1
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem Biophys Res Commun 2024; 735:150664. [PMID: 39260337 DOI: 10.1016/j.bbrc.2024.150664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS. Fortunately, a wealth of research suggests that chromosome therapy, hinging on cutting-edge genome editing technologies, can potentially eliminate the extra copy of the human chromosome 21. Genome editing tools have demonstrated their efficacy in restoring trisomy to a normal diploid state in vitro DS cell models. Furthermore, we delve into the noteworthy findings in cellular therapy for DS, with recent studies showcasing the increasing feasibility of strategies involving stem cells and CAR T-cells to address corresponding clinical phenotypes.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Russo ML, Sousa AMM, Bhattacharyya A. Consequences of trisomy 21 for brain development in Down syndrome. Nat Rev Neurosci 2024; 25:740-755. [PMID: 39379691 DOI: 10.1038/s41583-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The appearance of cognitive deficits and altered brain morphology in newborns with Down syndrome (DS) suggests that these features are driven by disruptions at the earliest stages of brain development. Despite its high prevalence and extensively characterized cognitive phenotypes, relatively little is known about the cellular and molecular mechanisms that drive the changes seen in DS. Recent technical advances, such as single-cell omics and the development of induced pluripotent stem cell (iPSC) models of DS, now enable in-depth analyses of the biochemical and molecular drivers of altered brain development in DS. Here, we review the current state of knowledge on brain development in DS, focusing primarily on data from human post-mortem brain tissue. We explore the biological mechanisms that have been proposed to lead to intellectual disability in DS, assess the extent to which data from studies using iPSC models supports these hypotheses, and identify current gaps in the field.
Collapse
Affiliation(s)
- Matthew L Russo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Yao S, Jeon Y, Kesner B, Lee JT. Xist RNA binds select autosomal genes and depends on Repeat B to regulate their expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604772. [PMID: 39091753 PMCID: PMC11291044 DOI: 10.1101/2024.07.23.604772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist's ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly leads to autosomal gene suppression, while deleting Xist's Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal that Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by a small molecule inhibitor.
Collapse
Affiliation(s)
- Shengze Yao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yesu Jeon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Kozlov G, Franceschi C, Vedunova M. Intricacies of aging and Down syndrome. Neurosci Biobehav Rev 2024; 164:105794. [PMID: 38971514 DOI: 10.1016/j.neubiorev.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Down syndrome is the most frequently occurring genetic condition, with a substantial escalation in risk associated with advanced maternal age. The syndrome is characterized by a diverse range of phenotypes, affecting to some extent all levels of organization, and its progeroid nature - early manifestation of aspects of the senile phenotype. Despite extensive investigations, many aspects and mechanisms of the disease remain unexplored. The current review aims to provide an overview of the main causes and manifestations of Down syndrome, while also examining the phenomenon of accelerated aging and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- G Kozlov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - C Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| |
Collapse
|
6
|
Munezane H, Imamura K, Fujimoto N, Hotta A, Yukitake H, Inoue H. Elimination of the extra chromosome of Dup15q syndrome iPSCs for cellular and molecular investigation. Eur J Cell Biol 2024; 103:151446. [PMID: 39059105 DOI: 10.1016/j.ejcb.2024.151446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Chromosome 15q11.2-13.1 duplication (Dup15q) syndrome is one of the most common autism spectrum disorders (ASDs) associated with copy number variants (CNVs). For the analysis of CNV-relevant pathological cellular phenotypes, a CNV-corrected isogenic cell line is useful for excluding the influence of genetic background. Here, we devised a strategy to remove the isodicentric chromosome 15 by inserting a puro-ΔTK selection cassette into the extra chromosome using the CRISPR-Cas9 system, followed by a subsequent two-step drug selection. A series of assays, including qPCR-based copy number analysis and karyotype analysis, confirmed the elimination of the extra chromosome. Furthermore, cerebral organoids were generated from the parental Dup15q iPSCs and their isogenic iPSCs. scRNA-seq analysis revealed the alteration of expression levels in ion-channel-related genes and synapse-related genes in glutamatergic and GABAergic neurons in Dup15q organoids, respectively. The established isogenic cell line is a valuable resource for unraveling cellular and molecular alterations associated with Dup15q syndrome.
