1
|
Peng X, Li S, Zeng A, Song L. Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol 2024; 229:116511. [PMID: 39222714 DOI: 10.1016/j.bcp.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Altered metabolism is a hallmark of cancer, and reprogramming of energy metabolism, known as the "Warburg effect", has long been associated with cancer. Cancer cells use the process of glycolysis to quickly manufacture energy from glucose, pyruvic acid, and lactate, which in turn accelerates the growth of cancer and glycolysis becomes a key target for anti-cancer therapies. Recent groundbreaking discoveries regarding long noncoding RNAs (lncRNAs) have opened a new chapter in the mechanism of cancer occurrence. It is widely recognized that lncRNAs regulate energy metabolism through glycolysis in cancer cells. LncRNAs have been demonstrated to engage in several cancer processes such as proliferation, apoptosis, migration, invasion, and chemoresistance, whereas glycolysis is enhanced or inhibited by the dysregulation of lncRNAs. As a result, cancer survival and development are influenced by different signaling pathways. In this review, we summarize the roles of lncRNAs in a variety of cancers and describe the mechanisms underlying their role in glycolysis. Additionally, the predictive potential of glycolysis and lncRNAs in cancer therapy is discussed.
Collapse
Affiliation(s)
- Xinyi Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Shuhao Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, P.R. China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China.
| |
Collapse
|
2
|
Mishra A, Mishra S. Metastasis-Associated Lung Adenocarcinoma Transcript 1 ( MALAT1) lncRNA Conformational Dynamics in Complex with RNA-Binding Protein with Serine-Rich Domain 1 (RNPS1) in the Pan-cancer Splicing and Gene Expression. ACS OMEGA 2024; 9:42212-42226. [PMID: 39431102 PMCID: PMC11483381 DOI: 10.1021/acsomega.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Alternative splicing events increase the transcriptomic and proteomic complexity in cancers. Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a highly conserved lncRNA, is widely known to promote cancer development, one mechanism for which may be through the regulation of alternative splicing and, thereby, gene expression. Its regulatory interactions with proteins have been a subject of much interest, yet little research has been carried out on the mechanisms adopted. It has been observed that MALAT1 binds to RNA-binding protein with serine-rich domain 1 (RNPS1), being colocalized in the nuclear speckles, and together, these two binding partners may regulate alternative splicing. Upregulated RNPS1 is predicted to play a key role in the pan-cancer development. Experimental tertiary structure of full-length MALAT1 is currently lacking despite the availability of the 3D structure of 3' expression and nuclear retention element. We hypothesize that the computationally modeled tertiary structures of the specific binding motifs in the M-region, E-region, and full-length structures of MALAT1 may adopt a modular structure and bind to the RNPS1 loop region of RS/P domain involved in exon skipping, interacting in a manner fully consistent with the biochemical experiments. Extensive observations using the powerful molecular dynamics (MD) simulations of MALAT1 regions bound to RNPS1 suggested that all three regions form interactive, yet stable complexes. The ranking of the MM-GBSA- and MM-PBSA-derived binding free energies between these complexes corroborated well in the MD simulations and experiments. Energy decomposition analyses suggested that arginines in the RNPS1 protein are among the major contributors toward the binding free energies as calculated by MM-GBSA present in the Amber package; while among the nucleotides, the major contributors were nucleotides with G and A nucleobases, with more contributory effect in comparison to arginines, across the bound M-region, E-region, and full-length MALAT1. This suggests that specific purines play a greater role in the complex formation, in a loop-specific manner, and the more proactive approach in complexation tilts toward MALAT1. To the best of our knowledge, our studies are the first studies taking a unique approach, utilizing the binding motifs to deduce a tertiary structure of MALAT1, toward our understanding of the lncRNA-protein interactions, stability, and binding on a structural basis. The therapeutic implications of targeting this complex formation to regulate splicing and hence, oncogenesis, is further envisaged.
Collapse
Affiliation(s)
- Aanchal Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| | - Seema Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| |
Collapse
|
3
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
4
|
Wang Y, Shao W. LncRNA HOXA‑AS2 promotes the progression of epithelial ovarian cancer via the regulation of miR‑372. Oncol Lett 2024; 28:394. [PMID: 38966577 PMCID: PMC11223025 DOI: 10.3892/ol.2024.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024] Open
Abstract
Long non-coding RNAs, such as homeobox A cluster antisense RNA2 (HOXA-AS2) are understood to be involved in tumor growth and development of numerous cancers. However, the role of HOXA-AS2 in the progression of human epithelial ovarian cancer (EOC) remains unclear. In the present study, the expression of HOXA-AS2 was found to be upregulated in EOC tissues compared with noncancerous tissues, and to be strongly correlated to an advanced Federation International of Gynecology and Obstetrics grade and poor prognosis. Knockdown of HOXA-AS2 in the EOC cells inhibited cell proliferation, invasion and migration, as well as inducing cell apoptosis. The ENCORI database was used to screen the microRNAs (miRNAs/miRs) that bound to HOXA-AS2, and one was tested using RNA pull-down and luciferase reporter assays. It was demonstrated that HOXA-AS2 functioned through the competing endogenous RNA mechanism to regulate miR-372. It was also demonstrated that the downregulation of miR-372 reversed the inhibitory effects of the knockdown of HOXA-AS2 in EOC cells. These results indicated that HOXA-AS2 promoted EOC progression by regulating the miR-372, which suggests that HOXA-AS2 may be a therapy target for EOC.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenjing Shao
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
7
|
Mohammad T, Zolotovskaia MA, Suntsova MV, Buzdin AA. Cancer fusion transcripts with human non-coding RNAs. Front Oncol 2024; 14:1415801. [PMID: 38919532 PMCID: PMC11196610 DOI: 10.3389/fonc.2024.1415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.
Collapse
Affiliation(s)
- Tharaa Mohammad
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Anton A. Buzdin
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Sun DZ, Sun ZL, Liu M, Yong SH. LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering. Interdiscip Sci 2024; 16:378-391. [PMID: 38206558 DOI: 10.1007/s12539-023-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Long noncoding RNAs (lncRNAs) have significant regulatory roles in gene expression. Interactions with proteins are one of the ways lncRNAs play their roles. Since experiments to determine lncRNA-protein interactions (LPIs) are expensive and time-consuming, many computational methods for predicting LPIs have been proposed as alternatives. In the LPIs prediction problem, there commonly exists the imbalance in the distribution of positive and negative samples. However, there are few existing methods that give specific consideration to this problem. In this paper, we proposed a new clustering-based LPIs prediction method using segmented k-mer frequencies and multi-space clustering (LPI-SKMSC). It was dedicated to handling the imbalance of positive and negative samples. We constructed segmented k-mer frequencies to obtain global and local features of lncRNA and protein sequences. Then, the multi-space clustering was applied to LPI-SKMSC. The convolutional neural network (CNN)-based encoders were used to map different features of a sample to different spaces. It used multiple spaces to jointly constrain the classification of samples. Finally, the distances between the output features of the encoder and the cluster center in each space were calculated. The sum of distances in all spaces was compared with the cluster radius to predict the LPIs. We performed cross-validation on 3 public datasets and LPI-SKMSC showed the best performance compared to other existing methods. Experimental results showed that LPI-SKMSC could predict LPIs more effectively when faced with imbalanced positive and negative samples. In addition, we illustrated that our model was better at uncovering potential lncRNA-protein interaction pairs.
