1
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
3
|
Qin M, Feng Z, Meng H. Enhanced transcytosis and retention (ETR) effect. Sci Bull (Beijing) 2024:S2095-9273(24)00722-9. [PMID: 39389865 DOI: 10.1016/j.scib.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Mengmeng Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenhan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
4
|
Acharya B, Tofthagen M, Maciej-Hulme ML, Suissa MR, Karlsson NG. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J 2024; 41:323-342. [PMID: 39287885 PMCID: PMC11522178 DOI: 10.1007/s10719-024-10165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The intestinal barrier is a selective interface between the body´s external and the internal environment. Its layer of epithelial cells is joined together by tight junction proteins. In intestinal permeability (IP), the barrier is compromised, leading to increased translocation of luminal contents such as large molecules, toxins and even microorganisms. Numerous diseases including Inflammatory Bowel Disease (IBD), Coeliac disease (CD), autoimmune disorders, and diabetes are believed to be associated with IP. Dietary interventions, such as prebiotics, may improve the intestinal barrier. Prebiotics are non-digestible food compounds, that promote the growth and activity of beneficial bacteria in the gut. This systematic review assesses the connection between prebiotic usage and IP. PubMed and Trip were used to identify relevant studies conducted between 2010-2023. Only six studies were found, which all varied in the characteristics of the population, study design, and types of prebiotics interventions. Only one study showed a statistically significant effect of prebiotics on IP. Alteration of intestinal barrier function was measured by lactulose/mannitol, chromium-labelled Ethylenediaminetetraacetic acid (51Cr-EDTA), lactulose/rhamnose, and sucralose/erythritol excretion as well as zonulin and glucagon-like peptide 2 levels. Three studies also conducted gut microbiota assessment, and one of them showed statistically significant improvement of the gut microbiome. This study also reported a decrease in zonulin level. The main conclusion from this review is that there is a lack of human studies in this important field. Futhermore, large population studies and using standardized protocols, would be required to properly assess the impact of prebiotic intervention and improvement on IP.
Collapse
Affiliation(s)
- Binayak Acharya
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marthe Tofthagen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marissa L Maciej-Hulme
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Michal Rachel Suissa
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway.
| |
Collapse
|
5
|
Song Y, Wang X, Lu X, Wang T. Exposure to microcystin-LR promotes the progression of colitis-associated colorectal cancer by inducing barrier disruption and gut microbiota dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116750. [PMID: 39053045 DOI: 10.1016/j.ecoenv.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Microcystins (MCs) are secondary metabolites generated by cyanobacterial blooms, among which microcystin-LR (MC-LR) stands out as the most widely distributed variant in aquatic environments. However, the effects of MC-LR on the colorectum and its role in promoting colorectal tumor progression remain unclear. Therefore, this study aims to scrutinize the impact of MC-LR on a mice model of colitis-associated colorectal cancer and elucidate the potential underlying molecular mechanisms. In this study, we used AOM/DSS mice and orally administered MC-LR at doses of 40 µg/kg or 200 µg/kg. Exposure to MC-LR increased tumor burden, promoted tumor growth, shortened colon size, and decreased goblet cell numbers and tight junction protein levels in intestinal tissues. Additionally, exposure to MC-LR induced alterations in the structure of gut microbiota in the mouse colon, characterized by an increase in the relative abundance of Escherichia_coli and Shigella_sonnei, and a decline in the relative abundance of Akkermansia_muciniphila. Transcriptomic analysis revealed that MC-LR exposure activated the IL-17 signaling pathway in mouse colorectal tissues and participated in inflammation regulation and immune response. Immunofluorescence results demonstrated an increase in T-helper 17 (Th17) cell levels in mouse colorectal tumors following MC-LR exposure. The results from RT-qPCR revealed that MC-LR induced the upregulation of IL-6, IL-1β, IL-10, IL-17A, TNF-α, CXCL1, CXCL2, CXCL5 and CCL20. The novelty of this study lies in its comprehensive approach to understanding the mechanisms by which MC-LR may contribute to CRC progression, offering new perspectives and valuable reference points for establishing guidance standards regarding MC-LR in drinking water. Our findings suggest that even at guideline value, MC-LR can have profound effects on susceptible mice, emphasizing the need for a reevaluation of guideline value and a deeper understanding of the role of environmental toxins in cancer progression.
Collapse
Affiliation(s)
- Yuechi Song
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaochang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaohui Lu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
| |
Collapse
|
6
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
De Luca M, Musio B, Balestra F, Arrè V, Negro R, Depalo N, Rizzi F, Mastrogiacomo R, Panzetta G, Donghia R, Pesole PL, Coletta S, Piccinno E, Scalavino V, Serino G, Maqoud F, Russo F, Orlando A, Todisco S, Mastrorilli P, Curri ML, Gallo V, Giannelli G, Scavo MP. Role of Extracellular Vesicles in Crohn's Patients on Adalimumab Who Received COVID-19 Vaccination. Int J Mol Sci 2024; 25:8853. [PMID: 39201543 PMCID: PMC11355036 DOI: 10.3390/ijms25168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Collapse
Affiliation(s)
- Maria De Luca
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Francesco Balestra
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Viviana Scalavino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Pietro Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| |
Collapse
|
8
|
Nagai M, Okawa T, Nakata K, Takahashi D, Miyajima R, Shiratori H, Yamanaka D, Nakamura A, Oyama C, Takahashi SI, Toyama-Sorimachi N, Suzuki K, Ohashi W, Dohi T, Kawamura YI, Hase K. Sugar and arginine facilitate oral tolerance by ensuring the functionality of tolerogenic immune cell subsets in the intestine. Cell Rep 2024; 43:114490. [PMID: 38990720 DOI: 10.1016/j.celrep.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.
Collapse
Affiliation(s)
- Motoyoshi Nagai
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan.
| | - Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Kazuaki Nakata
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reina Miyajima
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Hiroaki Shiratori
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Koichiro Suzuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Taeko Dohi
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Yuki I Kawamura
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.