Collapse
Affiliation(s)
- Haruka Munezane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan; Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoko Fujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Hiroshi Yukitake
- Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; Global Advanced Platform, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan; Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
7
|
Gupta K, Czerminski JT, Lawrence JB. Trisomy silencing by XIST: translational prospects and challenges. Hum Genet 2024; 143:843-855. [PMID: 38459355 PMCID: PMC11294271 DOI: 10.1007/s00439-024-02651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
XIST RNA is heavily studied for its role in fundamental epigenetics and X-chromosome inactivation; however, the translational potential of this singular RNA has been much less explored. This article combines elements of a review on XIST biology with our perspective on the translational prospects and challenges of XIST transgenics. We first briefly review aspects of XIST RNA basic biology that are key to its translational relevance, and then discuss recent efforts to develop translational utility of XIST for chromosome dosage disorders, particularly Down syndrome (DS). Remarkably, it was shown in vitro that expression of an XIST transgene inserted into one chromosome 21 can comprehensively silence that chromosome and "dosage compensate" Trisomy 21, the cause of DS. Here we summarize recent findings and discuss potential paths whereby ability to induce "trisomy silencing" can advance translational research for new therapeutic strategies. Despite its common nature, the underlying biology for various aspects of DS, including cell types and pathways impacted (and when), is poorly understood. Recent studies show that an inducible iPSC system to dosage-correct chromosome 21 can provide a powerful approach to unravel the cells and pathways directly impacted, and the developmental timing, information key to design pharmacotherapeutics. In addition, we discuss prospects of a more far-reaching and challenging possibility that XIST itself could be developed into a therapeutic agent, for targeted cellular "chromosome therapy". A few rare case studies of imbalanced X;autosome translocations indicate that natural XIST can rescue an otherwise lethal trisomy. The potential efficacy of XIST transgenes later in development faces substantial biological and technical challenges, although recent findings are encouraging, and technology is rapidly evolving. Hence, it is compelling to consider the transformative possibility that XIST-mediated chromosome therapy may ultimately be developed, for specific pathologies seen in DS, or other duplication disorders.
Collapse
Affiliation(s)
- Khusali Gupta
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jan T Czerminski
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
8
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
9
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, Zhao F, Sun X, Fan P, Qian Y, Wang D, Lai L, Sui T, Li Z. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. SCIENCE ADVANCES 2024; 10:eadk8052. [PMID: 38489357 PMCID: PMC10942115 DOI: 10.1126/sciadv.adk8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.
Collapse
Affiliation(s)
- Jinze Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Ding Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Tao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Haoyang Xiong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyang Hu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Hongmei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feiyu Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaodi Sun
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Peng Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuqiang Qian
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Di Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Abukhaled Y, Hatab K, Awadhalla M, Hamdan H. Understanding the genetic mechanisms and cognitive impairments in Down syndrome: towards a holistic approach. J Neurol 2024; 271:87-104. [PMID: 37561187 PMCID: PMC10769995 DOI: 10.1007/s00415-023-11890-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The most common genetic cause of intellectual disability is Down syndrome (DS), trisomy 21. It commonly results from three copies of human chromosome 21 (HC21). There are no mutations or deletions involved in DS. Instead, the phenotype is caused by altered transcription of the genes on HC21. These transcriptional variations are responsible for a myriad of symptoms affecting every organ system. A very debilitating aspect of DS is intellectual disability (ID). Although tremendous advances have been made to try and understand the underlying mechanisms of ID, there is a lack of a unified, holistic view to defining the cause and managing the cognitive impairments. In this literature review, we discuss the mechanisms of neuronal over-inhibition, abnormal morphology, and other genetic factors in contributing to the development of ID in DS patients and to gain a holistic understanding of ID in DS patients. We also highlight potential therapeutic approaches to improve the quality of life of DS patients.
Collapse
Affiliation(s)
- Yara Abukhaled
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Hatab
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Awadhalla
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Sen S, Dhuppar S, Mazumder A. Combined 3D DNA FISH, Single-Molecule RNA FISH, and Immunofluorescence. Methods Mol Biol 2024; 2784:203-214. [PMID: 38502488 DOI: 10.1007/978-1-0716-3766-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Nuclear architecture is a potential regulator of gene expression in eukaryotic cells. Studies connecting nuclear architecture to gene expression are often population-averaged and do not report on the cell-level heterogeneity in genome organization and associated gene expression. In this report we present a simple way to combine fluorescence in situ hybridization (FISH)-based detection of DNA, with single-molecule RNA FISH (smFISH) and immunofluorescence (IF), while also preserving the three-dimensional (3D) nuclear architecture of a cell. Recently developed smFISH techniques enable the detection of individual RNA molecules; while using 3D DNA FISH, copy numbers and positions of genes inside the nucleus can be interrogated without interfering with 3D nuclear architecture. Our method to combine 3D DNA FISH with smFISH and IF enables a unique quantitative handle on the central dogma of molecular biology.
Collapse
Affiliation(s)
- Souvik Sen
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana, India
| | - Shivnarayan Dhuppar
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana, India
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aprotim Mazumder
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
14
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Torres EM. Consequences of gaining an extra chromosome. Chromosome Res 2023; 31:24. [PMID: 37620607 PMCID: PMC10449985 DOI: 10.1007/s10577-023-09732-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Mistakes in chromosome segregation leading to aneuploidy are the primary cause of miscarriages in humans. Excluding sex chromosomes, viable aneuploidies in humans include trisomies of chromosomes 21, 18, or 13, which cause Down, Edwards, or Patau syndromes, respectively. While individuals with trisomy 18 or 13 die soon after birth, people with Down syndrome live to adulthood but have intellectual disabilities and are prone to multiple diseases. At the cellular level, mistakes in the segregation of a single chromosome leading to a cell losing a chromosome are lethal. In contrast, the cell that gains a chromosome can survive. Several studies support the hypothesis that gaining an extra copy of a chromosome causes gene-specific phenotypes and phenotypes independent of the identity of the genes encoded within that chromosome. The latter, referred to as aneuploidy-associated phenotypes, are the focus of this review. Among the conserved aneuploidy-associated phenotypes observed in yeast and human cells are lower viability, increased gene expression, increased protein synthesis and turnover, abnormal nuclear morphology, and altered metabolism. Notably, abnormal nuclear morphology of aneuploid cells is associated with increased metabolic demand for de novo synthesis of sphingolipids. These findings reveal important insights into the possible pathological role of aneuploidy in Down syndrome. Despite the adverse effects on cell physiology, aneuploidy is a hallmark of cancer cells. Understanding how aneuploidy affects cell physiology can reveal insights into the selective pressure that aneuploid cancer cells must overcome to support unlimited proliferation.
