1
|
Hazarika H, Krishnatreyya H. Technological Advancements in Mosquito Repellents: Challenges and Opportunities in Plant-Based Repellents. Acta Parasitol 2025; 70:117. [PMID: 40434490 DOI: 10.1007/s11686-025-01054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE The worldwide distribution of mosquitoes and their significant role in the transmission of diseases such as malaria, dengue, and chikungunya have resulted in substantial mortality, morbidity, and economic loss. This review aims to explore the challenges and opportunities associated with plant-based mosquito repellents as sustainable alternatives to conventional chemical insecticides. METHODS A comprehensive analysis of recent literature was conducted to investigate the conventional technology available as well as novel techniques utilized to minimize man-mosquito contact and also to assess the efficacy, safety, and mechanisms of plant-derived mosquito repellents. Special attention was given to essential oils and their active constituents, as well as current advancements in formulation technologies, stability issues, and standardization practices. RESULTS The utilization of conventional chemical insecticides for controlling mosquitoes has resulted in the development of biological resistance and has detrimental environmental impacts. Consequently, researchers have made significant efforts in recent years to develop sustainable and economical alternatives, with a particular focus on botanical mosquito-repellent compounds. This has led to a marked increase in interest in the use of plant derieved products as mosquito repellents. Limonene, citronellol, eucalyptol, geraniol, eugenol, carvacrol, and citronellal are the primary essential oil components extracted from plants that exhibit mosquito repellent activity. Owing to their complex chemical structures, mosquitoes are unable to develop resistance to these molecules. CONCLUSION Plant-based mosquito repellents represent a promising and sustainable alternative to synthetic repellents. However, challenges such as variability in composition, lack of standardization, stability issues, and limited mechanistic understanding hinder their widespread adoption. Molecular and cellular mechanistic studies may increase product safety and efficacy by identifying specific targets and detoxification pathways.
Collapse
Affiliation(s)
- Hemanga Hazarika
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Constituent campus-Tezpur, Tezpur, 784501, Assam, India.
| | - Harshita Krishnatreyya
- National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Guwahati, 781101, Assam, India
| |
Collapse
|
2
|
Cator LJ, Bonsall MB. Anticipating evolutionary responses of mosquito mating systems to population suppression with mass-reared males. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101302. [PMID: 39571679 DOI: 10.1016/j.cois.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Strategies that rely on the mass release of males to suppress mosquito populations will exert selective pressure on natural mating systems. Here, we investigate how mass releases might affect the mating behaviors of wild target populations. We highlight gaps in our understanding of both variation in these aspects of mosquito behavior and the evolutionary forces that maintain variation within and between populations. We provide a mathematical framework for integrating mosquito mating ecology into models of population suppression. Given that these strategies are being increasingly deployed, anticipating and managing evolutionary responses of target population behavior should be a priority for research.
Collapse
Affiliation(s)
- Lauren J Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL57PY, UK.
| | - Michael B Bonsall
- Department of Biology, University of Oxford, Oxford OX1 2DL, UK; St Peter's College, Oxford OX1 2DL, UK
| |
Collapse
|
3
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
4
|
Chaturvedi R, Sharma A. Key Facets for the Elimination of Vector-Borne Diseases Filariasis, Leishmaniasis, and Malaria. ACS Infect Dis 2025; 11:287-304. [PMID: 39784679 DOI: 10.1021/acsinfecdis.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention. By identifying these commonalities and fostering cooperation among disease control programs, we can strengthen our efforts to combat them and hence enhance the health of at-risk populations. This review summarizes the key points associated with the epidemiology, transmission dynamics, and therapeutic regimes for each disease, presenting a holistic overview of these three eliminable diseases.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Amit Sharma
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India
| |
Collapse
|
5
|
Wang GH, Hoffmann A, Champer J. Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:229-249. [PMID: 39353088 DOI: 10.1146/annurev-ento-012424-011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia;
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
6
|
Chan SW. CRISPR-editing of the virus vector Aedes albopictus cell line C6/36, illustrated by prohibitin 2 gene knockout. MethodsX 2024; 13:102817. [PMID: 39049926 PMCID: PMC11267050 DOI: 10.1016/j.mex.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
7
|
Almeida L, Bellver-Arnau J, Privat Y, Rebelo C. Vector-borne disease outbreak control via instant releases. J Math Biol 2024; 89:63. [PMID: 39532731 PMCID: PMC11557670 DOI: 10.1007/s00285-024-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
This paper is devoted to the study of optimal release strategies to control vector-borne diseases, such as dengue, Zika, chikungunya and malaria. Two techniques are considered: the sterile insect one (SIT), which consists in releasing sterilized males among wild vectors in order to perturb their reproduction, and the Wolbachia one (presently used mainly for mosquitoes), which consists in releasing vectors, that are infected with a bacterium limiting their vectorial capacity, in order to replace the wild population by one with reduced vectorial capacity. In each case, the time dynamics of the vector population is modeled by a system of ordinary differential equations in which the releases are represented by linear combinations of Dirac measures with positive coefficients determining their intensity. We introduce optimal control problems that we solve numerically using ad-hoc algorithms, based on writing first-order optimality conditions characterizing the best combination of Dirac measures. We then discuss the results obtained, focusing in particular on the complexity and efficiency of optimal controls and comparing the strategies obtained. Mathematical modeling can help testing a great number of scenarios that are potentially interesting in future interventions (even those that are orthogonal to the present strategies) but that would be hard, costly or even impossible to test in the field in present conditions.
Collapse
Affiliation(s)
- Luis Almeida
- Laboratoire J.-L. Lions, Sorbonne Université CNRS, Université de Paris, Inria, 75005, Paris, France
| | - Jesús Bellver-Arnau
- Laboratoire J.-L. Lions, Sorbonne Université CNRS, Université de Paris, Inria, 75005, Paris, France.
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300, Blanes, Spain.
| | - Yannick Privat
- Université de Lorraine, CNRS, Institut Elie Cartan de Lorraine, Inria, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France
- Institut Universitaire de France (IUF), Paris, France
| | - Carlota Rebelo
- Departamento de Matemática and CEMAT-Ciências, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
8
|
Roman A, Koenraadt CJM, Raymond B. Asaia spp. accelerate development of the yellow fever mosquito, Aedes aegypti, via interactions with the vertically transmitted larval microbiome. J Appl Microbiol 2024; 135:lxae261. [PMID: 39419784 DOI: 10.1093/jambio/lxae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS A wide range of vector control programmes rely on the efficient production and release of male mosquito. Asaia bacteria are described as potential symbionts of several mosquito species but their relationship with Aedes aegypti has never been rigorously tested. Here, we aimed to quantify the benefits of three Asaia species on host development in Ae. aegypti, and the ability of these bacteria to form a stable symbiotic association with growing larvae. METHODS AND RESULTS In order to disentangle direct and indirect effects of Asaia inoculation on host development, experiments used insects with an intact microbiome and those reared in near-aseptic conditions, while we characterized bacterial communities and Asaia densities with culture dependent and independent methods (16S rRNA amplicon sequencing). Neonate larvae were inoculated with Asaia spp. for 24 h, or left as uninoculated controls, all were reared on sterile food. Aseptic larvae were produced by surface sterilization of eggs. Although all Asaia were transient members of the gut community, two species accelerated larval development relative to controls. The two mutualistic species had lasting impacts on the larval microbiome, largely by altering the relative abundance of dominant bacteria, namely Klebsiella and Pseudomonas. Axenic larvae were dominated by Asaia when inoculated with this species but showed slower development than conventionally reared insects, indicating that Asaia alone could not restore normal development. CONCLUSIONS Our results reveal Asaia as a poor mutualist for Ae. aegypti, but with a species-specific positive effect on improving host performance mediated by interactions with other bacteria.
