1
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR, Parekh PS, Jani M. Disabled-2, a versatile tissue matrix multifunctional scaffold protein with multifaceted signaling: Unveiling its potential in the cancer battle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5533-5557. [PMID: 38502243 DOI: 10.1007/s00210-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/β-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-β) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Maharsh Jani
- Anand Niketan Shilaj, Ahmedabad, 380059, Gujarat, India
| |
Collapse
|
2
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR. Disable 2, A Versatile Tissue Matrix Multifunctional Scaffold Protein with Multifaceted Signaling: Unveiling Role in Breast Cancer for Therapeutic Revolution. Cell Biochem Biophys 2024; 82:501-520. [PMID: 38594547 DOI: 10.1007/s12013-024-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- β (TGF-β) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
5
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
6
|
Kwon JE, Jang Y, Yun BS, Kang S, Kim YH, Kim BG, Cho NH. MET overexpression in ovarian cancer via CD24-induced downregulation of miR-181a: A signalling for cellular quiescence-like state and chemoresistance in ovarian CSCs. Cell Prolif 2024; 57:e13582. [PMID: 38030594 PMCID: PMC11056702 DOI: 10.1111/cpr.13582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Increased expression of CD24 and MET, markers for cancer stem-like cells (CSCs), are each associated with ovarian cancer severity. However, whether CD24 and MET are co-expressed in ovarian CSCs and, if so, how they are related to CSC phenotype manifestation remains unknown. Our immunohistochemistry analysis showed that the co-expression of CD24 and MET was associated with poorer patient survival in ovarian cancer than those without. In addition, analyses using KM plotter and ROC plotter presented that the overexpression of CD24 or MET in ovarian cancer patients was associated with resistance to platinum-based chemotherapy. In our miRNA transcriptome and putative target genes analyses, miR-181a was downregulated in CD24-high ovarian cancer cells compared to CD24-low and predicted to bind to CD24 and MET 3'UTRs. In OV90 and SK-OV-3 cells, CD24 downregulated miR-181a expression by Src-mediated YY1 activation, leading to increased expression of MET. And, CD24 or MET knockdown or miR-181a overexpression inhibited the manifestation of CSC phenotypes, cellular quiescence-like state and chemoresistance, in OV90 and SK-OV-3 cells: increased colony formation, decreased G0/G1 phase cell population and increased sensitivity to Cisplatin and Carboplatin. Our findings suggest that CD24-miR-181a-MET may consist of a signalling route for ovarian CSCs, therefore being a combinatory set of markers and therapeutic targets for ovarian CSCs.
Collapse
Affiliation(s)
- Ji Eun Kwon
- Department of PathologyAjou University School of MedicineSuwonKorea
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Yeonsue Jang
- Department of PathologyYonsei University College of MedicineSeoulKorea
| | - Bo Seong Yun
- Department of Gynecology Obstetrics and Gynecology, CHA Gangnam Medical CenterCHA UniversitySeoulKorea
| | - Suki Kang
- Department of PathologyYonsei University College of MedicineSeoulKorea
| | - Yon Hee Kim
- Department of PathologySoonchunhyang University HospitalSeoulKorea
| | - Baek Gil Kim
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PathologyYonsei University College of MedicineSeoulKorea
| | - Nam Hoon Cho
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PathologyYonsei University College of MedicineSeoulKorea
- Severance Biomedical Science Institute (SBSI)Yonsei University College of MedicineSeoulKorea
| |
Collapse
|
7
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
8
|
Jiang B, Xiao S, Zhang S, Xiao F. The miR-1290/OGN axis in ovarian cancer-associated fibroblasts modulates cancer cell proliferation and invasion. J Ovarian Res 2024; 17:52. [PMID: 38402185 PMCID: PMC10893657 DOI: 10.1186/s13048-024-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
Despite receiving first-line treatment, ovarian cancer patients continue to experience a high rate of recurrence; nearly all women with ovarian cancer develop chemoresistance and succumb to the disease. In this study, cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated from tumor-containing and normal omenta, respectively, and the downregulation of osteoglycin (OGN) in CAFs was observed. OGN overexpression in CAFs significantly inhibited ovarian cancer cell viability, DNA synthesis, and cell invasion. OGN overexpression also changed epithelial-mesenchymal transition (EMT) markers and promoted mTOR and Akt phosphorylation in ovarian cancer cells. miR-1290 targeted OGN and inhibited OGN expression. miR-1290 overexpression in CAFs significantly promoted ovarian cancer cell viability, DNA synthesis, and cell invasion. Moreover, miR-1290 overexpression in CAFs also changed EMT markers and promoted mTOR and Akt phosphorylation within ovarian carcinoma cells. Finally, when ovarian cancer cells in a conditioned medium derived from CAFs co-transduced with miR-1290 mimics and OGN-OE were cultured, the effects of miR-1290 overexpression were partially reversed by OGN overexpression. In nude mouse xenograft tumor models, OGN overexpression in CAFs suppressed tumor growth, whereas miR-1290 overexpression in CAFs increased tumor growth. In conclusion, a miRNA/mRNA axis in ovarian cancer CAFs modulating the proliferative and invasive abilities of ovarian cancer cells, possibly via the Akt/mTOR pathway, was demonstrated.
Collapse
Affiliation(s)
- Biyao Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Shan Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Fang Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
9
|
Jarych D, Mikulski D, Wilczyński M, Wilczyński JR, Kania KD, Haręża D, Malinowski A, Perdas E, Nowak M, Paradowska E. Differential microRNA Expression Analysis in Patients with HPV-Infected Ovarian Neoplasms. Int J Mol Sci 2024; 25:762. [PMID: 38255835 PMCID: PMC10815566 DOI: 10.3390/ijms25020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to identify microRNAs (miRNAs) whose expression levels are altered by high-risk human papillomavirus (HR-HPV) infection in women with epithelial ovarian neoplasms. MiRNA expression was quantified by real-time polymerase chain reaction, while HR-HPV DNA was quantified using digital-droplet PCR. Analysis of 11 miRNAs demonstrated significantly lower hsa-miR-25-5p expression in HPV-infected compared to uninfected ovarian tissues (p = 0.0405), while differences in miRNA expression in corresponding serum were statistically insignificant. The expression of hsa-miR-218-5p in ovarian tumors was significantly higher in high-grade serous ovarian carcinoma (HGSOC) cases than in other neoplasms (p = 0.0166). In addition, hsa-miR-218-5p was significantly upregulated, whereas hsa-miR-191-5p was significantly downregulated in tissues with stage III/IV FIGO (p = 0.0009 and p = 0.0305, respectively). Using unsupervised clustering, we identified three unique patient groups with significantly varied frequencies of HPV16/18-positive samples and varied miRNA expression profiles. In multivariate analysis, high expression of hsa-miR-16-5p was an independent prognostic factor for poor overall survival (p = 0.0068). This preliminary analysis showed the changes in miRNA expression in ovarian neoplasms during HPV infection and those collected from HGSOCs or patients with advanced disease. This prospective study can provide new insights into the pathogenesis of ovarian neoplasms and host-virus interactions.