| |
Collapse
|
9
|
Hagen C, Humphrey D, Wileman C, Haydon K, Greiner L. Impact of increasing dietary standardized ileal digestible arginine to lysine ratio from 0.85 to 1.15 and water-based arginine supplementation on growth performance and gut integrity of weaned pigs. Transl Anim Sci 2024; 8:txae102. [PMID: 39036444 PMCID: PMC11258900 DOI: 10.1093/tas/txae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The objective of this experiment was to assess the influence of arginine (Arg) supplementation in water and/or feed on the growth performance and gastrointestinal health of newly weaned pigs. Two hundred and forty pigs (5.06 kg; PIC, Hendersonville, TN) were randomly allocated into 80 mixed-sex pens (3 pigs/pen) and subjected to a 2 × 4 factorial design. Two levels of Arg were supplemented in water (0% or 8% stock, dosed through a 1:128 proportioner) for the first phase (days 0 to 7), and four dietary arginine levels (0.85, 0.95, 1.05, and 1.15) standardized ileal digestible (SID) Arg to Lysine (Lys) ratios for the first two phases (days 0 to 7 and 7 to 21). All treatments were provided a common diet (0.96 SID Arg:Lys) for the last phase days 21 to 42. One pig per pen underwent a dual sugar absorption test of lactulose at 500 mg/kg and mannitol at 50 mg/kg of body weight (BW) via gastric tube on days 7 and 21 postweaning, with blood plasma collected 4 h later. The pig tested on day 7 was subsequently euthanized for intestinal tissue collection. Pen growth performance and feed disappearance were evaluated for 3 phases: days 0 to 7, 7 to 21, and 21 to 42 postweaning. The statistical analysis used linear models to examine the effects of SID Arg:Lys in the feed, Arg level in water, and their interactions, with pen as the experimental unit. Orthogonal contrasts were used to test the linear and quadratic effects of increasing SID Arg:Lys in the diet. Growth performance during the first period exhibited variability, reflected by negative gain-to-feed (G:F) ratios, caused by the enteric health challenge. Consequently, data were analyzed separately for each phase. Increasing dietary SID Arg:Lys caused a linear improvement (P = 0.04) in final BW (18.47 and 21.90 kg, for 0.85 and 1.15 SID Arg:Lys, respectively). A trend (P = 0.09) suggested a linear impact of dietary SID Arg:Lys on average daily gain during days 21 to 42. Arg supplementation, whether administered through water or diet, did not affect lactulose and mannitol absorption on both days 7 and 21, nor did it alter histological measurements in the collected ileum tissues on day 7 postweaning. In conclusion, increasing dietary SID Arg:Lys increased final BW but had no clear impacts on intestinal health within the parameters measured, potentially impacted by the rotavirus diagnosis in the first week post-wean.
Collapse
Affiliation(s)
- Chloe Hagen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Dalton Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Caitlyn Wileman
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Keith Haydon
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- CJ America – Bio, Fort Dodge, IA 50501, USA
| | - Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Acuña-Guzman V, Montoya-Alfaro ME, Negrón-Ballarte LP, Solis-Calero C. A Machine Learning Approach for Predicting Caco-2 Cell Permeability in Natural Products from the Biodiversity in Peru. Pharmaceuticals (Basel) 2024; 17:750. [PMID: 38931417 PMCID: PMC11206960 DOI: 10.3390/ph17060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Peru is one of the most biodiverse countries in the world, which is reflected in its wealth of knowledge about medicinal plants. However, there is a lack of information regarding intestinal absorption and the permeability of natural products. The human colon adenocarcinoma cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims to develop a quantitative structure-property relationship (QSPR) model using machine learning algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru. METHODS A dataset of 1817 compounds, including experimental log Papp values and molecular descriptors, was utilized. Six QSPR models were constructed: a multiple linear regression (MLR) model, a partial least squares regression (PLS) model, a support vector machine regression (SVM) model, a random forest (RF) model, a gradient boosting machine (GBM) model, and an SVM-RF-GBM model. RESULTS An evaluation of the testing set revealed that the MLR and PLS models exhibited an RMSE = 0.47 and R2 = 0.63. In contrast, the SVM, RF, and GBM models showcased an RMSE = 0.39-0.40 and R2 = 0.73-0.74. Notably, the SVM-RF-GBM model demonstrated superior performance, with an RMSE = 0.38 and R2 = 0.76. The model predicted log Papp values for 502 natural products falling within the applicability domain, with 68.9% (n = 346) showing high permeability, suggesting the potential for intestinal absorption. Additionally, we categorized the natural products into six metabolic pathways and assessed their drug-likeness. CONCLUSIONS Our results provide insights into the potential intestinal absorption of natural products in Peru, thus facilitating drug development and pharmaceutical discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Christian Solis-Calero
- Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| |
Collapse
|
11
|
Zuurveld M, Ogrodowczyk AM, Benedé S, Czolk R, Lucia Bavaro S, Randow S, Markiewicz LH, Wróblewska B, Molina E, Kuehn A, Holzhauser T, Willemsen LEM. Allergenic Shrimp Tropomyosin Distinguishes from a Non-Allergenic Chicken Homolog by Pronounced Intestinal Barrier Disruption and Downstream Th2 Responses in Epithelial and Dendritic Cell (Co)Culture. Nutrients 2024; 16:1192. [PMID: 38674882 PMCID: PMC11053543 DOI: 10.3390/nu16081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tropomyosins (TM) from vertebrates are generally non-allergenic, while invertebrate homologs are potent pan-allergens. This study aims to compare the risk of sensitization between chicken TM and shrimp TM through affecting the intestinal epithelial barrier integrity and type 2 mucosal immune activation. METHODS Epithelial activation and/or barrier effects upon exposure to 2-50 μg/mL chicken TM, shrimp TM or ovalbumin (OVA) as a control allergen, were studied using Caco-2, HT-29MTX, or HT-29 intestinal epithelial cells. Monocyte-derived dendritic cells (moDC), cocultured with HT-29 cells or moDC alone, were exposed to 50 μg/mL chicken TM or shrimp TM. Primed moDC were cocultured with naïve Th cells. Intestinal barrier integrity (TEER), gene expression, cytokine secretion and immune cell phenotypes were determined in these human in vitro models. RESULTS Shrimp TM, but not chicken TM or OVA exposure, profoundly disrupted intestinal barrier integrity and increased alarmin genes expression in Caco-2 cells. Proinflammatory cytokine secretion in HT-29 cells was only enhanced upon shrimp TM or OVA, but not chicken TM, exposure. Shrimp TM enhanced the maturation of moDC and chemokine secretion in the presence or absence of HT-29 cells, while only in the absence of epithelial cells chicken TM activated moDC. Direct exposure of moDC to shrimp TM increased IL13 and TNFα secretion by Th cells cocultured with these primed moDC, while shrimp TM exposure via HT-29 cells cocultured with moDC sequentially increased IL13 expression and IL4 secretion in Th cells. CONCLUSIONS Shrimp TM, but not chicken TM, disrupted the epithelial barrier while triggering type 2 mucosal immune activation, both of which are key events in allergic sensitization.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Anna M. Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 1359 Kirchberg, Luxembourg
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), 70126 Bari, Italy
| | - Stefanie Randow
- Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Lidia H. Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elena Molina
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
12
|
Cho DE, Hong JP, Kim Y, Sim JY, Kim HS, Kim SR, Lee B, Cho HS, Cho IH, Shin S, Yeom M, Kwon SK, Lee IS, Park H, Kim K, Hahm DH. Role of gut-derived bacterial lipopolysaccharide and peripheral TLR4 in immobilization stress-induced itch aggravation in a mouse model of atopic dermatitis. Sci Rep 2024; 14:6263. [PMID: 38491103 PMCID: PMC10942979 DOI: 10.1038/s41598-024-56936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Psychological stress and intestinal leakage are key factors in atopic dermatitis (AD) recurrence and exacerbation. Here, we demonstrate the mechanism underlying bacterial translocation across intestinal epithelial barrier damaged due to stress and further aggravation of trimellitic anhydride (TMA)-induced itch, which remain unclear, in AD mice. Immobilization (IMO) stress exacerbated scratching bouts and colon histological damage, and increased serum corticosterone and lipopolysaccharide (LPS). Orally administered fluorescein isothiocyanate (FITC)-dextran and surgically injected (into the colon) Cy5.5-conjugated LPS were detected in the serum and skin after IMO stress, respectively. The relative abundance of aerobic or facultative anaerobic bacteria was increased in the colon mucus layer, and Lactobacillus murinus, E. coli, Staphylococcus nepalensis, and several strains of Bacillus sp. were isolated from the spleens and mesenteric lymph nodes. Oral antibiotics or intestinal permeability blockers, such as lubiprostone (Lu), 2,4,6-triaminopyrimidine (TAP) and ML-7, inhibited IMO stress-associated itch; however, it was reinduced through intradermal or i.p. injection of LPS without IMO stress. I.p. injection of TAK-242 (resatorvid), a TLR4 inhibitor, abrogated IMO stress-associated itch, which was also confirmed in TLR4-KO mice. IMO stress alone did not cause itch in naïve mice. IMO stress-induced itch aggravation in TMA-treated AD mice might be attributed to the translocation of gut-derived bacterial cells and LPS, which activates peripheral TLR4 signaling.