Collapse
Affiliation(s)
- Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
17
|
Achom M, Sadagopan A, Bao C, McBride F, Xu Q, Konda P, Tourdot RW, Li J, Nakhoul M, Gallant DS, Ahmed UA, O’Toole J, Freeman D, Mary Lee GS, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for cancer sex differences revealed in Xp11 translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552029. [PMID: 37577497 PMCID: PMC10418269 DOI: 10.1101/2023.08.04.552029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Richard W. Tourdot
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel S. Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jillian O’Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center; Buffalo, New York, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
18
|
Valledor M, Byron M, Dumas B, Carone DM, Hall LL, Lawrence JB. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Cell Rep 2023; 42:112686. [PMID: 37384527 PMCID: PMC10461597 DOI: 10.1016/j.celrep.2023.112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brett Dumas
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
19
|
Liu ZW, Liu J, Liu F, Zhong X. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res 2023; 51:6039-6054. [PMID: 37094065 PMCID: PMC10325890 DOI: 10.1093/nar/gkad306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Stable transmission of non-DNA-sequence-based epigenetic information contributes to heritable phenotypic variants and thus to biological diversity. While studies on spontaneous natural epigenome variants have revealed an association of epialleles with a wide range of biological traits in both plants and animals, the function, transmission mechanism, and stability of an epiallele over generations in a locus-specific manner remain poorly investigated. Here, we invented a DNA sequence deposition strategy to generate a locus-specific epiallele by depositing CEN180 satellite repeats into a euchromatic target locus in Arabidopsis. Using CRISPR/Cas9-mediated knock-in system, we demonstrated that depositing CEN180 repeats can induce heterochromatin nucleation accompanied by DNA methylation, H3K9me2, and changes in the nucleosome occupancy at the insertion sites. Interestingly, both DNA methylation and H3K9me2 are restricted within the depositing sites and depletion of an H3K9me2 demethylase IBM1 enables the outward heterochromatin propagation into the neighboring regions, leading to inheritable target gene silencing to persist for at least five generations. Together, these results demonstrate the promise of employing a cis-engineering system for the creation of stable and site-specific epialleles and provide important insights into functional epigenome studies and locus-specific transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehua Zhong
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Tan KL, Lee HC, Cheah PS, Ling KH. Mitochondrial Dysfunction in Down Syndrome: From Pathology to Therapy. Neuroscience 2023; 511:1-12. [PMID: 36496187 DOI: 10.1016/j.neuroscience.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. Many genes on HSA21 are involved in oxidative phosphorylation (OXPHOS) and regulation of mitochondrial functions. This review highlights the HSA21 dosage-sensitive nuclear-encoded mitochondrial genes associated with overexpression-related phenotypes seen in DS. This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Kai-Leng Tan
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Czerminski JT, King OD, Lawrence JB. Large-scale organoid study suggests effects of trisomy 21 on early fetal neurodevelopment are more subtle than variability between isogenic lines and experiments. Front Neurosci 2023; 16:972201. [PMID: 36817096 PMCID: PMC9935940 DOI: 10.3389/fnins.2022.972201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
This study examines cortical organoids generated from a panel of isogenic trisomic and disomic iPSC lines (subclones) as a model of early fetal brain development in Down syndrome (DS). An initial experiment comparing organoids from one trisomic and one disomic line showed many genome-wide transcriptomic differences and modest differences in cell-type proportions, suggesting there may be a neurodevelopmental phenotype that is due to trisomy of chr21. To better control for multiple sources of variation, we undertook a highly robust study of ∼1,200 organoids using an expanded panel of six all-isogenic lines, three disomic, and three trisomic. The power of this experimental design was indicated by strong detection of the ∼1.5-fold difference in chr21 genes. However, the numerous expression differences in non-chr21 genes seen in the smaller experiment fell away, and the differences in cell-type representation between lines did not correlate with trisomy 21. Results suggest that the initial smaller experiment picked up differences between small organoid samples and individual isogenic lines, which "averaged out" in the larger panel of isogenic lines. Our results indicate that even when organoid and batch variability are better controlled for, variation between isogenic cell lines (even subclones) may obscure, or be conflated with, subtle neurodevelopmental phenotypes that may be present in ∼2nd trimester DS brain development. Interestingly, despite this variability between organoid batches and lines, and the "fetal stage" of these organoids, an increase in secreted Aβ40 peptide levels-an Alzheimer-related cellular phenotype-was more strongly associated with trisomy 21 status than were neurodevelopmental shifts in cell-type composition.
