1
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
2
|
Najac C, van der Beek NAME, Boer VO, van Doorn PA, van der Ploeg AT, Ronen I, Kan HE, van den Hout JMP. Brain glycogen build-up measured by magnetic resonance spectroscopy in classic infantile Pompe disease. Brain Commun 2024; 6:fcae303. [PMID: 39309683 PMCID: PMC11416038 DOI: 10.1093/braincomms/fcae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Classic infantile Pompe disease is caused by abnormal lysosomal glycogen accumulation in multiple tissues, including the brain due to a deficit in acid α-glucosidase. Although treatment with recombinant human acid α-glucosidase has dramatically improved survival, recombinant human acid α-glucosidase does not reach the brain, and surviving classic infantile Pompe patients develop progressive cognitive deficits and white matter lesions. We investigated the feasibility of measuring non-invasively glycogen build-up and other metabolic alterations in the brain of classic infantile Pompe patients. Four classic infantile patients (8-16 years old) and 4 age-matched healthy controls were scanned on a 7 T MRI scanner. We used T2-weighted MRI to assess the presence of white matter lesions as well as 1H magnetic resonance spectroscopy and magnetic resonance spectroscopy imaging to obtain the neurochemical profile and its spatial distribution, respectively. All patients had widespread white matter lesions on T2-weighted images. Magnetic resonance spectroscopy data from a single volume of interest positioned in the periventricular white matter showed a clear shift in the neurochemical profile, particularly a significant increase in glycogen (result of acid α-glucosidase deficiency) and decrease in N-acetyl-aspartate (marker of neuronal damage) in patients. Magnetic resonance spectroscopy imaging results were in line and showed a widespread accumulation of glycogen and a significant lower level of N-acetyl-aspartate in patients. Our results illustrate the unique potential of 1H magnetic resonance spectroscopy (imaging) to provide a non-invasive readout of the disease pathology in the brain. Further study will assess its potential to monitor disease progression and the correlation with cognitive decline.
Collapse
Affiliation(s)
- Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Vincent O Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, DK2650 Copenhagen, Denmark
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, East Sussex BN1 9RR, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Duchenne Center Netherlands, 2333 ZA Leiden, The Netherlands
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
3
|
Moschetti M, Lo Curto A, Giacomarra M, Francofonte D, Zizzo C, Messina E, Duro G, Colomba P. Mutation Spectrum of GAA Gene in Pompe Disease: Current Knowledge and Results of an Italian Study. Int J Mol Sci 2024; 25:9139. [PMID: 39273088 PMCID: PMC11394944 DOI: 10.3390/ijms25179139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024] Open
Abstract
Studying a patient with Pompe disease (PD) is like opening Pandora's box. The specialist is faced with numerous clinical features similar to those of several diseases, and very often the symptoms are well hidden and none is associated with this rare disease. In recent years, scientific interest in this disease has been growing more and more, but still no symptom is recognized as key to a correct diagnosis of it, nor is there any specific disease marker to date. New diagnostic/therapeutic proposals on disease allow for the diffusion of knowledge of this pathology for timely diagnosis of the patient. Due to unawareness and difficulty in diagnosis, many adults with PD are diagnosed with great delay. In this article, we report and discuss current knowledge of PD and provide new data from work conducted on a cohort of 2934 Italian subjects recruited in recent years. A genetic analysis of the GAA gene was performed on patients with significant clinical signs and pathological enzyme activity to define the genetic profile of subjects. This identified 39 symptomatic PD subjects with low acid alpha-glucosidase enzyme activity and the presence of two causative mutations in GAA gene regions. Furthermore, 22 subjects with genetic variants of uncertain significance (GVUS) were identified.
Collapse
Affiliation(s)
- Marta Moschetti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Miriam Giacomarra
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Elisa Messina
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
4
|
van den Dorpel JJA, Mackenbach MJ, Dremmen MHG, van der Vlugt WMC, Rizopoulos D, van Doorn PA, van der Ploeg AT, Muetzel R, van der Beek NAME, van den Hout JMP. Long term survival in patients with classic infantile Pompe disease reveals a spectrum with progressive brain abnormalities and changes in cognitive functioning. J Inherit Metab Dis 2024; 47:716-730. [PMID: 38584574 DOI: 10.1002/jimd.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
The aim of this longitudinal cohort study, is to provide more insight into the pattern of brain abnormalities, and possible consequences for cognitive functioning, in patients with classic infantile Pompe disease. We included 19 classic infantile Pompe patients (median age last assessment 8.9 years, range 1.5-22.5 years; 5/19 CRIM negative), treated with ERT. Using MR imaging of the brain (T1, T2, and FLAIR acquisitions), we classified progression of brain abnormalities on a 12-point rating scale at multiple time points throughout follow-up. Additionally we noted specific white matter patterns and examined atrophy. Cognitive development was studied using Wechsler IQ assessments obtained by certified neuropsychologists. The association between age and cognitive functioning, and MRI ratings and cognitive functioning was assessed by linear regression models. All but one patient developed brain abnormalities. The abnormalities progressed in a similar pattern throughout the brain, with early involvement of periventricular white matter, later followed by subcortical white matter, gray matter structures, and juxtacortical U-fibers. We found a significant decline (p < 0.01), with increasing age for full scale IQ, performance IQ and processing speed, but not for verbal IQ (p = 0.17). Each point increment in the 12-point MRI rating scale was associated with a significant decline (3.1-6.0 points) in all the IQ index scores (p < 0.05). The majority of long-term surviving patients in our cohort develop incremental brain MRI abnormalities and decline in cognitive functioning. This highlights the need for new therapies that can cross the blood-brain barrier in order to treat this CNS phenotype.
Collapse
Affiliation(s)
- J J A van den Dorpel
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M J Mackenbach
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M H G Dremmen
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - W M C van der Vlugt
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - D Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - P A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - R Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - N A M E van der Beek
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - J M P van den Hout
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| |
Collapse
|
5
|
Angelini C. Evaluating avalglucosidase alfa for the management of late-onset Pompe disease. Expert Rev Neurother 2024; 24:259-266. [PMID: 38261315 DOI: 10.1080/14737175.2024.2306855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Glycogenosis type II (GSDII) is a rare autosomal disorder that is caused by the deficiency of alpha-glucosidase, a lysosomal enzyme that hydrolyzes glycogen to glucose. Autophagy dysregulation plays a critical role. Importantly, since 2006, both patients with infantile (classic Pompe disease) and adult GSDII (late-onset Pompe disease or LOPD) have been treated with enzyme replacement therapy (ERT). To support this use, several double-blind and observational studies including large cohorts of GSDII patients have been undertaken and have shown ERT to be effective in modifying the natural course of disease. Indeed, most LOPD cases improve in the first 20 months of treatment in a six-minute walk test (6MWT), while those who are untreated do not; instead, their response declines over time. AREAS COVERED The author reviews avalglucosidase alpha, a therapy approved by both the FDA and European regulatory agencies. Herein, the author considers the pathophysiological approaches such as the role of enzyme entry, autophagy, and the response to ERT treatment of motor and respiratory components. EXPERT OPINION There has been a notable drive toward the research of various aspects of this disease regarding the role of new enzyme penetration and immune adverse events. Consequently, avalglucosidase alpha might be a further step forward.
Collapse
Affiliation(s)
- Corrado Angelini
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
7
|
Psaras Y, Toepfer CN. Targeted genetic therapies for inherited disorders that affect both cardiac and skeletal muscle. Exp Physiol 2024; 109:175-189. [PMID: 38095849 PMCID: PMC10988723 DOI: 10.1113/ep090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Skeletal myopathies and ataxias with secondary cardiac involvement are complex, progressive and debilitating conditions. As life expectancy increases across these conditions, cardiac involvement often becomes more prominent. This highlights the need for targeted therapies that address these evolving cardiac pathologies. Musculopathies by and large lack cures that directly target the genetic basis of the diseases; however, as our understanding of the genetic causes of these conditions has evolved, it has become tractable to develop targeted therapies using biologics, to design precision approaches to target the primary genetic causes of these varied diseases. Using the examples of Duchenne muscular dystrophy, Friedreich ataxia and Pompe disease, we discuss how the genetic causes of such diseases derail diverse homeostatic, energetic and signalling pathways, which span multiple cellular systems in varied tissues across the body. We outline existing therapeutics and treatments in the context of emerging novel genetic approaches. We discuss the hurdles that the field must overcome to deliver targeted therapies across the many tissue types affected in primary myopathies.