Collapse
Affiliation(s)
- Dian-Zheng Sun
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China
| | - Zhan-Li Sun
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China.
| | - Mengya Liu
- School of Computer Science and Technology, Anhui University, Hefei, 230601, China
| | - Shuang-Hao Yong
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Lu J, Xu L, Wang Y, Guan B. lncRNAs regulate cell stemness in physiology and pathology during differentiation and development. AMERICAN JOURNAL OF STEM CELLS 2024; 13:59-74. [PMID: 38765805 PMCID: PMC11101988 DOI: 10.62347/vhvu7361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 05/22/2024]
Abstract
Long non-coding RNA (lncRNA) are an important class of ubiquitous genes involved in diverse biological functions. lncRNAs, defined as noncoding RNAs with a length exceeding 200 nucleotides, are abundantly expressed throughout cells; however, their precise functions remain largely elusive. From embryonic stem cell proliferation and differentiation to cancer cell proliferation and invasion, lncRNAs play multifaceted regulatory roles across various cellular stages. Moreover, lncRNAs participate in the regulation of differentiation and regeneration during cellular development processes while also playing a pivotal role in maintaining and regulating cell stemness. In this article, we comprehensively review the current knowledge regarding lncRNAs in this field, discussing their biological functions and mechanisms underlying stemness regulation along with the factors implicated in these processes. We emphasize the growing evidence supporting the significance of lncRNAs in governing cell stemness while indicating that disruptions or mutations within them may serve as fundamental causes for certain developmental disorders.
Collapse
Affiliation(s)
- Jie Lu
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Li Xu
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Bing Guan
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Saleh RO, Yuseran H, Mansouri S, Kareem AH, Shakir MN, Alasheqi MQ, Akhmedovna NN, Dilmurodovna SI, Alawadi A, Alsalamy A. Two effective factors in cancer: Investigating the effect of ncRNAs in cancer and also the effect of nanotherapy in its treatment. Pathol Res Pract 2024; 256:155218. [PMID: 38458087 DOI: 10.1016/j.prp.2024.155218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer remains one of the most pressing health challenges globally, necessitating ongoing research into innovative therapeutic approaches. This article explores two critical factors influencing cancer: ncRNAs and nanotherapy. The role of ncRNAs, including microRNAs and long non-coding RNAs, in cancer pathogenesis, progression, and treatment resistance is elucidated. Additionally, the potential of nanotherapy, leveraging nanoscale materials for targeted drug delivery and enhanced therapeutic efficacy, is investigated. By comprehensively analyzing the molecular mechanisms underlying ncRNA dysregulation and the promise of nanotherapy in cancer treatment, this article aims to provide valuable insights into novel therapeutic strategies for combating cancer.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Hariadi Yuseran
- Department of Obstetry and Ginecology, Lambung Mangkurat University Banjarmasin, Indonesia.
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | | | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
11
|
Xi Z, Huang H, Hu J, Yu Y, Ma X, Xu M, Ming J, Li L, Zhang H, Chen H, Huang T. LINC00571 drives tricarboxylic acid cycle metabolism in triple-negative breast cancer through HNRNPK/ILF2/IDH2 axis. J Exp Clin Cancer Res 2024; 43:22. [PMID: 38238853 PMCID: PMC10795234 DOI: 10.1186/s13046-024-02950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
- General Hospital Of Central Theater Command and Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
He T, Peng J, Yang S, Liu D, Gao S, Zhu Y, Chai Z, Lee BC, Wei R, Wang J, Liu Z, Jin J. SINE-Associated LncRNA SAWPA Regulates Porcine Zygotic Genome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307505. [PMID: 37984872 PMCID: PMC10787077 DOI: 10.1002/advs.202307505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
In mice, retrotransposon-associated long noncoding RNAs (lncRNA) play important regulatory roles in pre-implantation development; however, it is largely unknown whether they function in the pre-implantation development in pigs. The current study aims to screen for retrotransposon-associated lncRNA in porcine early embryos and identifies a porcine 8-cell embryo-specific SINE-associated nuclear long noncoding RNA named SAWPA. SAWPA is essential for porcine embryonic development as depletion of SAWPA results in a developmental arrest at the 8-cell stage, accompanied by the inhibition of the JNK-MAPK signaling pathway. Mechanistically, SAWPA works in trans as a transcription factor for JNK through the formation of an RNA-protein complex with HNRNPA1 and MED8 binding the SINE elements upstream of JNK. Therefore, as the first functional SINE-associated long noncoding RNAs in pigs, SAWPA provides novel insights for the mechanism research on retrotransposons in mammalian pre-implantation development.
Collapse
Affiliation(s)
- Tianyao He
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jinyu Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Dongsong Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shuang Gao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Yanlong Zhu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhuang Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Byeong Chun Lee
- Department of Theriogenology and BiotechnologyCollege of Veterinary MedicineSeoul National UniversitySeoul08826South Korea
| | - Renyue Wei
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jiaqiang Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jun‐Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
13
|
Sosnovski KE, Braun T, Amir A, BenShoshan M, Abbas-Egbariya H, Ben-Yishay R, Anafi L, Avivi C, Barshack I, Denson LA, Haberman Y. Reduced LHFPL3-AS2 lncRNA expression is linked to altered epithelial polarity and proliferation, and to ileal ulceration in Crohn disease. Sci Rep 2023; 13:20513. [PMID: 37993670 PMCID: PMC10665440 DOI: 10.1038/s41598-023-47997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.