Collapse
Affiliation(s)
- Alessandro Roman
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
- Laboratory of Entomology, Droevendaalsesteeg 1, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | | | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
9
|
Chen W, Guo J, Liu Y, Champer J. Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila. Nat Commun 2024; 15:8053. [PMID: 39277611 PMCID: PMC11401859 DOI: 10.1038/s41467-024-52473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
CRISPR homing gene drives can suppress pest populations by targeting female fertility genes, converting wild-type alleles into drive alleles in the germline of drive heterozygotes. fsRIDL (female-specific Release of Insects carrying a Dominant Lethal) is a self-limiting population suppression strategy involving continual release of transgenic males carrying female lethal alleles. Here, we propose an improved pest suppression system called "Release of Insects carrying a Dominant-sterile Drive" (RIDD), combining performance characteristics of homing drive and fsRIDL. We construct a split RIDD system in Drosophila melanogaster by creating a 3-gRNA drive disrupting the doublesex female exon. Drive alleles bias their inheritance in males, while drive alleles and resistance alleles formed by end-joining cause dominant female sterility. Weekly releases of RIDD males progressively suppressed and eventually eliminated cage populations. Modeling shows that RIDD is substantially stronger than SIT and fsRIDL. RIDD is also self-limiting, potentially allowing targeted population suppression.
Collapse
Affiliation(s)
- Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
- PTN program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jialiang Guo
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
- PTN program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yiran Liu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Wang Q, Lei Y, Lin H, Chen X, Mo W, Guan B, Deng H. Gonadal Transcriptomic Analysis Reveals Novel Sex-Related Genes in Bactrocera dorsalis. INSECTS 2024; 15:424. [PMID: 38921139 PMCID: PMC11203884 DOI: 10.3390/insects15060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the most devastating agricultural pests worldwide due to its high reproductive and invasive abilities. The elucidation of its gonadal developmental characteristics and the identification of sex-related genes will provide a useful genetic basis for reproductive-based pest control. Here, the gonadal transcriptome of B. dorsalis was sequenced, and novel gonad-specific expressed genes were analyzed. A total of 1338, 336, 35, and 479 differentially expressed genes (DEGs) were found in the testis (TE), ovary (OV), female accessory gland (FAG), and male accessory gland (MAG), respectively. Furthermore, 463 highly expressed gonad-specific genes were identified, with the TE having the highest number of specific highly expressed genes, at 402, followed by 51 in the OV, 9 in the MAG, and only 1 in the FAG. Strikingly, approximately half of highly expressed gonad-specific genes were uncharacterized. Then, it was found that 35, 17, 3, 2, and 1 of 202 uncharacterized highly expressed TE-specific genes encoded proteins that contained transmembrane domains, signal peptides, high-mobility group boxes, the zinc finger domain, and the BTB/POZ domain, respectively. Interestingly, approximately 40% of uncharacterized highly expressed gonad-specific genes encoding proteins were not predicted to possess functional motifs or domains. Finally, the spatiotemporal expression and sequence characterization of six novel highly expressed gonad-specific genes were analyzed. Altogether, our findings provide a valuable dataset for future functional analyses of sex-related genes and potential target sites for pest control.
Collapse
Affiliation(s)
- Qin Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxuan Lei
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongjie Lin
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxin Chen
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wanyu Mo
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo F. Considerations for first field trials of low-threshold gene drive for malaria vector control. Malar J 2024; 23:156. [PMID: 38773487 PMCID: PMC11110314 DOI: 10.1186/s12936-024-04952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - George Christophides
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Tibebu Habtewold
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, St. Mary's Campus, Imperial College London, London, UK
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Jonathan K Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | - Alphaxard Manjurano
- Malaria Research Unit and Laboratory Sciences, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrew R McKemey
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - Michael R Santos
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Nikolai Windbichler
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | | |
Collapse
|
12
|
Anu CN, Ashok K, Bhargava CN, Dhawane Y, Manamohan M, Jha GK, Asokan R. CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22121. [PMID: 38783691 DOI: 10.1002/arch.22121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.
Collapse
Affiliation(s)
- Cholenahalli Narayanappa Anu
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Karuppannasamy Ashok
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Tata Institute for Genetics and Society, Bengaluru, Karnataka, India
| | - Chikmagalur Nagaraja Bhargava
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Yogi Dhawane
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Maligeppagol Manamohan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Grish Kumar Jha
- Division of Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ramasamy Asokan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
14
|
Liu P, Li Z, Zhang Q, Qiao J, Zheng C, Zheng W, Zhang H. Identification of testis development-related genes by combining Iso-Seq and RNA-Seq in Zeugodacus tau. Front Cell Dev Biol 2024; 12:1356151. [PMID: 38529408 PMCID: PMC10961823 DOI: 10.3389/fcell.2024.1356151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction: Zeugodacus tau (Walker) is an invasive pest. An effective method to control this pest is the sterile insect technique (SIT). To better apply this technique, it is necessary to understand testis development progression. Methods: Differentially expressed genes (DEGs) during testis development were analyzed by PacBio Iso-Seq and RNA-seq. Results: RNA-Seq library of Z. tau testes on day 1, 6, and 11 post eclosion were constructed. We identified 755 and 865 differentially expressed genes in the comparisons of T6 (testes on day 6) vs. T1 and T11 vs. T1, respectively. The KEGG pathway analysis showed that the DEGs were significantly enriched in retinol metabolism, vitamin B6 metabolism, and ascorbate and aldarate metabolism pathways. Knockdown of retinol dehydrogenase 12-like (rdh12-like), pyridoxal kinase (pdxk) and regucalcin (rgn), the representative gene in each of the above 3 pathways, reduced the hatching rate of Z. tau offspring. In addition, we identified 107 Drosophila spermatogenesis-related orthologous genes in Z. tau, of which innexin 2 (inx2) exhibited significantly up-regulated expression throughout testis development, and the knockdown of this gene reduced offspring hatching rate. Discussion: Our data indicated that rdh12-like, pdxk, rgn, and inx2 genes were related to testis development, and they were conserved in tephritid species. These results suggested that this gene might have the same function in tephritid. The findings provide an insight into testis development and spermatogenesis in tephritid species.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chenjun Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Pérez-Guerra CL, Rosado-Santiago C, Ramos SA, Marrero-Santos KM, González-Zeno G, Partridge SK, Rivera-Amill V, Paz-Bailey G, Sánchez-González L, Hayden MH. Acceptability of emergent Aedes aegypti vector control methods in Ponce, Puerto Rico: A qualitative assessment. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002744. [PMID: 38446807 PMCID: PMC10917327 DOI: 10.1371/journal.pgph.0002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Aedes aegypti control has been fraught with challenges in Puerto Rico. The government has implemented commonly used vector control methods, but arboviral epidemics still occur. It is necessary to explore new Ae. aegypti control methods. This study aimed to understand the perceptions of community members in Ponce, Puerto Rico about emergent and traditional Ae. aegypti vector control methods and determine their acceptability and support for these methods. We identified the type of information needed to increase support for emergent vector control methods, and the preferred strategies to disseminate this information. Four group discussions were conducted with a total of 32 participants representing eight of the 14 clusters participating in the Communities Organized for the Prevention of Arboviruses (COPA), a project designed to mobilize communities in Ponce, Puerto Rico to prevent diseases transmitted by mosquitoes. Group discussions began with an overview of different methods used for controlling Ae. aegypti mosquitoes. These overviews facilitated participant understanding of the mosquito control methods presented. Use of source reduction, autocidal gravid ovitraps (AGO), and manual application of larvicide for arboviral mosquito control received support from almost all participants. Vector control methods that use more familiar techniques in Puerto Rico such as truck-mounted larvicide spraying (TMLS) and insecticide residual spraying received support from most participants. More than half of participants supported the use of emergent mosquito control methods including Wolbachia suppression, Wolbachia replacement, or genetically modified mosquitoes (GMM). Participants preferred to receive vector control information through house-to-house visits with the distribution of written materials, followed by dissemination of information through traditional (i.e., radio, television) and social media. The detailed information resulting from this study was used to develop messages for a communications campaign to garner future community support. Community acceptance and support are critical for the success of vector control programs using emergent mosquito control methods.
