1
|
Liu Z, Huang C, He T, Liao J, Li Y, Yu B. The Coulomb effect in nonsequential double ionization by counter-rotating two-color elliptical polarization fields. Phys Chem Chem Phys 2024; 26:4572-4578. [PMID: 38247378 DOI: 10.1039/d3cp05536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Using a three-dimensional classical ensemble model, nonsequential double ionization (NSDI) of Ar atoms by counter-rotating two-color elliptical polarization (TCEP) fields is investigated. The major axes of the two elliptical fields are aligned in different directions. The relative alignment of the two elliptical fields strongly affects the waveform of the combined electric field and the ultrafast dynamics of NSDI in TCEP fields. Numerical results show that the correlated electron momentum distributions in the x direction evolve from a V-shaped structure near the axis to a distribution concentrated on the diagonal with the angle between the two elliptical major axes increasing. The asymmetry of the energy sharing between the two electrons during recollision results in the V-shaped structure in the correlated momentum spectrum. Back analysis indicates that the recollision times of a part of the trajectories move from the peak to the valley of the combined electric field with the angle between the two elliptical major axes increasing. Therefore, for the case of a larger angle between the two elliptical major axes, the electrons experience a longer time to escape away from the vicinity of the parent ion and thus the stronger Coulomb effect from the parent ion makes the momentum difference between two electrons small, which results in a distribution concentrated on the diagonal. This provides an effective avenue to control the electron ultrafast dynamics in NSDI.
Collapse
Affiliation(s)
- Zichao Liu
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Cheng Huang
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Tongtong He
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jianying Liao
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Yingbin Li
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Benhai Yu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Improved Carrier-Envelope Phase Determination Method for Few-Cycle Laser Pulses Using High-Order Above-Threshold Ionization. PHOTONICS 2022. [DOI: 10.3390/photonics9080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Recent studies indicate that the stereo-ATI carrier-envelope phase meter (CEPM) is an effective method to determine the carrier-envelope phase (CEP) of each and every single few-cycle laser pulse. In this method, a two-dimensional parametric asymmetry plot (PAP), which can be obtained with the measured data in two short time-of-flight intervals, is applied to extract the CEP. Thus, part of the data containing useful CEP information is discarded in the PAP method. In this work, an improved method was developed to effectively exploit most of the experimental data. By this method, we achieve a CEP precision of 57 mrad over the entire 2π range for 5.0 fs laser pulses.
Collapse
|
3
|
Su J, Liu Z, Liao J, Huang X, Li Y, Huang C. Electron correlation and recollision dynamics in nonsequential double ionization by counter-rotating two-color elliptically polarized laser fields. OPTICS EXPRESS 2022; 30:24898-24908. [PMID: 36237033 DOI: 10.1364/oe.462022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Nonsequential double ionization (NSDI) of Argon atoms by counter-rotating two-color elliptically polarized (TCEP) fields is investigated with a three-dimensional classical ensemble model. Different from two-color circularly polarized fields, the combined electric field in TCEP pulses has no symmetry and the ionized electron mainly returns to the parent ion from one direction. Thus the electron momentum distributions show strong asymmetry. Numerical results show with the increase of the relative phase between the two elliptical fields, the return angle of the travelling electron, i.e., the angle between the return direction of the electron and the +x direction, gradually decreases. Moreover, the dominant behavior of electron pairs evolves from anti-correlation to correlation with the relative phase increasing. This provides an avenue to control the return angle and electron correlation behavior by the relative phase between the two elliptical fields.
Collapse
|
4
|
Lin K, Chen X, Eckart S, Jiang H, Hartung A, Trabert D, Fehre K, Rist J, Schmidt LPH, Schöffler MS, Jahnke T, Kunitski M, He F, Dörner R. Magnetic-Field Effect as a Tool to Investigate Electron Correlation in Strong-Field Ionization. PHYSICAL REVIEW LETTERS 2022; 128:113201. [PMID: 35363023 DOI: 10.1103/physrevlett.128.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed. By extending classical trajectory Monte Carlo simulations beyond the dipole approximation, we reveal that double ionization proceeds via recollision-induced doubly excited states, followed by subsequent sequential over-barrier field ionization of the two electrons. In agreement with this model, the binding energies do not lead to an additional nondipole forward shift of the electrons. Our findings provide a new method to study electron correlation by exploiting the effect of the magnetic component of the electromagnetic field.
Collapse
Affiliation(s)
- Kang Lin
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiang Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Baoshan Science and Technology Committee, Shanghai 200940, China
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Hui Jiang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | | | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| |
Collapse
|
5
|
Wu D, Li Q, Wang J, Guo F, Chen J, Yang Y. The nonsequential double ionization of Ar atoms with different initial angular momenta irradiated by a circularly polarized laser pulse. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Larsson HR, Tannor DJ. Control of concerted back-to-back double ionization dynamics in helium. J Chem Phys 2021; 155:144105. [PMID: 34654299 DOI: 10.1063/5.0063056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double ionization (DI) is a fundamental process that despite its apparent simplicity provides rich opportunities for probing and controlling the electronic motion. Even for the simplest multielectron atom, helium, new DI mechanisms are still being found. To first order in the field strength, a strong external field doubly ionizes the electrons in helium such that they are ejected into the same direction (front-to-back motion). The ejection into opposite directions (back-to-back motion) cannot be described to first order, making it a challenging target for control. Here, we address this challenge and optimize the field with the objective of back-to-back double ionization using a (1 + 1)-dimensional model. The optimization is performed using four different control procedures: (1) short-time control, (2) derivative-free optimization of basis expansions of the field, (3) the Krotov method, and (4) control of the classical equations of motion. All four procedures lead to fields with dominant back-to-back motion. All the fields obtained exploit essentially the same two-step mechanism leading to back-to-back motion: first, the electrons are displaced by the field into the same direction. Second, after the field turns off, the nuclear attraction and the electron-electron repulsion combine to generate the final motion into opposite directions for each electron. By performing quasi-classical calculations, we confirm that this mechanism is essentially classical.