Collapse
Affiliation(s)
- Katya E Sosnovski
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rakefet Ben-Yishay
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Liat Anafi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camilla Avivi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Ho WY, Chak LL, Hor JH, Liu F, Diaz-Garcia S, Chang JC, Sanford E, Rodriguez MJ, Alagappan D, Lim SM, Cho YL, Shimizu Y, Sun AX, Tyan SH, Koo E, Kim SH, Ravits J, Ng SY, Okamura K, Ling SC. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023; 26:108152. [PMID: 37920668 PMCID: PMC10618709 DOI: 10.1016/j.isci.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Li-Ling Chak
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Fujia Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Durgadevi Alagappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Su Min Lim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yuji Shimizu
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Alfred Xuyang Sun
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Edward Koo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Seung Hyun Kim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shi-Yan Ng
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Katsutomo Okamura
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
15
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
17
|
Morselli Gysi D, Barabási AL. Noncoding RNAs improve the predictive power of network medicine. Proc Natl Acad Sci U S A 2023; 120:e2301342120. [PMID: 37906646 PMCID: PMC10636370 DOI: 10.1073/pnas.2301342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
Network medicine has improved the mechanistic understanding of disease, offering quantitative insights into disease mechanisms, comorbidities, and novel diagnostic tools and therapeutic treatments. Yet, most network-based approaches rely on a comprehensive map of protein-protein interactions (PPI), ignoring interactions mediated by noncoding RNAs (ncRNAs). Here, we systematically combine experimentally confirmed binding interactions mediated by ncRNA with PPI, constructing a comprehensive network of all physical interactions in the human cell. We find that the inclusion of ncRNA expands the number of genes in the interactome by 46% and the number of interactions by 107%, significantly enhancing our ability to identify disease modules. Indeed, we find that 132 diseases lacked a statistically significant disease module in the protein-based interactome but have a statistically significant disease module after inclusion of ncRNA-mediated interactions, making these diseases accessible to the tools of network medicine. We show that the inclusion of ncRNAs helps unveil disease-disease relationships that were not detectable before and expands our ability to predict comorbidity patterns between diseases. Taken together, we find that including noncoding interactions improves both the breath and the predictive accuracy of network medicine.
Collapse
Affiliation(s)
- Deisy Morselli Gysi
- Network Science Institute, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- US Department of Veteran Affairs, Boston, MA02130
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- US Department of Veteran Affairs, Boston, MA02130
- Department of Network and Data Science, Central European University, Budapest1051, Hungary
| |
Collapse
|
18
|
Chen S, Zhou Y, Peng P, Xu L, Tang Q, Chen W, Gu W. SNHG15-Mediated Localization of Nucleolin at the Cell Protrusions Regulates CDH2 mRNA Expression and Cell Invasion. Int J Mol Sci 2023; 24:15600. [PMID: 37958584 PMCID: PMC10650932 DOI: 10.3390/ijms242115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
LncRNAs are emerging as important regulators of gene expression by controlling transcription in the nucleus and by modulating mRNA translation in the cytoplasm. In this study, we reveal a novel function of lncRNA SNHG15 in mediating breast cancer cell invasion through regulating the local translation of CDH2 mRNA. We show that SNHG15 preferentially localizes at the cellular protrusions or cell leading edge and that this localization is directed by IMP1, a multifunctional protein involved in many aspects of RNA regulation. We demonstrate that SNHG15 also forms a complex with nucleolin, allowing nucleolin to be co-transported with SNHG15 to the cell protrusions, where the accumulated nucleolin is able to bind to CDH2 mRNA. Interaction with nucleolin stabilizes local CDH2 mRNA and regulates its translation, thus promoting cell invasive potential. Our findings reveal an underlying mechanism by which lncRNA could serve as a carrier to transport a protein regulator into a specific cell compartment to enhance target mRNA expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Gu
- Key Immunopathology Laboratory of Guangdong Province, Department of Pathophysiology, Shantou University Medical College, Shantou 515041, China; (S.C.); (Y.Z.); (P.P.); (L.X.); (Q.T.); (W.C.)
| |
Collapse
|
19
|
Ren G, Li H, Hong D, Hu F, Jin R, Wu S, Sun W, Jin H, Zhao L, Zhang X, Liu D, Huang C, Huang H. LINC00955 suppresses colorectal cancer growth by acting as a molecular scaffold of TRIM25 and Sp1 to Inhibit DNMT3B-mediated methylation of the PHIP promoter. BMC Cancer 2023; 23:898. [PMID: 37742010 PMCID: PMC10518100 DOI: 10.1186/s12885-023-11403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Long non-coding RNAs play an important role in the development of colorectal cancer (CRC), while many CRC-related lncRNAs have not yet been identified. METHODS The relationship between the expression of LINC00955 (Long Intergenic Non-protein Coding RNA 955) and the prognosis of colorectal cancer patients was analyzed using the sequencing results of the TCGA database. LINC00955 expression levels were measured using qRT-PCR. The anti-proliferative activity of LINC00955 was evaluated using CRC cell lines in vitro and xenograft models in nude mice in vivo. The interaction of TRIM25-Sp1-DNMT3B-PHIP-CDK2 was analyzed by western blotting, protein degradation experiment, luciferase, RNA-IP, RNA pull-down assays and immunohistochemically analysis. The biological roles of LINC00955, tripartite motif containing 25 (TRIM25), Sp1 transcription factor (Sp1), DNA methyltransferase 3 beta (DNMT3B), pleckstrin homology domain interacting protein (PHIP), cyclin dependent kinase 2 (CDK2) in colorectal cancer cells were analyzed using ATP assays, Soft agar experiments and EdU assays. RESULTS The present study showed that LINC00955 is downregulated in CRC tissues, and such downregulation is associated with poor prognosis of CRC patients. We found that LINC00955 can inhibit CRC cell growth both in vitro and in vivo. Evaluation of its mechanism of action showed that LINC00955 acts as a scaffold molecule that directly promotes the binding of TRIM25 to Sp1, and promotes ubiquitination and degradation of Sp1, thereby attenuating transcription and expression of DNMT3B. DNMT3B inhibition results in hypomethylation of the PHIP promoter, in turn increasing PHIP transcription and promoting ubiquitination and degradation of CDK2, ultimately leading to G0/G1 growth arrest and inhibition of CRC cell growth. CONCLUSIONS These findings indicate that downregulation of LINC00955 in CRC cells promotes tumor growth through the TRIM25/Sp1/DNMT3B/PHIP/CDK2 regulatory axis, suggesting that LINC00955 may be a potential target for the therapy of CRC.
Collapse
Affiliation(s)
- Ganglin Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongjia Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongxiang Liu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
20
|
Zheng G, Zhu Y, Xu L, Chen S, Zhang X, Li W, Chen W, Zhou Y, Gu W. LncRNA MACC1-AS1 associates with DDX5 to modulate MACC1 transcription in breast cancer cells. iScience 2023; 26:107642. [PMID: 37664587 PMCID: PMC10474461 DOI: 10.1016/j.isci.2023.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/31/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
MACC1 is a master oncogene involved in multiple aspects of cancer metastasis in a broad variety of tumors. However, the molecular mechanism by which MACC1 transcription is regulated remains unclear. Here, we show that in breast cancer cells, lncRNA MACC1-AS1 serves as a cis-factor to up-regulate MACC1 transcription and this regulation increases the cell proliferation potential. Mechanistically, MACC1-AS1 forms a complex with DEAD-Box helicase 5 (DDX5) and simultaneously interacts with the distal region of the MACC1 promoter. The interaction allows its associated DDX5 to spatially contact the MACC1 core promoter and shift from MACC1-AS1 to the core promoter. Moreover, binding of DDX5 to the core promoter results in local recruitment of the transcription factor SP-1, thus enhancing MACC1 transcription. Our findings reveal a molecular mechanism by which MACC1-AS1 cis-regulates MACC1 transcription by interacting with the distal promoter region and delivering DDX5 to the core-promoter of the gene.