Collapse
Affiliation(s)
- Jan T. Czerminski
- Medical Scientist Training Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Oliver D. King
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jeanne B. Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Jeanne B. Lawrence,
| |
Collapse
|
23
|
Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol 2023. [PMID: 36692980 DOI: 10.1111/dmcn.15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
In the last decade, an important effort was made in the field of Down syndrome to find new interventions that improve cognition. These therapies have added to the traditional symptomatic treatments and to the drugs for treating Alzheimer disease in the general population repurposed for Down syndrome. Defining next-generation therapeutics will involve biomarker-based therapeutic decision-making, and preventive and multimodal interventions. However, translation of specific findings into effective therapeutic strategies has been disappointingly slow and has failed in many cases at the clinical level, leading to reduced credibility of mouse studies. This is aggravated by a tendency to favour large-magnitude effects and highly significant findings, leading to high expectations but also to a biased view of the complex pathophysiology of Down syndrome. Here, we review some of the most recent and promising strategies for ameliorating the cognitive state of individuals with Down syndrome. We studied the landscape of preclinical and clinical studies and conducted a thorough literature search on PubMed and ClinicalTrials.gov for articles published between June 2012 and August 2022 on therapies for ameliorating cognitive function in individuals with Down syndrome. We critically assess current therapeutic approaches, why therapies fail in clinical trials in Down syndrome, and what could be the path forward. We discuss some intrinsic difficulties for translational research, and the need for a framework that improves the detection of drug efficacy to avoid discarding compounds too early from the companies' pipelines.
Collapse
Affiliation(s)
- Nicola Lorenzon
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juanluis Musoles-Lleó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federica Turrisi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael De La Torre
- Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| |
Collapse
|
24
|
Suvá M, Arnold VH, Wiedenmann EA, Jordan R, Galvagno E, Martínez M, Vichera GD. First sex modification case in equine cloning. PLoS One 2023; 18:e0279869. [PMID: 36598913 PMCID: PMC9812313 DOI: 10.1371/journal.pone.0279869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is an asexual reproductive technique where cloned offspring contain the same genetic material as the original donor. Although this technique preserves the sex of the original animal, the birth of sex-reversed offspring has been reported in some species. Here, we report for the first time the birth of a female foal generated by SCNT of a male nuclear donor. After a single SCNT procedure, 16 blastocysts were obtained and transferred to eight recipient mares, resulting in the birth of two clones: one male and one female. Both animals had identical genetic profiles, as observed in the analysis of 15-horse microsatellite marker panel, which confirmed they are indeed clones of the same animal. Cytogenetic analysis and fluorescent in situ hybridization using X and Y specific probes revealed a 63,X chromosome set in the female offspring, suggesting a spontaneous Y chromosome loss. The identity of the lost chromosome in the female was further confirmed through PCR by observing the presence of X-linked markers and absence of Y-linked markers. Moreover, cytogenetic and molecular profiles were analyzed in blood and skin samples to detect a possible mosaicism in the female, but results showed identical chromosomal constitutions. Although the cause of the spontaneous chromosome loss remains unknown, the possibility of equine sex reversal by SCNT holds great potential for the preservation of endangered species, development of novel breeding techniques, and sportive purposes.
Collapse
Affiliation(s)
- Mariana Suvá
- Kheiron Biotech S.A., Pilar, Buenos Aires, Argentina
- * E-mail: (MS); (GDV)
| | | | | | | | | | - Marcela Martínez
- Laboratorio de Genética Aplicada, Sociedad Rural Argentina, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Ganguly BB, Kadam NN. Therapeutics for mitochondrial dysfunction-linked diseases in Down syndrome. Mitochondrion 2023; 68:25-43. [PMID: 36371073 DOI: 10.1016/j.mito.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Genome-wide deregulation contributes to mitochondrial dysfunction and impairment in oxidative phosphorylation (OXPHOS) mechanism resulting in oxidative stress, increased production of reactive oxygen species (ROS) and cell death in individuals with Down syndrome (DS). The cells, which require more energy, such as muscles, brain and heart are greatly affected. Impairment in mitochondrial network has a direct link with patho-mechanism at cellular and systemic levels at the backdrop of generalized metabolic perturbations in individuals with DS. Myriads of clinico-phenotypic features, including intellectual disability, early aging and neurodegeneration, and Alzheimer disease (AD)-related dementia are inevitable in DS-population where mitochondrial dysfunctions play the central role. Collectively, the mitochondrial abnormalities and altered energy metabolism perturbs several signaling pathways, particularly related to neurogenesis, which are directly associated with cognitive development and early onset of AD in individuals with DS. Therefore, therapeutic challenges for amelioration of the mitochondrial defects were perceived to improve the quality of life of the DS population. A number of pharmacologically active natural compounds such as polyphenols, antioxidants and flavonoids have shown convincing outcome for reversal of the dysfunctional mitochondrial network and oxidative metabolism, and improvement in intellectual skill in mouse models of DS and humans with DS.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Nitin N Kadam
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
26
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
28
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
29
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
30
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
31
|
Hasina Z, Wang N, Wang CC. Developmental Neuropathology and Neurodegeneration of Down Syndrome: Current Knowledge in Humans. Front Cell Dev Biol 2022; 10:877711. [PMID: 35676933 PMCID: PMC9168127 DOI: 10.3389/fcell.2022.877711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Individuals with Down syndrome (DS) suffer from developmental delay, intellectual disability, and an early-onset of neurodegeneration, Alzheimer’s-like disease, or precocious dementia due to an extra chromosome 21. Studying the changes in anatomical, cellular, and molecular levels involved may help to understand the pathogenesis and develop target treatments, not just medical, but also surgical, cell and gene therapy, etc., for individuals with DS. Here we aim to identify key neurodevelopmental manifestations, locate knowledge gaps, and try to build molecular networks to better understand the mechanisms and clinical importance. We summarize current information about the neuropathology and neurodegeneration of the brain from conception to adulthood of foetuses and individuals with DS at anatomical, cellular, and molecular levels in humans. Understanding the alterations and characteristics of developing Down syndrome will help target treatment to improve the clinical outcomes. Early targeted intervention/therapy for the manifestations associated with DS in either the prenatal or postnatal period may be useful to rescue the neuropathology and neurodegeneration in DS.