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Christopher N. Toepfer
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
9
|
Liang Q, Vlaar EC, Pijnenburg JM, Rijkers E, Demmers JAA, Vulto AG, van der Ploeg AT, van Til NP, Pijnappel WWMP. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease. J Proteomics 2024; 291:105037. [PMID: 38288553 DOI: 10.1016/j.jprot.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024]
Abstract
Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa -/- mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa -/- mice. We found that muscle of Gaa -/- mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. SIGNIFICANCE: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C Vlaar
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Joon M Pijnenburg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Erikjan Rijkers
- Proteomics Center, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Arnold G Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Niek P van Til
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands.
| |
Collapse
|
10
|
Ditters IAM, van der Beek NAME, Brusse E, van der Ploeg AT, van den Hout JMP, Huidekoper HH. Home-based enzyme replacement therapy in children and adults with Pompe disease; a prospective study. Orphanet J Rare Dis 2023; 18:108. [PMID: 37158969 PMCID: PMC10169363 DOI: 10.1186/s13023-023-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Pompe disease is a lysosomal storage disease treated with life-long enzyme replacement therapy (ERT). Home-based ERT has been provided in the Netherlands since 2008 because it diminishes the burden of treatment, increases patient flexibility and autonomy, and is thus a more patient-centred approach to ERT. METHODS All Dutch Pompe patients receiving alglucosidase alfa infusions at home were approached to participate in a questionnaire to validate the safety of home-based ERT. Prospective data on symptoms occurring during or within 48 h after infusion and retrospective data on infusion associated reactions (IARs) in the last three months were collected four times during one year. RESULTS In total, 116 out of 120 eligible patients (17 classic infantile, 2 atypical infantile, 15 childhood onset and 82 adult) filled out 423 questionnaires (response rate: 88.1%). Symptoms during or after infusion were reported 27 times in 17 patients. Fatigue was the most commonly reported health complaint (in 9.5% of patients). Four health complaints were judged to be IARs and reported to the Erasmus MC University Medical Center. None of the IARs reported in this study warranted emergency clinical care. CONCLUSIONS Our data demonstrate that home-based ERT in Pompe disease can be safely implemented as few, mostly mild, symptoms were reported during or after infusion. Insights from this study can be used as a base for implementing home-based ERT in other countries and to further optimize patient care, as unreported mild symptoms do not pose a health risk but may still be relevant to the patient.
Collapse
Affiliation(s)
- Imke A M Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Kinton S, Dufault MR, Zhang M, George K. Transcriptomic characterization of clinical skeletal muscle biopsy from late-onset Pompe patients. Mol Genet Metab 2023; 138:107526. [PMID: 36774918 DOI: 10.1016/j.ymgme.2023.107526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Pompe disease is a rare lysosomal storage disorder arising from recessive mutations in the acid α-glucosidase gene and resulting in the accumulation of glycogen, particularly in the cardiac and skeletal muscle. The current standard of care is administration of enzyme replacement therapy in the form of alglucosidase alfa or the recently approved avalglucosidase alfa. In order to better understand the underlying cellular processes that are disrupted in Pompe disease, we conducted gene expression analysis on skeletal muscle biopsies obtained from late-onset Pompe disease patients (LOPD) prior to treatment and following six months of enzyme replacement with avalglucosidase alfa. The LOPD patients had a distinct transcriptomic signature as compared to control patient samples, largely characterized by perturbations in pathways involved in lysosomal function and energy metabolism. Although patients were highly heterogeneous, they collectively exhibited a strong trend towards attenuation of the dysregulated genes following just six months of treatment. Notably, the enzyme replacement therapy had a strong stabilizing effect on gene expression, with minimal worsening in genes that were initially dysregulated. Many of the cellular process that were altered in LOPD patients were also affected in the more clinically severe infantile-onset (IOPD) patients. Additionally, both LOPD and IOPD patients demonstrated enrichment across several inflammatory pathways, despite a lack of overt immune cell infiltration. This study provides further insight into Pompe disease biology and demonstrates the positive effects of avalglucosidase alfa treatment.
Collapse
Affiliation(s)
- Sofia Kinton
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America.
| | - Michael R Dufault
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Mindy Zhang
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Kelly George
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| |
Collapse
|
12
|
Canibano-Fraile R, Harlaar L, Dos Santos CA, Hoogeveen-Westerveld M, Demmers JAA, Snijders T, Lijnzaad P, Verdijk RM, van der Beek NAME, van Doorn PA, van der Ploeg AT, Brusse E, Pijnappel WWMP, Schaaf GJ. Lysosomal glycogen accumulation in Pompe disease results in disturbed cytoplasmic glycogen metabolism. J Inherit Metab Dis 2023; 46:101-115. [PMID: 36111639 PMCID: PMC10092494 DOI: 10.1002/jimd.12560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
Pompe disease is an inherited metabolic myopathy caused by deficiency of acid alpha-glucosidase (GAA), resulting in lysosomal glycogen accumulation. Residual GAA enzyme activity affects disease onset and severity, although other factors, including dysregulation of cytoplasmic glycogen metabolism, are suspected to modulate the disease course. In this study, performed in mice and patient biopsies, we found elevated protein levels of enzymes involved in glucose uptake and cytoplasmic glycogen synthesis in skeletal muscle from mice with Pompe disease, including glycogenin (GYG1), glycogen synthase (GYS1), glucose transporter 4 (GLUT4), glycogen branching enzyme 1 (GBE1), and UDP-glucose pyrophosphorylase (UGP2). Expression levels were elevated before the loss of muscle mass and function. For first time, quantitative mass spectrometry in skeletal muscle biopsies from five adult patients with Pompe disease showed increased expression of GBE1 protein relative to healthy controls at the group level. Paired analysis of individual patients who responded well to treatment with enzyme replacement therapy (ERT) showed reduction of GYS1, GYG1, and GBE1 in all patients after start of ERT compared to baseline. These results indicate that metabolic changes precede muscle wasting in Pompe disease, and imply a positive feedforward loop in Pompe disease, in which lysosomal glycogen accumulation promotes cytoplasmic glycogen synthesis and glucose uptake, resulting in aggravation of the disease phenotype.
Collapse
Affiliation(s)
- Rodrigo Canibano-Fraile
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laurike Harlaar
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carlos A Dos Santos
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Jeroen A A Demmers
- Erasmus Center for Biomics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tim Snijders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section Neuropathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther Brusse
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Hsu YK, Chien YH, Shinn-Forng Peng S, Hwu WL, Lee WT, Lee NC, Po-Yu Huang E, Weng WC. Evaluating brain white matter hyperintensity, IQ scores, and plasma neurofilament light chain concentration in early-treated patients with infantile-onset Pompe disease. Genet Med 2023; 25:27-36. [PMID: 36399131 DOI: 10.1016/j.gim.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The study aimed to describe central nervous system (CNS) progression in patients with infantile-onset Pompe disease (IOPD) and explore the potential clinical impact and predictors. METHODS Patients with IOPD treated with enzyme replacement therapy were longitudinally followed with brain magnetic resonance imaging (MRI) and evaluation for IQ scores from 2004 to 2021. Investigation of CNS involvement focused on white matter (WM) abnormalities and was quantified using a scoring system for metachromatic leukodystrophy. MRI scores were correlated with plasma neurofilament light chain (NfL) concentration and IQ scores. RESULTS A total of 19 patients who started enzyme replacement therapy at a mean age of 26 days were analyzed; the median age at last examination was 12.1 (range = 1.7-19) years. MRI abnormalities were found in all patients, from supratentorial central WM to U-fibers, then to infratentorial WM, and eventually to gray matter. MRI scores progressed (n = 16) at variable rates (range = 0.8-2.7/y) and were positively correlated with age (n = 16) and negatively correlated with IQ scores (n = 8). Plasma NfL concentration was positively correlated with MRI scores (r2 = 0.8569; P < .001; n = 13). CONCLUSION Our results suggest that the progression of CNS involvement in IOPD may be associated with neuroaxonal injury and decreased IQ scores. NfL could serve as a biomarker for CNS involvement in IOPD.
Collapse
Affiliation(s)
- Yu-Kang Hsu
- Department of Pediatrics, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Eric Po-Yu Huang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Shindo A, Ueda K, Minatsuki S, Nakayama Y, Hatsuse S, Fujita K, Nomura S, Hatano M, Takeda N, Akazawa H, Komuro I. Novel AGL variants in a patient with glycogen storage disease type IIIb and pulmonary hypertension caused by pulmonary veno-occlusive disease: A case report. Front Genet 2023; 14:1148067. [PMID: 37035733 PMCID: PMC10078958 DOI: 10.3389/fgene.2023.1148067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Glycogen storage disease type III (GSD-III) is an autosomal recessive metabolic disorder caused by mutations in the AGL gene, and may develop various types of pulmonary hypertension (PH). Here, we report a case of 24-year-old man with GSD-IIIb with two novel null variants in AGL (c.2308 + 2T>C and c.3045_3048dupTACC). He developed multi-drug-resistant pulmonary veno-occlusive disease (PVOD) and was registered as a candidate for lung transplantation. No pathogenic variants were detected in previously known causative genes for pulmonary hypertension and the underlying mechanism of coincidence of two rare diseases was unknown. We discuss the association of the loss of glycogen-debranching enzyme with incident PVOD.