Collapse
Affiliation(s)
- Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joon-Pyo Hong
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ju Yeon Sim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Heenam Stanley Kim
- Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Sung Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sooan Shin
- ACCURIEBIO Co., IRIS Lab., 6th Floor, Sangwon 12-gil 34, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (Brain Korea 21 PLUS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Seon Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hijoon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
14
|
Ferreira B, Barros AS, Leite-Pereira C, Viegas J, das Neves J, Nunes R, Sarmento B. Trends in 3D models of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167042. [PMID: 38296115 DOI: 10.1016/j.bbadis.2024.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia S Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
15
|
Amekyeh H, Sabra R, Billa N. A Window for Enhanced Oral Delivery of Therapeutics via Lipid Nanoparticles. Drug Des Devel Ther 2024; 18:613-630. [PMID: 38476206 PMCID: PMC10927375 DOI: 10.2147/dddt.s439975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024] Open
Abstract
Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
16
|
Jiang D, Li S, Liang Y, Xu R, Qi Q, Wang B, Zhang C. 16S rRNA and transcriptome analysis of the FOS-mediated alleviation of Aeromonas hydrophila-induced intestinal damage in Megalobrama amblycephala. Int J Biol Macromol 2023; 253:127040. [PMID: 37742888 DOI: 10.1016/j.ijbiomac.2023.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This study was conducted to elucidate the effects of FOS that alleviate Aeromonas hydrophila-induced intestinal damage. The results showed that A. hydrophila disrupted the intestinal structure and increased intestinal permeability, causing abnormalities in mucosal pathology. Additionally, A. hydrophila induced an imbalance in the intestinal flora and disturbed its stability. Dietary FOS ameliorated the injury to the intestinal structure of fish, but also in part improved the condition of the intestinal tight junction complex. Transcriptomic analysis showed that 120 genes were up-regulated and 320 genes were down-regulated. The intestinal immune network for the IgA production signalling pathway was enriched following A. hydrophila infection, and the change in the FOS group was mainly in the Tight junction signalling pathway. Similarly, dietary FOS reduced the disruption of the intestinal microbiota induced by A. hydrophila and improved the intestinal microbiota's stability; FOS was also partially implicated in the upregulation of Tight junction and Adhesion junction pathways by transcriptomic analysis. After further analysis, it was found that fish fed FOS had upregulated expression of genes related to apoptosis, antigen presentation, and the T-cell-mediated immune response in the intestine compared with those in the A. hydrophila group, which may be related to changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Dongxue Jiang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Shengnan Li
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Yuexia Liang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450040, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
17
|
Moerings BG, Abbring S, Tomassen MM, Schols HA, Witkamp RF, van Norren K, Govers C, van Bergenhenegouwen J, Mes JJ. Rice-derived arabinoxylan fibers are particle size-dependent inducers of trained immunity in a human macrophage-intestinal epithelial cell co-culture model. Curr Res Food Sci 2023; 8:100666. [PMID: 38179220 PMCID: PMC10765302 DOI: 10.1016/j.crfs.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Arabinoxylans have been identified for a wide range of purported health-promoting applications, primarily attributed to its immunomodulatory effects. Previously, we have reported the ability of arabinoxylans to induce non-specific memory in innate immune cells, commonly referred to as "trained innate immunity". In the present study, we investigated the effect of particle size on innate immune training and resilience in primary human macrophages as well as in a more physiologically relevant macrophage-intestinal epithelial cell co-culture model. We demonstrated that smaller (>45 & < 90 μm) compared to larger (>90 μm) particle size fractions of rice bran-derived arabinoxylan preparations have a higher enhancing effect on training and resilience in both models. Smaller particle size fractions elevated TNF-α production in primary macrophages and enhanced Dectin-1 receptor activation in reporter cell lines compared to larger particles. Responses were arabinoxylan source specific as only the rice-derived arabinoxylans showed these immune-supportive effects. This particle size-dependent induction of trained immunity was confirmed in the established co-culture model. These findings demonstrate the influence of particle size on the immunomodulatory potential of arabinoxylans, provide further insight into the structure-activity relationship, and offer new opportunities to optimize the immune-enhancing effects of these dietary fibers.
Collapse
Affiliation(s)
- Bart G.J. Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Monic M.M. Tomassen
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
18
|
Perlman M, Senger S, Verma S, Carey J, Faherty CS. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 2023; 15:2248713. [PMID: 37724815 PMCID: PMC10512930 DOI: 10.1080/19490976.2023.2248713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.
Collapse
Affiliation(s)
- Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - James Carey
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Jiang F, Wu M, Li R. The significance of long non-coding RNAs in the pathogenesis, diagnosis and treatment of inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2023; 6:pbad031. [PMID: 38163004 PMCID: PMC10757071 DOI: 10.1093/pcmedi/pbad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic relapsing gastrointestinal inflammatory diseases with significant global incidence. Although the pathomechanism of IBD has been extensively investigated, several aspects of its pathogenesis remain unclear. Long non-coding RNAs (lncRNAs) are transcripts with more than 200 nucleotides in length that have potential protein-coding functions. LncRNAs play important roles in biological processes such as epigenetic modification, transcriptional regulation and post-transcriptional regulation. In this review, we summarize recent advances in research on IBD-related lncRNAs from the perspective of the overall intestinal microenvironment, as well as their potential roles as immune regulators, diagnostic biomarkers and therapeutic targets or agents for IBD.