Collapse
Affiliation(s)
- Carmen L. Pérez-Guerra
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Coral Rosado-Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Sue Anette Ramos
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Karla Michelle Marrero-Santos
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Gladys González-Zeno
- Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Susanna K. Partridge
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Vanessa Rivera-Amill
- Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Liliana Sánchez-González
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Mary H. Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado, Colorado Springs, Colorado, United States of America
| |
Collapse
|
16
|
Aldridge RL, Gibson S, Linthicum KJ. Aedes aegypti Controls AE. Aegypti: SIT and IIT-An Overview. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:32-49. [PMID: 38427588 DOI: 10.2987/23-7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.
Collapse
|
17
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
18
|
Huang X, Athrey GN, Kaufman PE, Fredregill C, Slotman MA. Effective population size of Culex quinquefasciatus under insecticide-based vector management and following Hurricane Harvey in Harris County, Texas. Front Genet 2023; 14:1297271. [PMID: 38075683 PMCID: PMC10702589 DOI: 10.3389/fgene.2023.1297271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction: Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs. Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey's landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation. Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017. Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Velez ID, Uribe A, Barajas J, Uribe S, Ángel S, Suaza-Vasco JD, Duran Ahumada JS, Mejia Torres MC, Arbeláez MP, Santacruz-Sanmartin E, Duque L, Martínez L, Posada T, Patiño AC, Gonzalez SM, Velez AL, Ramírez J, Salazar M, Gómez S, Osorio JE, Iturbe-Ormaetxe I, Dong Y, Muzzi FC, Rances E, Johnson PH, Smithyman R, Col B, Green BR, Frossard T, Brown-Kenyon J, Joubert DA, Grisales N, Ritchie SA, Denton JA, Gilles JRL, Anders KL, Kutcher SC, Ryan PA, O’Neill SL. Large-scale releases and establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello, Medellín and Itagüí, Colombia. PLoS Negl Trop Dis 2023; 17:e0011642. [PMID: 38032856 PMCID: PMC10688688 DOI: 10.1371/journal.pntd.0011642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS Local wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas. CONCLUSION These results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas.
Collapse
Affiliation(s)
- Iván Darío Velez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Alexander Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jovany Barajas
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Ángel
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan Sebastian Duran Ahumada
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
- Population Biology, Ecology, and Evolution Graduate Program, Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | | | | | | | - Lorena Duque
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Luis Martínez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Tania Posada
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Ana Lucía Velez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jennifer Ramírez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Salazar
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Gómez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jorge E. Osorio
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Yi Dong
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Edwige Rances
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Ruth Smithyman
- World Mosquito Program, Monash University, Clayton, Australia
| | - Bruno Col
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Tibor Frossard
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | - Nelson Grisales
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Jai A. Denton
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | | | - Peter A. Ryan
- World Mosquito Program, Monash University, Clayton, Australia
| | | |
Collapse
|
20
|
Paris V, Hardy C, Hoffmann AA, Ross PA. How often are male mosquitoes attracted to humans? ROYAL SOCIETY OPEN SCIENCE 2023; 10:230921. [PMID: 37885984 PMCID: PMC10598425 DOI: 10.1098/rsos.230921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Many mosquito species live close to humans where females feed on human blood. While male mosquitoes do not feed on blood, it has long been recognized that males of some species can be attracted to human hosts. To investigate the frequency of male mosquito attraction to humans, we conducted a literature review and human-baited field trials, as well as laboratory experiments involving males and females of three common Aedes species. Our literature review indicated that male attraction to humans is limited to a small number of species, including Ae. aegypti and Ae. albopictus. In our human-baited field collections, only 4 out of 13 species captured included males. In laboratory experiments, we found that male Ae. notoscriptus and Ae. vigilax showed no attraction to humans, while male Ae. aegypti exhibited persistent attraction for up to 30 min. Both male and female Ae. aegypti displayed similar preferences for different human subjects, suggesting that male Ae. aegypti respond to similar cues as females. Additionally, we found that mosquito repellents applied to human skin effectively repelled male mosquitoes. These findings shed light on mosquito behaviour and have implications for mosquito control programmes, particularly those involving the release or monitoring of the male mosquito population.
Collapse
Affiliation(s)
- Véronique Paris
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher Hardy
- CSIRO Environment, Canberra, Australian Capital Territory 2601, Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Perran A. Ross
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
21
|
Chikmagalur Nagaraja B, Karuppannasamy A, Ramasamy A, Cholenahalli Narayanappa A, Chalapathi P, Maligeppagol M. CRISPR/Cas9-mediated mutagenesis of Sex lethal (Sxl) gene impacts fertility of the Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-15. [PMID: 37452759 DOI: 10.1002/arch.22035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Identification of novel approaches for managing the global pest, the Fall armyworm, Spodoptera frugiperda, is the need of the hour, as it defies many management strategies including synthetic chemicals, Bt transgenics, and so on. Recently CRISPR/Cas9-based genome editing opened up newer avenues to design novel pest management strategies such as precision-guided sterile insect technique (pgSIT). In this regard, genes governing sex determination, egg reproduction, and spermatogenesis could be the prime targets for genome editing. This requires validation of the target genes, preferably by a nontransgenic DNA-free editing, before the final application. One such important gene regulating sex determination in Drosophila is the Sex lethal (Sxl). However, the function of Sxl is not highly conserved in other insects and, in particular, we are beginning to comprehend its role in Lepidoptera with only one reference available in Spodoptera litura till date. In the present study, we have edited the sxl gene of S. frugiperda through the delivery of ribonucleoprotein complex (sgRNA + Cas9) at G0 stage embryo, targeting the conserved region of all the documented five splice variants. Results clearly showed that editing of sxl gene impacted the overall fecundity and hatching rate. Therefore, Sxl could be one of the target genes for developing pgSIT approach for the management of S. frugiperda.