Collapse
Affiliation(s)
- Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Katarzyna D. Kania
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Daria Haręża
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
- Bio-Med-Chem Doctoral School of University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-136 Lodz, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Mateusz Nowak
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| |
Collapse
|
10
|
Safavi P, Moghadam KB, Haghighi Z, Ferns GA, Rahmani F. Interplay between LncRNA/miRNA and TGF-β Signaling in the Tumorigenesis of Gynecological Cancer. Curr Pharm Des 2024; 30:352-361. [PMID: 38303530 DOI: 10.2174/0113816128284380240123071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Gynecologic cancers are among the most common malignancies with aggressive features and poor prognosis. Tumorigenesis in gynecologic cancers is a complicated process that is influenced by multiple factors, including genetic mutations that activate various oncogenic signaling pathways, including the TGF-β pathway. Aberrant activation of TGF-β signaling is correlated with tumor recurrence and metastasis. It has been shown that non-coding RNAs (ncRNAs) have crucial effects on cancer cell proliferation, migration, and metastasis. Upregulation of various ncRNAs, including long non-coding RNAs (lncRNA) and microRNAs (miRNAs), has been reported in several tumors, like cervical, ovarian, and endometrial cancers, but their cellular mechanisms remain to be investigated. Thus, recognizing the role of ncRNAs in regulating the TGF-β pathway may provide novel strategies for better treatment of cancer patients. The present study summarizes recent findings on the role of ncRNAs in regulating the TGF-β signaling involved in tumor progression and metastasis in gynecologic cancers.
Collapse
Affiliation(s)
- Pegah Safavi
- Department of Medical Radiation, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Kimia Behrouz Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Zahra Haghighi
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Ravindran F, Mhatre A, Koroth J, Narayan S, Choudhary B. Curcumin modulates cell type-specific miRNA networks to induce cytotoxicity in ovarian cancer cells. Life Sci 2023; 334:122224. [PMID: 38084671 DOI: 10.1016/j.lfs.2023.122224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
AIM To understand the epigenetic role of curcumin, a natural polyphenolic compound extracted from the spice Curcuma longa in inducing cytotoxicity in two molecularly distinct ovarian cancer cell lines: PA1 and A2780. MATERIALS AND METHODS An integrated mRNA-miRNA sequence analysis was performed to determine the curcumin-induced mRNA-miRNA regulatory networks in the induction of cytotoxicity. The miRNA-mRNA pathways, the miRNAs and their targets implicated in apoptosis, autophagy, DNA damage, and stemness markers were validated. Gene/miRNA expressions were validated using qPCR and protein expressions by western blotting. Curcumin-induced oncogenic /tumor-suppressor miRNAs were profiled utilising the oncomiRdb database. Similarly, the expressions of oncogenes/tumor suppressor genes were profiled and correlated with the TCGA ovarian cancer dataset. A dual luciferase assay was performed to investigate the interaction of miR-199a-5p to its direct target, DDR1. KEY FINDINGS The expression of several miRNAs demonstrated an inverse correlation with their respective direct targets. In curcumin-treated PA1 cells, miR-335-5p target ATG5 (autophagic), and OCT4 (pluripotent gene) were downregulated, miR-32a target PTEN (tumor suppressor) was upregulated, miR-1285 target P53 (tumor suppressor) was upregulated, and both miR-182-5p and miR-503-3p target BCL2, were down-regulated. Contrastingly, in curcumin-treated A2780 cells, miR-181a-3p target ATG5, miR-30a-5p, and miR-216a target BECN1 (autophagic) were upregulated, and miR-129a-5p target BCL2 were downregulated. The reversal of the oncomiR/TSmiR profile revealed suppression of oncogenic processes by curcumin. Curcumin treatment induced a moderate cisplatin-sensitisation effect and impaired epithelial-to-mesenchymal transition (EMT) characteristics. Curcumin also regulated the miR-199a-5p/DDR1 axis with a decrease in collagen deposition. SIGNIFICANCE The activity of curcumin is cell-type specific. Distinct miRNA regulatory networks were activated to induce multiple modes of cellular cytotoxicity in these ovarian cancer cells. This study further highlights the molecular mechanism of curcumin action in ovarian cancers establishing its candidacy as a promising drug candidate.
Collapse
Affiliation(s)
- Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India
| | - Anisha Mhatre
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India
| | - Jinsha Koroth
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India
| | - Suchitra Narayan
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India.
| |
Collapse
|
13
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
14
|
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z. Role of miR‑181a‑5p in cancer (Review). Int J Oncol 2023; 63:108. [PMID: 37539738 PMCID: PMC10552769 DOI: 10.3892/ijo.2023.5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non‑coding RNAs (ncRNAs) that can post‑transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR‑181a‑5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR‑181a‑5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR‑181a‑5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR‑181a‑5p. However, the precise role of miR‑181a‑5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR‑181a‑5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Wu S, Abdullah Al-Maskri AA, Li Q, Liu J, Cai S. A Novel miRNA Detection Method Using Loop-Mediated Isothermal Amplification. Int J Anal Chem 2023; 2023:6624884. [PMID: 37732283 PMCID: PMC10508998 DOI: 10.1155/2023/6624884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
A novel ligation-based loop-mediated isothermal amplification has been developed for miRNA detection. Two stem-loop structure DNA linker A/B probes which hybridized with miRNA were designed to establish a rapid and ultrasensitive miRNA-LAMP system for miRNA detection. Target miR-200a was used to template the ligation of Linker A/B probes with SplintR Ligase and used as a dumbbell-shaped amplicon. By adding BIP/FIP and Bst 2.0 DNA polymerase, the LAMP reaction was carried out, which brought greatly improved amplification efficiency. The double-stranded DNA fluorescent dye EvaGreen was added for the detection of amplification product to achieve the quantification of the target miRNA. This method can detect miRNA in a linear range of seven orders of magnitude, with a detection limit of 100 fM. Therefore, this ultrasensitive miRNA-LAMP assay provides a new path for the highly sensitive quantitative analysis of miRNA, thereby bringing convenience to clinical diagnosis and prognostic research.
Collapse
Affiliation(s)
- Saiwei Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Abdu Ahmed Abdullah Al-Maskri
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qun Li
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiatong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
16
|
Pal S, Bhowmick S, Sharma A, Sierra-Fonseca JA, Mondal S, Afolabi F, Roy D. Lymphatic vasculature in ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188950. [PMID: 37419192 PMCID: PMC10754213 DOI: 10.1016/j.bbcan.2023.188950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, United States
| | - Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Favour Afolabi
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States.
| |
Collapse
|
17
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
18
|
Indumati S, Apurva B, Gaurav G, Nehakumari S, Nishant V. The Role of MicroRNAs in Development of Endometrial Cancer: A Literature Review. J Reprod Infertil 2023; 24:147-165. [PMID: 37663424 PMCID: PMC10471942 DOI: 10.18502/jri.v24i3.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/01/2023] [Indexed: 09/05/2023] Open
Abstract
Endometrial cancer (EC) ranks as the second most common gynaecological cancer worldwide. EC patients are diagnosed at an early clinical stage and generally have a good prognosis. Therefore, there is a dire need for development of a specific marker for early detection of endometrial adenocarcinoma. The development of EC is conditioned by a multistep process of oncogenic upregulation and tumor suppressor downregulation as shown by molecular genetic evidence. In this setting, microRNAs appear as significant regulators of gene expression and several variations in the expression of microRNAs have been implicated in normal endometrium, endometrial tissue, metrorrhagia, and endometrial cancer. Furthermore, microRNAs act as highly precise, sensitive, and robust molecules, making them potential markers for diagnosing specific cancers and their progression. With the rising incidence of EC, its management remains a vexing challenge and diagnostic methods for the disease are limited to invasive, expensive, and inaccurate tools. Therefore, the prospect of exploiting the utility of microRNAs as potential candidates for diagnosis and therapeutic use in EC seems promising.
