1
|
Ying J, Yang Y, Zhang X, Dong Z, Chen B. Stearoylation cycle regulates the cell surface distribution of the PCP protein Vangl2. Proc Natl Acad Sci U S A 2024; 121:e2400569121. [PMID: 38985771 PMCID: PMC11260150 DOI: 10.1073/pnas.2400569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.
Collapse
Affiliation(s)
- Jiafu Ying
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Yinghong Yang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Xuanpu Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Baoen Chen
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang311215, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310000, China
| |
Collapse
|
2
|
Tang VT, Xiang J, Chen Z, McCormick J, Abbineni PS, Chen XW, Hoenerhoff M, Emmer BT, Khoriaty R, Lin JD, Ginsburg D. Functional overlap between the mammalian Sar1a and Sar1b paralogs in vivo. Proc Natl Acad Sci U S A 2024; 121:e2322164121. [PMID: 38687799 PMCID: PMC11087783 DOI: 10.1073/pnas.2322164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Joseph McCormick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Prabhodh S. Abbineni
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL60153
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing100871, China
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jiandie D. Lin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Tang VT, Xiang J, Chen Z, McCormick J, Abbineni PS, Chen XW, Hoenerhoff M, Emmer BT, Khoriaty R, Lin JD, Ginsburg D. Functional overlap between the mammalian Sar1a and Sar1b paralogs in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582310. [PMID: 38463989 PMCID: PMC10925261 DOI: 10.1101/2024.02.27.582310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Joseph McCormick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Prabhodh S. Abbineni
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Zhao S, Zhao H, Zhao L, Cheng X, Zheng Z, Wu M, Wen W, Wang S, Zhou Z, Xie H, Ruan D, Li Q, Liu X, Ou C, Li G, Zhao Z, Chen G, Niu Y, Yin X, Hu Y, Zhang X, Liu P, Qiu G, Liu W, Zhao C, Wu Z, Zhang J, Wu N. Unraveling the genetic architecture of congenital vertebral malformation with reference to the developing spine. Nat Commun 2024; 15:1125. [PMID: 38321032 PMCID: PMC10847475 DOI: 10.1038/s41467-024-45442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Congenital vertebral malformation, affecting 0.13-0.50 per 1000 live births, has an immense locus heterogeneity and complex genetic architecture. In this study, we analyze exome/genome sequencing data from 873 probands with congenital vertebral malformation and 3794 control individuals. Clinical interpretation identifies Mendelian etiologies in 12.0% of the probands and reveals a muscle-related disease mechanism. Gene-based burden test of ultra-rare variants identifies risk genes with large effect sizes (ITPR2, TBX6, TPO, H6PD, and SEC24B). To further investigate the biological relevance of the genetic association signals, we perform single-nucleus RNAseq on human embryonic spines. The burden test signals are enriched in the notochord at early developmental stages and myoblast/myocytes at late stages, highlighting their critical roles in the developing spine. Our work provides insights into the developmental biology of the human spine and the pathogenesis of spine malformation.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lina Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengfan Wu
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wen Wen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zixiang Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Dengfeng Ruan
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Qing Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinquan Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chengzhu Ou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guozhuang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guilin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuchen Niu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangjie Yin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuhong Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaochen Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zhihong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Zhou L, Li H, Yao H, Dai X, Gao P, Cheng H. TMED family genes and their roles in human diseases. Int J Med Sci 2023; 20:1732-1743. [PMID: 37928880 PMCID: PMC10620864 DOI: 10.7150/ijms.87272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), β (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.
Collapse
Affiliation(s)
| | | | | | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| |
Collapse
|
6
|
Yang Y, Chen H, Zhang C, Shin HJ, Qian Y, Jung YS. HDAC-Specific Inhibitors Induce the Release of Porcine Epidemic Diarrhea Virus via the COPII-Coated Vesicles. Viruses 2023; 15:1874. [PMID: 37766280 PMCID: PMC10534748 DOI: 10.3390/v15091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus causing acute diarrhea and high mortality in neonatal suckling piglets, resulting in huge economic losses for the global swine industry. The replication, assembly and cell egression of PEDV, an enveloped RNA virus, are mediated via altered intracellular trafficking. The underlying mechanisms of PEDV secretion are poorly understood. In this study, we found that the histone deacetylase (HDAC)-specific inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), facilitate the secretion of infectious PEDV particles without interfering with its assembly. We found that PEDV N protein and its replicative intermediate dsRNA colocalize with coat protein complex II (COPII)-coated vesicles. We also showed that the colocalization of PEDV and COPII is enhanced by the HDAC-specific inhibitors. In addition, ultrastructural analysis revealed that the HDAC-specific inhibitors promote COPII-coated vesicles carrying PEDV virions and the secretion of COPII-coated vesicles. Consistently, HDAC-specific inhibitors-induced PEDV particle secretion was abolished by Sec24B knockdown, implying that the HDAC-specific inhibitors-mediated COPII-coated vesicles are required for PEDV secretion. Taken together, our findings provide initial evidence suggesting that PEDV virions can assemble in the endoplasmic reticulum (ER) and bud off from the ER in the COPII-coated vesicles. HDAC-specific inhibitors promote PEDV release by hijacking the COPII-coated vesicles.