Collapse
Affiliation(s)
- Guiyu Zheng
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Yanmei Zhu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Liqun Xu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Shaoying Chen
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xiaona Zhang
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Wei Li
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Weibin Chen
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Yanchun Zhou
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Wei Gu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
21
|
Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baud’huin M, Georges S, Brounais-Le Royer B, Ory B, Rédini F, Verrecchia F. Ewing sarcoma from molecular biology to the clinic. Front Cell Dev Biol 2023; 11:1248753. [PMID: 37752913 PMCID: PMC10518617 DOI: 10.3389/fcell.2023.1248753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| |
Collapse
|
22
|
Tzeplaeff L, Seguin J, Le Gras S, Megat S, Cosquer B, Plassard D, Dieterlé S, Paiva I, Picchiarelli G, Decraene C, Alcala-Vida R, Cassel JC, Merienne K, Dupuis L, Boutillier AL. Mutant FUS induces chromatin reorganization in the hippocampus and alters memory processes. Prog Neurobiol 2023; 227:102483. [PMID: 37327984 DOI: 10.1016/j.pneurobio.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France; Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Jonathan Seguin
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Stéphanie Le Gras
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Salim Megat
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Brigitte Cosquer
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Damien Plassard
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | | | - Isabel Paiva
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | | | - Charles Decraene
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Rafael Alcala-Vida
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Karine Merienne
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France.
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France.
| |
Collapse
|
23
|
Li W, Zhao P, Sun J, Yu X, Zou L, Li S, Di R, Ruan M, Peng M. Biological function research of Fusarium oxysporum f. sp. cubense inducible banana long noncoding RNA Malnc2310 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01360-6. [PMID: 37507516 DOI: 10.1007/s11103-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/20/2023] [Indexed: 07/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in plant biological processes under biotic and abiotic stresses. However, little is known about the function and regulation mechanism of lncRNAs related to the pathogen at a molecular level. A banana lncRNA, Malnc2310, is a Fusarium oxysporum f. sp. cubense inducible lncRNA in roots. In this study, we demonstrate the nuclear localization of Malnc2310 by fluorescence in situ hybridization and it can bind to several proteins that are related to flavonoid pathway, pathogen response and programmed cell death. Overexpression of Malnc2310 increases susceptibility to Fusarium crude extract (Fu), salinity, and cold in transgenic Arabidopsis. In addition, Malnc2310 transgenic Arabidopsis accumulated more anthocyanins under Fusarium crude extract and cold treatments that are related to upregulation of these genes involved in anthocyanin biosynthesis. Based on our findings, we propose that Malnc2310 may participate in flavonoid metabolism in plants under stress. Furthermore, phenylalanine ammonia lyase (PAL) protein expression was enhanced in Malnc2310 overexpressed transgenic Arabidopsis, and Malnc2310 may participate in PAL regulation by binding to it. This study provides new insights into the role of Malnc2310 in mediating plant stress adaptation.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbo Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Rong Di
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| |
Collapse
|
24
|
Gopinathan L, Gopinathan C. Ionizing radiation-induced cancer: perplexities of the bystander effect. Ecancermedicalscience 2023; 17:1579. [PMID: 37533937 PMCID: PMC10393308 DOI: 10.3332/ecancer.2023.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Ionizing radiation (IR) is a carcinogen. This has been established beyond doubt from many years of studies such as those conducted among the survivors of the atomic bomb attacks on Hiroshima and Nagasaki and later from the Chernobyl accident. Despite immense progress in the field of carcinogenesis, complete understanding of the underlying mechanisms behind IR-induced cancer remains elusive. In particular, the long gestation period between exposure to IR and the onset of cancer, frequently unpredictable, and sometimes lasting for many years, remains poorly understood. The centrality of DNA damage and misrepair in carcinogenesis research has not entirely benefited IR-induced cancer research and the past decade has seen a shift in understanding radiation-driven cellular mechanisms beyond simplistic models of targeted DNA damage. This paper presents a viewpoint on the gaps in our knowledge of IR-induced cancer with a focus on the non-targeted bystander effect, the mechanisms underlying which may be key to radiotherapeutic advances.
Collapse
Affiliation(s)
| | - C Gopinathan
- Independent consultant, Navi Mumbai 400703, India
- Ex-Head, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
25
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
26
|
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M, Sharifi G. A review on the role of CASC11 in cancers. Front Cell Dev Biol 2023; 11:1131199. [PMID: 37427385 PMCID: PMC10326515 DOI: 10.3389/fcell.2023.1131199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
The long non-coding RNA (lncRNA) cancer susceptibility 11 (CASC11) is a newly identified lncRNA located on chromosome 8q24.21. The expression of lncRNA CASC11 has been found to be elevated in different cancer types and the prognosis of the tumor is inversely correlated with the high CASC11 expression. Moreover, lncRNA CASC11 has an oncogenic function in cancers. The biological characteristics of the tumors, such as proliferation, migration, invasion, autophagy, and apoptosis can be controlled by this lncRNA. In addition to interacting with miRNAs, proteins, transcription factors, and other molecules, the lncRNA CASC11 modulates signaling pathways including Wnt/β-catenin and epithelial-mesenchymal transition. In this review, we have summarized studies on the role of lncRNA CASC11 in the carcinogenesis from cell lines, in vivo, and clinical perspectives.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Sufianov A, Beilerli A, Kudriashov V, Ilyasova T, Liang Y, Mukhamedzyanov A, Bessonova M, Mashkin A, Beylerli O. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res 2023; 8:255-262. [PMID: 36890808 PMCID: PMC9988400 DOI: 10.1016/j.ncrna.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In recent times, the rising prevalence of obesity and its associated comorbidities have had a severe impact on human health and social progress. Therefore, scientists are delving deeper into the pathogenesis of obesity, exploring the role of non-coding RNAs. Long non-coding RNAs (lncRNAs), once regarded as mere "noise" during genome transcription, have now been confirmed through numerous studies to regulate gene expression and contribute to the occurrence and progression of several human diseases. LncRNAs can interact with protein, DNA, and RNA, respectively, and participate in regulating gene expression by modulating the levels of visible modification, transcription, post-transcription, and biological environment. Increasingly, researchers have established the involvement of lncRNAs in regulating adipogenesis, development, and energy metabolism of adipose tissue (white and brown fat). In this article, we present a literature review of the role of lncRNAs in the development of adipose cells.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | | | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Marina Bessonova
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
28
|
Zheng WH, Long ZQ, Zheng ZQ, Zhang LL, Liang YL, Li ZX, Lv JW, Kou J, Hong XH, He SW, Xu R, Zhou GQ, Liu N, Ma J, Sun Y, Lin L, Wei D. m6A-enriched lncRNA LINC00839 promotes tumor progression by enhancing TAF15-mediated transcription of amine oxidase AOC1 in nasopharyngeal carcinoma. J Biol Chem 2023:104873. [PMID: 37257820 PMCID: PMC10302167 DOI: 10.1016/j.jbc.2023.104873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of m6A-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues, as well as in 10 paired samples from NPC with or without posttreatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pulldown assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, ChIP and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis, and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.