Collapse
Affiliation(s)
- Somasundaram Indumati
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil Education Society, Kolhapur, India
| | - Birajdar Apurva
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil Education Society, Kolhapur, India
| | | | | | | |
Collapse
|
19
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X, Wan J. Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209083. [PMID: 36764026 DOI: 10.1002/adma.202209083] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xia Yin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
20
|
Mohd Yunus SS, Soh HY, Abdul Rahman M, Peng X, Guo C, Ramli R. MicroRNA in medication related osteonecrosis of the jaw: a review. Front Physiol 2023; 14:1021429. [PMID: 37179831 PMCID: PMC10169589 DOI: 10.3389/fphys.2023.1021429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Medication related osteonecrosis of the jaw (MRONJ) is a condition caused by inhibition of the osteoclast activity by the anti-resorptive and anti-angiogenic drugs. Clinically, there is an exposure of the necrotic bone or a fistula which fails to heal for more than 8 weeks. The adjacent soft tissue is inflamed and pus may be present as a result of the secondary infection. To date, there is no consistent biomarker that could aid in the diagnosis of the disease. The aim of this review was to explore the literature on the microRNAs (miRNAs) related to medication related osteonecrosis of the jaw, and to describe the role of each miRNA as a biomarker for diagnostic purpose and others. Its role in therapeutics was also searched. It was shown that miR-21, miR-23a, and miR-145 were significantly different in a study involving multiple myeloma patients as well as in a human-animal study while miR-23a-3p and miR-23b-3p were 12- to 14-fold upregulated compared to the control group in an animal study. The role of the microRNAs in these studies were for diagnostics, predictor of progress of MRONJ and pathogenesis. Apart from its potential diagnostics role, microRNAs have been shown to be bone resorption regulator through miR-21, miR-23a and miR-145 and this could be utilized therapeutically.
Collapse
Affiliation(s)
- Siti Salmiah Mohd Yunus
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hui Yuh Soh
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
22
|
Chan SK, Steinmetz NF. microRNA-181a silencing by antisense oligonucleotides delivered by virus-like particles. J Mater Chem B 2023; 11:816-825. [PMID: 36597907 PMCID: PMC9898218 DOI: 10.1039/d2tb02199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cowpea chlorotic mottle virus (CCMV) is a positive-sense RNA virus that can be repurposed for gene delivery applications. Understanding the self-assembly process of the virus enabled to remove its genome and replace it with desired nucleic acids, and we and others have previously reported using CCMV virus-like particle (VLP) to encapsulate siRNA, mRNA, as well as CpG oligodeoxynucleotides. In this study, the CCMV VLP was applied to encapsulate two different formats of anti-miR-181a oligonucleotides: naked RNA and chemically stabilized RNA to knockdown highly regulated miR-181a in ovarian cancer cells. miR-181a expression in ovarian tumors is associated with high aggressiveness, invasiveness, resistance to chemotherapy, and overall poor prognosis. Therefore, miR-181a is an important target for ovarian cancer therapy. qPCR data and cancer cell migration assays demonstrated higher knockdown efficacy when anti-miR-181a oligonucleotides were encapsulated and delivered using the VLPs resulting in reduced cancer cell invasiveness. Importantly, delivery of anti-miR-181a oligonucleotide into cells could be achieved without the aid of a transfection agent or surface modification. These results highlight the opportunity of plant-derived VLPs as nucleic acid carriers.
Collapse
Affiliation(s)
- Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Department of Radiology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Moores Cancer Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
GRAMMATIKAKI STAMATIKI, KATIFELIS HECTOR, FAROOQI AMMADAHMAD, STRAVODIMOS KONSTANTINOS, KARAMOUZIS MICHALISV, SOULIOTIS KYRIAKOS, VARVARAS DIMITRIOS, GAZOULI MARIA. An Overview of Epigenetics in Clear Cell Renal Cell Carcinoma. In Vivo 2023; 37:1-10. [PMID: 36593023 PMCID: PMC9843790 DOI: 10.21873/invivo.13049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.
Collapse
Affiliation(s)
- STAMATIKI GRAMMATIKAKI
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - HECTOR KATIFELIS
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - KONSTANTINOS STRAVODIMOS
- 1st Department of Urology, National & Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - MICHALIS V. KARAMOUZIS
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - KYRIAKOS SOULIOTIS
- School of Social and Education Policy, University of Peloponnese, Corinth, Greece,Health Policy Institute, Athens, Greece
| | - DIMITRIOS VARVARAS
- Health Policy Institute, Athens, Greece,Tiberia Hospital-GMV Care & Research, Rome, Italy
| | - MARIA GAZOULI
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
MURATA M, KOMATSU S, MIYAMOTO E, OKA C, LIN I, KUMAZOE M, YAMASHITA S, FUJIMURA Y, TACHIBANA H. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:87-93. [PMID: 36660602 PMCID: PMC9816044 DOI: 10.12938/bmfh.2022-056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Quercetin, a flavonol present in many vegetables and fruits, has been identified as a chemoprevention agent in several cancer models. However, the molecular mechanism of quercetin's anticancer activity is not entirely understood. MicroRNAs (miRNAs), small noncoding RNAs, have been reported to play key roles in various biological processes by regulating their target genes. We hypothesized that quercetin can exert an anticancer effect through the regulation of miRNAs. To test this hypothesis, we investigated the effects of quercetin on the expression of tumor-suppressive miRNAs in cervical cancer. Quercetin up-regulated the in vivo and in vitro expression of tumor-suppressive miRNAs miR-26b, miR-126, and miR-320a. Quercetin suppressed the level of β-catenin, encoded by catenin beta 1 (CTNNB1), by up-regulating miR-320a in HeLa cells. Moreover, quercetin increased the expression of mir-26b, mir-126, and mir-320a precursors in HeLa cells. The results from this study show that quercetin has the potential to prevent cervical cancer by regulating the expression of tumor-suppressive miRNAs.
Collapse
Affiliation(s)
- Motoki MURATA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan,Advanced Research Support Center (ADRES), Ehime University,
10-13 Dogo-himata, Matsuyama, Ehime 790-8577, Japan
| | - Satomi KOMATSU
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Emi MIYAMOTO
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Chihiro OKA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Ichian LIN
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Motofumi KUMAZOE
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Shuya YAMASHITA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Yoshinori FUJIMURA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Hirofumi TACHIBANA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan,*Corresponding author. Hirofumi Tachibana (E-mail: )
| |
Collapse
|
25
|
Afsar S. Biomarkers in Gynecologic Tumors. Biomark Med 2022. [DOI: 10.2174/9789815040463122010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gynecologic malignancies are one of the most frequent cancers amongst
women. Biomarkers are crucial for the differential diagnosis of adnexal masses;
however, their potential for diagnosis is limited. In the era of difficulty in ovarian
cancer screening, novel biomarkers are defined, but CA125 still remains the most
valuable one. Circulating tumor DNAs, DNA hypermethylation, metabolites,
microRNAs, and kallikreins have recently turned out as ovarian cancer biomarkers and
are being applied to clinical practice. For uterine cancer, genomic classification has
now been described, it will be used as a prognostic tool. In this chapter, we describe
ovarian, endometrial, and cervical cancer biomarkers in detail.