Collapse
Affiliation(s)
- Henrik R Larsson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - David J Tannor
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
7
|
Chen Z, Su J, Zeng X, Huang X, Li Y, Huang C. Electron angular correlation in nonsequential double ionization of molecules by counter-rotating two-color circularly polarized fields. OPTICS EXPRESS 2021; 29:29576-29586. [PMID: 34615066 DOI: 10.1364/oe.439864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Electron correlation in nonsequential double ionization (NSDI) of molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that the two electrons from NSDI of molecules in counter-rotating TCCP fields show strong angular correlation and the angular correlation behavior sensitively depends on the internuclear distance. With the internuclear distance increasing, the dominant behavior of electron pairs evolves from correlation to anti-correlation. It leaves a clear imprint on the ion momentum distributions, which exhibit an inverted Y-shape distribution at a small internuclear distance and a triangle-shape distribution at a large internuclear distance. Back analysis indicates that the asymmetric electron energy sharing by soft recollision and longer time delay of double ionization are responsible for more anti-correlated emissions at large internuclear distances.
Collapse
|
8
|
Efimov DK, Maksymov A, Ciappina M, Prauzner-Bechcicki JS, Lewenstein M, Zakrzewski J. Three-electron correlations in strong laser field ionization. OPTICS EXPRESS 2021; 29:26526-26537. [PMID: 34615086 DOI: 10.1364/oe.431572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Strong field processes involving several active electrons reveal unambiguous dynamical signatures of the Pauli principle importance even in the nonrelativistic regime. We exemplify this statement studying three active electrons model atoms interacting with strong pulsed radiation, using an ab-initio time-dependent Schrödinger equation on a grid. In our restricted dimensionality model we are able to analyze momenta correlations of the three outgoing electrons using Dalitz plots. The different symmetries of the electronic wavefunctions, directly related to the initial state spin components, appear clearly visible.
Collapse
|
9
|
Wu D, Li Q, Wang J, Guo F, Chen J, Yang Y. Double ionization of hydrogen molecules in a high-intensity linearly polarized laser pulse. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kim YH, Ivanov IA, Hwang SI, Kim K, Nam CH, Kim KT. Attosecond streaking using a rescattered electron in an intense laser field. Sci Rep 2020; 10:22075. [PMID: 33328542 PMCID: PMC7745043 DOI: 10.1038/s41598-020-79034-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
When an atom or molecule is exposed to a strong laser field, an electron can tunnel out from the parent ion and moves along a specific trajectory. This ultrafast electron motion is sensitive to a variation of the laser field. Thus, it can be used as a fast temporal gate for the temporal characterization of the laser field. Here, we demonstrate a new type of attosecond streaking wherein a rescattered electron trajectory is manipulated by an ultrashort laser pulse. The vector potential of the laser pulse is directly recorded in the photoelectron spectra of the rescattered electron. In contrast to high harmonic generation methods, our approach has no directional ambiguity in space, leading to complete in situ temporal characterization. In addition, it provides timing information on ionization and re-scattering events. Therefore, our approach can be a useful tool for the investigation of strong-field processes triggered by rescattering, such as non-sequential double ionization and laser-induced electron diffraction.
Collapse
Affiliation(s)
- Yang Hwan Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Igor A Ivanov
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea
| | - Sung In Hwang
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea
| | - Kyungseung Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea
| | - Chang Hee Nam
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Kyung Taec Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Korea.
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
11
|
Xu TT, Gong WJ, Zhang LL, Qi Y. Frustrated nonsequential double ionization of Ar atoms in counter-rotating two-color circular laser fields. OPTICS EXPRESS 2020; 28:35168-35178. [PMID: 33182968 DOI: 10.1364/oe.409495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
We theoretically investigate the frustrated double ionization (FDI) of Ar atoms with counter-rotating two-color circular (CRTC) laser fields using the three-dimensional (3D) classical ensemble method. Our results show that the FDI probability depends upon the intensity ratio of the CRTC laser fields. The FDI event accompanied with the recollision excitation with subsequent ionization is prevalent and three pathways exist in FDI processes driven by CRTC laser fields. The momentum distribution of a recaptured electron at the ionization time after recollision indicates that the momentum being close to the vector potential is a necessary condition for FDI events to occur. In addition, the recaptured electron most probably transitions to a Rydberg state of which the quantum number is ten in the CRTC fields.
Collapse
|
12
|
Wang Y, Lai X, Yu S, Sun R, Liu X, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X, Kitzler-Zeiler M. Laser-Induced Electron Transfer in the Dissociative Multiple Ionization of Argon Dimers. PHYSICAL REVIEW LETTERS 2020; 125:063202. [PMID: 32845670 DOI: 10.1103/physrevlett.125.063202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.