Collapse
Affiliation(s)
- Bhargava Chikmagalur Nagaraja
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Ashok Karuppannasamy
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Asokan Ramasamy
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Anu Cholenahalli Narayanappa
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Pradeep Chalapathi
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Manamohan Maligeppagol
- Division of Basic Sciences, ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Webb EM, Compton A, Rai P, Chuong C, Paulson SL, Tu Z, Weger-Lucarelli J. Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virus. Front Microbiol 2023; 14:1189176. [PMID: 37378291 PMCID: PMC10291133 DOI: 10.3389/fmicb.2023.1189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Austin Compton
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sally L. Paulson
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zhijian Tu
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
23
|
James S, Santos M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Trop Med Infect Dis 2023; 8:201. [PMID: 37104327 PMCID: PMC10140850 DOI: 10.3390/tropicalmed8040201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Malaria remains an ongoing public health challenge, with over 600,000 deaths in 2021, of which approximately 96% occurred in Africa. Despite concerted efforts, the goal of global malaria elimination has stalled in recent years. This has resulted in widespread calls for new control methods. Genetic biocontrol approaches, including those focused on gene-drive-modified mosquitoes (GDMMs), aim to prevent malaria transmission by either reducing the population size of malaria-transmitting mosquitoes or making the mosquitoes less competent to transmit the malaria parasite. The development of both strategies has advanced considerably in recent years, with successful field trials of several biocontrol methods employing live mosquito products and demonstration of the efficacy of GDMMs in insectary-based studies. Live mosquito biocontrol products aim to achieve area-wide control with characteristics that differ substantially from current insecticide-based vector control methods, resulting in some different considerations for approval and implementation. The successful field application of current biocontrol technologies against other pests provides evidence for the promise of these approaches and insights into the development pathway for new malaria control agents. The status of technical development as well as current thinking on the implementation requirements for genetic biocontrol approaches are reviewed, and remaining challenges for public health application in malaria prevention are discussed.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, North Bethesda, MD 20852, USA
| | | |
Collapse
|
24
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
25
|
Reed EMX, Reiskind MH, Burford Reiskind MO. Life-history stage and the population genetics of the tiger mosquito Aedes albopictus at a fine spatial scale. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:132-142. [PMID: 36300547 DOI: 10.1111/mve.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
As a widespread vector of disease with an expanding range, the mosquito Aedes albopictus Skuse (Diptera: Culicidae) is a high priority for research and management. A. albopictus has a complex life history with aquatic egg, larval and pupal stages, and a terrestrial adult stage. This requires targeted management strategies for each life stage, coordinated across time and space. Population genetics can aid in A. albopictus control by evaluating patterns of genetic diversity and dispersal. However, how life stage impacts population genetic characteristics is unknown. We examined whether patterns of A. albopictus genetic diversity and differentiation changed with life stage at a spatial scale relevant to management efforts. We first conducted a literature review of field-caught A. albopictus population genetic papers and identified 101 peer-reviewed publications, none of which compared results between life stages. Our study uniquely examines population genomic patterns of egg and adult A. albopictus at five sites in Wake County, North Carolina, USA, using 8425 single nucleotide polymorphisms. We found that the level of genetic diversity and connectivity between sites varied between adults and eggs. This warrants further study and is critical for research aimed at informing local management.
Collapse
Affiliation(s)
- Emily M X Reed
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
26
|
Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission. Heredity (Edinb) 2023; 130:99-108. [PMID: 36539450 PMCID: PMC9905534 DOI: 10.1038/s41437-022-00584-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.
Collapse
|
27
|
Gene drive in species complexes: defining target organisms. Trends Biotechnol 2023; 41:154-164. [PMID: 35868886 DOI: 10.1016/j.tibtech.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Engineered gene drives, which bias their own inheritance to increase in frequency in target populations, are being developed to control mosquito malaria vectors. Such mosquitoes can belong to complexes of both vector and nonvector species that can produce fertile interspecific hybrids, making vertical gene drive transfer (VGDT) to sibling species biologically plausible. While VGDT to other vectors could positively impact human health protection goals, VGDT to nonvectors might challenge biodiversity ones. Therefore, environmental risk assessment of gene drive use in species complexes invites more nuanced considerations of target organisms and nontarget organisms than for transgenes not intended to increase in frequency in target populations. Incorporating the concept of target species complexes offers more flexibility when assessing potential impacts from VGDT.
Collapse
|
28
|
Pinch M, Bendzus-Mendoza H, Hansen IA. Transcriptomics analysis of ethanol treatment of male Aedes aegypti reveals a small set of putative radioprotective genes. Front Physiol 2023; 14:1120408. [PMID: 36793417 PMCID: PMC9922702 DOI: 10.3389/fphys.2023.1120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Introduction: Sterile Insect Technique (SIT) is based on releasing sterilized male insects into wild insect populations to compete for mating with wild females. Wild females mated with sterile males will produce inviable eggs, leading to a decline in population of that insect species. Sterilization with ionizing radiation (x-rays) is a commonly used mechanism for sterilization of males. Since irradiation can cause damage to both, somatic and germ cells, and can severely reduce the competitiveness of sterilized males relative to wild males, means to minimize the detrimental effects of radiation are required to produce sterile, competitive males for release. In an earlier study, we identified ethanol as a functional radioprotector in mosquitoes. Methods: Here, we used Illumina RNA-seq to profile changes in gene expression of male Aedes aegypti mosquitoes fed on 5% ethanol for 48 hours prior to receiving a sterilizing x-ray dose, compared to males fed on water prior to sterilization. Results: RNA-seq revealed a robust activation of DNA repair genes in both ethanol-fed and water-fed males after irradiation, but surprisingly few differences in gene expression between ethanol-fed and water-fed males regardless of radiation treatment. Discussion: While differences in gene expression due to ethanol exposure were minimal, we identified a small group of genes that may prime ethanol-fed mosquitoes for improved survivability in response to sterilizing radiation.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Harley Bendzus-Mendoza
- Department of Computer Science, New Mexico State University, Las Cruces, NM, United States
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
29
|
The size of larval rearing container modulates the effects of diet amount and larval density on larval development in Aedes aegypti. PLoS One 2023; 18:e0280736. [PMID: 36696416 PMCID: PMC9876358 DOI: 10.1371/journal.pone.0280736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Mass-rearing of mosquitoes under laboratory conditions is an important part of several new control techniques that rely on the release of males to control mosquito populations. While previous work has investigated the effect of larval density and diet amount on colony productivity, the role of the size of the container in which larval development takes place has been relatively ignored. We investigated the role of container size in shaping life history and how this varied with density and food availability in Aedes aegypti, an important disease vector and target of mass-rearing operations. For each treatment combination, immature development time and survival and adult body size and fecundity were measured, and then combined into a measure of productivity. We additionally investigated how larval aggregation behaviour varied with container size. Container size had important effects on life history traits and overall productivity. In particular, increasing container size intensified density and diet effects on immature development time. Productivity was also impacted by container size when larvae were reared at high densities (1.4 larva/ml). In these treatments, the productivity metric of large containers was estimated to be significantly lower than medium or small containers. Regardless of container size, larvae were more likely to be observed at the outer edges of containers, even when this led to extremely high localized densities. We discuss how container size and larval aggregation responses may alter the balance of energy input and output to shape development and productivity.