Collapse
|
15
|
Bolano-Diaz C, Diaz-Manera J. Therapeutic Options for the Management of Pompe Disease: Current Challenges and Clinical Evidence in Therapeutics and Clinical Risk Management. Ther Clin Risk Manag 2022; 18:1099-1115. [PMID: 36536827 PMCID: PMC9759116 DOI: 10.2147/tcrm.s334232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 08/22/2023] Open
Abstract
Pompe disease is a genetic disorder produced by mutations in the GAA gene leading to absence or reduced expression of acid alpha-glucosidase, an enzyme that metabolizes the breakdown of glycogen into glucose. There are two main phenotypes, the infantile consisting of early onset severe weakness and cardiomyopathy, and the adult which is characterized by slowly progressive skeletal and respiratory muscle weakness. Enzymatic replacement therapy (ERT) has been available for Pompe disease for more than 15 years. Although the treatment has improved many aspects of the disease, such as prolonged survival through improved cardiomyopathy and acquisition of motor milestones in infants and slower progression rate in adults, ERT is far from being a cure as both infantile and adult patients continue to progress. This fact has prompted the development of improved or new enzymes and other treatments such as gene therapy or substrate reduction strategies. Here, we review the data obtained from randomized clinical trials but also from open-label studies published so far that have assessed the advantages and limitations of this therapy. Moreover, we also review the new therapeutic strategies that are under development and provide our opinion on which are the unmet needs for patients with this disease.
Collapse
Affiliation(s)
- Carla Bolano-Diaz
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jordi Diaz-Manera
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
- Laboratori de Malalties Neuromusculars, Insitut de Recerca de l’Hospital de la Santa Creu i Sant Pau de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
16
|
Domínguez-González C, Díaz-Marín C, Juntas-Morales R, Nascimiento-Osorio A, Rivera-Gallego A, Díaz-Manera J. Survey on the management of Pompe disease in routine clinical practice in Spain. Orphanet J Rare Dis 2022; 17:426. [PMID: 36471448 PMCID: PMC9724265 DOI: 10.1186/s13023-022-02574-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the availability of several clinical guidelines, not all health professionals use their recommendations to manage patients with Pompe disease, a rare genetic disorder involving high-impact therapy. Through several discussion meetings and a survey, the present study aimed to learn about the management of Pompe disease in routine clinical practice in Spain, to improve clinical care in a real-life situation. RESULTS The survey was sent to 42 healthcare professionals who manage patients with Pompe disease in their clinical practice. Although most respondents followed the clinical guidelines, clinical practice differed from the expert recommendations in many cases. Approximately 7% did not request a genetic study to confirm the diagnosis before starting treatment, and 21% considered that only two dried blood spot determinations suffice to establish the diagnosis. About 76% requested anti-GAA antibodies when there is a suspicion of lack of treatment efficacy, though a significant percentage of respondents have never requested such antibodies. According to 31% of the respondents, significant impairment of motor function and/or respiratory insufficiency is a requirement for authorizing medication at their hospital. Up to 26% waited for improvements over the clinical follow-up to maintain treatment and withdrew it in the absence of improvement since they did not consider disease stabilization to be a satisfactory outcome. CONCLUSIONS The results highlight the lack of experience and/or knowledge of some professionals caring for patients with Pompe disease. It is necessary to develop and disseminate simple guidelines that help to apply the expert recommendations better or centralize patient follow-up in highly specialized centers.
Collapse
Affiliation(s)
- Cristina Domínguez-González
- grid.413448.e0000 0000 9314 1427Neuromuscular Unit, Neurology Department, Hospital Universitario 12 de Octubre, imas12 Research Institute, Biomedical Network Research Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Carmina Díaz-Marín
- grid.513062.30000 0004 8516 8274Neurology Department, Hospital General Universitario de Alicante Doctor Balmis, Instituto de Investigación Biosanitaria de Alicante (ISABIAL), Alicante, Spain
| | - Raúl Juntas-Morales
- grid.430994.30000 0004 1763 0287Neuromuscular Unit, Neurology Department, Hospital Universitario Vall d’Hebron. Peripheral Nervous System Group, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Andrés Nascimiento-Osorio
- grid.413448.e0000 0000 9314 1427Neuromuscular Unit, Neurology Department, Hospital Sant Joan de Déu, Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Center for Biomedical Research Network On Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Alberto Rivera-Gallego
- grid.411855.c0000 0004 1757 0405Systemic Rare Diseases Unit, Department of Internal Medicine, Hospital Universitario Alvaro Cunqueiro, Vigo, Spain
| | - Jordi Díaz-Manera
- grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK ,grid.413396.a0000 0004 1768 8905Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
17
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
18
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
19
|
Chen YK, Teng CT, Yang CF, Niu DM, Huang WJ, Fan YH. Prevalence of lower urinary tract symptoms in children with early-treated infantile-onset Pompe disease: A single-centre cross-sectional study. Neurourol Urodyn 2022; 41:1177-1184. [PMID: 35481613 DOI: 10.1002/nau.24950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
AIM To evaluate lower urinary tract symptoms (LUTS) in children with infantile-onset Pompe disease (IOPD) who received early treatment. METHODS Pompe disease (PD), or glycogen storage disease II is a rare autosomal recessive lysosomal storage disease that affects multiple organ systems. To our knowledge, only one study has focused on the relationship between LUTS and incontinence in children with PD. This cross-sectional study was conducted from August 2019 through March 2021 and children with IOPD, who had received early and regular enzyme replacement therapy, were enrolled. Participants or their parents completed the Dysfunctional Voiding Scoring System (DVSS) questionnaire. All children underwent uroflowmetry and postvoid residual urine measurements. Fourteen children (age, 4-9 years) with IOPD were enrolled. RESULTS Ten patients (71.4%) had abnormal uroflow curves. In addition, results of the DVSS revealed that approximately half (42.9%) of our IOPD patients had voiding dysfunction, with urinary incontinence as the most common symptom (64.3%, 9/14). No significant correlations were found between LUTS and uroflow curves in children with IOPD. CONCLUSIONS The frequency of LUTS and lower urinary tract dysfunction noted on uroflowmetry should encourage pediatricians to actively identify IOPD patients with LUTS, regardless of the timing and frequency of their treatments, and refer them to a urologist for further evaluation and appropriate treatment.
Collapse
Affiliation(s)
- Yu-Kuang Chen
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Ting Teng
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - William J Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hua Fan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
20
|
Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II. Sci Rep 2022; 12:5327. [PMID: 35351934 PMCID: PMC8964715 DOI: 10.1038/s41598-022-09328-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole–Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ∞, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole–Cole parameters, ρo and ρo-ρ∞, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.
Collapse
|
21
|
Essawi M, ElBagoury N, Ashaat E, Sharaf-Eldin W, Fateen E. Molecular study of Pompe disease in Egyptian infants. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pompe disease (PD) is a serious genetic disorder caused by deficiency of acid α-glucosidase (GAA) and subsequent glycogen accumulation inside lysosomes. This study included a cohort of 5 Egyptian infants (1–8 months old) with far lower than average normal GAA activity and clinical signs of PD in 4 of the 5 cases. The fifth case was discovered by newborn screening (NBS). Molecular analysis of the GAA gene was performed to confirm the diagnosis and identify the underlying mutation.
Results
The study identified the causative mutations [c.1193T > C (p.Leu398Pro), c.1134C > G (p.Tyr378*) & c.1431del (p.Ile477Metfs*43)] in 4 cases. However, molecular analysis reversed the expected pathologic state in the fifth infant, where his reduced enzymatic activity was related to the presence of pseudodeficiency allele c.868A > G (p.Asn290Asp) in addition to heterozygous disease-causing mutation c.2238G > C (p.Trp746Cys).
Conclusion
This study presents the first molecular analysis of GAA gene in Egypt and has thrown some light on the importance of PD molecular diagnosis to provide precise diagnosis and enable therapeutic commencement in affected subjects.