Collapse
Affiliation(s)
- Wei-Hong Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Lu-Lu Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jia-Wei Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jia Kou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Shi-Wei He
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Rui Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China.
| | - Denghui Wei
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.
| |
Collapse
|
29
|
Wei C, Ye Z, Zhang J, Li A. CPPVec: an accurate coding potential predictor based on a distributed representation of protein sequence. BMC Genomics 2023; 24:264. [PMID: 37198531 DOI: 10.1186/s12864-023-09365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in numbers of biological processes and have received wide attention during the past years. Since the rapid development of high-throughput transcriptome sequencing technologies (RNA-seq) lead to a large amount of RNA data, it is urgent to develop a fast and accurate coding potential predictor. Many computational methods have been proposed to address this issue, they usually exploit information on open reading frame (ORF), protein sequence, k-mer, evolutionary signatures, or homology. Despite the effectiveness of these approaches, there is still much room to improve. Indeed, none of these methods exploit the contextual information of RNA sequence, for example, k-mer features that counts the occurrence frequencies of continuous nucleotides (k-mer) in the whole RNA sequence cannot reflect local contextual information of each k-mer. In view of this shortcoming, here, we present a novel alignment-free method, CPPVec, which exploits the contextual information of RNA sequence for coding potential prediction for the first time, it can be easily implemented by distributed representation (e.g., doc2vec) of protein sequence translated from the longest ORF. The experimental findings demonstrate that CPPVec is an accurate coding potential predictor and significantly outperforms existing state-of-the-art methods.
Collapse
Affiliation(s)
- Chao Wei
- School of Computer Science, Hubei University of Technology, Wuhan, China.
| | - Zhiwei Ye
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Aimin Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
30
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
31
|
Blatter M, Meylan C, Cléry A, Giambruno R, Nikolaev Y, Heidecker M, Solanki JA, Diaz MO, Gabellini D, Allain FHT. RNA binding induces an allosteric switch in Cyp33 to repress MLL1-mediated transcription. SCIENCE ADVANCES 2023; 9:eadf5330. [PMID: 37075125 PMCID: PMC10115415 DOI: 10.1126/sciadv.adf5330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.
Collapse
Affiliation(s)
- Markus Blatter
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| | - Charlotte Meylan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Yaroslav Nikolaev
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Michel Heidecker
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jessica Arvindbhai Solanki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Manuel O. Diaz
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Frédéric H.-T. Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| |
Collapse
|
32
|
Bao D, Gao L, Xin H, Wang L. lncRNA-FMR6 directly binds SAV1 to increase apoptosis of granulosa cells in premature ovarian failure. J Ovarian Res 2023; 16:65. [PMID: 37005611 PMCID: PMC10068166 DOI: 10.1186/s13048-023-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/17/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND A regulatory mechanism of lncRNA binding to protein has been detected in premature ovarian failure (POF). Therefore, this study was expected to illustrate the mechanism of lncRNA-FMR6 and SAV1 regulating POF. METHODS Follicular fluid and ovarian granulosa cells (OGCs) from POF patients and healthy volunteers were collected. Using RT-qPCR and western blotting, lncRNA-FMR6 and SAV1 expression were detected. KGN cells were cultured, and the subcellular localization analysis of lncRNA-FMR6 was carried out. In addition, KGN cells were treated with lncRNA-FMR6 knockdown/overexpression or SAV1 knockdown. Then, cell optical density (proliferation), apoptosis rate, Bax and Bcl-2 mRNA expression were explored by CCK-8, caspase-3 activity, flow cytometry and RT-qPCR analysis. By performing RIP and RNA pull-down experiments, the interactions among lncRNA-FMR6 and SAV1 was investigated. RESULTS Up-regulation of lncRNA-FMR6 was shown in follicular fluid and OGCs of POF patients, and ectopic overexpression of lncRNA-FMR6 promoted KGN cells apoptosis and inhibited proliferation. lncRNA-FMR6 was localized in the cytoplasm of KGN cells. SAV1 bounding to lncRNA-FMR6 was negatively regulated by lncRNA-FMR6, and was down-regulated in POF. SAV1 knockdown promoted KGN cells proliferation and inhibited apoptosis, and partially eliminated the effect of lncRNA-FMR6 low expression on KGN cells. CONCLUSION Overall, lncRNA-FMR6 accelerates POF progression by binding to SAV1.
Collapse
Affiliation(s)
- Dongqin Bao
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, 221004, China
| | - Lei Gao
- Reproductive Medicine Center of Qingdao Women and Children's Hospital, Qingdao City, Shandong Province, 266034, China
| | - Haiyan Xin
- Reproductive Medicine Center of Qingdao Women and Children's Hospital, Qingdao City, Shandong Province, 266034, China
| | - Lie Wang
- Reproductive Medicine Center of Qingdao Women and Children's Hospital, Qingdao City, Shandong Province, 266034, China.
| |
Collapse
|
33
|
Shi H, Nguyen T, Zhao Q, Cheng P, Sharma D, Kim HJ, Kim JB, Wirka R, Weldy CS, Monteiro JP, Quertermous T. Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circ Res 2023; 132:795-811. [PMID: 36852690 PMCID: PMC11056793 DOI: 10.1161/circresaha.122.321960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.
Collapse
Affiliation(s)
- Huitong Shi
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Disha Sharma
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Robert Wirka
- Departments of Medicine and Cell Biology and Physiology, and McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Chad S Weldy
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - João P. Monteiro
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| |
Collapse
|
34
|
Chen K, Zhu X, Wang J, Hao L, Liu Z, Liu Y. ncDENSE: a novel computational method based on a deep learning framework for non-coding RNAs family prediction. BMC Bioinformatics 2023; 24:68. [PMID: 36849908 PMCID: PMC9972773 DOI: 10.1186/s12859-023-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Although research on non-coding RNAs (ncRNAs) is a hot topic in life sciences, the functions of numerous ncRNAs remain unclear. In recent years, researchers have found that ncRNAs of the same family have similar functions, therefore, it is important to accurately predict ncRNAs families to identify their functions. There are several methods available to solve the prediction problem of ncRNAs family, whose main ideas can be divided into two categories, including prediction based on the secondary structure features of ncRNAs, and prediction according to sequence features of ncRNAs. The first type of prediction method requires a complicated process and has a low accuracy in obtaining the secondary structure of ncRNAs, while the second type of method has a simple prediction process and a high accuracy, but there is still room for improvement. The existing methods for ncRNAs family prediction are associated with problems such as complicated prediction processes and low accuracy, in this regard, it is necessary to propose a new method to predict the ncRNAs family more perfectly. RESULTS A deep learning model-based method, ncDENSE, was proposed in this study, which predicted ncRNAs families by extracting ncRNAs sequence features. The bases in ncRNAs sequences were encoded by one-hot coding and later fed into an ensemble deep learning model, which contained the dynamic bi-directional gated recurrent unit (Bi-GRU), the dense convolutional network (DenseNet), and the Attention Mechanism (AM). To be specific, dynamic Bi-GRU was used to extract contextual feature information and capture long-term dependencies of ncRNAs sequences. AM was employed to assign different weights to features extracted by Bi-GRU and focused the attention on information with greater weights. Whereas DenseNet was adopted to extract local feature information of ncRNAs sequences and classify them by the full connection layer. According to our results, the ncDENSE method improved the Accuracy, Sensitivity, Precision, F-score, and MCC by 2.08[Formula: see text], 2.33[Formula: see text], 2.14[Formula: see text], 2.16[Formula: see text], and 2.39[Formula: see text], respectively, compared with the suboptimal method. CONCLUSIONS Overall, the ncDENSE method proposed in this paper extracts sequence features of ncRNAs by dynamic Bi-GRU and DenseNet and improves the accuracy in predicting ncRNAs family and other data.