Collapse
Affiliation(s)
- Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wu
- Drug Discovery Section, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| |
Collapse
|
20
|
Xu R, Wu J, Zheng L, Zhao M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res Rev 2023; 91:102080. [PMID: 37774932 DOI: 10.1016/j.arr.2023.102080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, affecting 32.5 million US adults or 242 million people worldwide. There is no cure for OA. Many animal and clinical trials showed that oral administration of undenatured type II collagen could significantly reduce the incidence of OA or alleviate the symptoms of articular cartilage. Type II collagen is an important component of cartilage matrix. This article reviewed research progress of undenatured type II collagen including its methods of extraction and preparation, structure and characterization, solubility, thermal stability, gastrointestinal digestive stability, its role in improving OA, and the mechanism of its action in improving OA. Type II collagen has been extensively explored for its potential in improving arthritis. Methods of extraction of type II collagen are inefficient and tedious. The method of limited enzymatic hydrolysis is mainly used to prepare soluble undenatured type II collagen (SC II). The solubility, thermal and gastrointestinal digestive stability of SC II are affected by the sources of raw material, pH, salt ions, and temperature. Oral administration of undenatured type II collagen improves OA, whereas its activity is affected by the sources, degree of denaturalization, intervention methods and doses. However, the influence of the structure of undenatured type II collagen on its activity and the mechanism are unclear. The findings in this review support that undenatured type II collagen can be used in the intervention or auxiliary intervention of patients with OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
21
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
22
|
Shichkin VP, Kurchenko OV, Okhotnikova EN, Chopyak VV, Delfino DV. Enterosorbents in complex therapy of food allergies: a focus on digestive disorders and systemic toxicity in children. Front Immunol 2023; 14:1210481. [PMID: 37901242 PMCID: PMC10611465 DOI: 10.3389/fimmu.2023.1210481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
The review analyzes mechanisms and concomitant factors in developing IgE-associated allergic diseases provoked by food allergens and discusses clinical symptoms and current approaches for the treatment of food allergies. The expediency of using enterosorbents in complex therapy of food allergies and skin and respiratory manifestations associated with gastroenterological disorders is substantiated. The review summarizes the experience of using enterosorbents in post-Soviet countries to detoxify the human body. In this regard, special attention is paid to the enterosorbent White Coal (Carbowhite) based on silicon dioxide produced by the Ukrainian company OmniFarma.
Collapse
Affiliation(s)
| | | | - Elena N. Okhotnikova
- Department of Pediatrics, Children’s Infectious Diseases, Immunology and Allergology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Valentyna V. Chopyak
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Domenico V. Delfino
- Master in Musculoskeletal and Rheumatological Physiotherapy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Nathani S, Das N, Katiyar P, Waghmode B, Sircar D, Roy P. Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins. Eur J Nutr 2023; 62:3033-3054. [PMID: 37493680 DOI: 10.1007/s00394-023-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
24
|
Mishra SP, Wang B, Jain S, Ding J, Rejeski J, Furdui CM, Kitzman DW, Taraphder S, Brechot C, Kumar A, Yadav H. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut 2023; 72:1848-1865. [PMID: 36948576 PMCID: PMC10512000 DOI: 10.1136/gutjnl-2022-327365] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
OBJECTIVE Ample evidence exists for the role of abnormal gut microbiota composition and increased gut permeability ('leaky gut') in chronic inflammation that commonly co-occurs in the gut in both obesity and diabetes, yet the detailed mechanisms involved in this process have remained elusive. DESIGN In this study, we substantiate the causal role of the gut microbiota by use of faecal conditioned media along with faecal microbiota transplantation. Using untargeted and comprehensive approaches, we discovered the mechanism by which the obese microbiota instigates gut permeability, inflammation and abnormalities in glucose metabolism. RESULTS We demonstrated that the reduced capacity of the microbiota from both obese mice and humans to metabolise ethanolamine results in ethanolamine accumulation in the gut, accounting for induction of intestinal permeability. Elevated ethanolamine increased the expression of microRNA-miR-101a-3p by enhancing ARID3a binding on the miR promoter. Increased miR-101a-3p decreased the stability of zona occludens-1 (Zo1) mRNA, which in turn, weakened intestinal barriers and induced gut permeability, inflammation and abnormalities in glucose metabolism. Importantly, restoring ethanolamine-metabolising activity in gut microbiota using a novel probiotic therapy reduced elevated gut permeability, inflammation and abnormalities in glucose metabolism by correcting the ARID3a/miR-101a/Zo1 axis. CONCLUSION Overall, we discovered that the reduced capacity of obese microbiota to metabolise ethanolamine instigates gut permeability, inflammation and glucose metabolic dysfunctions, and restoring ethanolamine-metabolising capacity by a novel probiotic therapy reverses these abnormalities. TRIAL REGISTRATION NUMBER NCT02869659 and NCT03269032.
Collapse
Affiliation(s)
- Sidharth P Mishra
- Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
- USF Center for Microbiome Research, Microbiomes Institutes, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Shalini Jain
- Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
- USF Center for Microbiome Research, Microbiomes Institutes, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jared Rejeski
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dalane W Kitzman
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Subhash Taraphder
- Department of Animal Genetics and Breeding, West Bengal University of Animal & Fishery Sciences, Kolkata, West Bengal, India
| | - Christian Brechot
- Deparment of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Ambuj Kumar
- Deparment of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Hariom Yadav
- Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
- USF Center for Microbiome Research, Microbiomes Institutes, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
25
|
Zhang J, Fang Y, Fu Y, Jalukar S, Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult Sci 2023; 102:102862. [PMID: 37419049 PMCID: PMC10466245 DOI: 10.1016/j.psj.2023.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