Collapse
|
22
|
Tarallo A, Damiano C, Strollo S, Minopoli N, Indrieri A, Polishchuk E, Zappa F, Nusco E, Fecarotta S, Porto C, Coletta M, Iacono R, Moracci M, Polishchuk R, Medina DL, Imbimbo P, Monti DM, De Matteis MA, Parenti G. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol Med 2021; 13:e14434. [PMID: 34606154 PMCID: PMC8573602 DOI: 10.15252/emmm.202114434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pompe disease is a metabolic myopathy due to acid alpha-glucosidase deficiency. In addition to glycogen storage, secondary dysregulation of cellular functions, such as autophagy and oxidative stress, contributes to the disease pathophysiology. We have tested whether oxidative stress impacts on enzyme replacement therapy with recombinant human alpha-glucosidase (rhGAA), currently the standard of care for Pompe disease patients, and whether correction of oxidative stress may be beneficial for rhGAA therapy. We found elevated oxidative stress levels in tissues from the Pompe disease murine model and in patients' cells. In cells, stress levels inversely correlated with the ability of rhGAA to correct the enzymatic deficiency. Antioxidants (N-acetylcysteine, idebenone, resveratrol, edaravone) improved alpha-glucosidase activity in rhGAA-treated cells, enhanced enzyme processing, and improved mannose-6-phosphate receptor localization. When co-administered with rhGAA, antioxidants improved alpha-glucosidase activity in tissues from the Pompe disease mouse model. These results indicate that oxidative stress impacts on the efficacy of enzyme replacement therapy in Pompe disease and that manipulation of secondary abnormalities may represent a strategy to improve the efficacy of therapies for this disorder.
Collapse
Affiliation(s)
- Antonietta Tarallo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Carla Damiano
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Sandra Strollo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Nadia Minopoli
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Alessia Indrieri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Institute for Genetic and Biomedical Research (IRGB)National Research Council (CNR)MilanItaly
| | | | - Francesca Zappa
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of CaliforniaSanta BarbaraCAUSA
| | - Edoardo Nusco
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Simona Fecarotta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Caterina Porto
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Marcella Coletta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
- Present address:
IInd Division of NeurologyMultiple Sclerosis CenterUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Roberta Iacono
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | - Marco Moracci
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | | | - Diego Luis Medina
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Paola Imbimbo
- Department of Chemical SciencesFederico II UniversityNaplesItaly
| | | | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Molecular Medicine and Medical BiotechnologiesFederico II UniversityNaplesItaly
| | - Giancarlo Parenti
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| |
Collapse
|
23
|
Costa-Verdera H, Collaud F, Riling CR, Sellier P, Nordin JML, Preston GM, Cagin U, Fabregue J, Barral S, Moya-Nilges M, Krijnse-Locker J, van Wittenberghe L, Daniele N, Gjata B, Cosette J, Abad C, Simon-Sola M, Charles S, Li M, Crosariol M, Antrilli T, Quinn WJ, Gross DA, Boyer O, Anguela XM, Armour SM, Colella P, Ronzitti G, Mingozzi F. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun 2021; 12:6393. [PMID: 34737297 PMCID: PMC8568898 DOI: 10.1038/s41467-021-26744-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France.,Sorbonne University Paris and INSERM U974, 75013, Paris, France
| | - Fanny Collaud
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | - Pauline Sellier
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | - Umut Cagin
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Julien Fabregue
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Simon Barral
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | | | | | | | | | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | - Marcelo Simon-Sola
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Severine Charles
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Mathew Li
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - Tom Antrilli
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - David A Gross
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | | | | | - Pasqualina Colella
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Federico Mingozzi
- Genethon, 91000, Evry, France. .,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France. .,Sorbonne University Paris and INSERM U974, 75013, Paris, France. .,Spark Therapeutics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Correlation of GAA Genotype and Acid-α-Glucosidase Enzyme Activity in Hungarian Patients with Pompe Disease. Life (Basel) 2021; 11:life11060507. [PMID: 34072668 PMCID: PMC8228169 DOI: 10.3390/life11060507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
Pompe disease is caused by the accumulation of glycogen in the lysosomes due to a deficiency of the lysosomal acid-α-glucosidase (GAA) enzyme. Depending on residual enzyme activity, the disease manifests two distinct phenotypes. In this study, we assess an enzymatic and genetic analysis of Hungarian patients with Pompe disease. Twenty-four patients diagnosed with Pompe disease were included. Enzyme activity of acid-α-glucosidase was measured by mass spectrometry. Sanger sequencing and an MLPA of the GAA gene were performed in all patients. Twenty (83.33%) patients were classified as having late-onset Pompe disease and four (16.66%) had infantile-onset Pompe disease. Fifteen different pathogenic GAA variants were detected. The most common finding was the c.-32-13 T > G splice site alteration. Comparing the α-glucosidase enzyme activity of homozygous cases to the compound heterozygous cases of the c.-32-13 T > G disease-causing variant, the mean GAA activity in homozygous cases was significantly higher. The lowest enzyme activity was found in cases where the c.-32-13 T > G variant was not present. The localization of the identified sequence variations in regions encoding the crucial protein domains of GAA correlates with severe effects on enzyme activity. A better understanding of the impact of pathogenic gene variations may help earlier initiation of enzyme replacement therapy (ERT) if subtle symptoms occur. Further information on the effect of GAA gene variation on the efficacy of treatment and the extent of immune response to ERT would be of importance for optimal disease management and designing effective treatment plans.
Collapse
|
25
|
Wang J, Zhou CJ, Khodabukus A, Tran S, Han SO, Carlson AL, Madden L, Kishnani PS, Koeberl DD, Bursac N. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol 2021; 4:524. [PMID: 33953320 PMCID: PMC8100136 DOI: 10.1038/s42003-021-02059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/31/2021] [Indexed: 01/24/2023] Open
Abstract
In Pompe disease, the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) causes skeletal and cardiac muscle weakness, respiratory failure, and premature death. While enzyme replacement therapy using recombinant human GAA (rhGAA) can significantly improve patient outcomes, detailed disease mechanisms and incomplete therapeutic effects require further studies. Here we report a three-dimensional primary human skeletal muscle ("myobundle") model of infantile-onset Pompe disease (IOPD) that recapitulates hallmark pathological features including reduced GAA enzyme activity, elevated glycogen content and lysosome abundance, and increased sensitivity of muscle contractile function to metabolic stress. In vitro treatment of IOPD myobundles with rhGAA or adeno-associated virus (AAV)-mediated hGAA expression yields increased GAA activity and robust glycogen clearance, but no improvements in stress-induced functional deficits. We also apply RNA sequencing analysis to the quadriceps of untreated and AAV-treated GAA-/- mice and wild-type controls to establish a Pompe disease-specific transcriptional signature and reveal novel disease pathways. The mouse-derived signature is enriched in the transcriptomic profile of IOPD vs. healthy myobundles and partially reversed by in vitro rhGAA treatment, further confirming the utility of the human myobundle model for studies of Pompe disease and therapy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aaron L Carlson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Abstract
Exercise stimulates the biogenesis of mitochondria in muscle. Some literature supports the use of pharmaceuticals to enhance mitochondria as a substitute for exercise. We provide evidence that exercise rejuvenates mitochondrial function, thereby augmenting muscle health with age, in disease, and in the absence of cellular regulators. This illustrates the power of exercise to act as mitochondrial medicine in muscle.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
27
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease. Int J Mol Sci 2021; 22:ijms22062850. [PMID: 33799647 PMCID: PMC8001152 DOI: 10.3390/ijms22062850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient’s outcome.