Collapse
Affiliation(s)
- Selim Afsar
- Department of Obstetrics and Gynecology, Balıkesir University Medical Faculty, Balikesir,
Turkey
| |
Collapse
|
26
|
Fujimura Y, Kumazoe M, Tachibana H. 67-kDa Laminin Receptor-Mediated Cellular Sensing System of Green Tea Polyphenol EGCG and Functional Food Pairing. Molecules 2022; 27:molecules27165130. [PMID: 36014370 PMCID: PMC9416087 DOI: 10.3390/molecules27165130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The body is equipped with a “food factor-sensing system” that senses food factors, such as polyphenols, sulfur-containing compounds, and vitamins, taken into the body, and plays an essential role in manifesting their physiological effects. For example, (–)-epigallocatechin-3-O-gallate (EGCG), the representative catechin in green tea (Camellia sinensi L.), exerts various effects, including anti-cancer, anti-inflammatory, and anti-allergic effects, when sensed by the cell surficial protein 67-kDa laminin receptor (67LR). Here, we focus on three representative effects of EGCG and provide their specific signaling mechanisms, the 67LR-mediated EGCG-sensing systems. Various components present in foods, such as eriodictyol, hesperetin, sulfide, vitamin A, and fatty acids, have been found to act on the food factor-sensing system and affect the functionality of other foods/food factors, such as green tea extract, EGCG, or its O-methylated derivative at different experimental levels, i.e., in vitro, animal models, and/or clinical trials. These phenomena are observed by increasing or decreasing the activity or expression of EGCG-sensing-related molecules. Such functional interaction between food factors is called “functional food pairing”. In this review, we introduce examples of functional food pairings using EGCG.
Collapse
|
27
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
28
|
Chen J, Zhao Y, Zhang F, Li J, Boland JA, Cheng NC, Liu K, Tiffen JC, Bertolino P, Bowen DG, Krueger A, Lisowski L, Alexander IE, Vadas MA, El-Omar E, Gamble JR, McCaughan GW. Liver-specific deletion of miR-181ab1 reduces liver tumour progression via upregulation of CBX7. Cell Mol Life Sci 2022; 79:443. [PMID: 35867177 PMCID: PMC9307539 DOI: 10.1007/s00018-022-04452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
MiR-181 expression levels increased in hepatocellular carcinoma (HCC) compared to non-cancerous tissues. MiR-181 has been widely reported as a possible driver of tumourigenesis but also acts as a tumour suppressor. In addition, the miR-181 family regulates the development and function of immune and vascular cells, which play vital roles in the progression of tumours. More complicatedly, many genes have been identified as miR-181 targets to mediate the effects of miR-181. However, the role of miR-181 in the development of primary tumours remains largely unexplored. We aimed to examine the function of miR-181 and its vital mediators in the progression of diethylnitrosamine-induced primary liver cancers in mice. The size of liver tumours was significantly reduced by 90% in global (GKO) or liver-specific (LKO) 181ab1 knockout mice but not in hematopoietic and endothelial lineage-specific knockout mice, compared to WT mice. In addition, the number of tumours was significantly reduced by 50% in GKO mice. Whole-genome RNA-seq analysis and immunohistochemistry showed that epithelial-mesenchymal transition was partially reversed in GKO tumours compared to WT tumours. The expression of CBX7, a confirmed miR-181 target, was up-regulated in GKO compared to WT tumours. Stable CBX7 expression was achieved with an AAV/Transposase Hybrid-Vector System and up-regulated CBX7 expression inhibited liver tumour progression in WT mice. Hepatic CBX7 deletion restored the progression of LKO liver tumours. MiR-181a expression was the lowest and CBX7 expression the highest in iClust2 and 3 subclasses of human HCC compared to iClust1. Gene expression profiles of GKO tumours overlapped with low-proliferative peri-portal-type HCCs. Liver-specific loss of miR-181ab1 inhibited primary liver tumour progression via up-regulating CBX7 expression, but tumour induction requires both hepatic and non-hepatic miR-181. Also, miR-181ab1-deficient liver tumours may resemble low-proliferative periportal-type human HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Yang Zhao
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Fan Zhang
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine and Health, St George and Sutherland Clinical Campuses, Kogarah, NSW, 2217, Australia
| | - Jia Li
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jade A Boland
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ngan Ching Cheng
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ken Liu
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia
| | - Jessamy C Tiffen
- Melanoma Epigenetics Lab Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick Bertolino
- Liver Immunology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - David G Bowen
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia.,Liver Immunology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Andreas Krueger
- Molecular Immunology, Faculty of Biology and Chemistry, Justus Liebig University Gießen, Schubertstr 81, 35392, Giessen, Germany.,Institute for Molecular Medicine, Frankfurt Cancer Institute, Goethe-University, Frankfurt, Germany
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia
| | - Mathew A Vadas
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Emad El-Omar
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine and Health, St George and Sutherland Clinical Campuses, Kogarah, NSW, 2217, Australia
| | - Jennifer R Gamble
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey W McCaughan
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia. .,Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
29
|
Present Status, Challenges, and Prospects of Dihydromyricetin in the Battle against Cancer. Cancers (Basel) 2022; 14:cancers14143487. [PMID: 35884547 PMCID: PMC9317349 DOI: 10.3390/cancers14143487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Dihydromyricetin (DHM) is a natural flavonoid compound extracted from Ampelopsis grossedentata that has been used for centuries in traditional Chinese medicine. DHM has attracted intensive attention due to its numerous beneficial activities, such as hepatoprotection, cardioprotection, antioxidant, and anti-inflammation. In addition, DHM inhibits the progression of cancers such as lung cancer, hepatocellular cancer, breast cancer, melanoma, and malignant reproductive systems through multiple mechanisms, including antiangiogenesis, antiproliferation, apoptosis, and inhibition of invasion and migration. Notably, DHM also activates autophagy at different levels, exerting a dual-regulatory effect on cancers. Mechanistically, DHM can effectively regulate mammalian target of rapamycin (mTOR), noncoding RNA-mediated signaling, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, nuclear factor-κB (NF-κB), p53, and endoplasmic reticulum stress (ER stress)-driven signaling in different types of cancers. DHM has also been shown to have inhibitory effects on various regulators that trigger epithelial–mesenchymal transition (EMT). Furthermore, DHM exhibits a remarkable anticancer reversal ability when used in combination with drugs such as adriamycin, nedaplatin, and other drugs. However, the low bioavailability of DHM limits its potential applications, which are improved through structural modification and the exploration of novel dosage forms. Therefore, DHM may become a promising candidate for treating malignancies alone or combined with conventional anticancer strategies used in clinical practice.