This study was aimed to investigate the effects of yeast polysaccharides (YPS) on growth performance, intestinal health, and aflatoxin metabolism in livers of broilers fed diets naturally contaminated with mixed mycotoxins (MYCO). A total of 480 one-day-old Arbor Acre male broilers were randomly allocated into a 2 × 3 factorial arrangement of treatments (8 replicates with 10 birds per replicate) for 6 wk to assess the effects of 3 levels of YPS (0, 1, or 2 g/kg) on the broilers fed diets contaminated with or without MYCO (95 μg/kg aflatoxin B1, 1.5 mg/kg deoxynivalenol, and 490 μg/kg zearalenone). Results showed that mycotoxins contaminated diets led to significant increments in serum malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, mRNA expressions of TLR4 and 4EBP1 associated with oxidative stress, mRNA expressions of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 associated with hepatic phase Ⅰ metabolizing enzymes, mRNA expressions of p53 associated with hepatic mitochondrial apoptosis, and AFB1 residues in the liver (P < 0.05); meanwhile dietary MYCO decreased the jejunal villus height (VH), villus height/crypt depth (VH/CD), the activity of serum total antioxidant capacity (T-AOC), mRNA expressions of jejunal HIF-1α, HMOX, and XDH associated with oxidative stress, mRNA expressions of jejunal CLDN1, ZO1, and ZO2, and mRNA expression of GST associated with hepatic phase Ⅱ metabolizing enzymes of broilers (P < 0.05). Notably, the adverse effects induced by MYCO on broilers were mitigated by supplementation with YPS. Dietary YPS supplementation reduced the concentrations of serum MDA and 8-OHdG, jejunal CD, mRNA expression of jejunal TLR2, and 4EBP1, hepatic CYP1A2, and p53, and the AFB1 residues in the liver (P < 0.05), and elevated the serum T-AOC and SOD, jejunal VH, and VH/CD, and mRNA expression of jejunal XDH, hepatic GST of broilers (P < 0.05). There were significant interactions between MYCO and YPS levels on the growth performance (BW, ADFI, ADG, and F/G) at d 1 to 21, d 22 to 42, and d 1 to 42, serum GSH-Px activity, and mRNA expression of jejunal CLDN2 and hepatic ras of broilers (P < 0.05). In contrast with MYCO group, the addition of YPS increased BW, ADFI, and ADG, the serum GSH-Px activity (14.31%-46.92%), mRNA levels of jejunal CLDN2 (94.39%-103.02%), decreased F/G, and mRNA levels of hepatic ras (57.83%-63.62%) of broilers (P < 0.05). In conclusion, dietary supplements with YPS protected broilers from mixed mycotoxins toxicities meanwhile keeping normal performance of broilers, presumably via reducing intestinal oxidative stress, protecting intestinal structural integrity, and improving hepatic metabolic enzymes to minimize the AFB1 residue in the liver and enhance the performance of broilers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yong Fang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sangita Jalukar
- Arm and Hammer Animal and Food Production, Mason City, IA 50401, USA
| | - Jinglin Ma
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Guo
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Zhang X, Chen X, Wang Z, Meng X, Hoffmann-Sommergruber K, Cavallari N, Wu Y, Gao J, Li X, Chen H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023; 170:1-12. [PMID: 37067238 DOI: 10.1111/imm.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xiao Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Zhongliang Wang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xuanyi Meng
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | | | - Nicola Cavallari
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Yong Wu
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
27
|
Ojo OE, Hajek L, Johanns S, Pacífico C, Sener-Aydemir A, Ricci S, Rivera-Chacon R, Castillo-Lopez E, Reisinger N, Zebeli Q, Kreuzer-Redmer S. Evaluation of circulating microRNA profiles in blood as potential candidate biomarkers in a subacute ruminal acidosis cow model - a pilot study. BMC Genomics 2023; 24:333. [PMID: 37328742 PMCID: PMC10273741 DOI: 10.1186/s12864-023-09433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Subacute ruminal acidosis (SARA) is a metabolic disorder often observed in high-yielding dairy cows, that are fed diets high in concentrates. We hypothesized that circulating miRNAs in blood of cows could serve as potential candidate biomarkers to detect animals with metabolic dysbalances such as SARA. MicroRNAs (miRNAs) are a class of small non-coding RNAs, serving as regulators of a plethora of molecular processes. To test our hypothesis, we performed a pilot study with non-lactating Holstein-Friesian cows fed a forage diet (FD; 0% concentrate, n = 4) or a high-grain diet (HG; 65% concentrate, n = 4) to induce SARA. Comprehensive profiling of miRNA expression in plasma and leucocytes were performed by next generation sequencing (NGS). The success of our model to induce SARA was evaluated based on ruminal pH and was evidenced by increased time spent with a pH threshold of 5.8 for an average period of 320 min/d. RESULTS A total of 520 and 730 miRNAs were found in plasma and leucocytes, respectively. From these, 498 miRNAs were shared by both plasma and leucocytes, with 22 miRNAs expressed exclusively in plasma and 232 miRNAs expressed exclusively in leucocytes. Differential expression analysis revealed 10 miRNAs that were up-regulated and 2 that were down-regulated in plasma of cows when fed the HG diet. A total of 63 circulating miRNAs were detected exclusively in the plasma of cows with SARA, indicating that these animals exhibited a higher number and diversity of circulating miRNAs. Considering the total read counts of miRNAs expressed when fed the HG diet, differentially expressed miRNAs ( log2 fold change) and known function, we have identified bta-miR-11982, bta-miR-1388-5p, bta-miR-12034, bta-miR-2285u, and bta-miR-30b-3p as potential candidates for SARA-biomarker in cows by NGS. These were further subjected to validation using small RNA RT-qPCR, confirming the promising role of bta-miR-30b-3p and bta-miR-2285. CONCLUSION Our data demonstrate that dietary change impacts the release and expression of miRNAs in systemic circulation, which may modulate post-transcriptional gene expression in cows undergoing SARA. Particularly, bta-miR-30b-3p and bta-miR-2285 might serve as promising candidate biomarker predictive for SARA and should be further validated in larger cohorts.
Collapse
Affiliation(s)
- O E Ojo
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Nutrigenomics Unit, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - L Hajek
- Nutrigenomics Unit, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - S Johanns
- Nutrigenomics Unit, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - C Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Biome Diagnostics GmbH, Vienna, Austria
| | - A Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - S Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - R Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - E Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - N Reisinger
- DSM, BIOMIN Research Center, Tulln an Der Donau, Austria
| | - Q Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - S Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria.
- Nutrigenomics Unit, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
30
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
31
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
32
|
Xie Y, Xu W, Jin Z, Zhao K. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Mater Today Bio 2023. [DOI: 10.1016/j.mtbio.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
33
|
Cramer T. Impact of dietary carbohydrate restriction on the pathobiology of Hepatocellular Carcinoma: The gut-liver axis and beyond. Semin Immunol 2023; 66:101736. [PMID: 36857893 DOI: 10.1016/j.smim.2023.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Despite decades of fiercely competitive research and colossal financial investments, the majority of patients with advanced solid cancers cannot be treated with curative intent. To improve this situation, conceptually novel treatment approaches are urgently needed. Cancer is increasingly appreciated as a systemic disease and numerous organismal factors are functionally linked to neoplastic growth, e.g. systemic metabolic dysregulation, chronic inflammation, intestinal dysbiosis and disrupted circadian rhythms. It is tempting to hypothesize that interventions targeting these processes could be of significant account for cancer patients. One important driver of tumor-supporting systemic derangements is inordinate consumption of simple and highly processed carbohydrates. This dietary pattern is causally linked to hyperinsulinemia, insulin resistance, chronic inflammation and intestinal dysbiosis, begging the pertinent question whether the adoption of dietary carbohydrate restriction can be beneficial for patients with cancer. This review summarizes the published data on the role of dietary carbohydrate restriction in the pathogenesis of Hepatocellular Carcinoma (HCC), the most frequent type of primary liver cancer. In addition to outlining the functional interplay between diet, the intestinal microbiome and immunity, the review underscores the importance of bile acids as interconnectors between the intestinal microbiota and immune cells.