Collapse
|
29
|
Bragato C, Blasevich F, Ingenito G, Mantegazza R, Maggi L. Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomed Pharmacother 2021; 137:111357. [PMID: 33724918 DOI: 10.1016/j.biopha.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) and its phosphate form, 3,4-DAPP have been used efficiently in the past years to treat muscular weakness in myasthenic syndromes with neuromuscular junctions (NMJs) impairment. Pompe disease (PD), an autosomal recessive metabolic disorder due to a defect of the lysosomal enzyme α-glucosidase (GAA), presents some secondary symptoms that are related to neuromuscular transmission dysfunction, resulting in endurance and strength failure. In order to evaluate whether 3,4-DAPP could have a beneficial effect on this pathology, we took advantage of a transient zebrafish PD model that we previously generated and characterized. We investigated presynaptic and postsynaptic structures, NMJs at the electron microscopy level, and zebrafish behavior, before and after treatment with 3,4-DAPP. After drug administration, we observed an increase in the number of acetylcholine receptors an increment in the percentage of NMJs with normal structure and amelioration in embryo behavior, with recovery of typical movements that were lost in the embryo PD model. Our results revealed early NMJ impairment in Pompe zebrafish model with improvement after administration of 3,4-DAPP, suggesting its potential use as symptomatic drug in patients with Pompe disease.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | | | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| |
Collapse
|
30
|
Li C, Desai AK, Gupta P, Dempsey K, Bhambhani V, Hopkin RJ, Ficicioglu C, Tanpaiboon P, Craigen WJ, Rosenberg AS, Kishnani PS. Transforming the clinical outcome in CRIM-negative infantile Pompe disease identified via newborn screening: the benefits of early treatment with enzyme replacement therapy and immune tolerance induction. Genet Med 2021; 23:845-855. [PMID: 33495531 PMCID: PMC8107133 DOI: 10.1038/s41436-020-01080-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: To assess the magnitude of benefit to early treatment initiation, enabled by newborn screening or prenatal diagnosis, in patients with cross-reactive immunological material (CRIM)-negative infantile Pompe disease (IPD), treated with enzyme replacement therapy (ERT) and prophylactic immune tolerance induction (ITI) with rituximab, methotrexate, and IVIG. Methods: A total of 41 CRIM-negative IPD patients were evaluated. Amongst patients who were treated with ERT+ITI (n=30), those who were invasive ventilator-free at baseline and had ≥6 months of follow-up were stratified based on age at treatment initiation: 1) early (≤4 weeks), 2) intermediate (>4 and ≤15 weeks), and 3) late (>15 weeks). A historical cohort of 11 CRIM-negative patients with IPD treated with ERT monotherapy served as an additional comparator group. Results: Twenty patients were included; five, seven, and eight in early, intermediate, and late treatment groups, respectively. Genotypes were similar across the three groups. Early-treated patients showed significant improvements in left ventricular mass index, motor and pulmonary outcomes, as well as biomarkers creatine kinase and urinary glucose tetrasaccharide, compared to those treated later. Conclusion: Our preliminary data suggest that early treatment with ERT+ITI can transform the long-term CRIM-negative IPD phenotype, which represents the most severe end of the Pompe disease spectrum.
Collapse
Affiliation(s)
- Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Punita Gupta
- St. Joseph's University Hospital, Paterson, NJ, USA
| | - Katherine Dempsey
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Bhambhani
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Robert J Hopkin
- Division of Medical Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Can Ficicioglu
- The Children's Hospital of Philadelphia, Division of Genetics and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pranoot Tanpaiboon
- Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy S Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
31
|
McCall AL, Dhindsa JS, Bailey AM, Pucci LA, Strickland LM, ElMallah MK. Glycogen accumulation in smooth muscle of a Pompe disease mouse model. J Smooth Muscle Res 2021; 57:8-18. [PMID: 33883348 PMCID: PMC8053439 DOI: 10.1540/jsmr.57.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pompe disease is a lysosomal storage disease caused by mutations within the
GAA gene, which encodes acid α-glucosidase (GAA)—an enzyme necessary
for lysosomal glycogen degradation. A lack of GAA results in an accumulation of glycogen
in cardiac and skeletal muscle, as well as in motor neurons. The only FDA approved
treatment for Pompe disease—an enzyme replacement therapy (ERT)—increases survival of
patients, but has unmasked previously unrecognized clinical manifestations of Pompe
disease. These clinical signs and symptoms include tracheo-bronchomalacia, vascular
aneurysms, and gastro-intestinal discomfort. Together, these previously unrecognized
pathologies indicate that GAA-deficiency impacts smooth muscle in addition to skeletal and
cardiac muscle. Thus, we sought to characterize smooth muscle pathology in the airway,
vascular, gastrointestinal, and genitourinary in the Gaa−/−
mouse model. Increased levels of glycogen were present in smooth muscle cells of the
aorta, trachea, esophagus, stomach, and bladder of Gaa−/−
mice, compared to wild type mice. In addition, there was an increased
abundance of both lysosome membrane protein (LAMP1) and autophagosome membrane protein
(LC3) indicating vacuolar accumulation in several tissues. Taken together, we show that
GAA deficiency results in subsequent pathology in smooth muscle cells, which may lead to
life-threatening complications if not properly treated.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Justin S Dhindsa
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aidan M Bailey
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Logan A Pucci
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
32
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Poelman E, van den Dorpel JJA, Hoogeveen‐Westerveld M, van den Hout JMP, van der Giessen LJ, van der Beek NAME, Pijnappel WWMP, van der Ploeg AT. Effects of higher and more frequent dosing of alglucosidase alfa and immunomodulation on long-term clinical outcome of classic infantile Pompe patients. J Inherit Metab Dis 2020; 43:1243-1253. [PMID: 32506446 PMCID: PMC7689828 DOI: 10.1002/jimd.12268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to compare the long-term outcome of classic infantile Pompe patients treated with 20 mg/kg alglucosidase alfa every other week (eow) to those treated with 40 mg/kg/week, and to study the additional effect of immunomodulation. Six patients received 20 mg/kg eow and twelve 40 mg/kg/week. Five patients were cross-reactive immunologic material (CRIM)-negative, two in the 20 mg, three in the 40 mg group. We compared (ventilator-free) survival, motor outcome, infusion associated reactions (IARs), and antibody formation. From 2012 on patients >2 months in the 40 mg group also received immunomodulation with rituximab, methotrexate, and intravenous immunoglobulin (IVIG) in an enzyme replacement therapy (ERT)-naïve setting. Survival was 66% in the 20 mg group and 92% in the 40 mg group. Ventilator-free survival was 50% and 92%. Both CRIM-negative patients in the 20 mg group died, whereas all three are alive in the 40 mg group. In the 20 mg group, 67% learned to walk compared with 92% in the 40 mg group. At the age of 3 years, 33% and 92% were able to walk. Peak antibody titers ranged from 1:1250 to 1:31 250 in the 20 mg group and from 1:250 to 1:800 000 in the 40 mg group. Five patients of the 40 mg group of whom two CRIM-negative also received immunomodulation. B-cell recovery was observed between 5.7 and 7.9 months after the last dose of rituximab. After B-cell recovery titers of patients with and without immunomodulation were similar (ranges 1:6 250-1:800 000 and 1:250-1:781 250). This study shows that classic infantile patients treated with 40 mg/kg/week from the start to end have a better (ventilator-free) survival and motor outcome. Immunomodulation did not prevent antibody formation in our study.
Collapse
Affiliation(s)
- Esther Poelman
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jan J. A. van den Dorpel
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Marianne Hoogeveen‐Westerveld
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Johanna M. P. van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Lianne J. van der Giessen
- Center for Lysosomal and Metabolic Diseases, Department of Pediatric PhysiotherapyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Nadine A. M. E. van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
- Center for Lysosomal and Metabolic Diseases, Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - W. W. M. Pim Pijnappel
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ans T. van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
34
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
35
|
Korlimarla A, Spiridigliozzi GA, Crisp K, Herbert M, Chen S, Malinzak M, Stefanescu M, Austin SL, Cope H, Zimmerman K, Jones H, Provenzale JM, Kishnani PS. Novel approaches to quantify CNS involvement in children with Pompe disease. Neurology 2020; 95:e718-e732. [PMID: 32518148 PMCID: PMC7455359 DOI: 10.1212/wnl.0000000000009979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the extent of CNS involvement in children with Pompe disease using brain MRI and developmental assessments. METHODS The study included 14 children (ages 6-18 years) with infantile Pompe disease (IPD) (n = 12) or late-onset Pompe disease (LOPD) (n = 2) receiving enzyme replacement therapy. White matter (WM) hyperintense foci seen in the brain MRIs were systematically quantified using the Fazekas scale (FS) grading system with a novel approach: the individual FS scores from 10 anatomical areas were summed to yield a total FS score (range absent [0] to severe [30]) for each child. The FS scores were compared to developmental assessments of cognition and language obtained during the same time period. RESULTS Mild to severe WM hyperintense foci were seen in 10/12 children with IPD (median age 10.6 years) with total FS scores ranging from 2 to 23. Periventricular, subcortical, and deep WM were involved. WM hyperintense foci were seen throughout the path of the corticospinal tracts in the brain in children with IPD. Two children with IPD had no WM hyperintense foci. Children with IPD had relative weaknesses in processing speed, fluid reasoning, visual perception, and receptive vocabulary. The 2 children with LOPD had no WM hyperintense foci, and high scores on most developmental assessments. CONCLUSION This study systematically characterized WM hyperintense foci in children with IPD, which could serve as a benchmark for longitudinal follow-up of WM abnormalities in patients with Pompe disease and other known neurodegenerative disorders or leukodystrophies in children.