Collapse
|
30
|
Wen D, Ding LS, Zhang Y, Li X, Zhang X, Yuan F, Zhao T, Zheng A. Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine. Nat Commun 2022; 13:7780. [PMID: 36526630 PMCID: PMC9755785 DOI: 10.1038/s41467-022-35407-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Zoonotic viruses circulate in the natural reservoir and sporadically spill over into human populations, resulting in endemics or pandemics. We previously found that the Chaoyang virus (CYV), an insect-specific flavivirus (ISF), is replication-defective in vertebrate cells. Here, we develope a proof-of-concept mosquito-delivered vaccine to control the Zika virus (ZIKV) within inaccessible wildlife hosts using CYV as the vector. The vaccine is constructed by replacing the pre-membrane and envelope (prME) proteins of CYV with those of ZIKV, assigned as CYV-ZIKV. CYV-ZIKV replicates efficiently in Aedes mosquitoes and disseminates to the saliva, with no venereal or transovarial transmission observed. To reduce the risk of CYV-ZIKV leaking into the environment, mosquitoes are X-ray irradiated to ensure 100% infertility, which does not affect the titer of CYV-ZIKV in the saliva. Immunization of mice via CYV-ZIKV-carrying mosquito bites elicites robust and persistent ZIKV-specific immune responses and confers complete protection against ZIKV challenge. Correspondingly, the immunized mice could no longer transmit the challenged ZIKV to naïve mosquitoes. Therefore, immunization with an ISF-vectored vaccine via mosquito bites is feasible to induce herd immunity in wildlife hosts of ZIKV. Our study provides a future avenue for developing a mosquito-delivered vaccine to eliminate zoonotic viruses in the sylvatic cycle.
Collapse
Affiliation(s)
- Dan Wen
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Limin S. Ding
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanan Zhang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaoye Li
- grid.462338.80000 0004 0605 6769College of life sciences, Henan Normal University, 45300 Xinxiang, China
| | - Xing Zhang
- grid.410726.60000 0004 1797 8419College of life sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
31
|
Spinner SAM, Barnes ZH, Puinean AM, Gray P, Dafa’alla T, Phillips CE, Nascimento de Souza C, Frazon TF, Ercit K, Collado A, Naish N, Sulston E, Ll. Phillips GC, Greene KK, Poletto M, Sperry BD, Warner SA, Rose NR, Frandsen GK, Verza NC, Gorman KJ, Matzen KJ. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front Bioeng Biotechnol 2022; 10:975786. [PMID: 36394032 PMCID: PMC9650594 DOI: 10.3389/fbioe.2022.975786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 10/20/2023] Open
Abstract
For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.
Collapse
Affiliation(s)
| | | | | | - Pam Gray
- Oxitec Ltd., Abingdon, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Natalia C. Verza
- Oxitec Ltd., Abingdon, United Kingdom
- Oxitec do Brasil, Campinas, Brazil
| | | | | |
Collapse
|
32
|
Dilani PVD, Dassanayake RS, Tyagi BK, Gunawardene YINS. The impact of transgenesis on mosquito fitness: A review. FRONTIERS IN INSECT SCIENCE 2022; 2:957570. [PMID: 38468772 PMCID: PMC10926467 DOI: 10.3389/finsc.2022.957570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 03/13/2024]
Abstract
Transgenic mosquitoes developed by genetic manipulation, offer a promising strategy for the sustainable and effective control of mosquito-borne diseases. This strategy relies on the mass release of transgenic mosquitoes into the wild, where their transgene is expected to persist in the natural environment, either permanently or transiently, within the mosquito population. In such circumstances, the fitness of transgenic mosquitoes is an important factor in determining their survival in the wild. The impact of transgene expression, insertional mutagenesis, inbreeding depression related to laboratory adaptation, and the hitchhiking effect involved in developing homozygous mosquito lines can all have an effect on the fitness of transgenic mosquitoes. Therefore, real-time estimation of transgene-associated fitness cost is imperative for modeling and planning transgenic mosquito release programs. This can be achieved by directly comparing fitness parameters in individuals homozygous or hemizygous for the transgene and their wild-type counterparts, or by cage invasion experiments to monitor the frequency of the transgenic allele over multiple generations. Recent advancements such as site-specific integration systems and gene drives, provide platforms to address fitness issues in transgenic mosquitoes. More research on the fitness of transgenic individuals is required to develop transgenic mosquitoes with a low fitness cost.
Collapse
Affiliation(s)
| | | | - Brij Kishore Tyagi
- Sponsored Research & Industrial Centre, VIT University, Vellore (TN), India
| | | |
Collapse
|
33
|
Gómez M, Macedo AT, Pedrosa MC, Hohana F, Barros V, Pires B, Barbosa L, Brito M, Garziera L, Argilés-Herrero R, Virginio JF, Carvalho DO. Exploring Conditions for Handling Packing and Shipping Aedes aegypti Males to Support an SIT Field Project in Brazil. INSECTS 2022; 13:871. [PMID: 36292819 PMCID: PMC9604236 DOI: 10.3390/insects13100871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) application, as an alternative tool for conventional mosquito control methods, has recently gained prominence. Nevertheless, some SIT components require further development, such as protocols under large-scale conditions, focusing on packing and shipping mosquitoes, and considering transporting time. Immobilization of Aedes aegypti males was tested at temperatures 4, 7, 10, and 14 °C, and each temperature was assessed for 60, 90, and 120 min. The recovery after 24 h was also studied. Chilled and control-reared males had comparable survival rates for all conditions, although 4 °C for 120 min impacted male survival. The male escape rate was affected after 60 min of exposure at 4 °C; this difference was not significant, with 24 h of recovery. First, we defined the successful immobilization at 4 °C for 60 min, thus enabling the evaluation of two transportation intervals: 6 and 24 h, with the assessment of different compaction densities of 100 and 150 mosquitoes/cm3 at 10 °C to optimize the shipment. Compaction during simulated mosquito shipments reduced survival rates significantly after 6 and 24 h. In the mating propensity and insemination experiments, the sterile males managed to inseminate 40 to 66% for all treatments in laboratory conditions. The male insemination propensity was affected only by the highest compaction condition concerning the control. The analysis of the densities (100 and 150 males/cm3) showed that a higher density combined with an extended shipment period (24 h) negatively impacted the percentage of inseminated females. The results are very helpful in developing and improving the SIT packing and shipment protocols. Further studies are required to evaluate all combined parameters' synergetic effects that can combine irradiation to assess sexual competitiveness when sterile males are released into the field.
Collapse
Affiliation(s)
- Maylen Gómez
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Aline T. Macedo
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Michelle C. Pedrosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Fernanda Hohana
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Verenna Barros
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Bianca Pires
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Lucas Barbosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Miriam Brito
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Luiza Garziera
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Rafael Argilés-Herrero
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Jair F. Virginio
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Danilo O. Carvalho
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| |
Collapse
|
34
|
Pimid M, Krishnan KT, Ahmad AH, Mohd Naim D, Chambers GK, Mohd Nor SA, Ab Majid AH. Parentage Assignment Using Microsatellites Reveals Multiple Mating in Aedes aegypti (Diptera: Culicidae): Implications for Mating Dynamics. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1525-1533. [PMID: 35733165 DOI: 10.1093/jme/tjac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Collapse
Affiliation(s)
- Marcela Pimid
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Darlina Mohd Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Geoffrey K Chambers
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, 6140 Wellington, New Zealand
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
35
|
Wise IJ, Borry P. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria. JOURNAL OF BIOETHICAL INQUIRY 2022; 19:371-380. [PMID: 35175513 PMCID: PMC9463432 DOI: 10.1007/s11673-022-10172-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/02/2021] [Indexed: 05/07/2023]
Abstract
Approximately a quarter of a billion people around the world suffer from malaria each year. Most cases are located in sub-Saharan Africa where Anopheles gambiae mosquitoes are the principal vectors of this public health problem. With the use of CRISPR-based gene drives, the population of mosquitoes can be modified, eventually causing their extinction. First, we discuss the moral status of the organism and argue that using genetically modified mosquitoes to combat malaria should not be abandoned based on some moral value of A. gambiae. Secondly, we argue that environmental impact studies should be performed to obtain an accurate account of the possible effects of a potential eradication of the organism. However, the risks from the purposeful extinction of A. gambiae should not overtake the benefits of eradicating malaria and risk assessments should be used to determine acceptable risks. Thirdly, we argue that the eventual release of the genetically modified mosquitoes will depend on transparency, community involvement, and cooperation between different nations.