Collapse
Affiliation(s)
- YanLan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XuanYang Lai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - ShaoGang Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - RenPing Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XiaoJun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Sonia Erattupuzha
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Markus Koch
- Institute of Experimental Physics, Graz University of Technology, A-8010 Graz, Austria
| | - Václav Hanus
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Gerhard Paulus
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
13
|
Chen Z, Liu F, Wen H, Morishita T, Zatsarinny O, Bartschat K. Nonsequential double ionization of Ar in near-single-cycle laser pulses. OPTICS EXPRESS 2020; 28:22231-22246. [PMID: 32752488 DOI: 10.1364/oe.398035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Using the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMD) for nonsequential double ionization (NSDI) of Ar by near-single-cycle laser pulses with a wavelength of 750 nm at an intensity of 2.8 × 1014 W/cm2. With the accurate cross sections obtained from fully quantum mechanical calculations for both electron impact excitation and electron impact ionization of Ar+, we unambiguously identify the contributions from recollision direct ionization (RDI) and recollision excitation with subsequent ionization (RESI). Our analysis reveals that RESI constitutes the main contribution to NSDI of Ar under the conditions considered here. The simulated results are directly compared with experimental measurements [Bergues et al., Nature Commun. 3, 813 (2012)] in which each NSDI event is tagged with the carrier-envelope phase (CEP). It is found that the overall pattern of both the CEP-resolved and the CEP-averaged CMDs measured in experiment are well reproduced by the QRS model, and the cross-shaped structure in the CEP-averaged CMD is attributed to the strong forward scattering of the recolliding electron as well as the depletion effect in tunneling ionization of the electron from an excited state of the parent ion.
Collapse
|
14
|
Dong W, Hu H, Zhao Z. Time-resolved recombination by attosecond-controlled high harmonic generation. OPTICS EXPRESS 2020; 28:22490-22499. [PMID: 32752509 DOI: 10.1364/oe.398027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
We theoretically investigate the coherent control of strong-field high-harmonic generation in the presence of an isolated attosecond pulse. It is found that the rapid modulation of the controlled signal exhibits interference fringe structures in the delay-dependent spectra. By comparing the classical trajectory model with quantum mechanical calculation, it is demonstrated that the fringes are resulted from the interference between the photon- and the tunnelling-initiated recombination pathways. The relative recombination times for the two paths are reconstructed from the interference fringes, which provides a novel scheme for optical observation of the interplay of the photionization and tunneling ionization electron dynamics in attosecond resolution.
Collapse
|
15
|
Yang Y, Turchetti M, Vasireddy P, Putnam WP, Karnbach O, Nardi A, Kärtner FX, Berggren KK, Keathley PD. Light phase detection with on-chip petahertz electronic networks. Nat Commun 2020; 11:3407. [PMID: 32641698 PMCID: PMC7343884 DOI: 10.1038/s41467-020-17250-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/19/2020] [Indexed: 11/28/2022] Open
Abstract
Ultrafast, high-intensity light-matter interactions lead to optical-field-driven photocurrents with an attosecond-level temporal response. These photocurrents can be used to detect the carrier-envelope-phase (CEP) of short optical pulses, and enable optical-frequency, petahertz (PHz) electronics for high-speed information processing. Despite recent reports on optical-field-driven photocurrents in various nanoscale solid-state materials, little has been done in examining the large-scale electronic integration of these devices to improve their functionality and compactness. In this work, we demonstrate enhanced, on-chip CEP detection via optical-field-driven photocurrents in a monolithic array of electrically-connected plasmonic bow-tie nanoantennas that are contained within an area of hundreds of square microns. The technique is scalable and could potentially be used for shot-to-shot CEP tagging applications requiring orders-of-magnitude less pulse energy compared to alternative ionization-based techniques. Our results open avenues for compact time-domain, on-chip CEP detection, and inform the development of integrated circuits for PHz electronics as well as integrated platforms for attosecond and strong-field science.
Collapse
Affiliation(s)
- Yujia Yang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Turchetti
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Praful Vasireddy
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William P Putnam
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA
- Department of Physics and Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
| | - Oliver Karnbach
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alberto Nardi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franz X Kärtner
- Department of Physics and Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science and Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Karl K Berggren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Phillip D Keathley
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Chen X, Ruiz C, He F, Zhang J. Mapping initial transverse momenta of tunnel-ionized electrons to rescattering double ionization in nondipole regimes. OPTICS EXPRESS 2020; 28:14884-14896. [PMID: 32403522 DOI: 10.1364/oe.391138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
We investigate the double ionization of a model Neon atom in strong middle infrared laser pulses by simulating the classical trajectories of the electron ensemble. After one electron tunnels out from the laser-dressed Coulomb barrier, it might undergo different returning trajectories depending on its initial transverse momentum, which in this wavelength may propagate along or deviate from the polarization direction. This initial transverse momentum determines the rescattering time, and thus some trajectories can have returning time longer than one optical cycle. These late-returning trajectories determine the correlated electron-electron momentum distribution for double ionization and allow us to disentangle each double ionization event from the final momentum distribution. The description of these trajectories allow us also to understand how the nondipole effects modify the correlated electron-electron momentum distribution in double ionization.
Collapse
|
17
|
Huang C, Pang H, Huang X, Zhong M, Wu Z. Relative phase effect of nonsequential double ionization of molecules by counter-rotating two-color circularly polarized fields. OPTICS EXPRESS 2020; 28:10505-10514. [PMID: 32225633 DOI: 10.1364/oe.390281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Relative phase effect of nonsequential double ionization (NSDI) of aligned molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results show that NSDI yield in counter-rotating TCCP fields sensitively depends on the relative phase of the two components, which exhibits a sin-like behavior with the period of π/2. NSDI yield achieves its maximum at the relative phase π/8 and minimum at 3π/8. Back analysis indicates the recollision time and the return angle of the electron strongly depend on the relative phase of the two components, which results in the dominant emission direction of the electrons, is different for different relative phases. This indicates that the recollision process can be steered by changing the relative phase of the two components in counter-rotating TCCP laser fields. Meantime, it provides an avenue to obtain information about the recollision time and the return angle in the recollision process from the electron momentum distribution.