Collapse
Affiliation(s)
- Zinnat Hasina
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicole Wang
- School of Veterinary Medicine, Glasgow University, Glasgow, United Kingdom
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Chi Chiu Wang,
| |
Collapse
|
32
|
Akutsu SN, Miyamoto T, Oba D, Tomioka K, Ochiai H, Ohashi H, Matsuura S. iPSC reprogramming-mediated aneuploidy correction in autosomal trisomy syndromes. PLoS One 2022; 17:e0264965. [PMID: 35271616 PMCID: PMC8912248 DOI: 10.1371/journal.pone.0264965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21, 18, and 13 are the major autosomal aneuploidy disorders in humans. They are mostly derived from chromosome non-disjunction in maternal meiosis, and the extra trisomic chromosome can cause several congenital malformations. Various genes on the trisomic chromosomes are intricately involved in the development of disease, and fundamental treatments have not yet been established. However, chromosome therapy has been developed to correct the extra chromosome in cultured patient cells, and it was recently reported that during reprogramming into iPSCs, fibroblasts from a Down syndrome patient lost the extra chromosome 21 due to a phenomenon called trisomy-biased chromosome loss. To gain preliminary insights into the underlying mechanism of trisomy rescue during the early stages of reprogramming, we reprogrammed skin fibroblasts from patients with trisomy syndromes 21, 18, 13, and 9 to iPSC, and evaluated the genomes of the individual iPSC colonies by molecular cytogenetic techniques. We report the spontaneous correction from trisomy to disomy upon cell reprogramming in at least one cell line examined from each of the trisomy syndromes, and three possible combinations of chromosomes were selected in the isogenic trisomy-rescued iPSC clones. Single nucleotide polymorphism analysis showed that the trisomy-rescued clones exhibited either heterodisomy or segmental uniparental isodisomy, ruling out the possibility that two trisomic chromosomes were lost simultaneously and the remaining one was duplicated, suggesting instead that one trisomic chromosome was lost to generate disomic cells. These results demonstrated that trisomy rescue may be a phenomenon with random loss of the extra chromosome and subsequent selection for disomic iPSCs, which is analogous to the karyotype correction in early preimplantation embryos. Our finding is relevant for elucidating the mechanisms of autonomous karyotype correction and future application in basic and clinical research on aneuploidy disorders.
Collapse
Affiliation(s)
- Silvia Natsuko Akutsu
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Daiju Oba
- Department of Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Keita Tomioka
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ochiai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hirofumi Ohashi
- Department of Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
33
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
34
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
35
|
Wu CI, Vinton EA, Pearse RV, Heo K, Aylward AJ, Hsieh YC, Bi Y, Adeleye S, Fancher S, Duong DM, Seyfried NT, Schwarz TL, Young-Pearse TL. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Mol Psychiatry 2022; 27:1970-1989. [PMID: 35194165 PMCID: PMC9133025 DOI: 10.1038/s41380-022-01454-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer's disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer's disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.
Collapse
Affiliation(s)
- Chun-I Wu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Vinton
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keunjung Heo
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Bi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sopefoluwa Adeleye
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Seeley Fancher
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Thomas L Schwarz
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
37
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
39
|
The potential of long noncoding RNA therapies. Trends Pharmacol Sci 2022; 43:269-280. [DOI: 10.1016/j.tips.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
|
40
|
Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:1. [PMID: 34982276 PMCID: PMC8727646 DOI: 10.1186/s13619-021-00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 04/25/2023]
Abstract
Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.