Collapse
Affiliation(s)
- India Jane Wise
- Centre for Biomedical Ethics and Law (CBMER), Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Kapucijnenvoer 35 Box, 7001 3000 Leuven, Belgium
| | - Pascal Borry
- Centre for Biomedical Ethics and Law (CBMER), Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Kapucijnenvoer 35 Box, 7001 3000 Leuven, Belgium
| |
Collapse
|
36
|
Bi H, Xu X, Li X, Wang Y, Zhou S, Huang Y. CRISPR/Cas9-mediated Serine protease 2 disruption induces male sterility in Spodoptera litura. Front Physiol 2022; 13:931824. [PMID: 35991171 PMCID: PMC9382020 DOI: 10.3389/fphys.2022.931824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male fertility is essential for reproduction and population growth in animals. Many factors affect male fertility, such as courtship behavior, sperm quantity, and sperm motility, among others. Seminal Fluid Proteins (SFPs) are vital components of seminal fluid in the male ejaculate, which affect male fertility, sperm activation, and female ovulation. However, the knowledge of SFPs is insufficient; the function of many SFPs remains unknown, and most described functions were mainly characterized in Drosophila or other laboratory models. Here, we focus on the Serine protease 2 (Ser2) gene in the lepidopteran pest Spodoptera litura. The Ser2 gene was specifically expressed in male adults. Disruption of the Ser2 gene mediated by CRISPR/Cas9 induced male sterility but females remained fertile. PCR-based detection of the next-generation mutants showed that male sterility was stably inherited. The qRT-PCR analysis of SlSer2 mutants showed that motor protein family genes and structural protein family genes were down-regulated, while protein modification family genes were up-regulated, suggesting that SlSer2 may be involved in sperm movement and activity. These results demonstrate that Ser2 is an important component of SFPs in seminal fluid and was identified for a useful sterile gene for pest control that may lead to new control strategies for lepidopteran insect pests such as S. litura.
Collapse
Affiliation(s)
- Honglun Bi
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
| | - Xia Xu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| |
Collapse
|
37
|
Leung S, Windbichler N, Wenger EA, Bever CA, Selvaraj P. Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study. Malar J 2022; 21:226. [PMID: 35883100 PMCID: PMC9327287 DOI: 10.1186/s12936-022-04242-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa. METHODS Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated. RESULTS Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%. CONCLUSION A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.
Collapse
Affiliation(s)
- Shirley Leung
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Edward A Wenger
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin A Bever
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
38
|
Werling KL, Johnson RM, Metz HC, Rasgon JL. Sexual transmission of Anopheles gambiae densovirus (AgDNV) leads to disseminated infection in mated females. Parasit Vectors 2022; 15:218. [PMID: 35725627 PMCID: PMC9210586 DOI: 10.1186/s13071-022-05341-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Anopheles gambiae densovirus (AgDNV) is an insect-specific, single-stranded DNA virus that infects An. gambiae sensu stricto (s.s.), the major mosquito species responsible for transmitting malaria parasites throughout sub-Saharan Africa. AgDNV is a benign virus that is very specific to its mosquito host and therefore has the potential to serve as a vector control tool via paratransgenesis (genetic modification of mosquito symbionts) to limit transmission of human pathogens. Prior to being engineered into a control tool, the natural transmission dynamics of AgDNV between An. gambiae mosquitoes needs to be fully understood. Additionally, improved knowledge of AgDNV infection in male mosquitoes is needed. In the study presented here, we examined the tissue tropism of AgDNV in the male reproductive tract and investigated both venereal and vertical transmission dynamics of the virus. Methods Anopheles gambiae s.s. adult males were infected with AgDNV via microinjection, and reproductive tissues were collected and assayed for AgDNV using qPCR. Next, uninfected females were introduced to AgDNV-infected or control males and, after several nights of mating, both the spermatheca and female carcass were assessed for venereally transmitted AgDNV. Finally, F1 offspring of this cross were collected and assayed to quantify vertical transmission of the virus. Results AgDNV infected the reproductive tract of male mosquitoes, including the testes and male accessory glands, without affecting mating rates. AgDNV-infected males venereally transmitted the virus to females, and these venereally infected females developed disseminated infection throughout the body. However, AgDNV was not vertically transmitted to the F1 offspring of this cross. Conclusions Infected male releases could be an effective strategy to introduce AgDNV-based paratransgenic tools into naïve populations of An. gambiae s.s. females. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Kristine L Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Rebecca M Johnson
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA. .,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA. .,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
39
|
Miranda Paez A, Chalkowski K, Zohdy S, Willoughby JR. Management of avian malaria in populations of high conservation concern. Parasit Vectors 2022; 15:208. [PMID: 35705963 PMCID: PMC9199230 DOI: 10.1186/s13071-022-05327-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Avian malaria is a vector-borne disease that is caused by Plasmodium parasites. These parasites are transmitted via mosquito bites and can cause sickness or death in a wide variety of birds, including many threatened and endangered species. This Primer first provides contextual background for the avian malaria system including the life cycle, geographic distribution and spread. Then, we focus on recent advances in understanding avian malaria ecology, including how avian malaria can lead to large ecosystem changes and variation in host immune responses to Plasmodium infection. Finally, we review advances in avian malaria management in vulnerable bird populations including genetic modification methods suitable for limiting the effects of this disease in wild populations and the use of sterile insect techniques to reduce vector abundance.
Collapse
Affiliation(s)
- Andrea Miranda Paez
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA.
| | - Kayleigh Chalkowski
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Sarah Zohdy
- College of Forestry, Wildlife and Environment and College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Janna R Willoughby
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| |
Collapse
|
40
|
Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique. INSECTS 2022; 13:insects13060532. [PMID: 35735869 PMCID: PMC9224830 DOI: 10.3390/insects13060532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The sterile insect technique (SIT) and its related technologies are considered to be a powerful weapon for fighting against mosquitoes. As an important part of the area-wide integrated pest management (AW-IPM) programs, SIT can help reduce the use of chemical pesticides for mosquito control, and consequently, the occurrence of insecticide resistance. The mosquito SIT involves several important steps, including mass rearing, sex separation, irradiation, packing, transportation, release and monitoring. To enable the application of SIT against mosquitoes to reduce vector populations, the Joint Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) Centre (previously called Division) of Nuclear Techniques in Food and Agriculture (hereinafter called Joint FAO/IAEA Centre) and its Insects Pest Control sub-program promoted a coordinated research project (CRP) entitled "Mosquito handling, transport, release and male trapping methods" to enhance the success of SIT. This article summarizes the existing explorations that are critical to the handling and transporting of male mosquitoes, offers an overview of detailed steps in SIT and discusses new emerging methods for mosquito releases, covering most processes of SIT.