Collapse
Affiliation(s)
- Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, 52074 Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Malsagova KA, Kopylov AT, Stepanov AA, Enikeev DV, Potoldykova NV, Balakin EI, Pustovoyt VI, Kaysheva AL. Molecular Profiling of Athletes Performing High-Intensity Exercises in Extreme Environments. Sports (Basel) 2023; 11:sports11020036. [PMID: 36828321 PMCID: PMC9963857 DOI: 10.3390/sports11020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the influence of high-intensity training under extreme conditions (T = 40 °C) on the metabolism and immunological reactions of athletes. Male triathletes (n = 11) with a high level of sports training performed load testing to failure (17 ± 2.7 min) and maximum oxygen consumption (64.1 ± 6.4 mL/min/kg). Blood plasma samples were collected before and immediately after exercise. Mass spectrometric metabolomic analysis identified 30 metabolites and 6 hormones in the plasma, of which 21 and 4 changed after exercise, respectively. Changes in the intermediate products of tricarboxylic and amino acids were observed (FC > 1.5) after exercise. The obtained data can be associated with the effect of physical activity on metabolism in athletes. Therefore, constant monitoring of the biochemical parameters of athletes can help coaches identify individual shortcomings in a timely manner and track changes, especially as the volume of training increases. In addition, it was revealed that the immunological reaction (manifestation of a hyperactive reaction to food components) is personalized in nature. Therefore, it is important for coaches and sports doctors to analyze and control the eating behavior of athletes to identify food intolerances or food allergies in a timely manner and develop an individual elimination diet.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Dmitry V. Enikeev
- Institute for Urology and Reproductive Health, First Moscow State Medical Sechenov University, 119992 Moscow, Russia
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, First Moscow State Medical Sechenov University, 119992 Moscow, Russia
| | - Evgenii I. Balakin
- State Research Center–Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Vasiliy I. Pustovoyt
- State Research Center–Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| |
Collapse
|
35
|
Yarhosseini F, Darand M, Sangsefidi ZS, Mozaffari‐Khosravi H, Hosseinzadeh M. Does anthocyanins consumption affect weight and body composition? A systematic review and meta-analysis of randomized controlled trials. Obes Sci Pract 2023; 9:42-58. [PMID: 36789026 PMCID: PMC9913187 DOI: 10.1002/osp4.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Anthocyanins (ACNs) are water-soluble plant pigments belong to flavonoids with beneficial effects on health and disease prevention. Some studies have examined the effect of ACNs on anthropometric and body composition indices, but the findings were inconsistent. This systematic review and meta-analysis aimed to investigate the effect of ACNs and sources rich in anthocyanins on body mass index (BMI), body weight (BW), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), percentage of fat mass (PFM) and fat free mass (FFM). Methods PubMed, Web of Science, Scopus, and Google Scholar were searched with no limitation until May 2021 to find relevant randomized controlled clinical trials (RCT). The risk of bias was assessed utilizing Cochrane collaboration's tool. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were obtained using a random effects model. Results A total of 31 RCTs (with 0.77-640 mg/day of ACNs supplementation for 28-90 days) with 1438 participants were included. No significant effect was found in BMI, WC, HC, WHR, PFM and FFM after ACNs consumption. Conclusions The results showed that ACNs did not significantly affect anthropometric and body composition parameters. Further high-quality RCTs are required to validate these findings.
Collapse
Affiliation(s)
- Faezeh Yarhosseini
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mina Darand
- Department of Clinical NutritionSchool of Nutrition and Food ScienceFood Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Zohreh Sadat Sangsefidi
- Department of NutritionSchool of Public HealthNorth Khorasan University of Medical SciencesBojnurdIran
| | - Hassan Mozaffari‐Khosravi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
36
|
Kim JE, Song HJ, Choi YJ, Jin YJ, Roh YJ, Seol A, Park SH, Park JM, Kang HG, Hwang DY. Improvement of the intestinal epithelial barrier during laxative effects of phlorotannin in loperamide-induced constipation of SD rats. Lab Anim Res 2023; 39:1. [PMID: 36597137 PMCID: PMC9808941 DOI: 10.1186/s42826-022-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruptions of the intestinal epithelial barrier (IEB) are frequently observed in various digestive diseases, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). This study assessed the improvement in the IEB during the laxative activity of phlorotannin (Pt) harvested from Ecklonia cava in constipation by examining the changes in the expression of the regulatory proteins for the tight junction (TJ) and adherens junction (AJ), and inflammatory cytokines in Sprague Dawley (SD) rats with loperamide (Lm)-induced constipation after a Pt treatment. RESULTS The Pt treatment induced laxative activity, including the improvement of feces-related parameters, gastrointestinal transit rate, and histological structure of the mid colon in Lm-treated SD rats. In addition, significant recovery effects were detected in the histology of IEB, including the mucus layer, epithelial cells, and lamina propria in the mid colon of Lm + Pt treated SD rats. The expression levels of E-cadherin and p120-catenin for AJ and the ZO-1, occludin, and Claudin-1 genes for TJ in epithelial cells were improved remarkably after the Pt treatment, but the rate of increase was different. Furthermore, the Pt treatment increased the expression level of several inflammatory cytokines, such as TNF-α, IL-6, IL-1β, IL-13, and IL-4 in Lm + Pt treated SD rats. CONCLUSIONS These results provide the first evidence that the laxative activity of Pt in SD rats with Lm-induced constipation phenotypes involve improvements in the IEB.
Collapse
Affiliation(s)
- Ji Eun Kim
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Hee Jin Song
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Yun Ju Choi
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - You Jeong Jin
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Yu Jeong Roh
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Ayun Seol
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - So Hae Park
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Ju Min Park
- grid.262229.f0000 0001 0719 8572Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 46241 Korea
| | - Hyun Gu Kang
- grid.254229.a0000 0000 9611 0917Veterinary Medical Center, Department of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 Korea
| | - Dae Youn Hwang
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| |
Collapse
|
37
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Nagashima K, Fujii N, Oka S, Yamashita A, Itagaki F, Yasuno N, Watanabe M, Kishimoto S. Peptides Derived from Soybean β-Conglycinin Induce the Migration of Human Peripheral Polymorphonuclear Leukocytes. Biol Pharm Bull 2023; 46:898-906. [PMID: 37394641 DOI: 10.1248/bpb.b23-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Food-derived peptides have various biological activities. When food proteins are ingested orally, they are digested into peptides by endogenous digestive enzymes and absorbed by the immune cell-rich intestinal tract. However, little is known about the effects of food-derived peptides on the motility of human immune cells. In this study, we aimed to understand the effects of peptides derived from a soybean protein β-conglycinin on the motility of human peripheral polymorphonuclear leukocytes. We illustrated that MITL and MITLAIPVNKPGR, produced by digestion using in-vivo enzymes (trypsin and pancreatic elastase) of β-conglycinin, induces the migration of dibutyryl cAMP (Bt2 cAMP)-differentiated human promyelocytic leukemia 60 (HL-60) cells and human polymorphonuclear leukocytes in a dose- and time-dependent manner. This migration was more pronounced in Bt2 cAMP-differentiated HL-60 cells; mRNA expression of formyl peptide receptor (FPR) 1 increased significantly than in all-trans-retinoic acid (ATRA)-differentiated HL-60 cells. This migration was inhibited by tert-butoxycarbonyl (Boc)-MLP, an inhibitor of FPR, and by pretreatment with pertussis toxin (PTX). However, the effect was weak when treated with WRW4, a selective inhibitor of the FPR2. We then demonstrated that MITLAIPVNKPGR induced intracellular calcium responses in human polymorphonuclear leukocytes and Bt2 cAMP-HL60 cells. Furthermore, pre-treatment by fMLP desensitized the calcium response of MITLAIPVNKPGR in these cells. From the above, MITLAIPVNKPGR and MITL derived from soybean β-conglycinin induced polymorphonuclear leukocyte migration via the FPR1-dependent mechanism. We found chemotactic peptides to human polymorphonuclear leukocytes, which are the endogenous enzyme digests of soybean protein.