Collapse
|
18
|
Hanus V, Kangaparambil S, Larimian S, Dorner-Kirchner M, Xie X, Schöffler MS, Paulus GG, Baltuška A, Staudte A, Kitzler-Zeiler M. Experimental Separation of Subcycle Ionization Bursts in Strong-Field Double Ionization of H_{2}. PHYSICAL REVIEW LETTERS 2020; 124:103201. [PMID: 32216425 DOI: 10.1103/physrevlett.124.103201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We report on the unambiguous observation of the subcycle ionization bursts in sequential strong-field double ionization of H_{2} and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by the use of few-cycle laser pulses with a known carrier-envelope phase, in combination with multiparticle coincidence momentum imaging. The approach demonstrated here will allow sampling of the intramolecular electron dynamics and the investigation of charge-state-specific Coulomb distortions on emitted electrons in polyatomic molecules.
Collapse
Affiliation(s)
- Václav Hanus
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Gerhard G Paulus
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - André Staudte
- Joint Attosecond Science Lab of the National Research Council and the University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
19
|
Fingerprints of slingshot non-sequential double ionization on two-electron probability distributions. Sci Rep 2019; 9:18855. [PMID: 31827133 PMCID: PMC6906482 DOI: 10.1038/s41598-019-55066-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/24/2019] [Indexed: 11/21/2022] Open
Abstract
We study double ionization of He driven by near-single-cycle laser pulses at low intensities at 400 nm. Using a three-dimensional semiclassical model, we identify the pathways that prevail non-sequential double ionization (NSDI). We focus mostly on the delayed pathway, where one electron ionizes with a time-delay after recollision. We have recently shown that the mechanism that prevails the delayed pathway depends on intensity. For low intensities slingshot-NSDI is the dominant mechanism. Here, we identify the differences in two-electron probability distributions of the prevailing NSDI pathways. This allows us to identify properties of the two-electron escape and thus gain significant insight into slingshot-NSDI. Interestingly, we find that an observable fingerpint of slingshot-NSDI is the two electrons escaping with large and roughly equal energies.
Collapse
|
20
|
Amini K, Biegert J, Calegari F, Chacón A, Ciappina MF, Dauphin A, Efimov DK, Figueira de Morisson Faria C, Giergiel K, Gniewek P, Landsman AS, Lesiuk M, Mandrysz M, Maxwell AS, Moszyński R, Ortmann L, Antonio Pérez-Hernández J, Picón A, Pisanty E, Prauzner-Bechcicki J, Sacha K, Suárez N, Zaïr A, Zakrzewski J, Lewenstein M. Symphony on strong field approximation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116001. [PMID: 31226696 DOI: 10.1088/1361-6633/ab2bb1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.
Collapse
Affiliation(s)
- Kasra Amini
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li B, Yang X, Ren X, Zhang J. Enhanced double ionization rate from O 2 molecules driven by counter-rotating circularly polarized two-color laser fields. OPTICS EXPRESS 2019; 27:32700-32708. [PMID: 31684477 DOI: 10.1364/oe.27.032700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
We report that the nonsequential double ionization (NSDI) probability of an O 2 target can be enhanced greatly in a counter-rotating circularly polarized two-color driving field. The field is composed of a fundamental frequency and its third harmonic, and the combined electric field traces out a four-leaf-clover pattern. The electron ionized by such a field has more chances to collide with the valence electrons in the O 2 molecule, which significantly enhances the NSDI probability. This effect is more evident in low-intensity fields. We also find that the enhancement appears in a broad range of the field ratio of two colors and that both the NSDI yield and the underlying electronic behavior varies notably with the field ratio.
Collapse
|
22
|
Komm P, Sheintop U, Noach S, Marcus G. Carrier-to-envelope phase-stable, mid-infrared, ultrashort pulses from a hybrid parametric generator: Cr:ZnSe laser amplifier system. OPTICS EXPRESS 2019; 27:18522-18532. [PMID: 31252794 DOI: 10.1364/oe.27.018522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Our Cr:ZnSe laser amplifier, seeded by parametric difference mixing, produces 72fs long pulses at the central wavelength of ~2.37µm. The stability of the carrier-to-envelope phase of the amplified seed pulses, attained at the stage of their parametric generation, is preserved through 6 orders of magnitude of laser amplification.
Collapse
|
23
|
Huang C, Zhong M, Wu Z. Nonsequential double ionization by co-rotating two-color circularly polarized laser fields. OPTICS EXPRESS 2019; 27:7616-7626. [PMID: 30876323 DOI: 10.1364/oe.27.007616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Nonsequential double ionization (NSDI) of Ar in co-rotating two-color circularly polarized (TCCP) laser fields is investigated with a three-dimensional classical ensemble model. Our numerical results indicate that co-rotating TCCP fields can induce NSDI by recollision process, while the yield is an order of magnitude lower than counter-rotating case. NSDI yield in co-rotating TCCP fields strongly depends on field ratio of the two colors and achieves its maximum at a ratio of 2.4. In co-rotating TCCP fields, the short recollision trajectory with traveling time smaller than one cycle is dominant. Moreover, the recollision time in co-rotating TCCP laser fields depends on the field ratio, which is mapped to the electron momentum distribution. This provides anavenue to obtain information about recollision time and access the subcycle dynamics of the recollision process.