Collapse
Affiliation(s)
- Ying Yang
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Chen
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Caisheng Zhang
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yingjuan Qian
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou 225300, China
| | - Yong-Sam Jung
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Dis Model Mech 2023; 16:dmm049762. [PMID: 37589075 PMCID: PMC10445738 DOI: 10.1242/dmm.049762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.
Collapse
Affiliation(s)
- Stephanie M. Almeida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofiia Ivantsiv
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Wade H. Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brooke A. Green
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabine P. Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Kasberg W, Luong P, Hanna MG, Minushkin K, Tsao A, Shankar R, Block S, Audhya A. The Sar1 GTPase is dispensable for COPII-dependent cargo export from the ER. Cell Rep 2023; 42:112635. [PMID: 37300835 PMCID: PMC10592460 DOI: 10.1016/j.celrep.2023.112635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Kayla Minushkin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Annabelle Tsao
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Zhang Y, Srivastava V, Zhang B. Mammalian cargo receptors for endoplasmic reticulum-to-Golgi transport: mechanisms and interactions. Biochem Soc Trans 2023:BST20220713. [PMID: 37334845 DOI: 10.1042/bst20220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Proteins that are destined to enter the secretory pathway are synthesized on the rough endoplasmic reticulum (ER) and then translocated into the ER lumen, where they undergo posttranslational modifications, folding, and assembly. After passing a quality control system, the cargo proteins are packaged into coat protein complex II (COPII) vesicles to exit the ER. In metazoans, most COPII subunits have multiple paralogs, enabling COPII vesicles the flexibility to transport a diverse range of cargo. The cytoplasmic domains of transmembrane proteins can interact with SEC24 subunits of COPII to enter the ER exit sites. Some transmembrane proteins may also act as cargo receptors that bind soluble secretory proteins within the ER lumen, enabling them to enter COPII vesicles. The cytoplasmic domains of cargo receptors also contain coat protein complex I binding motifs that allow for their cycling back to the ER after unloading their cargo in the ER-Golgi intermediate compartment and cis-Golgi. Once unloaded, the soluble cargo proteins continue maturation through the Golgi before reaching their final destinations. This review provides an overview of receptor-mediated transport of secretory proteins from the ER to the Golgi, with a focus on the current understanding of two mammalian cargo receptors: the LMAN1-MCFD2 complex and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Vishal Srivastava
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| |
Collapse
|
10
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
12
|
In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells. Nat Protoc 2023; 18:810-830. [PMID: 36599961 DOI: 10.1038/s41596-022-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.
Collapse
|
13
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Wang M, Wang J, Guo Y. Reconstitution of Vesicle Budding from the TGN and Immunoisolation of Vesicles Enriched with a Specific Cargo Client. Methods Mol Biol 2022; 2557:289-302. [PMID: 36512223 DOI: 10.1007/978-1-0716-2639-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The trans-Golgi network (TGN) is an important cargo sorting station in the secretory pathway. To reveal insights into protein sorting at the TGN, it is important to develop an assay to quantify the efficiency of cargo capture. Here, we describe an experimental approach to reconstitute the packaging of cargo proteins into vesicles at the TGN in vitro. We also describe an experimental approach to immunoisolate vesicles enriched with a specific transmembrane cargo client from the in vitro vesicle formation assay. These assays provide robust tools to directly measure the enrichment of cargo proteins into TGN-derived vesicles and to reveal novel factors that regulate TGN export process.