Collapse
|
30
|
Stieg DC, Wang Y, Liu LZ, Jiang BH. ROS and miRNA Dysregulation in Ovarian Cancer Development, Angiogenesis and Therapeutic Resistance. Int J Mol Sci 2022; 23:ijms23126702. [PMID: 35743145 PMCID: PMC9223852 DOI: 10.3390/ijms23126702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
The diverse repertoires of cellular mechanisms that progress certain cancer types are being uncovered by recent research and leading to more effective treatment options. Ovarian cancer (OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in tumorigenesis through the alteration of a multitude of molecular processes. The development of OC can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor (HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays an important role in inducing endogenous ROS production in OC. This review will discuss several important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting the effective therapeutic potential of OC through these mechanisms.
Collapse
Affiliation(s)
- David C. Stieg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Yifang Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
31
|
Wang M, Huang C, Gao W, Zhu Y, Zhang F, Li Z, Tian Z. MicroRNA-181a-5p prevents the progression of esophageal squamous cell carcinoma in vivo and in vitro via the MEK1-mediated ERK-MMP signaling pathway. Aging (Albany NY) 2022; 14:3540-3553. [PMID: 35468097 PMCID: PMC9085224 DOI: 10.18632/aging.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) have been revealed to play a crucial role in oncogenesis of esophageal squamous cell carcinoma (ESCC). However, the biological role of miR-181a-5p in ESCC is currently less explored. The current study was designed to assess whether miR-181a-5p affects ESCC progression and further investigate relevant underlying mechanisms. Based on the data of GSE161533, GSE17351, GSE75241 and GSE67269 downloaded from GEO database, MAP2K1 (MEK1) was revealed to be one overlapping gene of the top 300 DGEs. Additionally, using the predicting software, miR-181a-5p was projected as the presumed target miRNA. Immunohistochemical staining and RT-qPCR research revealed that miR-181a-5p expression was decreased in human tumor tissues relative to surrounding peri-cancerous tissues. In an in vivo experiment, miR-181a-5p mimics could inhibit tumor growth and metastasis of ESCC. Gene expression profiles in combination with gene ontology (GO) and KEGG pathway analysis revealed that MAP2K1 (MEK1) gene and ERK-MMP pathway were implicated in ESCC progression. MiR-181a-5p mimics inhibited the activity of p-ERK1/2, MMP2 and MMP9 in vivo, as shown by Western blotting and immunohistochemistry labeling. There were no variations in the expression of p-P38 and p-JNK proteins. Additionally, miR-181a-5p mimics lowered p-ERK1/2, MMP2 and MMP9 levels in ECA109 cells, which were restored by MEK1-OE lentivirus. MEK1-OE Lentivirus significantly reversed the function induced by miR-181a-5p mimics in ECA109 cells. Moreover, further investigation indicated that the capability of migration, invasion and proliferation was repressed by miR-181a-5p mimics in ECA109 cells. In short, repressed ERK-MMP pathway mediated by miR-181a-5p can inhibit cell migration, invasion and proliferation by targeting MAP2K1 (MEK1) in ESCC.
Collapse
Affiliation(s)
- Mingbo Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Chao Huang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wenda Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yonggang Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
32
|
Computing microRNA-gene interaction networks in pan-cancer using miRDriver. Sci Rep 2022; 12:3717. [PMID: 35260634 PMCID: PMC8904490 DOI: 10.1038/s41598-022-07628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
DNA copy number aberrated regions in cancer are known to harbor cancer driver genes and the short non-coding RNA molecules, i.e., microRNAs. In this study, we integrated the multi-omics datasets such as copy number aberration, DNA methylation, gene and microRNA expression to identify the signature microRNA-gene associations from frequently aberrated DNA regions across pan-cancer utilizing a LASSO-based regression approach. We studied 7294 patient samples associated with eighteen different cancer types from The Cancer Genome Atlas (TCGA) database and identified several cancer-specific and common microRNA-gene interactions enriched in experimentally validated microRNA-target interactions. We highlighted several oncogenic and tumor suppressor microRNAs that were cancer-specific and common in several cancer types. Our method substantially outperformed the five state-of-art methods in selecting significantly known microRNA-gene interactions in multiple cancer types. Several microRNAs and genes were found to be associated with tumor survival and progression. Selected target genes were found to be significantly enriched in cancer-related pathways, cancer hallmark and Gene Ontology (GO) terms. Furthermore, subtype-specific potential gene signatures were discovered in multiple cancer types.
Collapse
|
33
|
Saha S, Allelein S, Pandey R, Medina-Perez P, Osman E, Kuhlmeier D, Soleymani L. Two-Step Competitive Hybridization Assay: A Method for Analyzing Cancer-Related microRNA Embedded in Extracellular Vesicles. Anal Chem 2021; 93:15913-15921. [PMID: 34806869 DOI: 10.1021/acs.analchem.1c03165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With an increased understanding of the role of microRNAs (miRNAs) in cancer evolution, there is a growing interest in the use of these non-coding nucleic acids in cancer diagnosis, prognosis, and treatment monitoring. miRNAs embedded in extracellular vesicles (EVs) are of particular interest given that circulating EVs carry cargo that are strongly correlated to their cells of origin such as tumor cells while protecting them from degradation. As such, there is a tremendous interest in new simple-to-operate vesicular microRNA analysis tools for widespread use in performing liquid biopsies. Herein, we present a two-step competitive hybridization assay that is rationally designed to translate low microRNA concentrations to large electrochemical signals as the measured signal is inversely proportional to the microRNA concentration. Using this assay, with a limit-of-detection of 122 aM, we successfully analyzed vesicular miRNA 200b from prostate cancer cell lines and human urine samples, demonstrating the expected lower expression levels of miRNA 200b in the EVs from prostate cancer cells and in the prostate cancer patient's urine samples compared to healthy patients and non-tumorigenic cell lines, validating the suitability of our approach for clinical analysis.