Collapse
Affiliation(s)
- Aditi Korlimarla
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Gail A Spiridigliozzi
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Kelly Crisp
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Mrudu Herbert
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Steven Chen
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Michael Malinzak
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Mihaela Stefanescu
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Stephanie L Austin
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Heidi Cope
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Kanecia Zimmerman
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Harrison Jones
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - James M Provenzale
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Priya S Kishnani
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC.
| |
Collapse
|
36
|
Nuñez‐Peralta C, Alonso‐Pérez J, Llauger J, Segovia S, Montesinos P, Belmonte I, Pedrosa I, Montiel E, Alonso‐Jiménez A, Sánchez‐González J, Martínez‐Noguera A, Illa I, Díaz‐Manera J. Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles. J Cachexia Sarcopenia Muscle 2020; 11:1032-1046. [PMID: 32129012 PMCID: PMC7432562 DOI: 10.1002/jcsm.12555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Late-onset Pompe disease (LOPD) is a genetic disorder characterized by progressive degeneration of the skeletal muscles produced by a deficiency of the enzyme acid alpha-glucosidase. Enzymatic replacement therapy with recombinant human alpha-glucosidase seems to reduce the progression of the disease; although at the moment, it is not completely clear to what extent. Quantitative muscle magnetic resonance imaging (qMRI) is a good biomarker for the follow-up of fat replacement in neuromuscular disorders. The aim of this study was to describe the changes observed in fat replacement in skeletal muscles using qMRI in a cohort of LOPD patients followed prospectively. METHODS A total of 36 LOPD patients were seen once every year for 4 years. qMRI, several muscle function tests, spirometry, activities of daily living scales, and quality-of-life scales were performed on each visit. Muscle MRI consisted of two-point Dixon studies of the trunk and thigh muscles. Computer analysis of the images provided the percentage of muscle degenerated and replaced by fat in every muscle (known as fat fraction). Longitudinal analysis of the measures was performed using linear mixed models applying the Greenhouse-Geisser test. RESULTS We detected a statistically significant and continuous increase in mean thigh fat fraction both in treated (+5.8% in 3 years) and in pre-symptomatic patients (+2.6% in 3years) (Greenhouse-Geisser p < 0.05). As an average, fat fraction increased by 1.9% per year in treated patients, compared with 0.8% in pre-symptomatic patients. Fat fraction significantly increased in every muscle of the thighs. We observed a significant correlation between changes observed in fat fraction in qMRI and changes observed in the results of the muscle function tests performed. Moreover, we identified that muscle performance and mean thigh fat fraction at baseline visit were independent parameters influencing fat fraction progression over 4 years (analysis of covariance, p < 0.05). CONCLUSIONS Our study identifies that skeletal muscle fat fraction continues to increase in patients with LOPD despite the treatment with enzymatic replacement therapy. These results suggest that the process of muscle degeneration is not stopped by the treatment and could impact muscle function over the years. Hereby, we show that fat fraction along with muscle function tests can be considered a good outcome measures for clinical trials in LOPD patients.
Collapse
Affiliation(s)
- Claudia Nuñez‐Peralta
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Jorge Alonso‐Pérez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
| | - Jaume Llauger
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
| | | | - Izaskun Belmonte
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Irene Pedrosa
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Elena Montiel
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alicia Alonso‐Jiménez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
| | | | - Antonio Martínez‐Noguera
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
| | - Jordi Díaz‐Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
- John Walton Muscular Dystrophy Research CenterUniversity of NewcastleUK
| |
Collapse
|
37
|
Thurberg BL. Autopsy pathology of infantile neurovisceral ASMD (Niemann-Pick Disease type A): Clinicopathologic correlations of a case report. Mol Genet Metab Rep 2020; 24:100626. [PMID: 32714837 PMCID: PMC7371898 DOI: 10.1016/j.ymgmr.2020.100626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Indexed: 11/07/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD; also known as Niemann-Pick Disease [NPD] A and B) is a rare lysosomal storage disease characterized by the pathological accumulation of sphingomyelin within multiple cell types throughout the body. The infantile neurovisceral (ASMD type A, also known as Niemann-Pick Disease type A) form of the disease is characterized by markedly low or absent enzyme levels resulting in both visceral and severe neurodegenerative involvement with death in early childhood. We report here the clinical course and autopsy findings in the case of a 3 year old male patient with infantile neurovisceral ASMD. A comprehensive examination of the autopsy tissue was conducted, including routine paraffin processing and staining, high resolution light microscopy and staining for sphingomyelin, and ultrastructural examination by electron microscopy. Profound sphingomyelin accumulation was present in virtually every organ and cell type. We report the clinicopathologic correlations of these findings and discuss the relevance of these results to the clinical practice of physicians following all patients with ASMD. This case represents one of the most extensive and detailed examinations of ASMD type A to date.
Collapse
Affiliation(s)
- Beth L Thurberg
- Department of Pathology, Sanofi Genzyme, Framingham, MA, USA
| |
Collapse
|
38
|
Huang JY, Kan SH, Sandfeld EK, Dalton ND, Rangel AD, Chan Y, Davis-Turak J, Neumann J, Wang RY. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness. Sci Rep 2020; 10:10321. [PMID: 32587263 PMCID: PMC7316971 DOI: 10.1038/s41598-020-65259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Infantile-onset Pompe Disease (IOPD), caused by mutations in lysosomal acid alpha-glucosidase (Gaa), manifests rapidly progressive fatal cardiac and skeletal myopathy incompletely attenuated by synthetic GAA intravenous infusions. The currently available murine model does not fully simulate human IOPD, displaying skeletal myopathy with late-onset hypertrophic cardiomyopathy. Bearing a Cre-LoxP induced exonic disruption of the murine Gaa gene, this model is also not amenable to genome-editing based therapeutic approaches. We report the early onset of severe hypertrophic cardiomyopathy in a novel murine IOPD model generated utilizing CRISPR-Cas9 homology-directed recombination to harbor the orthologous Gaa mutation c.1826dupA (p.Y609*), which causes human IOPD. We demonstrate the dual sgRNA approach with a single-stranded oligonucleotide donor is highly specific for the Gaac.1826 locus without genomic off-target effects or rearrangements. Cardiac and skeletal muscle were deficient in Gaa mRNA and enzymatic activity and accumulated high levels of glycogen. The mice demonstrated skeletal muscle weakness but did not experience early mortality. Altogether, these results demonstrate that the CRISPR-Cas9 generated Gaac.1826dupA murine model recapitulates hypertrophic cardiomyopathy and skeletal muscle weakness of human IOPD, indicating its utility for evaluation of novel therapeutics.
Collapse
Affiliation(s)
| | - Shih-Hsin Kan
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | | | - Nancy D Dalton
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Yunghang Chan
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Jon Neumann
- Transgenic Mouse Facility, University of California Irvine, Irvine, CA, 92697, USA
| | - Raymond Y Wang
- Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA, 92697, USA
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA, 92868, USA
| |
Collapse
|
39
|
Kuchenbecker KS, Kirschner-Hermanns R, Kornblum C, Jaekel A, Anding R, Kohler A. Urodynamic and clinical studies in patients with late-onset Pompe disease and lower urinary tract symptoms. Neurourol Urodyn 2020; 39:1437-1446. [PMID: 32343026 DOI: 10.1002/nau.24369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 11/08/2022]
Abstract
AIMS In late-onset Pompe disease (LOPD), a lysosomal storage disorder with glycogen accumulation in several tissues, patients suffer from progressive skeletal muscle weakness. Lower urinary tract symptoms (LUTS) have rarely been reported. The aim of this study is to objectively assess LUTS in patients with LOPD for the first time using urodynamic studies and to determine differences between LOPD patients with and without LUTS. METHODS Eighteen patients with LOPD were recruited, of whom seven patients (38.9%) reported LUTS (both voiding and storage symptoms). Six of these patients underwent urodynamic studies. Medical histories and motor function tests were compared between the 7 patients with LUTS and the 11 patients without LUTS. The Student t test was used to determine an association between the two cohorts. RESULTS In the seven LOPD patients with LUTS urodynamics revealed neurogenic dysfunction, underactive detrusor, and bladder outlet obstruction. These patients had suffered from clinical symptoms for a longer period of time before starting enzyme replacement therapy (P = .017) than patients without LUTS. They also scored more poorly on muscle function tests. Urodynamic results point to neurogenic causes for LUTS in LOPD, that is, neurogenic reflex bladder or impaired filling sensation. This could be due to glycogen accumulation in the urothelium and central nervous system. Patients with LUTS also seem to be more severely affected by LOPD than patients without LUTS. CONCLUSION LUTS in LOPD requires early and specific treatment to limit the development of severe health problems. Urodynamic studies should be considered in assessing LUTS.
