cataracts, immune compromise, and neonatal death in male members. The fetus was found to have a unilateral cataract, mild ventriculomegaly, vertebral anomalies, and an underlying diagnosis of Lowe Syndrome with a mutation in OCRL at c.2582-1G>C (IVS23-1G>C).
Collapse
Affiliation(s)
- Natalie Burrill
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nahla Khalek
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward R Oliver
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Linn
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa Victoria
- Division of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Julie S Moldenhauer
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Lei Z, Song X, Zheng X, Wang Y, Wang Y, Wu Z, Fan T, Dong S, Cao H, Zhao Y, Xia Z, Gao L, Shang Q, Mei S. Identification of two novel heterozygous variants of SMC3 with Cornelia de Lange syndrome. Mol Genet Genomic Med 2024; 12:e2447. [PMID: 38733165 PMCID: PMC11087815 DOI: 10.1002/mgg3.2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder, and cases caused by variants in the structural maintenance of chromosomes protein 3 (SMC3) gene are uncommon. Here, we report two cases of CdLS associated with novel pathogenic variants in SMC3 from two Chinese families. METHODS Clinical presentations of two patients with CdLS were evaluated, and specimens from the patients and other family members were collected for Trio-based whole-exome sequencing. Pyrosequencing, chip-based digital PCR, minigene splicing assay, and in silico analysis were carried out to elucidate the impact of novel variants. RESULTS Novel heterozygous variants in SMC3 were identified in each proband. One harbored a novel splicing and mosaic variant (c.2535+1G>A) in SMC3. The mutated allele G>A conversion was approximately 23.1% by digital PCR, which indicated that 46.2% of peripheral blood cells had this variant. Additionally, in vitro minigene splicing analysis validated that the c.2535+1G>A variant led to an exon skipping in messenger RNA splicing. The other carried a heterozygous variant (c.435C>A), which was predicted to be pathogenic as well as significantly altered in local electrical potential. The former showed multiple abnormalities and marked clinical severity, and the latter mainly exhibited a speech developmental disorder and slightly facial anomalies. CONCLUSION Both patients were clinically diagnosed with Cornelia de Lange syndrome 3 (CdLS3). The newly identified SMC3 gene variants can expand the understanding of CdLS3 and provide reliable evidence for genetic counseling to the affected family.
Collapse
Affiliation(s)
- Zhi Lei
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Xiaorui Song
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Xuan Zheng
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Yanhong Wang
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Yingyuan Wang
- Department of Neonatal MedicineHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Zhirong Wu
- Rehabilitation CenterHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Tian Fan
- Department of Neonatal MedicineHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Shijie Dong
- Department of Medical ImagingHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Honghui Cao
- Department of OphthalmologyHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Yuefang Zhao
- School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Zhiyi Xia
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Liujiong Gao
- Department of Pediatric Intensive Care UnitHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Qing Shang
- Rehabilitation CenterHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| | - Shiyue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's HospitalZhengzhouHenanChina
| |
Collapse
|
41
|
Ma H, Zhu L, Yang X, Ao M, Zhang S, Guo M, Dai X, Ma X, Zhang X. Genetic and phenotypic analysis of 225 Chinese children with developmental delay and/or intellectual disability using whole-exome sequencing. BMC Genomics 2024; 25:391. [PMID: 38649797 PMCID: PMC11034079 DOI: 10.1186/s12864-024-10279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.
Collapse
Affiliation(s)
- Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Lina Zhu
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Xiao Yang
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Shunxiang Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xiuwei Ma
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China.
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China.
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China.
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
| |
Collapse
|
42
|
Chung WK, Kanne SM, Hu Z. An Opportunity to Fill a Gap for Newborn Screening of Neurodevelopmental Disorders. Int J Neonatal Screen 2024; 10:33. [PMID: 38651398 PMCID: PMC11036277 DOI: 10.3390/ijns10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Screening newborns using genome sequencing is being explored due to its potential to expand the list of conditions that can be screened. Previously, we proposed the need for large-scale pilot studies to assess the feasibility of screening highly penetrant genetic neurodevelopmental disorders. Here, we discuss the initial experience from the GUARDIAN study and the systemic gaps in clinical services that were identified in the early stages of the pilot study.