Collapse
Affiliation(s)
- Kazuki Nagashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | | | - Saori Oka
- Laboratory of Molecular Health Science, Faculty of Pharma-Sciences, Teikyo University
| | - Atsushi Yamashita
- Laboratory of Biological Chemistry, Faculty of Pharma-Sciences, Teikyo University
| | - Fumio Itagaki
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | - Nobuhiro Yasuno
- Laboratory of Hospital Pharmacy, Faculty of Pharma-Science, Teikyo University
| | - Machiko Watanabe
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | - Seishi Kishimoto
- Radioisotope Research Center, Teikyo University
- Research Center for Pharmaceutical Education, Faculty of Pharma-Sciences, Teikyo University
| |
Collapse
|
39
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
40
|
Shi J, Wang Y, Cheng L, Wang J, Raghavan V. Gut microbiome modulation by probiotics, prebiotics, synbiotics and postbiotics: a novel strategy in food allergy prevention and treatment. Crit Rev Food Sci Nutr 2022; 64:5984-6000. [PMID: 36576159 DOI: 10.1080/10408398.2022.2160962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food allergy has caused lots of global public health issues, particularly in developed countries. Presently, gut microbiota has been widely studied on allergy, while the role of dysbiosis in food allergy remains unknown. Scientists found that changes in gut microbial compositions and functions are strongly associated with a dramatic increase in the prevalence of food allergy. Altering microbial composition is crucial in modulating food antigens' immunogenicity. Thus, the potential roles of probiotics, prebiotics, synbiotics, and postbiotics in affecting gut bacteria communities and the immune system, as innovative strategies against food allergy, begins to attract high attention of scientists. This review briefly summarized the mechanisms of food allergy and discussed the role of the gut microbiota and the use of probiotics, prebiotics, synbiotics, and postbiotics as novel therapies for the prevention and treatment of food allergy. The perspective studies on the development of novel immunotherapy in food allergy were also described. A better understanding of these mechanisms will facilitate the development of preventive and therapeutic strategies for food allergy.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Tyszka M, Maciejewska-Markiewicz D, Biliński J, Lubas A, Stachowska E, Basak GW. Increased Intestinal Permeability and Stool Zonulin, Calprotectin and Beta-Defensin-2 Concentrations in Allogenic Hematopoietic Cell Transplantation Recipients. Int J Mol Sci 2022; 23:ijms232415962. [PMID: 36555600 PMCID: PMC9781277 DOI: 10.3390/ijms232415962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Significant progress has been made in understanding the connection between intestinal barrier function and allogenic hematopoietic cell transplantation (allo-HCT) recipients' outcomes. The purpose of this study was to further evaluate gut barrier permeability and other potential intestinal barrier disruption markers in the allo-HCT setting. Fifty-one patients were enrolled in the study. Intestinal permeability was assessed with the sugar absorption test and faecal concentrations of the zonulin, calprotectin and beta-defensin-2 levels in the peri-transplantation period. Most patients undergoing allo-HCT in our department had a disrupted intestinal barrier at the baseline, which was associated with older age and higher Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI). Regardless of this, we observed a further increase in gut barrier permeability after allo-HCT in most patients. However, there was no association between permeability assay and other markers (zonulin, calprotectin and beta-defensin-2). Patients with acute GVHD had significantly higher median calprotectin concentrations after allo-HCT compared with the patients without this complication. Our findings indicate that gut barrier damage develops prior to allo-HCT with progression after the procedure and precedes further complications, but did not prove other markers to be useful surrogates of intestinal permeability.
Collapse
Affiliation(s)
- Martyna Tyszka
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: (M.T.); (D.M.-M.)
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
- Correspondence: (M.T.); (D.M.-M.)
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Arkadiusz Lubas
- Department of Internal Medicine, Nephrology and Dialysis, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
42
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
43
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
44
|
Iribarren C, Nordlander S, Sundin J, Isaksson S, Savolainen O, Törnblom H, Magnusson MK, Simrén M, Öhman L. Fecal luminal factors from patients with irritable bowel syndrome induce distinct gene expression of colonoids. Neurogastroenterol Motil 2022; 34:e14390. [PMID: 35485994 PMCID: PMC9786662 DOI: 10.1111/nmo.14390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alteration of the host-microbiota cross talk at the intestinal barrier may participate in the pathophysiology of irritable bowel syndrome (IBS). Therefore, we aimed to determine effects of fecal luminal factors from IBS patients on the colonic epithelium using colonoids. METHODS Colon-derived organoid monolayers, colonoids, generated from a healthy subject, underwent stimulation with fecal supernatants from healthy subjects and IBS patients with predominant diarrhea, phosphate-buffered saline (PBS), or lipopolysaccharide (LPS). Cytokines in cell cultures and fecal LPS were measured by ELISA and mRNA gene expression of monolayers was analyzed using Qiagen RT2 Profiler PCR Arrays. The fecal microbiota profile was determined by the GA-map™ dysbiosis test and the fecal metabolite profile was analyzed by untargeted liquid chromatography/mass spectrometry. KEY RESULTS Colonoid monolayers stimulated with fecal supernatants from healthy subjects (n = 7), PBS (n = 4) or LPS (n = 3) presented distinct gene expression profiles, with some overlap (R2 Y = 0.70, Q2 = 0.43). Addition of fecal supernatants from healthy subjects and IBS patients (n = 9) gave rise to different gene expression profiles of the colonoid monolayers (R2 Y = 0.79, Q2 = 0.64). Genes (n = 22) related to immune response (CD1D, TLR5) and barrier integrity (CLDN15, DSC2) contributed to the separation. Levels of proinflammatory cytokines in colonoid monolayer cultures were comparable when stimulated with fecal supernatants from either donor types. Fecal microbiota and metabolite profiles, but not LPS content, differed between the study groups. CONCLUSIONS Fecal luminal factors from IBS patients induce a distinct colonic epithelial gene expression, potentially reflecting the disease pathophysiology. The culture of colonoids from healthy subjects with fecal supernatants from IBS patients may facilitate the exploration of IBS related intestinal micro-environmental and barrier interactions.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sofia Nordlander
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johanna Sundin
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Stefan Isaksson
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry InfrastructureDepartment of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Hans Törnblom
- Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria K. Magnusson
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Magnus Simrén
- Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Center for Functional GI and Motility DisordersUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Lena Öhman
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
45
|
Negi S, Hashimoto-Hill S, Alenghat T. Neonatal microbiota-epithelial interactions that impact infection. Front Microbiol 2022; 13:955051. [PMID: 36090061 PMCID: PMC9453604 DOI: 10.3389/fmicb.2022.955051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite modern therapeutic developments and prophylactic use of antibiotics during birth or in the first few months of life, enteric infections continue to be a major cause of neonatal mortality and morbidity globally. The neonatal period is characterized by initial intestinal colonization with microbiota and concurrent immune system development. It is also a sensitive window during which perturbations to the environment or host can significantly impact colonization by commensal microbes. Extensive research has demonstrated that these early life alterations to the microbiota can lead to enhanced susceptibility to enteric infections and increased systemic dissemination in newborns. Various contributing factors continue to pose challenges in prevention and control of neonatal enteric infections. These include alterations in the gut microbiota composition, impaired immune response, and effects of maternal factors. In addition, there remains limited understanding for how commensal microbes impact host-pathogen interactions in newborns. In this review, we discuss the recent recognition of initial microbiota-epithelial interactions that occur in neonates and can regulate susceptibility to intestinal infection. These studies suggest the development of neonatal prophylactic or therapeutic regimens that include boosting epithelial defense through microbiota-directed interventions.