Collapse
Affiliation(s)
| | - Ruth Kirschner-Hermanns
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Anke Jaekel
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Ralf Anding
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Annette Kohler
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
40
|
ElMallah MK, Desai AK, Nading EB, DeArmey S, Kravitz RM, Kishnani PS. Pulmonary outcome measures in long-term survivors of infantile Pompe disease on enzyme replacement therapy: A case series. Pediatr Pulmonol 2020; 55:674-681. [PMID: 31899940 PMCID: PMC7053514 DOI: 10.1002/ppul.24621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To report the respiratory function of school-aged children with infantile Pompe disease (IPD) who started enzyme replacement therapy (ERT) in infancy and early childhood. STUDY DESIGN This is a retrospective chart review of pulmonary function tests of: (a) patients with IPD 5 to 18 years of age, (b) who were not ventilator dependent, and (c) were able to perform upright and supine spirometry. Subjects were divided into a younger (5-9 years) and older cohort (10-18 years) for the analysis. Upright and supine forced vital capacity (FVC), maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were analyzed. RESULTS Fourteen patients, all cross-reactive immunologic material (CRIM)-positive, met the inclusion criteria and were included in this study. Mean upright and supine FVC were 70.3% and 64.9% predicted, respectively, in the 5- to 9-year-old cohort; and 61.5% and 52.5% predicted, respectively, in the 10- to 18-year-old group. Individual patient trends showed stability in FVC overtime in six of the 14 patients. MIPs and MEPs were consistent with inspiratory and expiratory muscle weakness in the younger and older age group but did not decline with age. CONCLUSION Data from this cohort of CRIM-positive patients with IPD showed that ERT is able to maintain respiratory function in a subgroup of patients whereas others had a steady decline. There was a statistically significant decline in FVC from the upright to a supine position in both the younger and older age groups of CRIM-positive ERT-treated patients. Before ERT, patients with IPD were unable to maintain independent ventilation beyond the first few years of life.
Collapse
Affiliation(s)
- Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Erica B Nading
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Stephanie DeArmey
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Richard M Kravitz
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
41
|
Bragato C, Carra S, Blasevich F, Salerno F, Brix A, Bassi A, Beltrame M, Cotelli F, Maggi L, Mantegazza R, Mora M. Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165662. [PMID: 31917327 DOI: 10.1016/j.bbadis.2020.165662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Pompe disease (PD) is an autosomal recessive muscular disorder caused by deficiency of the glycogen hydrolytic enzyme acid α-glucosidase (GAA). The enzyme replacement therapy, currently the only available therapy for PD patients, is efficacious in improving cardiomyopathy in the infantile form, but not equally effective in the late onset cases with involvement of skeletal muscle. Correction of the skeletal muscle phenotype has indeed been challenging, probably due to concomitant dysfunctional autophagy. The increasing attention to the pathogenic mechanisms of PD and the search of new therapeutic strategies prompted us to generate and characterize a novel transient PD model, using zebrafish. Our model presented increased glycogen content, markedly altered motor behavior and increased lysosome content, in addition to altered expression of the autophagy-related transcripts and proteins Beclin1, p62 and Lc3b. Furthermore, the model was used to assess the beneficial effects of 3-bromopyruvic acid (3-BrPA). Treatment with 3-BrPA induced amelioration of the model phenotypes regarding glycogen storage, motility behavior and autophagy-related transcripts and proteins. Our zebrafish PD model recapitulates most of the defects observed in human patients, proving to be a powerful translational model. Moreover, 3-BrPA unveiled to be a promising compound for treatment of conditions with glycogen accumulation.
Collapse
Affiliation(s)
- Cinzia Bragato
- PhD program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy; Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan, 20149, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Franco Salerno
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Alessia Brix
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Monica Beltrame
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| |
Collapse
|
42
|
Esmail S, Danter WR. DeepNEU: Artificially Induced Stem Cell (aiPSC) and Differentiated Skeletal Muscle Cell (aiSkMC) Simulations of Infantile Onset POMPE Disease (IOPD) for Potential Biomarker Identification and Drug Discovery. Front Cell Dev Biol 2019; 7:325. [PMID: 31867331 PMCID: PMC6909925 DOI: 10.3389/fcell.2019.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Infantile onset Pompe disease (IOPD) is a rare and lethal genetic disorder caused by the deletion of the acid alpha-glucosidase (GAA) gene. This gene encodes an essential lysosomal enzyme that converts glycogen to glucose. While enzyme replacement therapy helps some, our understanding of disease pathophysiology is limited. In this project we develop computer simulated stem cells (aiPSC) and differentiated skeletal muscle cells (aiSkMC) to empower IOPD research and drug discovery. Our Artificial Intelligence (AI) platform, DeepNEU v3.6 was used to generate aiPSC and aiSkMC simulations with and without GAA expression. These simulations were validated using peer reviewed results from the recent literature. Once the aiSkMC simulations (IOPD and WT) were validated they were used to evaluate calcium homeostasis and mitochondrial function in IOPD. Lastly, we used aiSkMC IOPD simulations to identify known and novel biomarkers and potential therapeutic targets. The aiSkMC simulations of IOPD correctly predicted genotypic and phenotypic features that were reported in recent literature. The probability that these features were accurately predicted by chance alone using the binomial test is 0.0025. The aiSkMC IOPD simulation correctly identified L-type calcium channels (VDCC) as a biomarker and confirmed the positive effects of calcium channel blockade (CCB) on calcium homeostasis and mitochondrial function. These published data were extended by the aiSkMC simulations to identify calpain(s) as a novel potential biomarker and therapeutic target for IOPD. This is the first time that computer simulations of iPSC and differentiated skeletal muscle cells have been used to study IOPD. The simulations are robust and accurate based on available published literature. We also demonstrated that the IOPD simulations can be used for potential biomarker identification leading to targeted drug discovery. We will continue to explore the potential for calpain inhibitors with and without CCB as effective therapy for IOPD.
Collapse
|
43
|
Zhou Z, Austin GL, Shaffer R, Armstrong DD, Gentry MS. Antibody-Mediated Enzyme Therapeutics and Applications in Glycogen Storage Diseases. Trends Mol Med 2019; 25:1094-1109. [PMID: 31522955 PMCID: PMC6889062 DOI: 10.1016/j.molmed.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
Abstract
The use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles. Exciting developments are currently underway for AEFs in the treatment of the GSDs Pompe disease and Lafora disease (LD). Antibody-based therapies are quickly becoming an integral part of modern disease therapeutics.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Epilepsy and Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
44
|
Kielian T. Lysosomal storage disorders: pathology within the lysosome and beyond. J Neurochem 2019; 148:568-572. [PMID: 30697734 DOI: 10.1111/jnc.14672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
This Preface introduces the articles of the special issue on "Lysosomal Storage Disorders" in which several recognized experts provide an overview of this research field. Lysosomes were first described in the 1950s and recognized for their role in substrate degradation and recycling. Because lysosomes impact numerous fundamental homeostatic processes, research on lysosomal storage disorders (LSDs) is crucial to advance our understanding of this intriguing organelle. This Special Issue highlights some of the LSDs that impact the central nervous system (CNS) as well as comprehensive overviews of lysosomal biology, CNS metabolism, and sphingolipid biosynthesis and turnover, all of which are critical toward our understanding of normal lysosomal function and how this is perturbed in the context of LSDs. This is the Preface for the special issue "Lysosomal Storage Disorders". Cover Image for this issue: doi: 10.1111/jnc.14496.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
45
|
Kulessa M, Weyer-Menkhoff I, Viergutz L, Kornblum C, Claeys KG, Schneider I, Plöckinger U, Young P, Boentert M, Vielhaber S, Mawrin C, Bergmann M, Weis J, Ziagaki A, Stenzel W, Deschauer M, Nolte D, Hahn A, Schoser B, Schänzer A. An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease. Neuropathol Appl Neurobiol 2019; 46:359-374. [PMID: 31545528 DOI: 10.1111/nan.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
AIMS Pompe disease is caused by pathogenic mutations in the alpha 1,4-glucosidase (GAA) gene and in patients with late onset Pome disease (LOPD), genotype-phenotype correlations are unpredictable. Skeletal muscle pathology includes glycogen accumulation and altered autophagy of various degrees. A correlation of the muscle morphology with clinical features and the genetic background in GAA may contribute to the understanding of the phenotypic variability. METHODS Muscle biopsies taken before enzyme replacement therapy were analysed from 53 patients with LOPD. On resin sections, glycogen accumulation, fibrosis, autophagic vacuoles and the degree of muscle damage (morphology-score) were analysed and the results were compared with clinical findings. Additional autophagy markers microtubule-associated protein 1A/1B-light chain 3, p62 and Bcl2-associated athanogene 3 were analysed on cryosections from 22 LOPD biopsies. RESULTS The myopathology showed a high variability with, in most patients, a moderate glycogen accumulation and a low morphology-score. High morphology-scores were associated with increased fibrosis and autophagy highlighting the role of autophagy in severe stages of skeletal muscle damage. The morphology-score did not correlate with the patient's age at biopsy, disease duration, nor with the residual GAA enzyme activity or creatine-kinase levels. In 37 patients with LOPD, genetic analysis identified the most frequent mutation, c.-32-13T>G, in 95%, most commonly in combination with c.525delT (19%). No significant correlation was found between the different GAA genotypes and muscle morphology type. CONCLUSIONS Muscle morphology in LOPD patients shows a high variability with, in most cases, moderate pathology. Increased pathology is associated with more fibrosis and autophagy.