Collapse
Affiliation(s)
- Mo Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China. .,Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
15
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
16
|
Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev 2022; 170:203781. [DOI: 10.1016/j.cdev.2022.203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
17
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
18
|
Li B, Zeng Y, Jiang L. COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Lett 2022; 596:2314-2323. [PMID: 35486434 DOI: 10.1002/1873-3468.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum (ER), the Golgi apparatus (GA), the trans-Golgi network (TGN), the multivesicular body (MVB), and the vacuole. Anterograde traffic from the ER to GA is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in the endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China.,Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
19
|
Kimura-Yoshida C, Mochida K, Kanno SI, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol 2022; 5:378. [PMID: 35440748 PMCID: PMC9018712 DOI: 10.1038/s42003-022-03254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39. The ubiquitin specific protease 39 (USP39) interacts with the transcription factor and cytoplasmic regulator of planar cell polarity (PCP), Grainyheadlike 3 (Grhl3). USP39-dependent PCP gene upregulation contributes to epithelial morphogenesis.
Collapse
Affiliation(s)
- Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan.
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Shin-Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Liu Z, Yan M, Lei W, Jiang R, Dai W, Chen J, Wang C, Li L, Wu M, Nian X, Li D, Sun D, Lv X, Wang C, Xie C, Yao L, Wu C, Hu J, Xiao N, Mo W, Wang Z, Zhang L. Sec13 promotes oligodendrocyte differentiation and myelin repair through autocrine pleiotrophin signaling. J Clin Invest 2022; 132:155096. [PMID: 35143418 PMCID: PMC8970680 DOI: 10.1172/jci155096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Dysfunction of protein trafficking has been intensively associated with neurological diseases, including neurodegeneration, but whether and how protein transport contributes to oligodendrocyte (OL) maturation and myelin repair in white matter injury remains unclear. ER-to-Golgi trafficking of newly synthesized proteins is mediated by coat protein complex II (COPII). Here, we demonstrate that the COPII component Sec13 was essential for OL differentiation and postnatal myelination. Ablation of Sec13 in the OL lineage prevented OPC differentiation and inhibited myelination and remyelination after demyelinating injury in the central nervous system (CNS), while improving protein trafficking by tauroursodeoxycholic acid (TUDCA) or ectopic expression of COPII components accelerated myelination. COPII components were upregulated in OL lineage cells after demyelinating injury. Loss of Sec13 altered the secretome of OLs and inhibited the secretion of pleiotrophin (PTN), which was found to function as an autocrine factor to promote OL differentiation and myelin repair. These data suggest that Sec13-dependent protein transport is essential for OL differentiation and that Sec13-mediated PTN autocrine signaling is required for proper myelination and remyelination.
Collapse
Affiliation(s)
- Zhixiong Liu
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Minbiao Yan
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Wanying Lei
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Rencai Jiang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Wenxiu Dai
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Jialin Chen
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Chaomeng Wang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Li Li
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Mei Wu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Ximing Nian
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Daopeng Li
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Di Sun
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Xiaoqi Lv
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Chaoying Wang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Changchuan Xie
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Luming Yao
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Caiming Wu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Jin Hu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Naian Xiao
- Department of Neurology, The First Affiliated Hospital, Xiamen University, Fujian, China
| | - Wei Mo
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Zhanxiang Wang
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
| | - Liang Zhang
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| |
Collapse
|
21
|
Lu CL, Ortmeier S, Brudvig J, Moretti T, Cain J, Boyadjiev SA, Weimer JM, Kim J. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 2022; 23:81-93. [PMID: 34761479 PMCID: PMC8692420 DOI: 10.1111/tra.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to endoplasmic reticulum (ER) export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.
Collapse
Affiliation(s)
- Chung-Ling Lu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Steven Ortmeier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jon Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Jacob Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA,To who correspondence should be addressed: Jinoh Kim, 2086 Vet Med, 1800 Christensen Drive, Iowa State University, Ames, IA 50011, , Tel: 515-294-3401
| |
Collapse
|
22
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
23
|
Adams EJ, Khoriaty R, Kiseleva A, Cleuren ACA, Tomberg K, van der Ent MA, Gergics P, Tang VT, Zhu G, Hoenerhoff MJ, O'Shea KS, Saunders TL, Ginsburg D. Murine SEC24D can substitute functionally for SEC24C during embryonic development. Sci Rep 2021; 11:21100. [PMID: 34702932 PMCID: PMC8548507 DOI: 10.1038/s41598-021-00579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
The COPII component SEC24 mediates the recruitment of transmembrane cargos or cargo adaptors into newly forming COPII vesicles on the ER membrane. Mammalian genomes encode four Sec24 paralogs (Sec24a-d), with two subfamilies based on sequence homology (SEC24A/B and C/D), though little is known about their comparative functions and cargo-specificities. Complete deficiency for Sec24d results in very early embryonic lethality in mice (before the 8 cell stage), with later embryonic lethality (E7.5) observed in Sec24c null mice. To test the potential overlap in function between SEC24C/D, we employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in which the C-terminal 90% of SEC24C has been replaced by SEC24D coding sequence. In contrast to the embryonic lethality at E7.5 of SEC24C-deficiency, Sec24cc-d/c-d pups survive to term, though dying shortly after birth. Sec24cc-d/c-d pups are smaller in size, but exhibit no other obvious developmental abnormality by pathologic evaluation. These results suggest that tissue-specific and/or stage-specific expression of the Sec24c/d genes rather than differences in cargo export function explain the early embryonic requirements for SEC24C and SEC24D.