Collapse
Affiliation(s)
- Kai Chen
- grid.64924.3d0000 0004 1760 5735College of Software, Jilin University, Changchun, 130012 China ,grid.64924.3d0000 0004 1760 5735Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Xiaodong Zhu
- grid.64924.3d0000 0004 1760 5735College of Software, Jilin University, Changchun, 130012 China ,grid.64924.3d0000 0004 1760 5735Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China ,grid.64924.3d0000 0004 1760 5735College of Computer Science and Technology, Jilin University, Changchun, 130012 China
| | - Jiahao Wang
- grid.64924.3d0000 0004 1760 5735College of Software, Jilin University, Changchun, 130012 China ,grid.64924.3d0000 0004 1760 5735Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Lei Hao
- grid.64924.3d0000 0004 1760 5735College of Software, Jilin University, Changchun, 130012 China ,grid.64924.3d0000 0004 1760 5735Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Zhen Liu
- grid.64924.3d0000 0004 1760 5735College of Computer Science and Technology, Jilin University, Changchun, 130012 China ,grid.444367.60000 0000 9853 5396Graduate School of Engineering, Nagasaki Institute of Applied Science, 536 Aba-machi, Nagasaki 851-0193 Japan
| | - Yuanning Liu
- College of Software, Jilin University, Changchun, 130012, China. .,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China. .,College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
| |
Collapse
|
35
|
Lv Y, Wang Y, Zhang Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum Cell 2023; 36:76-97. [PMID: 36181662 DOI: 10.1007/s13577-022-00799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA-miRNA-mRNA regulatory networks as biomarkers for the early diagnosis, epithelial-mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China. .,Department of Morphology, Medical College of China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
36
|
Zhao Y, Bai L, Yao X, Hang R, Xiao Y. Understanding LncRNAs in Biomaterials Development for Osteointegration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
37
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
38
|
Gou Z, Zhou Y, Jia H, Yang Z, Zhang Q, Yan X. Prenatal diagnosis and mRNA profiles of fetal tetralogy of Fallot. BMC Pregnancy Childbirth 2022; 22:853. [PMID: 36402964 PMCID: PMC9675103 DOI: 10.1186/s12884-022-05190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Tetralogy of fallot (TOF) in the fetus is a typical congential heart disease that occurs during the early embryonic period, being characterized by the abnormal development of conus arteriosus. The early diagnosis and prevention of fetal TOF is very important and there is a great need for exploring the pathogenesis of it in clinic. In this study, there were three cases being detected with TOF by fetal echocardiogram and confirmed by autopsy. We characterize the difference of expression of lncRNAs and mRNAs through sequencing analysis of 3 pairs of myocardial tissues of fetal TOF and those of age-matched controls. Compared with normal group, there were 94 differentially expressed lncRNAs and 83 mRNA transcripts in TOF (P < 0.05). Correlation analysis between lncRNA and mRNA further showed that differentially expressed lncRNA can be linked to mRNAs, suggesting the potential regulator role of lncRNA in mRNA expression. Our data serve as a fundamental resource for understanding the disease etiology of TOF.
Collapse
Affiliation(s)
- Zhongshan Gou
- grid.89957.3a0000 0000 9255 8984Cardiovascular Disease Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu 215008 Suzhou, P.R. China
| | - Yan Zhou
- grid.452799.4Department of Ultrasonography, The Fourth Affiliated Hospital of Anhui Medical University, 23000 Hefei, Anhui P.R. China
| | - Hongjing Jia
- grid.89957.3a0000 0000 9255 8984Department of Ultrasonography, The Affiliated Suzhou Hospital of Nanjing Medical University, 215008 Suzhou, Jiangsu P.R. China
| | - Zhong Yang
- grid.89957.3a0000 0000 9255 8984Department of Ultrasonography, The Affiliated Suzhou Hospital of Nanjing Medical University, 215008 Suzhou, Jiangsu P.R. China
| | - Qian Zhang
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu 215008 Suzhou, P.R. China
| | - Xinxin Yan
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu 215008 Suzhou, P.R. China
| |
Collapse
|
39
|
Estrogen-Inducible LncRNA BNAT1 Functions as a Modulator for Estrogen Receptor Signaling in Endocrine-Resistant Breast Cancer Cells. Cells 2022; 11:cells11223610. [PMID: 36429038 PMCID: PMC9688125 DOI: 10.3390/cells11223610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in RNA studies have revealed that functional long noncoding RNAs (lncRNAs) contribute to the biology of cancers. In breast cancer, estrogen receptor α (ERα) is an essential transcription factor that primarily promotes the growth of luminal-type cancer, although only a small number of lncRNAs are identified as direct ERα targets and modulators for ERα signaling. In this study, we performed RNA-sequencing for ER-positive breast cancer cells and identified a novel estrogen-inducible antisense RNA in the COL18A1 promoter region, named breast cancer natural antisense transcript 1 (BNAT1). In clinicopathological study, BNAT1 may have clinical relevance as a potential diagnostic factor for prognoses of ER-positive breast cancer patients based on an in situ hybridization study for breast cancer specimens. siRNA-mediated BNAT1 silencing significantly inhibited the in vitro and in vivo growth of tamoxifen-resistant ER-positive breast cancer cells. Notably, BNAT1 silencing repressed cell cycle progression whereas it promoted apoptosis. Microarray analysis revealed that BNAT1 silencing in estrogen-sensitive breast cancer cells repressed estrogen signaling. We showed that BNAT1 knockdown decreased ERα expression and repressed ERα transactivation. RNA immunoprecipitation showed that BNAT1 physically binds to ERα protein. In summary, BNAT1 would play a critical role in the biology of ER-positive breast cancer by modulating ERα-dependent transcription regulation. We consider that BNAT1 could be a potential molecular target for diagnostic and therapeutic options targeting luminal-type and endocrine-resistant breast cancer.