Collapse
|
24
|
Katsoulis GP, Hadjipittas A, Bergues B, Kling MF, Emmanouilidou A. Slingshot Nonsequential Double Ionization as a Gate to Anticorrelated Two-Electron Escape. PHYSICAL REVIEW LETTERS 2018; 121:263203. [PMID: 30636162 DOI: 10.1103/physrevlett.121.263203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Indexed: 06/09/2023]
Abstract
At intensities below the recollision threshold, we show that recollision-induced excitation with one electron escaping fast after recollision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most important mechanisms of nonsequential double ionization (NSDI), for strongly driven He at 400 nm. Slingshot NSDI is a general mechanism present for a wide range of low intensities and pulse durations. Anticorrelated two-electron escape is its striking hallmark. This mechanism offers an alternative explanation of anticorrelated two-electron escape obtained in previous studies.
Collapse
Affiliation(s)
- G P Katsoulis
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A Hadjipittas
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - B Bergues
- Department of Physics, Ludwig-Maximilians-Universität Munich, Am Coulombwall 1, D-85748 Garching, Germany and Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - M F Kling
- Department of Physics, Ludwig-Maximilians-Universität Munich, Am Coulombwall 1, D-85748 Garching, Germany and Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - A Emmanouilidou
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Labeye M, Zapata F, Coccia E, Véniard V, Toulouse J, Caillat J, Taïeb R, Luppi E. Optimal Basis Set for Electron Dynamics in Strong Laser Fields: The case of Molecular Ion H 2. J Chem Theory Comput 2018; 14:5846-5858. [PMID: 30247900 PMCID: PMC6255052 DOI: 10.1021/acs.jctc.8b00656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/28/2022]
Abstract
A clear understanding of the mechanisms that control the electron dynamics in a strong laser field is still a challenge that requires interpretation by advanced theory. Development of accurate theoretical and computational methods, able to provide a precise treatment of the fundamental processes generated in the strong field regime, is therefore crucial. A central aspect is the choice of the basis for the wave function expansion. Accuracy in describing multiphoton processes is strictly related to the intrinsic properties of the basis, such as numerical convergence, computational cost, and representation of the continuum. By explicitly solving the 1D and 3D time-dependent Schrödinger equation for H2+ in the presence of an intense electric field, we explore the numerical performance of using a real-space grid, a B-spline basis, and a Gaussian basis (improved by optimal Gaussian functions for the continuum). We analyze the performance of the three bases for high-harmonic generation and above-threshold ionization for H2+. In particular, for high-harmonic generation, the capability of the basis to reproduce the two-center interference and the hyper-Raman phenomena is investigated.
Collapse
Affiliation(s)
- Marie Labeye
- Laboratoire
de Chimie Physique Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Felipe Zapata
- Laboratoire
de Chimie Théorique, Sorbonne Université
and CNRS, F-75005 Paris, France
| | - Emanuele Coccia
- Dipartimento
di Scienze Chimiche, Università di
Padova, 35131 Padova, Italy
| | - Valérie Véniard
- Laboratoire
des Solides Irradiés, École Polytechnique, Université Paris-Saclay, CEA-DSM-IRAMIS, F-91128 Palaiseau, France
| | - Julien Toulouse
- Laboratoire
de Chimie Théorique, Sorbonne Université
and CNRS, F-75005 Paris, France
| | - Jérémie Caillat
- Laboratoire
de Chimie Physique Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Richard Taïeb
- Laboratoire
de Chimie Physique Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Eleonora Luppi
- Laboratoire
de Chimie Théorique, Sorbonne Université
and CNRS, F-75005 Paris, France
| |
Collapse
|
26
|
Huang C, Zhong M, Wu Z. Intensity-dependent two-electron emission dynamics in nonsequential double ionization by counter-rotating two-color circularly polarized laser fields. OPTICS EXPRESS 2018; 26:26045-26056. [PMID: 30469697 DOI: 10.1364/oe.26.026045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Nonsequential double ionization of helium in counter-rotating two-color circularly polarized laser fields is investigated with a three-dimensional classical ensemble model. At moderate intensity, the momentum distribution of the two electrons shows a maximum in the middle of each side of the triangle of the negative vector potential. At high intensity, the momentum distribution exhibits a double-triangle structure, which is attributed to the different values of the laser intensity where the two electrons are released after recollision. At low intensity, the momentum distribution shows a shift deviating from the middle of the side of the triangle of the negative vector potential. This is because the first electrons are emitted within a narrow time window after the field maximum. In addition, at low intensity, double-recollision events and NSDI originating from doubly excited states induced by recollision are prevalent.
Collapse
|
27
|
Huang C, Zhong M, Wu Z. Anomalous ellipticity dependence in nonsequential double ionization of ArXe. Sci Rep 2018; 8:8772. [PMID: 29884833 PMCID: PMC5993723 DOI: 10.1038/s41598-018-27120-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022] Open
Abstract
Using a three-dimensional classical ensemble method, we present a theoretical study of nonsequential double ionization of ArXe dimer aligned along the minor axis of the elliptically polarized laser pulse. Numerical results show that NSDI probability firstly increases and then decreases with the laser ellipticity increasing, which is different from atoms. Moreover, the correlated electron momentum spectra from elliptical polarization are always asymmetric, and the asymmetry is enhanced as the ellipticity increases. Analysis backward in time indicates that in NSDI of ArXe aligned along the minor axis the recollision occurs via a semi-elliptical trajectory.
Collapse
Affiliation(s)
- Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhengmao Wu
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
28
|
Luo S, Ma X, Xie H, Li M, Zhou Y, Cao W, Lu P. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses. OPTICS EXPRESS 2018; 26:13666-13676. [PMID: 29801389 DOI: 10.1364/oe.26.013666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.