Collapse
Affiliation(s)
- Elizabeth J Adams
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Constellation Pharmaceuticals, Cambridge, MA, 02142, USA
| | - Rami Khoriaty
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Univeristy of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Anna Kiseleva
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Audrey C A Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kärt Tomberg
- Departement of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Peter Gergics
- Departement of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vi T Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core, Unit of Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Bisnett BJ, Condon BM, Linhart NA, Lamb CH, Huynh DT, Bai J, Smith TJ, Hu J, Georgiou GR, Boyce M. Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation. Glycobiology 2021; 31:1102-1120. [PMID: 34142147 PMCID: PMC8457363 DOI: 10.1093/glycob/cwab055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Noah A Linhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingyi Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
25
|
Chatterjee S, Choi AJ, Frankel G. A systematic review of Sec24 cargo interactome. Traffic 2021; 22:412-424. [PMID: 34533884 DOI: 10.1111/tra.12817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.
Collapse
Affiliation(s)
- Sharanya Chatterjee
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Ana Jeemin Choi
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
26
|
An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc Natl Acad Sci U S A 2021; 118:2101287118. [PMID: 34433667 PMCID: PMC8536394 DOI: 10.1073/pnas.2101287118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein sorting in the secretory pathway is a fundamentally important cellular process, but the clients of a specific cargo sorting machinery remains largely underinvestigated. Here, utilizing a vesicle formation assay to profile proteins associated with vesicles, we identified cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A. We found that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Moreover, we revealed specific clients of two export adaptors, SURF4 and ERGIC53. These analyses demonstrate that our approach is powerful to identify factors that regulate vesicular trafficking and to uncover clients of specific cargo receptors, providing a robust method to reveal insights into the secretory pathway. The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.
Collapse
|
27
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Maeso-Alonso L, López-Ferreras L, Marques MM, Marin MC. p73 as a Tissue Architect. Front Cell Dev Biol 2021; 9:716957. [PMID: 34368167 PMCID: PMC8343074 DOI: 10.3389/fcell.2021.716957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The TP73 gene belongs to the p53 family comprised by p53, p63, and p73. In response to physiological and pathological signals these transcription factors regulate multiple molecular pathways which merge in an ensemble of interconnected networks, in which the control of cell proliferation and cell death occupies a prominent position. However, the complex phenotype of the Trp73 deficient mice has revealed that the biological relevance of this gene does not exclusively rely on its growth suppression effects, but it is also intertwined with other fundamental roles governing different aspects of tissue physiology. p73 function is essential for the organization and homeostasis of different complex microenvironments, like the neurogenic niche, which supports the neural progenitor cells and the ependyma, the male and female reproductive organs, the respiratory epithelium or the vascular network. We propose that all these, apparently unrelated, developmental roles, have a common denominator: p73 function as a tissue architect. Tissue architecture is defined by the nature and the integrity of its cellular and extracellular compartments, and it is based on proper adhesive cell-cell and cell-extracellular matrix interactions as well as the establishment of cellular polarity. In this work, we will review the current understanding of p73 role as a neurogenic niche architect through the regulation of cell adhesion, cytoskeleton dynamics and Planar Cell Polarity, and give a general overview of TAp73 as a hub modulator of these functions, whose alteration could impinge in many of the Trp73 -/- phenotypes.
Collapse
Affiliation(s)
- Laura Maeso-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Lorena López-Ferreras
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Margarita M Marques
- Departamento de Producción Animal, Instituto de Desarrollo Ganadero y Sanidad Animal, University of León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
29
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
30
|
Actuation enhances patterning in human neural tube organoids. Nat Commun 2021; 12:3192. [PMID: 34045434 PMCID: PMC8159931 DOI: 10.1038/s41467-021-22952-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications. Mechanical forces, along with gene regulatory networks and cell-cell signalling, play an important role in the complex organization of tissues. Here the authors describe devices that actively apply mechanical force to developing neural tube, demonstrating that mechanical forces increase growth and enhance patterning.