Collapse
Affiliation(s)
- Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Stephen M. Kanne
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
43
|
von Hardenberg S, Klefenz I, Steinemann D, Di Donato N, Baumann U, Auber B, Klemann C. Current genetic diagnostics in inborn errors of immunity. Front Pediatr 2024; 12:1279112. [PMID: 38659694 PMCID: PMC11039790 DOI: 10.3389/fped.2024.1279112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
New technologies in genetic diagnostics have revolutionized the understanding and management of rare diseases. This review highlights the significant advances and latest developments in genetic diagnostics in inborn errors of immunity (IEI), which encompass a diverse group of disorders characterized by defects in the immune system, leading to increased susceptibility to infections, autoimmunity, autoinflammatory diseases, allergies, and malignancies. Various diagnostic approaches, including targeted gene sequencing panels, whole exome sequencing, whole genome sequencing, RNA sequencing, or proteomics, have enabled the identification of causative genetic variants of rare diseases. These technologies not only facilitated the accurate diagnosis of IEI but also provided valuable insights into the underlying molecular mechanisms. Emerging technologies, currently mainly used in research, such as optical genome mapping, single cell sequencing or the application of artificial intelligence will allow even more insights in the aetiology of hereditary immune defects in the near future. The integration of genetic diagnostics into clinical practice significantly impacts patient care. Genetic testing enables early diagnosis, facilitating timely interventions and personalized treatment strategies. Additionally, establishing a genetic diagnosis is necessary for genetic counselling and prognostic assessments. Identifying specific genetic variants associated with inborn errors of immunity also paved the way for the development of targeted therapies and novel therapeutic approaches. This review emphasizes the challenges related with genetic diagnosis of rare diseases and provides future directions, specifically focusing on IEI. Despite the tremendous progress achieved over the last years, several obstacles remain or have become even more important due to the increasing amount of genetic data produced for each patient. This includes, first and foremost, the interpretation of variants of unknown significance (VUS) in known IEI genes and of variants in genes of unknown significance (GUS). Although genetic diagnostics have significantly contributed to the understanding and management of IEI and other rare diseases, further research, exchange between experts from different clinical disciplines, data integration and the establishment of comprehensive guidelines are crucial to tackle the remaining challenges and maximize the potential of genetic diagnostics in the field of rare diseases, such as IEI.
Collapse
Affiliation(s)
| | - Isabel Klefenz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nataliya Di Donato
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Immunology, Rheumatology and Infectiology, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Sakaue S, Weinand K, Isaac S, Dey KK, Jagadeesh K, Kanai M, Watts GFM, Zhu Z, Brenner MB, McDavid A, Donlin LT, Wei K, Price AL, Raychaudhuri S. Tissue-specific enhancer-gene maps from multimodal single-cell data identify causal disease alleles. Nat Genet 2024; 56:615-626. [PMID: 38594305 PMCID: PMC11456345 DOI: 10.1038/s41588-024-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining noncoding variant function.
Collapse
Affiliation(s)
- Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shakson Isaac
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Jagadeesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhu Zhu
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Xu Y, Song R, Perszyk RE, Chen W, Kim S, Park KL, Allen JP, Nocilla KA, Zhang J, XiangWei W, Tankovic A, McDaniels ED, Sheikh R, Mizu RK, Karamchandani MM, Hu C, Kusumoto H, Pecha J, Cappuccio G, Gaitanis J, Sullivan J, Shashi V, Petrovski S, Jauss RT, Lee HK, Bozarth X, Lynch DR, Helbig I, Pierson TM, Boerkoel CF, Myers SJ, Lemke JR, Benke TA, Yuan H, Traynelis SF. De novo GRIN variants in M3 helix associated with neurological disorders control channel gating of NMDA receptor. Cell Mol Life Sci 2024; 81:153. [PMID: 38538865 PMCID: PMC10973091 DOI: 10.1007/s00018-023-05069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.
Collapse
Affiliation(s)
- Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Anel Tankovic
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ellington D McDaniels
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rehan Sheikh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ruth K Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Manish M Karamchandani
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joseph Pecha
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Via Pansini 5, 80131, Naples, Italy
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - John Gaitanis
- Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jennifer Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Slave Petrovski
- Ce Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, BioPharmaceuticals R&D, Cambridge, UK
| | - Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Hyun Kyung Lee
- Provincial Medical Genetics Program, Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, B.C, V6H 3N1, Canada
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Child Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tyler Mark Pierson
- Department of Pediatrics and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Program, Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, B.C, V6H 3N1, Canada
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Timothy A Benke
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
46
|
Zhang F, Guo H, Zhou X, Deng Z, Xu Q, Wang Q, Yuan H, Luo J. Novel PIP5K1C variant identified in a Chinese pedigree with lethal congenital contractural syndrome 3. BMC Pediatr 2024; 24:182. [PMID: 38491417 PMCID: PMC10941444 DOI: 10.1186/s12887-024-04674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in PIP5K1C (MIM #606,102) lead to lethal congenital contractural syndrome 3 (LCCS3, MIM #611,369), a rare autosomal recessive genetic disorder characterized by small gestational age, severe multiple joint contractures and muscle atrophy, early death due to respiratory failure. Currently, 5 individuals with LCCS3 were reported and 5 pathogenic variants in PIP5K1C were identified. Here, we reported the two fetuses in a Chinese pedigree who displayed multiple joint contractures and other congenital anomalies. METHODS Trio-based whole-exome sequencing (WES) was performed for the parents and the recent fetus to detect the genetic cause for fetus phenotype. RESULTS A novel variant, NM_012398.3: c.949_952dup, p.S318Ifs*28 and a previously reported variant, c.688_689del, p.G230Qfs*114 (ClinVar database) in PIP5K1C, were detected in the individuals, and these variants were inherited from the mother and father, respectively. We described the features of multiple joint contractures in our fetuses, including bilateral talipes equinovarus, stiffness in the limbs, extended knees, persistently closed hands and overlapping fingers, which have not been delineated detailedly in previously reported LCCS3 individuals. Furthermore, novel phenotype, bilateral dilated lateral ventricles, was revealed in one fetus. CONCLUSIONS These findings expanded the genetic variant spectrum of PIP5K1C and enriched the clinical features of LCCS3, which will help with the prenatal diagnosis and genetic counseling for this family.