Collapse
|
29
|
Abstract
Extreme-ultravoilet (XUV) attosecond pulses with durations of a few tens of attosecond have been successfully applied for exploring ultrafast electron dynamics at the atomic scale. But their weak intensities limit the further application in demonstrating nonlinear responses of inner-shell electrons. Optical attosecond pulses will provide sufficient photon flux to initiate strong-field processes. Here we proposed a novel method to generate an ultra-intense isolated optical attosecond pulse through relativistic multi-cycle laser pulse interacting with a designed gas-foil target. The underdense gas target sharpens the multi-cycle laser pulse, producing a dense layer of relativistic electrons with a thickness of a few hundred nanometers. When the dense electron layer passes through an oblique foil, it emits single ultra-intense half-cycle attosecond pulse in the visible and ultraviolet spectral range. The emitted pulse has a peak intensity exceeding 1018 W/cm2 and full-width-half-maximum duration of 200 as. The peak power of this attosecond light source reaches 2 terawatt. The proposed method relaxes the single-cycle requirement on the driving pulse for isolated attosecond pulse generation and significantly boosts the peak power, thus it may open up the route to new experiments tracking the nonlinear response of inner-shell electrons as well as nonlinear attosecond phenomena investigation.
Collapse
|
30
|
Xu TT, Zhu QY, Chen JH, Ben S, Zhang J, Liu XS. Multiple recollisions in nonsequential double ionization by counter-rotating two-color circularly polarized laser fields. OPTICS EXPRESS 2018; 26:1645-1654. [PMID: 29402036 DOI: 10.1364/oe.26.001645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
With the three-dimensional (3D) classical ensemble method, we theoretically investigate the recollision dynamics in strong-field nonsequential double ionization (NSDI) of Ar by counter-rotating two-color circularly polarized laser fields. With the analysis of the NSDI trajectories, we find that not only multiple-recollision but also single-recollision processes occur in the double ionization events. Furthermore, the multiple-recollision and single-recollision processes both undergo the recollision-induced excitation with subsequent ionization (RESI) and recollision-induced ionization (RII). The angle between the momentum and the force of the laser field at the recollision moment can affect the times of the recollision.
Collapse
|
31
|
Shi Y, Song KL, Guo J, Jin MX. Exploration of strong-field double ionisation of a A 2B molecule in parallel and perpendicular laser fields. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yan Shi
- Institute of Atomic and Molecular Physics, Jilin University 130012, Changchun, People's Republic of China
| | - Kai-Li Song
- Institute of Atomic and Molecular Physics, Jilin University 130012, Changchun, People's Republic of China
| | - Jing Guo
- Institute of Atomic and Molecular Physics, Jilin University 130012, Changchun, People's Republic of China
- Laboratoire de Chimie The orique, Faculte des Sciences, Universite de Sherbrooke , Sherbrooke, Quebec, Canada J1K 2R1
| | - Ming-Xing Jin
- Institute of Atomic and Molecular Physics, Jilin University 130012, Changchun, People's Republic of China
| |
Collapse
|
32
|
Non-sequential double ionization with near-single cycle laser pulses. Sci Rep 2017; 7:7488. [PMID: 28790410 PMCID: PMC5548909 DOI: 10.1038/s41598-017-07635-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/30/2017] [Indexed: 11/08/2022] Open
Abstract
A three-dimensional semiclassical model is used to study double ionization of Ar when driven by a near-infrared and near-single-cycle laser pulse for intensities ranging from 0.85 × 1014 W/cm2 to 5 × 1014 W/cm2. Asymmetry parameters, distributions of the sum of the two electron momentum components along the direction of the polarization of the laser field and correlated electron momenta are computed as a function of the intensity and of the carrier envelope phase. A very good agreement is found with recently obtained results in kinematically complete experiments employing near-single-cycle laser pulses. Moreover, the contribution of the direct and delayed pathways of double ionization is investigated for the above observables. Finally, an experimentally obtained anti-correlation momentum pattern at higher intensities is reproduced with the three-dimensional semiclassical model and shown to be due to a transition from strong to soft recollisions with increasing intensity.
Collapse
|
33
|
Zhao A, Sándor P, Weinacht T. Coincidence velocity map imaging using a single detector. J Chem Phys 2017; 147:013922. [DOI: 10.1063/1.4981917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arthur Zhao
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Péter Sándor
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| |
Collapse
|
34
|
Jochim B, Siemering R, Zohrabi M, Voznyuk O, Mahowald JB, Schmitz DG, Betsch KJ, Berry B, Severt T, Kling NG, Burwitz TG, Carnes KD, Kling MF, Ben-Itzhak I, Wells E, de Vivie-Riedle R. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields. Sci Rep 2017; 7:4441. [PMID: 28667335 PMCID: PMC5493692 DOI: 10.1038/s41598-017-04638-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Collapse
Affiliation(s)
- Bethany Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - R Siemering
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany
| | - M Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - O Voznyuk
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - J B Mahowald
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - D G Schmitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K J Betsch
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Ben Berry
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Nora G Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - T G Burwitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K D Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - M F Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - E Wells
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA.
| | - R de Vivie-Riedle
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany.