Collapse
|
40
|
Huang J, Jiang B, Li GW, Zheng D, Li M, Xie X, Pan Y, Wei M, Liu X, Jiang X, Zhang X, Yang L, Bao L, Wang B. m6A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation. Cell Rep 2022; 41:111693. [DOI: 10.1016/j.celrep.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
41
|
Ono Y, Katayama K, Onuma T, Kubo K, Tsuyuzaki H, Hamada M, Sato M. Structure-based screening for functional non-coding RNAs in fission yeast identifies a factor repressing untimely initiation of sexual differentiation. Nucleic Acids Res 2022; 50:11229-11242. [PMID: 36259651 PMCID: PMC9638895 DOI: 10.1093/nar/gkac825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Non-coding RNAs (ncRNAs) ubiquitously exist in normal and cancer cells. Despite their prevalent distribution, the functions of most long ncRNAs remain uncharacterized. The fission yeast Schizosaccharomyces pombe expresses >1800 ncRNAs annotated to date, but most unconventional ncRNAs (excluding tRNA, rRNA, snRNA and snoRNA) remain uncharacterized. To discover the functional ncRNAs, here we performed a combinatory screening of computational and biological tests. First, all S. pombe ncRNAs were screened in silico for those showing conservation in sequence as well as in secondary structure with ncRNAs in closely related species. Almost a half of the 151 selected conserved ncRNA genes were uncharacterized. Twelve ncRNA genes that did not overlap with protein-coding sequences were next chosen for biological screening that examines defects in growth or sexual differentiation, as well as sensitivities to drugs and stresses. Finally, we highlighted an ncRNA transcribed from SPNCRNA.1669, which inhibited untimely initiation of sexual differentiation. A domain that was predicted as conserved secondary structure by the computational operations was essential for the ncRNA to function. Thus, this study demonstrates that in silico selection focusing on conservation of the secondary structure over species is a powerful method to pinpoint novel functional ncRNAs.
Collapse
Affiliation(s)
- Yu Ono
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kenta Katayama
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoki Onuma
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hayato Tsuyuzaki
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
42
|
TUG1/MAZ/FTH1 Axis Attenuates the Antiglioma Effect of Dihydroartemisinin by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7843863. [PMID: 36164395 PMCID: PMC9509247 DOI: 10.1155/2022/7843863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Glioma is the most common primary intracranial malignant tumor in the brain. Currently, due to the limited treatment methods, the clinical outcome of patients with standard surgery combined with radiotherapy and chemotherapy is not satisfactory. Therefore, we urgently need to develop effective drugs to solve this problem. As a semisynthetic derivative of artemisinin, dihydroartemisinin (DHA) has been proved to have antitumor activity in glioma, which can induce apoptosis and inhibit the proliferation, migration, and invasion of glioma cells. In recent years, ferroptosis has been identified as another antitumor mechanism of DHA. Researchers have shown that DHA could promote ferroptosis in glioma cells. However, the specific molecular mechanisms of ferroptosis induced by DHA need more exploration. In this study, we found DHA could induce ferroptosis with ROS production and lipid peroxidation in glioma cells. Low expression of GPX4 and high expression of HMOX1 were identified in DHA treated glioma cells. Surprisingly, we found FTH1, a negative regulator of ferroptosis, upregulated in DHA treated glioma cells. It indicated that there should be some mechanisms that may cause ferroptosis attenuation in DHA treated glioma cells. For the first time, we confirmed that MYC-associated zinc finger protein (MAZ) could actively regulate FTH1 by binding to FTH1 promoter by CHIP assay. MAZ was further identified as the direct target of long noncoding RNA (lncRNA) TUG1 through luciferase assay. Downregulated expression of TUG1 and upregulated expression of MAZ were identified in DHA treated glioma cells. TUG1 overexpression or inhibition of FTH1 expression could enhance the antiglioma effect of DHA in vitro and in vivo, providing a promising strategy to enhance the antitumor effect of DHA in glioma.
Collapse
|
43
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
44
|
Aida H, Shigeta Y, Harada R. The role of ATP in solubilizing RNA-binding protein fused in sarcoma. Proteins 2022; 90:1606-1612. [PMID: 35297101 DOI: 10.1002/prot.26335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered protein (IDP) plays an important role in liquid-liquid phase separation (LLPS). RNA-binding protein fused in sarcoma (FUS) is a well-studied IDP that induces LLPS since its low-complexity core region (FUS-LC-core) is essential for droplet formation through contacts between FUS-LC-cores. Several experimental studies have reported that adenosine triphosphate (ATP) concentrations modulate LLPS-driven droplet formation through the dissolution of FUS. To elucidate the role of ATP in this dissolution, microsecond-order all-atom molecular dynamics (MD) simulations were performed for a crowded system of FUS-LC-cores in the presence of multiple ATP molecules. Our analysis revealed that the adenine group of ATP frequently contacted the FUS-LC-core, and the phosphoric acid group of ATP was exposed to the external solvent, which promoted both hydration and solubilization of FUS.
Collapse
Affiliation(s)
- Hayato Aida
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
45
|
Modular scaffolding by lncRNA HOXA10-AS promotes oral cancer progression. Cell Death Dis 2022; 13:629. [PMID: 35858923 PMCID: PMC9300705 DOI: 10.1038/s41419-022-05071-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Recent findings have implicated long noncoding RNAs (lncRNAs) as pivotal gene regulators for diverse biological processes, despite their lack of protein-coding capabilities. Accumulating evidence suggests the significance of lncRNAs in mediating cell signaling pathways, especially those associated with tumorigenesis. Consequently, lncRNAs have emerged as novel functional regulators and indicators of cancer development and malignancy. Recent transcriptomic profiling has recognized a tumor-biased expressed lncRNA, the HOXA10-AS transcript, whose expression is associated with patient survival. Functional cell-based assays show that the HOXA10-AS transcript is essential in the regulation of oral cancer growth and metastasis. LncRNA expression is also associated with drug sensitivity. In this study, we identify that HOXA10-AS serves as a modular scaffold for TP63 mRNA processing and that such involvement regulates cancer growth. These findings provide a functional interpretation of lncRNA-mediated molecular regulation, highlighting the significance of the lncRNA transcriptome in cancer biology.