Collapse
|
41
|
da Silva MR, Lugão PHG, Prezoto F, Chapiro G. Modeling the impact of genetically modified male mosquitoes in the spatial population dynamics of Aedes aegypti. Sci Rep 2022; 12:9112. [PMID: 35650219 PMCID: PMC9160293 DOI: 10.1038/s41598-022-12764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of diseases such as dengue, Zika, chikungunya, and yellow fever. Improving control techniques requires a better understanding of the mosquito’s life cycle, including spatial population dynamics in endemic regions. One of the most promising techniques consists of introducing genetically modified male mosquitoes. Several models proposed to describe this technique present mathematical issues or rely on numerous parameters, making their application challenging to real-world situations. We propose a model describing the spatial population dynamics of the Aedes aegypti in the presence of genetically modified males. This model presents some mathematical improvements compared to the literature allowing deeper mathematical analysis. Moreover, this model relies on few parameters, which we show how to obtain or estimate from the literature. Through numerical simulations, we investigate the impacts of environmental heterogeneity, the periodicity of genetically modified male releases, and released genetically modified males quantity on the population dynamics of Aedes aegypti. The main results point to that the successful application of this vector control technique relies on releasing more than a critical amount of modified males with a frequency exceeding a specific critical value.
Collapse
Affiliation(s)
- Monalisa R da Silva
- Laboratory of Applied Mathematics (LAMAP), Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Computational Modeling Graduate Program, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Federal Institute of the Southeast of Minas Gerais, Santos Dumont, MG, Brazil
| | - Pedro H G Lugão
- Computational Modeling Graduate Program - National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, Brazil
| | - Fábio Prezoto
- Department of Zoology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Grigori Chapiro
- Laboratory of Applied Mathematics (LAMAP), Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
42
|
Elimination of a closed population of the yellow fever mosquito, Aedes aegypti, through releases of self-limiting male mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010315. [PMID: 35576193 PMCID: PMC9135344 DOI: 10.1371/journal.pntd.0010315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/26/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Establishment of novel mosquito control technologies such as the use of genetically engineered insects typically involves phased testing to generate robust data-sets that support its safe and effective use as a vector control tool. In this study, we demonstrate the ability of the transgenic self-limiting OX513A Aedes aegypti strain to suppress a wild type Ae. aegypti population in an outdoor containment facility in India. OX513A is a genetically engineered Ae. aegypti strain with a repressible dominant self-limiting gene. When male adult OX513A mate with wild female adults, a single copy of the self-limiting gene is inherited by all the progeny, leading to death of >95% of progeny during larval/pupal development. A wild-type population of Ae. aegypti was established and stabilized during a 14 week period in five paired field cage units, each consisting of control and treatment cages, followed by weekly releases of OX513A male adults to suppress the target population. The successive introductions of OX513A male adults led to a consistent decline in wild type numbers eventually resulting in the elimination of Ae. aegypti from all treated cages within 10 to 15 weeks of release. This study demonstrates that Ae. aegypti elimination may be a realistic and achievable target in relatively isolated environments. Aedes aegypti L. species is the primary vector responsible for transmission of the dengue virus worldwide including chikungunya, yellow fever and Zika virus. The experiment presented in the manuscript represents a study undertaken to demonstrate suppression of the wild type Ae. aegypti population in large outdoor field cages with natural exposure to the environment (physically-contained field cage facility) by sustained releases of male adults of OX513A Ae. aegypti strain. This investigation is a phase-2 contained study as per the World Health Organization guidelines for evaluation of genetically modified organisms and was recommended by the Indian regulatory board. This experiment demonstrates suppression of wild type Ae. aegypti population by sustained releases of OX513A male adults in a contained facility. The prospect of the project is to demonstrate and implement the technology for controlling/suppression of the Ae. aegypti vector in the open field environment.
Collapse
|
43
|
Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl Trop Dis 2022; 16:e0010324. [PMID: 35471983 PMCID: PMC9041844 DOI: 10.1371/journal.pntd.0010324] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background The combination of Wolbachia-based incompatible insect technique (IIT) and radiation-based sterile insect technique (SIT) can be used for population suppression of Aedes aegypti. Our main objective was to evaluate whether open-field mass-releases of wAlbB-infected Ae. aegypti males, as part of an Integrated Vector Management (IVM) plan led by the Mexican Ministry of Health, could suppress natural populations of Ae. aegypti in urbanized settings in south Mexico. Methodology/Principal findings We implemented a controlled before-and-after quasi-experimental study in two suburban localities of Yucatan (Mexico): San Pedro Chimay (SPC), which received IIT-SIT, and San Antonio Tahdzibichén used as control. Release of wAlbB Ae. aegypti males at SPC extended for 6 months (July-December 2019), covering the period of higher Ae. aegypti abundance. Entomological indicators included egg hatching rates and outdoor/indoor adult females collected at the release and control sites. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in the 50-ha treatment area (2,000 wAlbB Ae. aegypti males per hectare twice a week in two different release days, totaling 200,000 male mosquitoes per week). The efficacy of IIT-SIT in suppressing indoor female Ae. aegypti density (quantified from a generalized linear mixed model showing a statistically significant reduction in treatment versus control areas) was 90.9% a month after initiation of the suppression phase, 47.7% two months after (when number of released males was reduced in 50% to match local abundance), 61.4% four months after (when initial number of released males was re-established), 88.4% five months after and 89.4% at six months after the initiation of the suppression phase. A proportional, but lower, reduction in outdoor female Ae. aegypti was also quantified (range, 50.0–75.2% suppression). Conclusions/Significance Our study, the first open-field pilot implementation of Wolbachia IIT-SIT in Mexico and Latin-America, confirms that inundative male releases can significantly reduce natural populations of Ae. aegypti. More importantly, we present successful pilot results of the integration of Wolbachia IIT-SIT within a IVM plan implemented by Ministry of Health personnel. Wild-type female Ae. aegypti mating with released males carrying the maternally inherited bacteria Wolbachia produce infertile eggs, leading to important reductions in mosquito population size. We present results from pilot open-field mass-releases of Ae. aegypti males infected with the Wolbachia strain wAlbB (termed incompatible insect technique, IIT) and irradiated to prevent accidental female mosquito colonization (termed sterile insect technique, SIT). Our IIT-SIT approach was implemented by the Mexican Ministry of Health within an Integrated Vector Management (IVM) plan to suppress natural populations of Ae. aegypti. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in a 50-ha. town of Yucatan over a period of 24 weeks. Throughout the suppression phase, we observed significant reductions in egg hatching, outdoor and indoor female Ae. aegypti densities in the release town compared to a similar town used as control. The largest effect was on the number of indoor Ae. aegypti females per house (Prokopack collections) which reached a 90% efficacy. Our study, the first report of an open-field pilot-study with mass-releases of sterile Ae. aegypti males produced with IIT-SIT in Mexico and Latin-America, confirms findings from other settings showing important reductions in entomological indices due to inundative incompatible male releases.