| |
Collapse
|
35
|
Li Y, Li M, Zhou Y, Ma X, Xie H, Lan P, Lu P. Carrier-envelope phase dependent photoelectron energy spectra in low intensity regime. OPTICS EXPRESS 2017; 25:11233-11243. [PMID: 28788805 DOI: 10.1364/oe.25.011233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the carrier-envelope phase (CEP) dependent photoelectron energy spectra from above-threshold ionization by numerically solving the time-dependent Schrödinger equation of hydrogen atom in a few-cycle laser field at intensities in the range of (2-10) × 1013 W/cm2. Depending on the electron energy and the laser intensity, the yield of the photoelectron reveals clear oscillations with respect to the CEP. At high laser intensities (larger than ~3 × 1013 W/cm2), the yield of the high-energy photoelectrons (larger than 2Up, with Up being the ponderomotive potential) shows two kinds of oscillations with the CEP for different electron energies. There is a clear phase jump for those two kinds of oscillations. In contrast, at low laser intensities (smaller than ~3 × 1013 W/cm2), the phase of the oscillation for the high-energy photoelectron yield with the CEP is nearly independent on the electron energy, which will reduce the sensitivity of the retrieval of single-shot CEP using the method reported by T. Wittmann et al. [Nat. Phys. 5, 357 (2009)] at low laser intensities. We further show that the low-energy photoelectrons display distinct CEP-dependent intercycle interference fringes, providing an alternative approach to retrieve the CEP with high sensitivity in a few-cycle laser field with low intensity.
Collapse
|
36
|
Zhou Y, Li M, Li Y, Tong A, Li Q, Lu P. Dissection of electron correlation in strong-field sequential double ionization using a classical model. OPTICS EXPRESS 2017; 25:8450-8458. [PMID: 28380956 DOI: 10.1364/oe.25.008450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experiments on strong-field sequential double ionization (SDI) have reported several observations which are regarded as evidence of electron correlation, querying the validity of the standard independent electron approximation for SDI. Here we theoretically study SDI with a classical ensemble model. The experimental results are well reproduced with this model. Back tracing of the ionization process shows that these results are ascribed to the subcycle ionization dynamics of the two electrons, not the evidences of the electron correlation in SDI. Thus, the previously reported observations are not enough to claim the breakdown of the independent electron approximation in SDI.
Collapse
|
37
|
Ben S, Guo PY, Song KL, Xu TT, Yu WW, Liu XS. Nonsequential double ionization of Mg from a doubly excited complex driven by circularly polarized laser field. OPTICS EXPRESS 2017; 25:1288-1295. [PMID: 28158012 DOI: 10.1364/oe.25.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the classical ensemble method, the correlated-electron dynamics of Mg atom from a doubly excited, transition Coulomb complex in few-cycle circularly polarized (CP) laser field at low laser intensity is theoretically investigated. The low energy transfer during the recollision process indicates that the two electrons cannot release directly, but it can pass through a doubly excited state, and then escape with the ionization time difference. The numerical results show that the feature of the sequential double ionization (SDI) can be observed in the nonsequential double ionization (NSDI) process. The SDI-like results demonstrate that the intermediate state has lost any memory of its formation dynamics. The distribution of the angle between the two release directions of the two electrons also depends on the ionization time difference. Finally, the influence of e-e Coulomb repulsion is discussed.
Collapse
|
38
|
Huang C, Zhong M, Wu Z. Recollision dynamics in nonsequential double ionization of atoms by long-wavelength pulses. OPTICS EXPRESS 2016; 24:28361-28371. [PMID: 27958546 DOI: 10.1364/oe.24.028361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recollision dynamics and electron correlation behavior are investigated for several long laser wavelengths (1200-3000 nm) in nonsequential double ionization (NSDI) of helium using three-dimensional classical ensembles. Numerical results show that for these long wavelengths NSDI events are mainly from the multiple-return trajectory which is different from the case of 800 nm. Moreover, with increasing laser wavelength NSDI events move from the diagonal to the two axes in the correlated electron momentum distributions, and finally form an experimentally observed prominent V-shaped structure [Phys. Rev. X 5, 021034 (2015)] in the first and third quadrants. Back analysis indicates that the asymmetric energy sharing between the two electrons at recollision is responsible for the formation of the prominent V-shaped structure of 3000 nm.
Collapse
|
39
|
Nonsequential double ionization with mid-infrared laser fields. Sci Rep 2016; 6:37413. [PMID: 27857182 PMCID: PMC5114651 DOI: 10.1038/srep37413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 11/29/2022] Open
Abstract
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.
Collapse
|
40
|
Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt LPH, Schöffler M, Jahnke T, Dörner R. Nonsequential Double Ionization by Counterrotating Circularly Polarized Two-Color Laser Fields. PHYSICAL REVIEW LETTERS 2016; 117:133202. [PMID: 27715093 DOI: 10.1103/physrevlett.117.133202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/06/2023]
Abstract
We report on nonsequential double ionization of Ar by a laser pulse consisting of two counterrotating circularly polarized fields (390 and 780 nm). The double-ionization probability depends strongly on the relative intensity of the two fields and shows a kneelike structure as a function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar^{+}.
Collapse
Affiliation(s)
- S Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Richter
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - A Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - J Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - K Henrichs
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - N Schlott
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - H Kang
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - T Bauer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - H Sann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - T Jahnke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - R Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| |
Collapse
|
41
|
Mancuso CA, Dorney KM, Hickstein DD, Chaloupka JL, Ellis JL, Dollar FJ, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn HC, Murnane MM. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields. PHYSICAL REVIEW LETTERS 2016; 117:133201. [PMID: 27715086 DOI: 10.1103/physrevlett.117.133201] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 06/06/2023]
Abstract
Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.