Collapse
|
31
|
Lesko AC, Keller R, Chen P, Sutherland A. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure. Dev Biol 2021; 478:59-75. [PMID: 34029538 DOI: 10.1016/j.ydbio.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Ping Chen
- Otogenetics Corporation, Atlanta, GA, 30360, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
32
|
Lu CL, Kim J. Craniofacial Diseases Caused by Defects in Intracellular Trafficking. Genes (Basel) 2021; 12:726. [PMID: 34068038 PMCID: PMC8152478 DOI: 10.3390/genes12050726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogenesis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases.
Collapse
Affiliation(s)
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
33
|
Stahley SN, Basta LP, Sharan R, Devenport D. Celsr1 adhesive interactions mediate the asymmetric organization of planar polarity complexes. eLife 2021; 10:e62097. [PMID: 33529151 PMCID: PMC7857726 DOI: 10.7554/elife.62097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
To orchestrate collective polarization across tissues, planar cell polarity (PCP) proteins localize asymmetrically to cell junctions, a conserved feature of PCP that requires the atypical cadherin Celsr1. We report that mouse Celsr1 engages in both trans- and cis-interactions, and organizes into dense and highly stable punctate assemblies. We provide evidence suggesting that PCP-mutant variant of Celsr1, Celsr1Crsh, selectively impairs lateral cis-interactions. Although Celsr1Crsh mediates cell adhesion in trans, it displays increased mobility, diminishes junctional enrichment, and fails to engage in homophilic adhesion with the wild-type protein, phenotypes that can be rescued by ectopic cis-dimerization. Using biochemical and super-resolution microscopy approaches, we show that although Celsr1Crsh physically interacts with PCP proteins Frizzled6 and Vangl2, it fails to organize these proteins into asymmetric junctional complexes. Our results suggest mammalian Celsr1 functions not only as a trans-adhesive homodimeric bridge, but also as an organizer of intercellular Frizzled6 and Vangl2 asymmetry through lateral, cis-interactions.
Collapse
Affiliation(s)
- Sara N Stahley
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Lena P Basta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
34
|
Bisnett BJ, Condon BM, Lamb CH, Georgiou GR, Boyce M. Export Control: Post-transcriptional Regulation of the COPII Trafficking Pathway. Front Cell Dev Biol 2021; 8:618652. [PMID: 33511128 PMCID: PMC7835409 DOI: 10.3389/fcell.2020.618652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The coat protein complex II (COPII) mediates forward trafficking of protein and lipid cargoes from the endoplasmic reticulum. COPII is an ancient and essential pathway in all eukaryotes and COPII dysfunction underlies a range of human diseases. Despite this broad significance, major aspects of COPII trafficking remain incompletely understood. For example, while the biochemical features of COPII vesicle formation are relatively well characterized, much less is known about how the COPII system dynamically adjusts its activity to changing physiologic cues or stresses. Recently, post-transcriptional mechanisms have emerged as a major mode of COPII regulation. Here, we review the current literature on how post-transcriptional events, and especially post-translational modifications, govern the COPII pathway.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
35
|
Brown HM, Murray SA, Northrup H, Au KS, Niswander LA. Snx3 is important for mammalian neural tube closure via its role in canonical and non-canonical WNT signaling. Development 2020; 147:147/22/dev192518. [PMID: 33214242 DOI: 10.1242/dev.192518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Disruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3-/- mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3-/- embryos and a defect in convergent extension of the neural epithelium. Snx3-/- cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3-/- embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.