Collapse
Affiliation(s)
- Fang Zhang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Hongmei Guo
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Xinlong Zhou
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
- Key Laboratory for Precision Diagnosis and Treatment of Severe Infectious Diseases in Children, Dongguan, 523120, China
| | - Zhengxi Deng
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Qiuhong Xu
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Qingming Wang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Haiming Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China.
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China.
| | - Jianhua Luo
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China.
| |
Collapse
|
47
|
Lee JY, Oh SH, Keum C, Lee BL, Chung WY. Clinical application of prospective whole-exome sequencing in the diagnosis of genetic disease: Experience of a regional disease center in South Korea. Ann Hum Genet 2024; 88:101-112. [PMID: 37795942 DOI: 10.1111/ahg.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Next-generation sequencing helps clinicians diagnose patients with suspected genetic disorders. The current study aimed to investigate the diagnostic yield and clinical utility of prospective whole-exome sequencing (WES) in rare diseases. METHODS WES was performed in 92 patients who presented with clinical symptoms suggestive of genetic disorders. The WES data were analyzed using an in-house developed software. The patients' phenotypic characteristics were classified according to the human phenotype ontology. RESULTS WES detected 64 variants, 13 were classified as pathogenic, 26 as likely pathogenic, and 25 as variants of uncertain significance. In 57 patients with these variants, 30 were identified as causal variants. The diagnostic yield was higher in patients with abnormalities in joint mobility and skin morphology than in those with cerebellar hypoplasia/atrophy, epilepsy, global developmental delay, dysmorphic features/facial dysmorphisms, and chronic kidney disease/abnormal renal morphology. CONCLUSION In this study, a WES-based variant interpretation system was employed to provide a definitive diagnosis for 28.3% of the patients suspected of having genetic disorders. WES is particularly useful for diagnosing rare diseases with symptoms that affect more than one system, when targeted genetic panels are difficult to employ.
Collapse
Affiliation(s)
- Ja Young Lee
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, South Korea
| | - Seung-Hwan Oh
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | | | - Bo Lyun Lee
- Department of Pediatrics, Inje University College of Medicine, Busan, South Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
48
|
Kooshavar D, Amor DJ, Boggs K, Baker N, Barnett C, de Silva MG, Edwards S, Fahey MC, Marum JE, Snell P, Bozaoglu K, Pope K, Mohammad SS, Riney K, Sachdev R, Scheffer IE, Schenscher S, Silberstein J, Smith N, Tom M, Ware TL, Lockhart PJ, Leventer RJ. Diagnostic utility of exome sequencing followed by research reanalysis in human brain malformations. Brain Commun 2024; 6:fcae056. [PMID: 38444904 PMCID: PMC10914449 DOI: 10.1093/braincomms/fcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.
Collapse
Affiliation(s)
- Daniz Kooshavar
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kirsten Boggs
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Department of Clinical Genetics, The Children’s Hospital Westmead, Westmead, NSW 2145, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Naomi Baker
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher Barnett
- SA Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Michelle G de Silva
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | | | - Penny Snell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kiymet Bozaoglu
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate Pope
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Shekeeb S Mohammad
- Department of Neurology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kate Riney
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Ingrid E Scheffer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health and Florey Institute, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Sarah Schenscher
- Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, Adelaide, SA 5006Australia
| | - John Silberstein
- Department of Neurology, Princess Margaret Hospital, Nedlands, WA 6009, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Melanie Tom
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029Australia
| | - Tyson L Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Paul J Lockhart
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
49
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|