Collapse
Affiliation(s)
- Sudip Saha
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Susann Allelein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig 04103, Germany
| | - Richa Pandey
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Paula Medina-Perez
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig 04103, Germany
| | - Enas Osman
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Dirk Kuhlmeier
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig 04103, Germany
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.,Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
34
|
Iravani Saadi M, Ramzi M, Hesami Z, kheradmand N, Owjfard M, Nabi Abdolyousefi E, Karimi Z. MiR-181a and -b expression in acute lymphoblastic leukemia and its correlation with acute graft-versus-host disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. Virusdisease 2021; 32:727-736. [PMID: 34722832 PMCID: PMC8543773 DOI: 10.1007/s13337-021-00743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL), a malignant transformation and proliferation of the lymphoid line of blood cells, is characterized by chromosomal abnormalities and genetic changes. The purpose of this research was the evaluation of expression level of miR-181a and -b in patients with ALL compared to the control group. Furthermore, we examined their expression level in hematopoietic stem-cell transplantation (HSCT) patients who developed acute graft-versus-host disease (aGVHD) in comparison with those without aGVHD and explore the relationship between their expression level and cytogenetic abnormalities. In this cross-sectional study, 76 newly diagnosed adult De novo ALL patients were enrolled who were admitted to our referral hospital. All patients received standard chemotherapy, consisting of daunorubicin. A total of 37 patients underwent HSCT from the related human leukocyte antigen-matched donors. ALL patients have been diagnosed with the coronavirus disease 2019 (COVID-19) and Torque teno viruses (TTVs). We assessed the expression levels of miR-181a and -b in the peripheral blood sample of ALL patients at the time of diagnosis prior to chemotherapy, and healthy matched individuals by RT–PCR. TTVs and COVID-19 load were also determined via RT–PCR. In conclusion, the expression level of miR-181a and -b were significantly higher in ALL patients than healthy controls and also increased in patients who developed aGVHD in comparison with those without aGVHD. MiR-181a and -b can be a useful biomarker in ALL and a useful indicator of aGVHD. The expression level of miR-181a in ALL patients with COVID-19 is significantly up-regulated, while it is reduced in these patients with TTV.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hesami
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya kheradmand
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Ravegnini G, De Iaco P, Gorini F, Dondi G, Klooster I, De Crescenzo E, Bovicelli A, Hrelia P, Perrone AM, Angelini S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021; 9:biomedicines9101316. [PMID: 34680433 PMCID: PMC8533254 DOI: 10.3390/biomedicines9101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers worldwide, mostly due to nonspecific symptoms and a lack of screening tests, which, taken together, contribute to delayed diagnosis and treatment. The current clinical biomarker is serum CA-125, which allows the identification of most advanced primary and relapsed disease and correlates with disease burden; however, as well highlighted in the literature, CA-125 often lacks sensitivity and specificity, and is not helpful in monitoring chemotherapeutic response or in predicting the risk of relapse. Given that, the identification of novel biomarkers able to foster more precise medical approaches and the personalization of patient management represents an unmet clinical requirement. In this context, circulating miRNAs may represent an interesting opportunity as they can be easily detected in all biological fluids. This is particularly relevant when looking for non-invasive approaches that can be repeated over time, with no pain and stress for the oncological patient. Given that, the present review aims to describe the circulating miRNAs currently identified as associated with therapeutic treatments in OC and presents a complete overview of the available evidence.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
- Correspondence:
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Isabella Klooster
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA;
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Alessandro Bovicelli
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| |
Collapse
|
37
|
Wu Y, Gu W, Han X, Jin Z. LncRNA PVT1 promotes the progression of ovarian cancer by activating TGF-β pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med 2021; 25:8229-8243. [PMID: 34288373 PMCID: PMC8419181 DOI: 10.1111/jcmm.16700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a lethal gynaecologic malignancy with poor diagnosis and prognosis. The long non-coding RNA plasmacytoma variant translocation1 (PVT1) and argonaute 1 (AGO1) are associated with carcinogenesis and chemoresistance; however, the relationship between PVT1 and AGO1 and the downstream mechanisms in ovarian cancer remains poorly known. PVT1 and AGO1 expression was assessed through RT-qPCR and Western blotting in both human tissues and cell lines. The viability and proliferation of ovarian cancer cells were determined by CCK-8 assay and TUNEL assay in vitro and immunohistochemistry in vivo. Cell invasion and migration were investigated through transwell and wound-healing assays. The roles and mechanisms of AGO1 on cell functions were further probed via gain- and loss-of-function analysis. We reveal that PVT1 expression was significantly increased in ovarian cancer tissues which is associated with advanced FIGO stage, lymph-node metastasis, poor survival rate, and high expression of AGO1. PVT1 or AGO1 knockdown significantly reduced the cell viability and increased the cell apoptosis and inhibited ovarian tumour growth and proliferation. Furthermore, we discovered that PVT1 up-regulated the expression of AGO1 and thus regulated the transforming growth factor-β (TGF-β) pathway to promote ovarian cancer progression through sponging miR-148a-3p. Additionally, the activation of ERK1/2, smad2 and smad4 is observed to be related to the PVT1/miR-148a-3p/AGO1/TGF-β pathway-induced cascades. Taken together, the present study reveals that PVT1/miR-148a/AGO1 axis plays an important role in the progression of ovarian cancer and emphasize the potential as a target of value for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yuxian Wu
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Wenqian Gu
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiao Han
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zhijun Jin
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
38
|
Sun CX, Liu BJ, Su Y, Shi GW, Wang Y, Chi JF. MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer. Clin Transl Oncol 2021; 24:66-75. [PMID: 34312797 DOI: 10.1007/s12094-021-02670-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Papillary thyroid cancer (PTC) is the predominant histological type of thyroid cancer, accounting for 80% of thyroid cancers. MiR-181a is a novel microRNA that is usually upregulated in multiple cancers. This study aims to explore the role and underlying mechanism of miR-181a in PTC. METHODS CCK8 and Transwell assays were performed to evaluate cell viability and migration. The mRNA level of miR-181a and KLF15 was calculated by qRT-PCR. The protein level of E-Cadherin, N-Cadherin and GAPDH was evaluated by western blot. Dual luciferase assay was conducted to validate that miR-181a directly targeting the 3'-UTR of KLF15 mRNA in TPC-1 cells. RESULTS We observed that miR-181a was overexpressed and KLF15 was low expressed in PTC tissues and cell lines. Upregulation of miR-181a or downregulation of KLF15 predicted poor outcomes in PTC patients. MiR-181a improved cell growth of PTC, migration and epithelial-mesenchymal transition (EMT) in TPC-1 cells. KLF15 was a target gene of miR-181a and its expression was mediated by miR-181a. KLF15 partially reversed the facilitating effect of miR-181a on cell proliferation and migration in TPC-1 cells. CONCLUSION We discovered that miR-181a served as an oncogene downregulating KLF15, thereby inhibiting cell proliferation, migration and the EMT. These findings demonstrate that miR-181a plays a significant role in PTC progression and could be a therapeutic target for PTC.
Collapse
Affiliation(s)
- C X Sun
- Department of Endocrinology, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - B J Liu
- Operation Room, Rizhao Hospital of TCM, Rizhao, 276800, Shandong, China
| | - Y Su
- Operation Room, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, 266033, Shandong, China
| | - G W Shi
- Health Management Center, Zhangqiu District People's Hospital, Jinan, 250200, Shandong, China
| | - Y Wang
- Health Management Center, Zhangqiu District People's Hospital, Jinan, 250200, Shandong, China
| | - J F Chi
- Department of Endocrinology, Jinan Central Hospital, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, China.