Collapse
Affiliation(s)
- Heather Mary Brown
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
36
|
Tang X, Zhang L, Ma T, Wang M, Li B, Jiang L, Yan Y, Guo Y. Molecular mechanisms that regulate export of the planar cell-polarity protein Frizzled-6 out of the endoplasmic reticulum. J Biol Chem 2020; 295:8972-8987. [PMID: 32376691 PMCID: PMC7335806 DOI: 10.1074/jbc.ra120.012835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Indexed: 01/05/2023] Open
Abstract
Planar cell polarity (PCP) is a process during which cells are polarized along the plane of the epithelium and is regulated by several transmembrane signaling proteins. After their synthesis, these PCP proteins are delivered along the secretory transport pathway to the plasma membrane, where they perform their physiological functions. However, the molecular mechanisms that regulate PCP protein transport remain largely unclear. Here, we found that the delivery of a PCP protein, Frizzled-6, to the cell surface is regulated by two conserved polybasic motifs: one located in its first intracellular loop and the other in its C-terminal cytosolic domain. We observed that the polybasic motif of Frizzled is also important for its surface localization in the Drosophila wing. Results from a mechanistic analysis indicated that Frizzled-6 packaging into vesicles at the endoplasmic reticulum (ER) is regulated by a direct interaction between the polybasic motif and the Glu-62 and Glu-63 residues on the secretion-associated Ras-related GTPase 1A (SAR1A) subunit of coat protein complex II (COPII). Moreover, we found that newly synthesized Frizzled-6 is associated with another PCP protein, cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1), in the secretory transport pathway, and that this association regulates their surface delivery. Our results reveal insights into the molecular machinery that regulates the ER export of Frizzled-6. They also suggest that the association of CELSR1 with Frizzled-6 is important, enabling efficient Frizzled-6 delivery to the cell surface, providing a quality control mechanism that ensures the appropriate stoichiometry of these two PCP proteins at cell boundaries.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lina Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianji Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mo Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yan Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
37
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
38
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
39
|
Humphries AC, Narang S, Mlodzik M. Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. eLife 2020; 9:e53532. [PMID: 32234212 PMCID: PMC7180057 DOI: 10.7554/elife.53532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbor mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD.
Collapse
Affiliation(s)
- Ashley C Humphries
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Sonali Narang
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| |
Collapse
|
40
|
Tang X, Yang F, Guo Y. Cell-free Reconstitution of the Packaging of Cargo Proteins into Vesicles at the trans Golgi Network. Bio Protoc 2020; 10:e3537. [PMID: 33659511 DOI: 10.21769/bioprotoc.3537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 11/02/2022] Open
Abstract
Protein sorting at the trans Golgi network (TGN) plays important roles in targeting newly synthesized proteins to their specific destinations. The aim of this proposal is to reconstitute the packaging of non-Golgi resident cargo proteins into vesicles at the TGN, utilizing rat liver cytosol, semi-intact mammalian cells and nucleotides. The protocol describes how to perform the vesicle formation assay, how to isolate vesicles and how to detect cargo proteins in vesicles. This reconstitution assay can be used to quantitatively measure the efficiency of the packaging of a specific cargo protein into transport vesicles at the TGN under specific experimental conditions.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
41
|
Lu CL, Kim J. Consequences of mutations in the genes of the ER export machinery COPII in vertebrates. Cell Stress Chaperones 2020; 25:199-209. [PMID: 31970693 PMCID: PMC7058761 DOI: 10.1007/s12192-019-01062-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022] Open
Abstract
Coat protein complex II (COPII) plays an essential role in the export of cargo molecules such as secretory proteins, membrane proteins, and lipids from the endoplasmic reticulum (ER). In yeast, the COPII machinery is critical for cell viability as most COPII knockout mutants fail to survive. In mice and fish, homozygous knockout mutants of most COPII genes are embryonic lethal, reflecting the essentiality of the COPII machinery in the early stages of vertebrate development. In humans, COPII mutations, which are often hypomorphic, cause diseases having distinct clinical features. This is interesting as the fundamental cellular defect of these diseases, that is, failure of ER export, is similar. Analyses of humans and animals carrying COPII mutations have revealed clues to why a similar ER export defect can cause such different diseases. Previous reviews have focused mainly on the deficit of secretory or membrane proteins in the final destinations because of an ER export block. In this review, we also underscore the other consequence of the ER export block, namely ER stress triggered by the accumulation of cargo proteins in the ER.
Collapse
Affiliation(s)
- Chung-Ling Lu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.
| |
Collapse
|
42
|
Wang B, Stanford KR, Kundu M. ER-to-Golgi Trafficking and Its Implication in Neurological Diseases. Cells 2020; 9:E408. [PMID: 32053905 PMCID: PMC7073182 DOI: 10.3390/cells9020408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Membrane and secretory proteins are essential for almost every aspect of cellular function. These proteins are incorporated into ER-derived carriers and transported to the Golgi before being sorted for delivery to their final destination. Although ER-to-Golgi trafficking is highly conserved among eukaryotes, several layers of complexity have been added to meet the increased demands of complex cell types in metazoans. The specialized morphology of neurons and the necessity for precise spatiotemporal control over membrane and secretory protein localization and function make them particularly vulnerable to defects in trafficking. This review summarizes the general mechanisms involved in ER-to-Golgi trafficking and highlights mutations in genes affecting this process, which are associated with neurological diseases in humans.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.W.); (K.R.S.)