Collapse
Affiliation(s)
- M Kulessa
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe University, Frankfurt/Main, Germany
| | - L Viergutz
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - C Kornblum
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - K G Claeys
- Department of Neurology, University Hospital Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - I Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - U Plöckinger
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - P Young
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany.,Medical Park Reithofpark, Bad Feilnbach, Germany
| | - M Boentert
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany
| | - S Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - C Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Bergmann
- Institute of Clinical Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - J Weis
- Institute of Neuropathology, RWTH University Hospital, Aachen, Germany
| | - A Ziagaki
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - W Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - M Deschauer
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - D Nolte
- Institute of Human Genetics, Justus Liebig University Giessen, Giessen, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - B Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU University Munich, Munich, Germany
| | - A Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
46
|
Harlaar L, Hogrel JY, Perniconi B, Kruijshaar ME, Rizopoulos D, Taouagh N, Canal A, Brusse E, van Doorn PA, van der Ploeg AT, Laforêt P, van der Beek NAME. Large variation in effects during 10 years of enzyme therapy in adults with Pompe disease. Neurology 2019; 93:e1756-e1767. [PMID: 31619483 PMCID: PMC6946483 DOI: 10.1212/wnl.0000000000008441] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Objective To determine the effects of 10 years of enzyme replacement therapy (ERT) in adult patients with Pompe disease, focusing on individual variability in treatment response. Methods In this prospective, multicenter cohort study, we studied 30 patients from the Netherlands and France who had started ERT during the only randomized placebo-controlled clinical trial with ERT in late-onset Pompe disease (NCT00158600) or its extension (NCT00455195) in 2005 to 2008. Main outcomes were walking ability (6-minute walk test [6MWT]), muscle strength (manual muscle testing using Medical Research Council [MRC] grading), and pulmonary function (forced vital capacity [FVC] in the upright and supine positions), assessed at 3- to 6-month intervals before and after the start of ERT. Data were analyzed with linear mixed-effects models for repeated measurements. Results Median follow-up duration on ERT was 9.8 years (interquartile range [IQR] 8.3–10.2 years). At the group level, baseline 6MWT was 49% of predicted (IQR 41%–60%) and had deteriorated by 22.2 percentage points (pp) at the 10-year treatment point (p < 0.001). Baseline FVC upright was 54% of predicted (IQR 47%–68%) and decreased by 11 pp over 10 years (p < 0.001). Effects of ERT on MRC sum score and FVC supine were similar. At the individual level, 93% of patients had initial benefit of ERT. Depending on the outcome measured, 35% to 63% of patients had a secondary decline after ≈3 to 5 years. Still, at 10 years of ERT, 52% had equal or better 6MWT and/or FVC upright compared to baseline. Conclusions The majority of patients with Pompe disease benefit from long-term ERT, but many patients experience some secondary decline after ≈3 to 5 years. Individual variation, however, is considerable. Classification of evidence This study provides Class IV evidence that for the majority of adults with Pompe disease, long-term ERT positively affects, or slows deterioration in, muscle strength, walking ability, and/or pulmonary function.
Collapse
Affiliation(s)
- Laurike Harlaar
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Jean-Yves Hogrel
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Barbara Perniconi
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Michelle E Kruijshaar
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Dimitris Rizopoulos
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Nadjib Taouagh
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Aurélie Canal
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Esther Brusse
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Pieter A van Doorn
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Ans T van der Ploeg
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Pascal Laforêt
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Nadine A M E van der Beek
- From the Departments of Neurology (L.H., E.B., P.A.v.D., N.A.M.E.v.d.B.) and Pediatrics (M.E.K., A.T.v.d.P.), Center for Lysosomal and Metabolic Diseases Erasmus MC, and Department of Biostatistics (D.R.), University Medical Center Rotterdam, Netherlands; Institute of Myology (J.-Y.H., B.P., N.T., A.C.), Pitié-Salpêtrière Hospital, Paris; Department of Neurology (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond Poincaré Teaching Hospital, AP-HP, Garches; and INSERM U1179 (P.L.), END-ICAP, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.
| |
Collapse
|
47
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
48
|
Clinical features of Pompe disease with motor neuronopathy. Neuromuscul Disord 2019; 29:903-906. [PMID: 31706699 DOI: 10.1016/j.nmd.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
Pathological studies on rodent models and patients with Pompe disease have demonstrated the accumulation of glycogen in spinal motor neurons; however, this finding has rarely been evaluated clinically in patients with Pompe disease. In this study, we analyzed seven patients (age, 7-11 years) with Pompe disease who received long-term enzyme replacement therapy. In addition to traditional myopathy-related clinical and electrophysiological features, these patients often developed bilateral foot drop, distal predominant weakness of four limbs, and hypo- or areflexia with preserved sensory function. Electrophysiological studies showed not only reduced amplitudes of compound muscle action potential, but also absent or impersistent F waves and mixed small and large/giant polyphasic motor unit action potentials with normal sensory study. Muscle biopsy usually showed the existence of angular fingers, fiber type grouping or group atrophy. Taken together, these features support the co-existence of motor neuronopathy additionally to myopathy.
Collapse
|
49
|
Korlimarla A, Lim JA, Kishnani PS, Sun B. An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:289. [PMID: 31392201 DOI: 10.21037/atm.2019.04.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pompe disease (PD) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid-alpha glucosidase (GAA). Pathogenic variants in the GAA gene lead to excessive accumulation of lysosomal glycogen primarily in the cardiac, skeletal, and smooth muscles. There is growing evidence of central nervous system (CNS) involvement in PD. Current research is focused on determining the true extent of CNS involvement, its effects on behavior and cognition, and effective therapies that would correct the disease in both muscle and the CNS. This review article summarizes the CNS findings in patients, highlights the importance of research on animal models, explores the probable success of gene therapy in reversing CNS pathologies as reported by some breakthrough preclinical studies, and emphasizes the need to follow patients and monitor for CNS involvement over time. Lessons learned from animal models (bench) and from the literature available to date on patients will guide future clinical trials in patients (bedside) with PD. Our preliminary studies in infantile PD show that some patients are susceptible to early and extensive CNS pathologies, as assessed by neuroimaging and developmental assessments. This article highlights the importance of neuroimaging which could serve as useful tools to diagnose and monitor certain CNS pathologies such as white matter hyperintense foci (WMF) in the brain. Longitudinal studies with large sample sizes are warranted at this time to better understand the emergence, progression and consequences of CNS involvement in patients with PD.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
50
|
Kishnani PS, Koeberl DD. Liver depot gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:288. [PMID: 31392200 PMCID: PMC6642935 DOI: 10.21037/atm.2019.05.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Gene therapy for Pompe disease has advanced to early phase clinical trials, based upon proof-of-concept data indicating that gene therapy could surpass the benefits of the current standard of care, enzyme replacement therapy (ERT). ERT requires frequent infusions of large quantities of recombinant human acid α-glucosidase (GAA), whereas gene therapy involves a single infusion of a vector that stably transduces tissues to continuously produce GAA. Liver-specific expression of GAA with an adeno-associated virus (AAV) vector established stable GAA secretion from the liver accompanied by receptor-mediated uptake of GAA, which corrected the deficiency of GAA and cleared the majority of accumulated glycogen in the heart and skeletal muscle. Liver depot gene therapy was equivalent to ERT at a dose of the AAV vector that could be administered in an early phase clinical trial. Furthermore, high-level expression of GAA has decreased glycogen stored in the brain. A unique advantage of liver-specific expression stems from the induction of immune tolerance to GAA following AAV vector administration, thereby suppressing anti-GAA antibodies that otherwise interfere with efficacy. A Phase I clinical trial of AAV vector-mediated liver depot gene therapy has been initiated based upon promising preclinical data (NCT03533673). Overall, gene therapy promises to address limits of currently available ERT, if clinical translation currently underway is successful.
Collapse
Affiliation(s)
- Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|