Collapse
|
44
|
Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun Biol 2022; 5:210. [PMID: 35256751 PMCID: PMC8901906 DOI: 10.1038/s42003-022-03165-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Aedes albopictus is a major vector of arboviruses. Better understanding of its sex determination is crucial for developing mosquito control tools, especially genetic sexing strains. In Aedes aegypti, Nix is the primary gene responsible for masculinization and Nix-expressing genetic females develop into fertile, albeit flightless, males. In Ae. albopictus, Nix has also been implicated in masculinization but its role remains to be further characterized. In this work, we establish Ae. albopictus transgenic lines ectopically expressing Nix. Several are composed exclusively of genetic females, with transgenic individuals being phenotypic and functional males due to the expression of the Nix transgene. Their reproductive fitness is marginally impaired, while their flight performance is similar to controls. Overall, our results show that Nix is sufficient for full masculinization in Ae. albopictus. Moreover, the transgene construct contains a fluorescence marker allowing efficient automated sex sorting. Consequently, such strains constitute valuable sexing strains for genetic control. Nix expression with a fluorescent marker in genetically female Ae. albopictus causes masculinization with minimal effects to reproductive fitness and flight performance.
Collapse
|
45
|
Brey J, Sai Sudhakar BMM, Gersch K, Ford T, Glancey M, West J, Padmanabhan S, Harris AF, Goodwin A. Modified Mosquito Programs’ Surveillance Needs and An Image-Based Identification Tool to Address Them. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effective mosquito surveillance and control relies on rapid and accurate identification of mosquito vectors and confounding sympatric species. As adoption of modified mosquito (MM) control techniques has increased, the value of monitoring the success of interventions has gained recognition and has pushed the field away from traditional ‘spray and pray’ approaches. Field evaluation and monitoring of MM control techniques that target specific species require massive volumes of surveillance data involving species-level identifications. However, traditional surveillance methods remain time and labor-intensive, requiring highly trained, experienced personnel. Health districts often lack the resources needed to collect essential data, and conventional entomological species identification involves a significant learning curve to produce consistent high accuracy data. These needs led us to develop MosID: a device that allows for high-accuracy mosquito species identification to enhance capability and capacity of mosquito surveillance programs. The device features high-resolution optics and enables batch image capture and species identification of mosquito specimens using computer vision. While development is ongoing, we share an update on key metrics of the MosID system. The identification algorithm, tested internally across 16 species, achieved 98.4 ± 0.6% % macro F1-score on a dataset of known species, unknown species used in training, and species reserved for testing (species, specimens respectively: 12, 1302; 12, 603; 7, 222). Preliminary user testing showed specimens were processed with MosID at a rate ranging from 181-600 specimens per hour. We also discuss other metrics within technical scope, such as mosquito sex and fluorescence detection, that may further support MM programs.
Collapse
|
46
|
Upadhyay A, Feltman NR, Sychla A, Janzen A, Das SR, Maselko M, Smanski M. Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression. eLife 2022; 11:71230. [PMID: 35108195 PMCID: PMC8860436 DOI: 10.7554/elife.71230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Anna Janzen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Siba R Das
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | | | - Michael Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| |
Collapse
|
47
|
Augustinos AA, Nikolouli K, Duran de la Fuente L, Misbah-ul-Haq M, Carvalho DO, Bourtzis K. Introgression of the Aedes aegypti Red-Eye Genetic Sexing Strains Into Different Genomic Backgrounds for Sterile Insect Technique Applications. Front Bioeng Biotechnol 2022; 10:821428. [PMID: 35186905 PMCID: PMC8847382 DOI: 10.3389/fbioe.2022.821428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Aedes aegypti is an invasive mosquito species and major vector of human arboviruses. A wide variety of control methods have been employed to combat mosquito populations. One of them is the sterile insect technique (SIT) that has recently attracted considerable research efforts due to its proven record of success and the absence of harmful environmental footprints. The efficiency and cost-effectiveness of SIT is significantly enhanced by male-only releases. For mosquito SIT, male-only releases are ideally needed since females bite, blood-feed and transmit the pathogens. Ae. aegypti genetic sexing strains (GSS) have recently become available and are based on eye colour mutations that were chosen as selectable markers. These genetic sexing strains were developed through classical genetics and it was shown to be subjected to genetic recombination, a phenomenon that is not suppressed in males as is the case in many Diptera. The genetic stability of these GSS was strengthened by the induction and isolation of radiation-induced inversions. In this study, we used the red eye mutation and the inversion Inv35 line of the Ae. aegypti red-eye GSS s and introgressed them in six different genomic backgrounds to develop GSS with the respective local genomic backgrounds. Our goal was to assess whether the recombination frequencies in the strains with and without the inversion are affected by the different genomic backgrounds. In all cases the recombination events were suppressed in all Inv35 GSS strains, thus indicating that the genomic background does not negatively affect the inversion result. Absence of any effect that could be ascribed to genetic differences, enables the introgression of the key elements of the GSS into the local genomic background prior to release to the target areas. Maintaining the local background increases the chances for successful matings between released males and wild females and addresses potential regulatory concerns regarding biosafety and biosecurity.
Collapse
Affiliation(s)
- Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Lucia Duran de la Fuente
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Muhammad Misbah-ul-Haq
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Danilo O. Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| |
Collapse
|
48
|
Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100074. [PMID: 35726222 PMCID: PMC7612875 DOI: 10.1016/j.crpvbd.2021.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
Collapse
|
49
|
Alcalay Y, Fuchs S, Galizi R, Bernardini F, Haghighat-Khah RE, Rusch DB, Adrion JR, Hahn MW, Tortosa P, Rotenberry R, Papathanos PA. The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Front Bioeng Biotechnol 2021; 9:752253. [PMID: 34957064 PMCID: PMC8698249 DOI: 10.3389/fbioe.2021.752253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.
Collapse
Affiliation(s)
- Yehonatan Alcalay
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, United States.,Department of Computer Science, Indiana University, Bloomington, IN, United States
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, France
| | - Rachel Rotenberry
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
50
|
Lacy K, Schaefer KA, Scheitrum DP, Klein EY. The economic value of genetically engineered mosquitoes as a Malaria control strategy depends on local transmission rates. Biotechnol J 2021; 17:e2100373. [PMID: 34873849 DOI: 10.1002/biot.202100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022]
Abstract
This paper assesses the economic value of genetically engineered (GE) Anopheles gambiae mosquitoes as a malaria control strategy. We use an epidemiological-economic model of malaria transmission to evaluate this technology for a range of village-level transmission settings. In each setting, we evaluate public health outcomes following introduction of GE mosquitoes relative to a "status quo" baseline scenario. We also assess results both in contrast to-and in combination with-a Mass Drug Administration (MDA) strategy. We find that-in low transmission settings-the present value (PV) public health benefits of GE mosquito release are substantial, both relative to status quo dynamics and MDA. In contrast, in high transmission settings, the release of GE mosquitoes may increase steady-state infection rates. Our results indicate that there are substantial policy complementarities when GE mosquito release is combined with local MDA-the combined control strategy can lead to local eradication.
Collapse
Affiliation(s)
- Katherine Lacy
- Department of Economics, University of Nevada, Reno, USA
| | - K Aleks Schaefer
- Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel P Scheitrum
- Department of Agricultural and Resource Economics, University of Arizona, Tucson, USA
| | - Eili Y Klein
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, USA.,Center for Disease Dynamics, Economics and Policy, Washington, DC, USA
| |
Collapse
|