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Katherine R. Stanford
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.W.); (K.R.S.)
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.W.); (K.R.S.)
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
43
|
Abstract
Humans have sought to understand the embryo for millennia. Paradoxically, even as technical and intellectual innovations bring us ever closer to a transformative understanding of developmental biology, our discipline faces an "image problem." We should face this problem by acknowledging that developmental biology is fundamental to the human experience.
Collapse
Affiliation(s)
- John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
44
|
Emmer BT, Lascuna PJ, Tang VT, Kotnik EN, Saunders TL, Khoriaty R, Ginsburg D. Murine Surf4 is essential for early embryonic development. PLoS One 2020; 15:e0227450. [PMID: 31978056 PMCID: PMC6980569 DOI: 10.1371/journal.pone.0227450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Newly synthesized proteins co-translationally inserted into the endoplasmic reticulum (ER) lumen may be recruited into anterograde transport vesicles by their association with specific cargo receptors. We recently identified a role for the cargo receptor SURF4 in facilitating the secretion of PCSK9 in cultured cells. To examine the function of SURF4 in vivo, we used CRISPR/Cas9-mediated gene editing to generate mice with germline loss-of-function mutations in Surf4. Heterozygous Surf4+/- mice exhibit grossly normal appearance, behavior, body weight, fecundity, and organ development, with no significant alterations in circulating plasma levels of PCSK9, apolipoprotein B, or total cholesterol, and a detectable accumulation of intrahepatic apoliprotein B. Homozygous Surf4-/- mice exhibit embryonic lethality, with complete loss of all Surf4-/- offspring between embryonic days 3.5 and 9.5. In contrast to the milder murine phenotypes associated with deficiency of known SURF4 cargoes, the embryonic lethality of Surf4-/- mice implies the existence of additional SURF4 cargoes or functions that are essential for murine early embryonic development.
Collapse
Affiliation(s)
- Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Paul J. Lascuna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Vi T. Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Emilee N. Kotnik
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Transgenic Animal Model Core Laboratory, University of Michigan, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
- * E-mail:
| |
Collapse
|
45
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
46
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
47
|
Huang Y, Ma T, Lau PK, Wang J, Zhao T, Du S, Loy MMT, Guo Y. Visualization of Protein Sorting at the Trans-Golgi Network and Endosomes Through Super-Resolution Imaging. Front Cell Dev Biol 2019; 7:181. [PMID: 31552246 PMCID: PMC6733968 DOI: 10.3389/fcell.2019.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
The trans-Golgi network (TGN) and endosomes are essential protein sorting stations in the secretory transport pathway. Protein sorting is fundamentally a process of spatial segregation, but the spatial relationships among the proteins that constitute the sorting machinery have not been systematically analyzed at high resolution in mammalian cells. Here, using two-color STORM imaging, we show that the TGN/endosome-localized cargo adaptors, AP-1, GGA2 and epsinR, form elongated structures of over 250 nm in length at the juxta-nuclear Golgi area. Many of these structures are associated with clathrin. We found that AP-1 is spatially segregated from AP-3 and GGA2, whereas a fraction of AP-1 and GGA2 punctae are associated with epsinR. Moreover, we observed that the planar cell polarity cargo proteins, Vangl2 and Frizzled6 associate with different cargo adaptors—AP-1 and GGA2 or epsinR, respectively—when exiting the TGN. Knockdown analysis confirms the functional significance of this segregation. Our data indicates that TGN/endosome-localized cargo adaptors have distinct spatial relationships. The spatially segregated cargo adaptors GGA2 and AP-1 regulate sorting of Frizzled6 and Vangl2, respectively and spatially associated cargo adaptors can cooperatively regulate a specific sorting process.