| |
Collapse
|
39
|
Jia N, Song Z, Chen B, Cheng J, Zhou W. A Novel Circular RNA circCSPP1 Promotes Liver Cancer Progression by Sponging miR-1182. Onco Targets Ther 2021; 14:2829-2838. [PMID: 33935503 PMCID: PMC8079351 DOI: 10.2147/ott.s292320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Aberrant circular RNA (circRNA) expression has been extensively discovered for its involvement in both the initiation and progression of various cancers. Through screening circRNA profile, we identified a novel circRNA has_circ_0001806, which is termed as circCSPP1 in liver cancer. In the present study, we aim to investigate the role of circCSPP1 in the progression of liver cancer. METHODS Fluorescence in situ hybridization (FISH) was used to detect the location of circCSPP1. Function studies including MTT, colony formation assay, transwell assay and flow cytometry were carried out to detect the malignant behaviour of circCSPP1 on liver cancer cells. Luciferase assay and RNA pull down were used to detect the interaction between miR-1182 and circCSPP1 as well as RAB15. Quantitative realtime (qPCR) and Western blot were performed to evaluate the RNA and protein expression, respectively. RESULTS CircCSPP1 knockdown inhibited the proliferation, migration and invasion while promoted apoptosis of liver cancer cells. Mechanically, we predicted and verified the target miR of circCSPP1 which is miR-1182. miR-1182 was capable of reversing the effect of circCSPP1 on liver cancer cells. Moreover, miR-1182 was found to also target RAB15 to participate in the regulation of cell phenotype. DISCUSSION Taken together, circCSPP1 promoted progression of liver cancer cells via sponging miR-1182 which may serve as a novel prognostic and therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Nan Jia
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Zhe Song
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Baosheng Chen
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Jinsheng Cheng
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Wenyong Zhou
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| |
Collapse
|
40
|
Su T, Zhang P, Zhao F, Zhang S. Exosomal MicroRNAs Mediating Crosstalk Between Cancer Cells With Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in the Tumor Microenvironment. Front Oncol 2021; 11:631703. [PMID: 33869017 PMCID: PMC8049566 DOI: 10.3389/fonc.2021.631703] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles containing diverse bioactive molecules. They play essential roles in mediating bidirectional interplay between cancer and stromal cells. Specific elements are selected into different types of exosomes via various mechanisms, including microRNAs (miRNAs), a subset of non-coding RNA that could epigenetically reprogram cells and modulate their activities. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) are two major types of stromal cells inhibiting immune response and facilitating tumor progression. Notably, accumulated studies provided critical evidence regarding the significance of exosomal miRNA–mediated intercellular crosstalk between cancer cells with TAMs and CAFs for tumor progression. This review aimed to summarize the current knowledge of cell–cell interactions between stromal and cancer cells conveyed by exosome-derived miRNAs. The findings might help find effective therapeutic targets of cancer.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panpan Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Zhang
- Shanghai Key Laboratory of Gynecology Oncology, Department of Gynecology and Obstetrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
42
|
Wallace L, Aikhionbare K, Banerjee S, Peagler K, Pitts M, Yao X, Aikhionbare F. Differential Expression Profiles of Mitogenome Associated MicroRNAs Among Colorectal Adenomatous Polyps. CANCER RESEARCH JOURNAL 2021; 9:23-33. [PMID: 33628862 PMCID: PMC7899164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal tumors are mostly of epithelial origin and represent a wide spectrum of neoplasms. About 97% of colorectal cancer originating from benign lesions of adenomatous polyps are adenocarcinomas. Reactive oxygen species (ROS) generating from mitochondrial DNA (mtDNA) mutations and microRNAs (miRNAs) are associated with oncogene and tumor suppressor genes regulation which are known to parallel the tissue abnormalities involved with tumorigenesis such as colorectal adenoma to adenocarcinoma. However, the differential expression patterns of mitochondrial associated microRNAs (referred as MitomiRs) among colorectal adenomatous polyps progression is yet to be determined. Thus, the aim of this study was to determine the differential expressions profiles of MitomiRs (miR-24, miR-181, miR-210, miR-21 and miR378) in patients with colorectal adenomatous polyps tissues in correlation with clinicopathological tumor architectures of tubular, tubulovillous, villous adenomas and adenocarcinomas. Isolation of mitochondria RNA from colorectal adenomatous polyps, adenocarcinomas, and normal adjacent tissue samples was performed and assessed for mitochondrial associated miRNAs expression differences using quantitative reverse transcription PCR. Data from this study demonstrates that mitochondria genome expression of mitomiRNAs; miR-24, miR-181, miR-210, miR-21 and miR-378 in colorectal tissue samples varies among the adenomatous polyps. Expression of mitomiRNAs 24, 181, 210 and 378 progressively increased from the precancerous of adenomatous polyps to adenocarcinoma. In addition, miR-210 and miR-181 expression increased 3 folds in villous adenomas and greater than 3 folds increased in miR378 in adenocarcinoma (p < 0.005) when compared to tubular adenoma. Meanwhile, miR-21 increased progressively in adenoma tissues but decreased almost 2.5 folds in adenocarcinomas when compared to villous adenoma tissues (p < 0.001). These results suggest mitomiRs may regulate important mitochondrial functional pathways leading to a more favorable environment for transformation or progression of colorectal adenomatous polyps into adenocarcinomas.
Collapse
Affiliation(s)
- LaShanale Wallace
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Karen Aikhionbare
- College of Science and Mathematics, Augusta University,
Augusta, Georgia, USA
| | - Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Katie Peagler
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Mareena Pitts
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Felix Aikhionbare
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| |
Collapse
|
43
|
Shaik S, Martin E, Hayes D, Gimble J, Devireddy R. microRNA Sequencing of CD34+ Sorted Adipose Stem Cells Undergoing Endotheliogenesis. Stem Cells Dev 2021; 30:265-288. [PMID: 33397204 PMCID: PMC7994430 DOI: 10.1089/scd.2020.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
While several microRNAs (miRNAs) that regulate the endotheliogenesis and further promote angiogenesis have been identified in various cancers, the identification of miRNAs that can drive the differentiation of adipose derived stromal/stem cells (ASCs) into the endothelial lineage has been largely unexplored. In this study, CD34+ ASCs sorted using magnetic bead separation were induced to differentiate along the endothelial pathway. miRNA sequencing of ASCs at day 3, 9, and 14 of endothelial differentiation was performed on Ion Proton sequencing system. The data obtained by this high-throughput method were aligned to the human genome HG38, and the differentially expressed miRNAs during endothelial differentiation at various time points (day 3, 9, and 14) were identified. The gene targets of the identified miRNAs were obtained through miRWalk database. The network-pathway analysis of miRNAs and their targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatic tools to determine the potential candidate miRNAs that promote endothelial differentiation. Based on these analyses, six upregulated miRNAs (miR-181a-5p, miR-330-5p, miR-335-3p, miR-15b-5p, miR-99a-5p, and miR-199a-5p) and six downregulated miRNAs (miR-145-5p, miR-155-5p, miR-193a-3p, miR-125a-5p, miR-221-5p, and miR-222-3p) were chosen for further studies. In vitro evaluation of these miRNAs to induce endothelial differentiation when transfected into CD34+ sorted ASCs was studied using Von Willebrand Factor (VWF) staining and quantitative real time-polymerase chain reaction (qRT-PCR). Our results suggest that miRNAs: 335-5p, 330-5p, 181a-5p and anti-miRNAs: 125a-5p, 145-5p can likely induce endothelial differentiation in CD34+ sorted ASCs. Further studies are clearly required to elucidate the specific mechanisms on how miRNAs or anti-miRNAs identified through bioinformatics approach can induce the endotheliogenesis in ASCs.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jeffrey Gimble
- La Cell, LLC and Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
44
|
Belur Nagaraj A, Knarr M, Sekhar S, Connor RS, Joseph P, Kovalenko O, Fleming A, Surti A, Nurmemmedov E, Beltrame L, Marchini S, Kahn M, DiFeo A. The miR-181a-SFRP4 Axis Regulates Wnt Activation to Drive Stemness and Platinum Resistance in Ovarian Cancer. Cancer Res 2021; 81:2044-2055. [PMID: 33574092 DOI: 10.1158/0008-5472.can-20-2041] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Wnt signaling is a major driver of stemness and chemoresistance in ovarian cancer, yet the genetic drivers that stimulate its expression remain largely unknown. Unlike other cancers, mutations in the Wnt pathway are not reported in high-grade serous ovarian cancer (HGSOC). Hence, a key challenge that must be addressed to develop effective targeted therapies is to identify nonmutational drivers of Wnt activation. Using an miRNA sensor-based approach, we have identified miR-181a as a novel driver of Wnt/β-catenin signaling. miR-181ahigh primary HGSOC cells exhibited increased Wnt/β-catenin signaling, which was associated with increased stem-cell frequency and platinum resistance. Consistent with these findings, inhibition of β-catenin decreased stem-like properties in miR-181ahigh cell populations and downregulated miR-181a. The Wnt inhibitor SFRP4 was identified as a novel target of miR-181a. Overall, our results demonstrate that miR-181a is a nonmutational activator of Wnt signaling that drives stemness and chemoresistance in HGSOC, suggesting that the miR-181a-SFRP4 axis can be evaluated as a novel biomarker for β-catenin-targeted therapy in this disease. SIGNIFICANCE: These results demonstrate that miR-181a is an activator of Wnt signaling that drives stemness and chemoresistance in HGSOC and may be targeted therapeutically in recurrent disease.