Collapse
Affiliation(s)
- Christopher A Mancuso
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Kevin M Dorney
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Daniel D Hickstein
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jan L Chaloupka
- Department of Physics and Astronomy, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Jennifer L Ellis
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Franklin J Dollar
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Ronny Knut
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Patrik Grychtol
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Dmitriy Zusin
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Christian Gentry
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | | | - Henry C Kapteyn
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Margaret M Murnane
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| |
Collapse
|
42
|
Furch FJ, Giree A, Morales F, Anderson A, Wang Y, Schulz CP, Vrakking MJJ. Close to transform-limited, few-cycle 12 µJ pulses at 400 kHz for applications in ultrafast spectroscopy. OPTICS EXPRESS 2016; 24:19293-19310. [PMID: 27557209 DOI: 10.1364/oe.24.019293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-collinear optical parametric amplification has become the leading technology for amplifying few-cycle carrier-envelope phase (CEP) stable pulses to high energy at extreme repetition rates. In this work, a parametric amplifier system devoted to ultrafast photoionization experiments with coincidence detection is reported. The amplifier delivers CEP-stable few-cycle pulses with an average power of 5 W, and operates at repetition rates between 400 and 800 kHz. Close to transform-limited compression of the few-cycle pulses is achieved with minimized spatio-temporal distortions. Potential limitations introduced by spatio-temporal couplings to applications in attosecond science are analyzed. In particular, it is shown that pulse front tilt resulting from non-collinear amplification can considerably reduce the asymmetry in stereo above threshold ionization (stereo-ATI) experiments.
Collapse
|
43
|
Huang C, Zhong M, Wu Z. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses. J Chem Phys 2016; 145:044302. [PMID: 27475356 DOI: 10.1063/1.4959188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.
Collapse
Affiliation(s)
- Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhengmao Wu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Schüler M, Pavlyukh Y, Bolognesi P, Avaldi L, Berakdar J. Electron pair escape from fullerene cage via collective modes. Sci Rep 2016; 6:24396. [PMID: 27086559 PMCID: PMC4834545 DOI: 10.1038/srep24396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Experiment and theory evidence a new pathway for correlated two-electron release from many-body compounds following collective excitation by a single photon. Using nonequilibrium Green's function approach we trace plasmon oscillations as the key ingredient of the effective electron-electron interaction that governs the correlated pair emission in a dynamic many-body environment. Results from a full ab initio implementation for C60 fullerene are in line with experimental observations. The findings endorse the correlated two-electron photoemission as a powerful tool to access electronic correlation in complex systems.
Collapse
Affiliation(s)
- Michael Schüler
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Yaroslav Pavlyukh
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Paolo Bolognesi
- CNR-ISM, Area della Ricerca di Roma 1, CP10, 00016 Monterotondo Scalo, Italy
| | - Lorenzo Avaldi
- CNR-ISM, Area della Ricerca di Roma 1, CP10, 00016 Monterotondo Scalo, Italy
| | - Jamal Berakdar
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
45
|
Maxwell AS, Faria CFDM. Controlling Below-Threshold Nonsequential Double Ionization via Quantum Interference. PHYSICAL REVIEW LETTERS 2016; 116:143001. [PMID: 27104701 DOI: 10.1103/physrevlett.116.143001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 06/05/2023]
Abstract
We show through simulation that quantum interference in nonsequential double ionization can be used to control the recollision excitation with subsequent ionization (RESI) mechanism. This includes the shape, localization, and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anticorrelated distribution or vice versa, far below the direct ionization threshold intensity. As a testing ground, we reproduce recent experimental results by employing specific coherent superpositions of excitation channels. We examine two types of interference, from electron indistinguishability and intracycle events, and from different excitation channels. These effects survive focal averaging and transverse-momentum integration.
Collapse
Affiliation(s)
- A S Maxwell
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
46
|
Ben S, Wang T, Xu T, Guo J, Liu X. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase. OPTICS EXPRESS 2016; 24:7525-7533. [PMID: 27137041 DOI: 10.1364/oe.24.007525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Collapse
|
47
|
Li Y, Yu B, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J. Transition of recollision trajectories from linear to elliptical polarization. OPTICS EXPRESS 2016; 24:6469-6479. [PMID: 27136838 DOI: 10.1364/oe.24.006469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. We propose how this transition can be observed by meansuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.
Collapse
|
48
|
Sándor P, Tagliamonti V, Zhao A, Rozgonyi T, Ruckenbauer M, Marquetand P, Weinacht T. Strong Field Molecular Ionization in the Impulsive Limit: Freezing Vibrations with Short Pulses. PHYSICAL REVIEW LETTERS 2016; 116:063002. [PMID: 26918985 DOI: 10.1103/physrevlett.116.063002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 06/05/2023]
Abstract
We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses. Using calculations which take vibrational dynamics into account, we interpret our results in terms of nuclear motion and nonadiabatic dynamics during the ionization process.
Collapse
Affiliation(s)
- Péter Sándor
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Vincent Tagliamonti
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Arthur Zhao
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Tamás Rozgonyi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Matthias Ruckenbauer
- University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Währinger Strasse 17, 1090 Wien, Austria
| | - Philipp Marquetand
- University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Währinger Strasse 17, 1090 Wien, Austria
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| |
Collapse
|
49
|
Paramonov GK, Kühn O, Bandrauk AD. Shaped Post-Field Electronic Oscillations in H2+ Excited by Two-Cycle Laser Pulses: Three-Dimensional Non-Born–Oppenheimer Simulations. J Phys Chem A 2016; 120:3175-85. [DOI: 10.1021/acs.jpca.5b11599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guennaddi K. Paramonov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, D-18059 Rostock, Germany
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam, Germany
| | - O. Kühn
- Institut
für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, D-18059 Rostock, Germany
| | - André D. Bandrauk
- Laboratorie
de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
50
|
Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P. The contribution of the delayed ionization in strong-field nonsequential double ionization. J Chem Phys 2016; 144:024304. [DOI: 10.1063/1.4939642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yinbo Chen
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yueming Zhou
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yang Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Min Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Pengfei Lan
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Peixiang Lu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| |
Collapse
|