Collapse
Affiliation(s)
- Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianji Ma
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Teng Zhao
- Light Innovation Technology Limited, Hong Kong, China
| | - Shengwang Du
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Michael M T Loy
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
48
|
Tower-Gilchrist C, Zlatic SA, Yu D, Chang Q, Wu H, Lin X, Faundez V, Chen P. Adaptor protein-3 complex is required for Vangl2 trafficking and planar cell polarity of the inner ear. Mol Biol Cell 2019; 30:2422-2434. [PMID: 31268833 PMCID: PMC6741063 DOI: 10.1091/mbc.e16-08-0592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Planar cell polarity (PCP) regulates coordinated cellular polarity among neighboring cells to establish a polarity axis parallel to the plane of the tissue. Disruption in PCP results in a range of developmental anomalies and diseases. A key feature of PCP is the polarized and asymmetric localization of several membrane PCP proteins, which is essential to establish the polarity axis to orient cells coordinately. However, the machinery that regulates the asymmetric partition of PCP proteins remains largely unknown. In the present study, we show Van gogh-like 2 (Vangl2) in early and recycling endosomes as made evident by colocalization with diverse endosomal Rab proteins. Vangl2 biochemically interacts with adaptor protein-3 complex (AP-3). Using short hairpin RNA knockdown, we found that Vangl2 subcellular localization was modified in AP-3–depleted cells. Moreover, Vangl2 membrane localization within the cochlea is greatly reduced in AP-3–deficient mocha mice, which exhibit profound hearing loss. In inner ears from AP-3–deficient mocha mice, we observed PCP-dependent phenotypes, such as misorientation and deformation of hair cell stereociliary bundles and disorganization of hair cells characteristic of defects in convergent extension that is driven by PCP. These findings demonstrate a novel role of AP-3–mediated sorting mechanisms in regulating PCP proteins.
Collapse
Affiliation(s)
| | - Stephanie A Zlatic
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Dehong Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital and Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
| | - Qing Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital and Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
| | - Xi Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
49
|
Atlastin-mediated membrane tethering is critical for cargo mobility and exit from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2019; 116:14029-14038. [PMID: 31239341 PMCID: PMC6628656 DOI: 10.1073/pnas.1908409116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the early secretory pathway, newly synthesized proteins undergo folding and modifications and then leave the ER through COPII-coated vesicles. How these processes are coordinated and maintained are important but mostly unclear. We show here that ATL, a GTPase that connects ER tubules, controls ER protein mobility and regulates cargo packaging and coat assembly of COPII vesicles. The tethering and fusion activity by ATL likely maintains tension and other necessary parameters for COPII formation in ER membranes. These findings reveal a role of ER shaping in the early secretory pathway and provide insight into behaviors of ER exportation. Endoplasmic reticulum (ER) membrane junctions are formed by the dynamin-like GTPase atlastin (ATL). Deletion of ATL results in long unbranched ER tubules in cells, and mutation of human ATL1 is linked to hereditary spastic paraplegia. Here, we demonstrate that COPII formation is drastically decreased in the periphery of ATL-deleted cells. ER export of cargo proteins becomes defective; ER exit site initiation is not affected, but many of the sites fail to recruit COPII subunits. The efficiency of cargo packaging into COPII vesicles is significantly reduced in cells lacking ATLs, or when the ER is transiently fragmented. Cargo is less mobile in the ER in the absence of ATL, but the cargo mobility and COPII formation can be restored by ATL R77A, which is capable of tethering, but not fusing, ER tubules. These findings suggest that the generation of ER junctions by ATL plays a critical role in maintaining the necessary mobility of ER contents to allow efficient packaging of cargo proteins into COPII vesicles.
Collapse
|
50
|
VanderVorst K, Dreyer CA, Konopelski SE, Lee H, Ho HYH, Carraway KL. Wnt/PCP Signaling Contribution to Carcinoma Collective Cell Migration and Metastasis. Cancer Res 2019; 79:1719-1729. [PMID: 30952630 DOI: 10.1158/0008-5472.can-18-2757] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Our understanding of the cellular mechanisms governing carcinoma invasiveness and metastasis has evolved dramatically over the last several years. The previous emphasis on the epithelial-mesenchymal transition as a driver of the migratory properties of single cells has expanded with the observation that carcinoma cells often invade and migrate collectively as adherent groups. Moreover, recent analyses suggest that circulating tumor cells within the vasculature often exist as multicellular clusters and that clusters more efficiently seed metastatic lesions than single circulating tumor cells. While these observations point to a key role for collective cell migration in carcinoma metastasis, the molecular mechanisms driving collective tumor cell migration remain to be discerned. Wnt/PCP (planar cell polarity) signaling, one of the noncanonical Wnt signaling pathways, mediates collective migratory events such as convergent extension during developmental processes. Wnt/PCP signaling components are frequently dysregulated in solid tumors, and aberrant pathway activation contributes to tumor cell migratory properties. Here we summarize key studies that address the mechanisms by which Wnt/PCP signaling mediate collective cell migration in developmental and tumor contexts. We emphasize Wnt/PCP component localization within migrating cells and discuss how component asymmetry may govern the spatiotemporal control of downstream cytoskeletal effectors to promote collective cell motility.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Sara E Konopelski
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, Davis, California
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, Davis, California
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California.
| |
Collapse
|