Collapse
|
46
|
Huang X, Shi Y, Yan J, Qu W, Li X, Tan J. LPI-CSFFR: Combining serial fusion with feature reuse for predicting LncRNA-protein interactions. Comput Biol Chem 2022; 99:107718. [PMID: 35785626 DOI: 10.1016/j.compbiolchem.2022.107718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Long non-coding RNAs (LncRNAs) play important roles in a series of life activities, and they function primarily with proteins. The wet experimental-based methods in lncRNA-protein interactions (lncRPIs) study are time-consuming and expensive. In this study, we propose for the first time a novel feature fusion method, the LPI-CSFFR, to train and predict LncRPIs based on a Convolutional Neural Network (CNN) with feature reuse and serial fusion in sequences, secondary structures, and physicochemical properties of proteins and lncRNAs. The experimental results indicate that LPI-CSFFR achieves excellent performance on the datasets RPI1460 and RPI1807 with an accuracy of 83.7 % and 98.1 %, respectively. We further compare LPI-CSFFR with the state-of-the-art existing methods on the same benchmark datasets to evaluate the performance. In addition, to test the generalization performance of the model, we independently test sample pairs of five model organisms, where Mus musculus are the highest prediction accuracy of 99.5 %, and we find multiple hotspot proteins after constructing an interaction network. Finally, we test the predictive power of the LPI-CSFFR for sample pairs with unknown interactions. The results indicate that LPI-CSFFR is promising for predicting potential LncRPIs. The relevant source code and the data used in this study are available at https://github.com/JianjunTan-Beijing/LPI-CSFFR.
Collapse
Affiliation(s)
- Xiaoqian Huang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Yi Shi
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Jing Yan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Wenyan Qu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Xiaoyi Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
47
|
Luo XJ, He MM, Liu J, Zheng JB, Wu QN, Chen YX, Meng Q, Luo KJ, Chen DL, Xu RH, Zeng ZL, Liu ZX, Luo HY. LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Exp Mol Med 2022; 54:834-847. [PMID: 35760875 PMCID: PMC9243820 DOI: 10.1038/s12276-022-00791-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most life- and health-threatening malignant diseases worldwide, especially in China. Long noncoding RNAs (lncRNAs) have emerged as important regulators of tumorigenesis and tumor progression. However, the roles and mechanisms of lncRNAs in ESCC require further exploration. Here, in combination with a small interfering RNA (siRNA) library targeting specific lncRNAs, we performed MTS and Transwell assays to screen functional lncRNAs that were overexpressed in ESCC. TMPO-AS1 expression was significantly upregulated in ESCC tumor samples, with higher TMPO-AS1 expression positively correlated with shorter overall survival times. In vitro and in vivo functional experiments revealed that TMPO-AS1 promotes the proliferation and metastasis of ESCC cells. Mechanistically, TMPO-AS1 bound to fused in sarcoma (FUS) and recruited p300 to the TMPO promoter, forming biomolecular condensates in situ to activate TMPO transcription in cis by increasing the acetylation of histone H3 lysine 27 (H3K27ac). Targeting TMPO-AS1 led to impaired ESCC tumor growth in a patient-derived xenograft (PDX) model. We found that TMPO-AS1 is required for cell proliferation and metastasis in ESCC by promoting the expression of TMPO, and both TMPO-AS1 and TMPO might be potential biomarkers and therapeutic targets in ESCC. The role of a regulatory RNA in promoting esophageal squamous cell carcinoma (ESCC) has been clarified, revealing molecular details that might help in cancer diagnosis and treatment. Xiao-Jing Luo and colleagues at Sun Yat-sen University in China found that overproduction of an RNA molecule called thymopoietin-antisense RNA 1 (TMPO-AS1) in ESCC tissue samples from cancer patients was associated with shorter survival times. Overproduction of this RNA promoted proliferation and spread (metastasis) of the cancer cells. Research on details of the molecular mechanisms involved showed that the RNA ultimately activated the gene that codes for the protein hormone thymopoietin, which has previously been linked with various cancers. The authors suggest that TMPO-AS1 and thymopoietin could serve as diagnostic biomarkers of cancer and become targets for anti-cancer drugs.
Collapse
Affiliation(s)
- Xiao-Jing Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Jia Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Jia-Bo Zheng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Qi-Nian Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Qi Meng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Kong-Jia Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Dong-Liang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| | - Ze-Xian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China. .,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
48
|
Huang S, Lu B, Zhu M, Liu M, Sun Z, Pan X, Wei M. Long non-coding RNA LOC644135 is a potential prognostic indicator in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol 2022; 15:657-665. [PMID: 35713000 DOI: 10.1080/17474086.2022.2091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a hematological malignancy with highly clinical heterogeneity resulting in poor outcomes. We aim to identify novel prognostic lncRNA in AML expecting to provide new clues for therapy in AML. METHODS Three cohorts were enrolled in this study. Differentially expressed lncRNAs between TCGA-AML cohort and GTEx cohort was identified by DESeq2. The relationship between expression level of LOC644135 and prognosis in AML was analyzed by multiple methods. RESULTS Pan-cancer analysis indicated that LOC644135 was most highly expressed in AML across 33 types of cancer. Patients with high expression of LOC644135 had poor overall prognosis in both TCGA-AML cohort and the TARGET-AML cohort. Especially, high expression of LOC644135 indicated inferior overall survival and event-free survival in CN-AML patients in the TCGA-AML cohort. Besides, CN-AML patients had higher expression of LOC644135 than normal samples. Multivariable analysis suggested that LOC644135 was an independent prognostic factor in AML. GSEA analysis showed that LOC644135 was associated with some immune-related pathways. Besides, high expression of LOC644135 was associated with less infiltration of CD8+ T cell. CONCLUSION Our findings indicated that LOC644135 was an independent prognostic factor in AML and provided a new idea in the development of therapy in AML.
Collapse
Affiliation(s)
- Shan Huang
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Lu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mengyuan Zhu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Minling Liu
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ziyi Sun
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, China
| | - Xiaofen Pan
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Wei
- Department of Oncology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
49
|
The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Dis 2022; 8:287. [PMID: 35697671 PMCID: PMC9192730 DOI: 10.1038/s41420-022-01061-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Non-coding RNAs (ncRNAs), which occupy the vast majority of human transcripts are known for their inability to encode proteins. NcRNAs consist of a diverse range of RNA species, including long non-coding RNAs (lncRNAs), which have significant meaning for epigenetic modification, post-transcriptional regulation of target genes, molecular interference, etc. The dysregulation of ncRNAs will mediate the pathogenesis of diverse human diseases, like cancer. Pancreatic cancer, as one of the most lethal malignancies in the digestive system that is hard to make a definite diagnosis at an early clinicopathological stage with a miserable prognosis. Therefore, the identification of potential and clinically applicable biomarker is momentous to improve the overall survival rate and positively ameliorate the prognosis of patients with pancreatic carcinoma. LncRNAs as one kind of ncRNAs exert multitudinous biological functions, and act as molecular sponges, relying on microRNA response elements (MREs) to competitively target microRNAs (miRNAs), thereby attenuating the degradation or inhibition of miRNAs to their own downstream protein-coding target genes, also thus regulating the initiation and progression of neoplasms. LncRNAs, which emerge aforementioned function are called competing endogenous RNAs (ceRNAs). Consequently, abundant research of lncRNAs as potential biomarkers is of critical significance for the molecular diagnosis, targeted therapy, as well as prognosis monitoring of pancreatic cancer.
Collapse
|
50
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|