Collapse
|
46
|
Wang Y, Fernando GSN, Sergeeva NN, Vagkidis N, Chechik V, Do T, Marshall LJ, Boesch C. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11081627. [PMID: 36009345 PMCID: PMC9405451 DOI: 10.3390/antiox11081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to compare the absorption and transport patterns of three main betalains, betanin, vulgaxanthin I and indicaxanthin, into intestinal epithelial cells and to assess their distinct molecular effects on inflammatory and redox-related cell signalling in association with their radial scavenging potencies. All three betalains showed anti-inflammatory effects (5–80 μM), reflected by attenuated transcription of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO-synthase. Concomitant increases in antioxidant enzymes such as heme oxygenase-1 were only observed for betanin. Moreover, betanin uniquely demonstrated a potent dose-dependent radical scavenging activity in EPR and cell-based assays. Results also indicated overall low permeability for the three betalains with Papp of 4.2–8.9 × 10−7 cm s−1. Higher absorption intensities of vulgaxanthin and indicaxanthin may be attributed to smaller molecular sizes and greater lipophilicity. In conclusion, betanin, vulgaxanthin I and indicaxanthin have differentially contributed to lowering inflammatory markers and mitigating oxidative stress, implying the potential to ameliorate inflammatory intestinal disease. Compared with two betaxanthins, the greater efficacy of betanin in scavenging radical and promoting antioxidant response might, to some extent, compensate for its poorer absorption efficiency, as demonstrated by the Caco-2 cell model.
Collapse
Affiliation(s)
- Yunqing Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Ganwarige Sumali N. Fernando
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalia N. Sergeeva
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Design, Faculty of Art, Humanities and Cultures, University of Leeds, Leeds LS2 9JT, UK
| | | | - Victor Chechik
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | - Lisa J. Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-1133430268
| |
Collapse
|
47
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
48
|
Gregg B, Ellsworth L, Pavela G, Shah K, Berger PK, Isganaitis E, VanOmen S, Demerath EW, Fields DA. Bioactive compounds in mothers milk affecting offspring outcomes: A narrative review. Pediatr Obes 2022; 17:e12892. [PMID: 35060344 PMCID: PMC9177518 DOI: 10.1111/ijpo.12892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Compared to the exhaustive study of transgenerational programming of obesity and diabetes through exposures in the prenatal period, postnatal programming mechanisms are understudied, including the potential role of breast milk composition linking maternal metabolic status (body mass index and diabetes) and offspring growth, metabolic health and future disease risk. METHODS This narrative review will principally focus on four emergent bioactive compounds [microRNA's (miRNA), lipokines/signalling lipids, small molecules/metabolites and fructose] that, until recently were not known to exist in breast milk. The objective of this narrative review is to integrate evidence across multiple fields of study that demonstrate the importance of these compositional elements of breast milk during lactation and the subsequent effect of breast milk components on the health of the infant. RESULTS Current knowledge on the presence of miRNA's, lipokines/signalling lipids, small molecules/metabolites and fructose in breast milk and their associations with infant outcomes is compelling, but far from resolved. Two themes emerge: (1) maternal metabolic phenotypes are associated with these bioactives and (2) though existing in milk at low concentrations, they are also associated with offspring growth and body composition. CONCLUSION Breast milk research is gaining momentum though we must remain focused on understanding how non-nutritive bioactive components are affected by the maternal phenotype, how they subsequently impact infant outcomes. Though early, there is evidence to suggest fructose is associated with fat mass in the 1st months of life whereas 12,13 diHOME (brown fat activator) and betaine are negatively associated with early adiposity and growth.
Collapse
Affiliation(s)
- Brigid Gregg
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Ellsworth
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gregory Pavela
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kruti Shah
- Department of Pediatrics, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (USA)
| | - Sheri VanOmen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - David A. Fields
- Department of Pediatrics, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Correspondence to: Address: University of Oklahoma Health Sciences Center, 1200 Children's Avenue Suite 4500, Oklahoma City, OK73104, USA
| |
Collapse
|
49
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
50
|
Sittipo P, Choi J, Lee S, Lee YK. The function of gut microbiota in immune-related neurological disorders: a review. J Neuroinflammation 2022; 19:154. [PMID: 35706008 PMCID: PMC9199126 DOI: 10.1186/s12974-022-02510-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the importance of microbiota in the regulation of gut–brain communication in immune-related neurological disorders. The gastrointestinal (GI) tract hosts a diverse abundance of microbiota, referred to as gut microbiota. The gut microbiota plays a role in the maintenance of GI tract homeostasis and is likely to have multiple effects on brain development and function. The bidirectional communication between the gut microbiota and the brain is termed the microbiota–gut–brain axis. This communication between the intestine and the brain appears to affect human health and behavior, as certain animal studies have demonstrated the association between alterations in the gut microbiota and neurological disorders. Most insights about the microbiota–gut–brain axis come from germ-free animal models, which reveal the importance of gut microbiota in neural function. To date, many studies have observed the impact of the gut microbiota in patients with neurological disorders. Although many studies have investigated the microbiota–gut–brain axis, there are still limitations in translating this research to humans given the complexities of the relationship between the gut microbiota and the brain. In this review, we discuss emerging evidence of how the microbiota–gut–brain axis regulates brain development and function through biological networks, as well as the possible contribution of the microbiota–gut–brain axis in immune-related neurological disorders.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jaeyoon Choi
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|