Collapse
Affiliation(s)
- Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajie Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
41
|
Wang Y, Li Z, Yang G, Cai L, Yang F, Zhang Y, Zeng Y, Ma Q, Zeng F. The Study of Alternative Splicing Events in Human Induced Pluripotent Stem Cells From a Down's Syndrome Patient. Front Cell Dev Biol 2021; 9:661381. [PMID: 34660567 PMCID: PMC8516071 DOI: 10.3389/fcell.2021.661381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
Down's syndrome (DS) is one of the most commonly known disorders with multiple congenital disabilities. Besides severe cognitive impairment and intellectual disability, individuals with DS also exhibit additional phenotypes of variable penetrance and severity, with one or more comorbid conditions, including Alzheimer's disease, congenital heart disease, or leukemia. Various vital genes and regulatory networks had been studied to reveal the pathogenesis of the disease. Nevertheless, very few studies have examined alternative splicing. Alternative splicing (AS) is a regulatory mechanism of gene expression when making one multi-exon protein-coding gene produce more than one unique mature mRNA. We employed the GeneChip Human Transcriptome Array 2.0 (HTA 2.0) for the global gene analysis with hiPSCs from DS and healthy individuals. Examining differentially expressed genes (DEGs) in these groups and focusing on specific transcripts with AS, 466 up-regulated and 722 down-regulated genes with AS events were identified. These genes were significantly enriched in biological processes, such as cell adhesion, cardiac muscle contraction, and immune response, through gene ontology (GO) analysis of DEGs. Candidate genes, such as FN1 were further explored for potentially playing a key role in DS. This study provides important insights into the potential role that AS plays in DS.
Collapse
Affiliation(s)
- Yunjie Wang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Zexu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Linlin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fan Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yaqiong Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Qingwen Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Department of Histoembryology, Genetics & Development, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Fukuda A, Hazelbaker DZ, Motosugi N, Hao J, Limone F, Beccard A, Mazzucato P, Messana A, Okada C, San Juan IG, Qian M, Umezawa A, Akutsu H, Barrett LE, Eggan K. De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells. Stem Cell Reports 2021; 16:2138-2148. [PMID: 34416176 PMCID: PMC8452533 DOI: 10.1016/j.stemcr.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner.
Collapse
Affiliation(s)
- Atsushi Fukuda
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; The Institute of Medical Science, Tokai University, Kanagawa, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nami Motosugi
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jin Hao
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesco Limone
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Irune Guerra San Juan
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Menglu Qian
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Lindy E Barrett
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Eggan
- The Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Pereira G, Dória S. X-chromosome inactivation: implications in human disease. J Genet 2021. [DOI: 10.1007/s12041-021-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Tanuma-Takahashi A, Inoue M, Kajiwara K, Takagi R, Yamaguchi A, Samura O, Akutsu H, Sago H, Kiyono T, Okamoto A, Umezawa A. Restoration of keratinocytic phenotypes in autonomous trisomy-rescued cells. Stem Cell Res Ther 2021; 12:476. [PMID: 34433490 PMCID: PMC8390253 DOI: 10.1186/s13287-021-02448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background An extra copy of chromosome 21 in humans can alter cellular phenotypes as well as immune and metabolic systems. Down syndrome is associated with many health-related problems and age-related disorders including dermatological abnormalities. However, few studies have focused on the impact of trisomy 21 (T21) on epidermal stem cells and progenitor cell dysfunction. Here, we investigated the differences in keratinocytic characteristics between Down syndrome and euploid cells by differentiating cells from trisomy 21-induced pluripotent stem cells (T21-iPSCs) and autonomous rescued disomy 21-iPSCs (D21-iPSCs). Methods Our protocol for keratinocytic differentiation of T21-iPSCs and D21-iPSCs was employed. For propagation of T21- and D21-iPSC-derived keratinocytes and cell sheet formation, the culture medium supplemented with Rho kinase inhibitor on mouse feeder cells was introduced as growth rate decreased. Before passaging, selection of a keratinocytic population with differential dispase reactivity was performed. Three-dimensional (3D) air-liquid interface was performed in order to evaluate the ability of iPSC-derived keratinocytes to differentiate and form stratified squamous epithelium. Results Trisomy-rescued disomy 21-iPSCs were capable of epidermal differentiation and expressed keratinocytic markers such as KRT14 and TP63 upon differentiation compared to trisomy 21-iPSCs. The lifespan of iPSC-derived keratinocytes could successfully be extended on mouse feeder cells in media containing Rho kinase inhibitor, to more than 34 population doublings over a period of 160 days. Dispase-based purification of disomy iPSC-derived keratinocytes contributed epidermal sheet formation. The trisomy-rescued disomy 21-iPSC-derived keratinocytes with an expanded lifespan generated 3D skin in combination with a dermal fibroblast component. Conclusions Keratinocytes derived from autonomous trisomy-rescued iPSC have the ability of stratification for manufacturing 3D skin with restoration of keratinocytic functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02448-w.