Collapse
Affiliation(s)
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sreeja Sekhar
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan.,The Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan
| | - R Shae Connor
- University of Tennessee, Erlanger Health System, Chattanooga, Tennessee
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Olga Kovalenko
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Alexis Fleming
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Arshia Surti
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute at Providence St. John's Health, Santa Monica, California
| | - Luca Beltrame
- Istituto di Ricerche Farmacologiche "Mario Negri," IRCCS, Milano, Italy
| | - Sergio Marchini
- Istituto di Ricerche Farmacologiche "Mario Negri," IRCCS, Milano, Italy
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Analisa DiFeo
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan. .,The Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan.,Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Gao Q, Huang Q, Li F, Luo F. LncRNA MCTP1-AS1 Regulates EMT Process in Endometrial Cancer by Targeting the miR-650/SMAD7 Axis. Onco Targets Ther 2021; 14:751-761. [PMID: 33568915 PMCID: PMC7868288 DOI: 10.2147/ott.s240010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play critical roles in the pathogenesis of several diseases, especially some kinds of cancer. This study aimed to investigate the expression of MTCP1-AS1 and its effects on endometrial cancer (EC). Methods MTCP1-AS1 expression level was determined in human EC tissues and cell lines by qRT-PCR. The role of MTCP1-AS1 on EC cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) was detected by CCK8, wound-healing assay, transwell assay and Western blot, respectively. Moreover, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were performed to verify the targeting relationship between miR-650, MCTP1-AS1 and SMAD7 in EC cells. Results Our data showed that MCTP1-AS1 expression was downregulated in EC tissues and cell lines. Overexpression of MCTP1-AS1 inhibited cell proliferation, migration, invasion and EMT process of EC cells. Moreover, MCTP1-AS1 was proved to be the target of miR-650 and reversely correlated with its expression. In addition, MCTP1-AS1 reversed the effect of miR-650 on the EC cells, which might be associated with the role of SMAD7. Moreover, Western blot showed siRNA-SMAD7 transfection could rescue the repressed TGF-β/SMAD pathway induced by MCTP1-AS1 in EC cells. Conclusion Taken together, these data suggested that lncRNA MCTP1-AS1 inhibited cell proliferation, migration, invasion and EMT process of EC cells via targeting the miR-650/SMAD7 axis and it has the potential to be explored as a therapeutic target for the treatment of EC in the future.
Collapse
Affiliation(s)
- Qin Gao
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Qin Huang
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Fangbing Li
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Fang Luo
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| |
Collapse
|
46
|
Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ, Xue W. Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics 2021; 11:878-892. [PMID: 33391510 PMCID: PMC7738844 DOI: 10.7150/thno.49186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose: To identify extracellular vesicle (EV)-delivered microRNAs in the patient's serum as indicators for bone-metastatic prostate cancer. Methods: First, the profiling change of serum EV-delivered miRNAs in patients with either benign prostatic hyperplasia (BPH), non-bone metastatic prostate cancer or bone-metastatic prostate cancer was detected by microRNA deep sequencing assay and microRNA-chip array assay, respectively. Second, the candidates were further confirmed using TaqMan microRNA assay in two independent validation cohorts of total 176 patients with either BPH, non-bone metastatic prostate cancer or bone metastatic prostate cancer to seek the most valuable microRNA(s). Results: Through microRNA deep sequencing and microRNA-chip array, we found 4 prospective EV-delivered miRNAs including miR-181a-5p with significantly upregulated expression in bone metastatic groups than in non-bone metastatic prostate cancer groups (p < 0.05). In the validation cohorts, logistic regression analysis was performed to evaluate the diagnostic association of candidates with bone metastasis, which indicated that miR-181a-5p was significantly associated with bone metastatic prostate cancer. Furthermore, accuracy estimate of each candidate for the diagnosis of bone metastatic prostate cancer was quantified using the area under the receiver-operating characteristic curve (AUC), which identified miR-181a-5p as the best biomarker with the AUCs of 85.6% for diagnosis of prostate cancer and 73.8% for diagnosis of bone metastatic prostate cancer. Conclusion: EV-delivered miR-181a-5p from patient's serum is a promising diagnostic biomarker for bone metastatic prostate cancer.
Collapse
|
47
|
Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Loverix L, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. Int J Cancer 2020; 147:3560-3573. [PMID: 32621752 DOI: 10.1002/ijc.33182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Magkou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Alexander Reinthaller
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Kleita Michaelidou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ignace Vergote
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ioana Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
49
|
Pitto L, Gorini F, Bianchi F, Guzzolino E. New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217787. [PMID: 33114343 PMCID: PMC7662297 DOI: 10.3390/ijerph17217787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, the presence in the environment of chemical compounds with thyroid-disrupting effects is progressively increased. This phenomenon has risen concern for human health as the preservation of thyroid system homeostasis is essential for fetal development and for maintaining psychological and physiological wellbeing. An increasing number of studies explored the role of different classes of toxicants in the occurrence and severity of thyroid diseases, but large epidemiological studies are limited and only a few animal or in vitro studies have attempted to identify the mechanisms of chemical action. Recently, epigenetic changes such as alteration of methylation status or modification of non-coding RNAs have been suggested as correlated to possible deleterious effects leading to different thyroid disorders in susceptible individuals. This review aims to analyze the epigenetic alterations putatively induced by chemical exposures and involved in the onset of frequent thyroid diseases such as thyroid cancer, autoimmune thyroiditis and disruption of fetal thyroid homeostasis.
Collapse
Affiliation(s)
- Letizia Pitto
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Correspondence: ; Tel.: + 39-050-3153090
| | - Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
50
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|