Collapse
Affiliation(s)
- Akiko Tanuma-Takahashi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Momoko Inoue
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Kazuhiro Kajiwara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Ryo Takagi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Ayumi Yamaguchi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
45
|
Dierssen M, Herault Y, Helguera P, Martínez de Lagran M, Vazquez A, Christian B, Carmona-Iragui M, Wiseman F, Mobley W, Fisher EMC, Brault V, Esbensen A, Jacola LM, Potier MC, Hamlett ED, Abbeduto L, Del Hoyo Soriano L, Busciglio J, Iulita MF, Crispino J, Malinge S, Barone E, Perluigi M, Costanzo F, Delabar JM, Bartesaghi R, Dekker AD, De Deyn P, Fortea Ormaechea J, Shaw PA, Haydar TF, Sherman SL, Strydom A, Bhattacharyya A. Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Mol Syndromol 2021; 12:202-218. [PMID: 34421499 DOI: 10.1159/000514437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Pablo Helguera
- Instituto Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maria Martínez de Lagran
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Vazquez
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bradley Christian
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - William Mobley
- University of California-San Diego, San Diego, California, USA
| | | | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Anna Esbensen
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa M Jacola
- St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marie Claude Potier
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Eric D Hamlett
- Medical University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Nedlands, Washington, Australia
| | | | | | | | - Jean Maurice Delabar
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Alain D Dekker
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter De Deyn
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,University of Antwerp, Antwerp, Belgium
| | - Juan Fortea Ormaechea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Rafferty K, Archer KJ, Turner K, Brown R, Jackson-Cook C. Trisomy 21-associated increases in chromosomal instability are unmasked by comparing isogenic trisomic/disomic leukocytes from people with mosaic Down syndrome. PLoS One 2021; 16:e0254806. [PMID: 34283872 PMCID: PMC8291705 DOI: 10.1371/journal.pone.0254806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Down syndrome, which results from a trisomic imbalance for chromosome 21, has been associated with 80+ phenotypic traits. However, the cellular changes that arise in somatic cells due to this aneuploid condition are not fully understood. The primary aim of this study was to determine if germline trisomy 21 is associated with an increase in spontaneous somatic cell chromosomal instability frequencies (SCINF). To achieve this aim, we quantified SCINF in people with mosaic Down syndrome using a cytokinesis-blocked micronucleus assay. By comparing values in their isogenic trisomic/disomic cells, we obtained a measure of differences in SCINF that are directly attributable to a trisomy 21 imbalance, since differential effects attributable to "background" genetic factors and environmental exposures could be eliminated. A cross-sectional assessment of 69 people with mosaic Down syndrome (ages 1 to 44; mean age of 12.84 years) showed a significantly higher frequency of micronuclei in their trisomic (0.37 ± 0.35 [mean ± standard deviation]) compared to disomic cells (0.18 ± 0.11)(P <0.0001). The daughter binucleates also showed significantly higher levels of abnormal patterns in the trisomic (1.68 ± 1.21) compared to disomic (0.35 ± 0.45) cells (P <0.0001). Moreover, a significant Age x Cell Type interaction was noted (P = 0.0113), indicating the relationship between age and SCINF differed between the trisomic and disomic cells. Similarly, a longitudinal assessment (mean time interval of 3.9 years; range of 2 to 6 years) of 18 participants showed a mean 1.63-fold increase in SCINF within individuals over time for their trisomic cells (P = 0.0186), compared to a 1.13-fold change in their disomic cells (P = 0.0464). In summary, these results showed a trisomy 21-associated, age-related increase in SCINF. They also underscore the strength of the isogenic mosaic Down syndrome model system for "unmasking" cellular changes arising from a trisomy 21 imbalance.
Collapse
Affiliation(s)
- Kelly Rafferty
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kellie J. Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristi Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ruth Brown
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Colleen Jackson-Cook
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
47
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
48
|
Qiu X, Yu H, Wu H, Hu Z, Zhou J, Lin H, Xue W, Cai W, Chen J, Yan Q, Dai W, Yang M, Tang D, Dai Y. Single-cell chromatin accessibility landscape of human umbilical cord blood in trisomy 18 syndrome. Hum Genomics 2021; 15:40. [PMID: 34193281 PMCID: PMC8246660 DOI: 10.1186/s40246-021-00338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trisomy 18 syndrome (Edwards syndrome, ES) is a type of aneuploidy caused by the presence of an extra chromosome 18. Aneuploidy is the leading cause of early pregnancy loss, intellectual disability, and multiple congenital anomalies. The research of trisomy 18 is progressing slowly, and the molecular characteristics of the disease mechanism and phenotype are still largely unclear. RESULTS In this study, we used the commercial Chromium platform (10× Genomics) to perform sc-ATAC-seq to measure chromatin accessibility in 11,611 single umbilical cord blood cells derived from one trisomy 18 syndrome patient and one healthy donor. We obtained 13 distinct major clusters of cells and identified them as 6 human umbilical cord blood mononuclear cell types using analysis tool. Compared with the NC group, the ES group had a lower ratio of T cells to NK cells, the ratio of monocytes/DC cell population did not change significantly, and the ratio of B cell nuclear progenitor and megakaryocyte erythroid cells was higher. The differential genes of ME-0 are enriched in Human T cell leukemia virus 1 infection pathway, and the differential peak genes of ME-1 are enriched in apopotosis pathway. We found that CCNB2 and MCM3 may be vital to the development of trisomy 18. CCNB2 and MCM3, which have been reported to be essential components of the cell cycle and chromatin. CONCLUSIONS We have identified 6 cell populations in cord blood. Disorder in megakaryocyte erythroid cells implicates trisomy 18 in perturbing fetal hematopoiesis. We identified a pathway in which the master differential regulatory pathway in the ME-0 cell population involves human T cell leukemia virus 1 infection, a pathway that is dysregulated in patients with trisomy 18 and which may increase the risk of leukemia in patients with trisomy 18. CCNB2 and MCM3 in progenitor may be vital to the development of trisomy 18. CCNB2 and MCM3, which have been reported to be essential components of the cell cycle and chromatin, may be related to chromosomal abnormalities in trisomy 18.
Collapse
Affiliation(s)
- Xiaofen Qiu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.,Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China.,College of Life Science, Guangxi Normal University, Guilin, Guangxi, 541004, People's Republic of China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Hongwei Wu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Zhiyang Hu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Jun Zhou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Hua Lin
- Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Wen Xue
- Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Jiejing Chen
- Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ming Yang
- Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China. .,Guangxi Key Laboratory of Metabolic Diseases Research, Department of Clinical Laboratory of Guilin, No. 924 Hospital, 541002, Guilin, Guangxi, People's Republic of China.
| |
Collapse
|
49
|
Naciri I, Lin B, Webb CH, Jiang S, Carmona S, Liu W, Mortazavi A, Sun S. Linking Chromosomal Silencing With Xist Expression From Autosomal Integrated Transgenes. Front Cell Dev Biol 2021; 9:693154. [PMID: 34222260 PMCID: PMC8250153 DOI: 10.3389/fcell.2021.693154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Xist is the master regulator of X-Chromosome Inactivation (XCI), the mammalian dosage compensation mechanism that silences one of the two X chromosomes in a female cell. XCI is established during early embryonic development. Xist transgene (Tg) integrated into an autosome can induce transcriptional silencing of flanking genes; however, the effect and mechanism of Xist RNA on autosomal sequence silencing remain elusive. In this study, we investigate an autosomal integration of Xist Tg that is compatible with mouse viability but causes male sterility in homozygous transgenic mice. We observed ectopic Xist expression in the transgenic male cells along with a transcriptional reduction of genes clustered in four segments on the mouse chromosome 1 (Chr 1). RNA/DNA Fluorescent in situ Hybridization (FISH) and chromosome painting confirmed that Xist Tg is associated with chromosome 1. To determine the spreading mechanism of autosomal silencing induced by Xist Tg on Chr 1, we analyzed the positions of the transcriptionally repressed chromosomal sequences relative to the Xist Tg location inside the cell nucleus. Our results show that the transcriptionally repressed chromosomal segments are closely proximal to Xist Tg in the three-dimensional nucleus space. Our findings therefore support a model that Xist directs and maintains long-range transcriptional silencing facilitated by the three-dimensional chromosome organization.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Benjamin Lin
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Chiu-Ho Webb
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shan Jiang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sarah Carmona
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Wenzhu Liu
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
50
|
Kawatani K, Nambara T, Nawa N, Yoshimatsu H, Kusakabe H, Hirata K, Tanave A, Sumiyama K, Banno K, Taniguchi H, Arahori H, Ozono K, Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol 2021; 4:730. [PMID: 34127780 PMCID: PMC8203796 DOI: 10.1038/s42003-021-02242-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Astrocytes exert adverse effects on the brains of individuals with Down syndrome (DS). Although a neurogenic-to-gliogenic shift in the fate-specification step has been reported, the mechanisms and key regulators underlying the accelerated proliferation of astrocyte precursor cells (APCs) in DS remain elusive. Here, we established a human isogenic cell line panel based on DS-specific induced pluripotent stem cells, the XIST-mediated transcriptional silencing system in trisomic chromosome 21, and genome/chromosome-editing technologies to eliminate phenotypic fluctuations caused by genetic variation. The transcriptional responses of genes observed upon XIST induction and/or downregulation are not uniform, and only a small subset of genes show a characteristic expression pattern, which is consistent with the proliferative phenotypes of DS APCs. Comparative analysis and experimental verification using gene modification reveal dose-dependent proliferation-promoting activity of DYRK1A and PIGP on DS APCs. Our collection of human isogenic cell lines provides a comprehensive set of cellular models for further DS investigations. Keiji Kawatani et al. developed a panel of Down syndrome (DS) isogenic astrocytes derived from iPSCs to observe the consequence of DS on astrocyte precursor proliferation, differentiation, and gene expression. Their results suggest a dose-dependent effect of DYRK1A and PIGP on DS-derived astrocyte precursor proliferation, and represent a valuable resource and cellular model for future DS research.
Collapse
Affiliation(s)
- Keiji Kawatani
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Nambara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nobutoshi Nawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Yoshimatsu
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruna Kusakabe
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kimihiko Banno
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Physiology II, Nara Medical University, Kashihara, Nara, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Arahori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|