1
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
2
|
Devine SE. Emerging Opportunities to Study Mobile Element Insertions and Their Source Elements in an Expanding Universe of Sequenced Human Genomes. Genes (Basel) 2023; 14:1923. [PMID: 37895272 PMCID: PMC10606232 DOI: 10.3390/genes14101923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Three mobile element classes, namely Alu, LINE-1 (L1), and SVA elements, remain actively mobile in human genomes and continue to produce new mobile element insertions (MEIs). Historically, MEIs have been discovered and studied using several methods, including: (1) Southern blots, (2) PCR (including PCR display), and (3) the detection of MEI copies from young subfamilies. We are now entering a new phase of MEI discovery where these methods are being replaced by whole genome sequencing and bioinformatics analysis to discover novel MEIs. We expect that the universe of sequenced human genomes will continue to expand rapidly over the next several years, both with short-read and long-read technologies. These resources will provide unprecedented opportunities to discover MEIs and study their impact on human traits and diseases. They also will allow the MEI community to discover and study the source elements that produce these new MEIs, which will facilitate our ability to study source element regulation in various tissue contexts and disease states. This, in turn, will allow us to better understand MEI mutagenesis in humans and the impact of this mutagenesis on human biology.
Collapse
Affiliation(s)
- Scott E Devine
- Institute for Genome Sciences, Department of Medicine, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
4
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
5
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
6
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
7
|
Balachandran P, Walawalkar IA, Flores JI, Dayton JN, Audano PA, Beck CR. Transposable element-mediated rearrangements are prevalent in human genomes. Nat Commun 2022; 13:7115. [PMID: 36402840 PMCID: PMC9675761 DOI: 10.1038/s41467-022-34810-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Transposable elements constitute about half of human genomes, and their role in generating human variation through retrotransposition is broadly studied and appreciated. Structural variants mediated by transposons, which we call transposable element-mediated rearrangements (TEMRs), are less well studied, and the mechanisms leading to their formation as well as their broader impact on human diversity are poorly understood. Here, we identify 493 unique TEMRs across the genomes of three individuals. While homology directed repair is the dominant driver of TEMRs, our sequence-resolved TEMR resource allows us to identify complex inversion breakpoints, triplications or other high copy number polymorphisms, and additional complexities. TEMRs are enriched in genic loci and can create potentially important risk alleles such as a deletion in TRIM65, a known cancer biomarker and therapeutic target. These findings expand our understanding of this important class of structural variation, the mechanisms responsible for their formation, and establish them as an important driver of human diversity.
Collapse
Affiliation(s)
| | | | - Jacob I Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jacob N Dayton
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
Ward JR, Khan A, Torres S, Crawford B, Nock S, Frisbie T, Moran J, Longworth M. Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate to repress LINE-1. Nucleic Acids Res 2022; 50:10680-10694. [PMID: 36169232 PMCID: PMC9561375 DOI: 10.1093/nar/gkac802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.
Collapse
Affiliation(s)
- Jacqueline R Ward
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Afshin Khan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bert Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Trenton Frisbie
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Xie Z, Liu C, Lu Y, Sun C, Liu Y, Yu M, Shu J, Meng L, Deng J, Zhang W, Wang Z, Lv H, Yuan Y. Exonization of a deep intronic long interspersed nuclear element in Becker muscular dystrophy. Front Genet 2022; 13:979732. [PMID: 36092865 PMCID: PMC9453646 DOI: 10.3389/fgene.2022.979732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
The precise identification of pathogenic DMD variants is sometimes rather difficult, mainly due to complex structural variants (SVs) and deep intronic splice-altering variants. We performed genomic long-read whole DMD gene sequencing in a boy with asymptomatic hyper-creatine kinase-emia who remained genetically undiagnosed after standard genetic testing, dystrophin protein and DMD mRNA studies, and genomic short-read whole DMD gene sequencing. We successfully identified a novel pathogenic SV in DMD intron 1 via long-read sequencing. The deep intronic SV consists of a long interspersed nuclear element-1 (LINE-1) insertion/non-tandem duplication rearrangement causing partial exonization of the LINE-1, establishing a genetic diagnosis of Becker muscular dystrophy. Our study expands the genetic spectrum of dystrophinopathies and highlights the significant role of disease-causing LINE-1 insertions in monogenic diseases.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanyu Lu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengyue Sun
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Yilin Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Junlong Shu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Yun Yuan, ; He Lv,
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Yun Yuan, ; He Lv,
| |
Collapse
|
10
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
11
|
Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ. No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 2021; 36:109530. [PMID: 34380018 PMCID: PMC8316065 DOI: 10.1016/j.celrep.2021.109530] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.
Collapse
Affiliation(s)
- Nathan Smits
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gabriela O Bodea
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Stow EC, Kaul T, deHaro DL, Dem MR, Beletsky AG, Morales ME, Du Q, LaRosa AJ, Yang H, Smither E, Baddoo M, Ungerleider N, Deininger P, Belancio VP. Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 2021; 49:5813-5831. [PMID: 34023901 PMCID: PMC8191783 DOI: 10.1093/nar/gkab369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Madeleine R Dem
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Anna G Beletsky
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Alexis J LaRosa
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| |
Collapse
|
13
|
Abstract
I have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr. Harvey Itano at the National Institutes of Health. Later, the collaborative spirit at Johns Hopkins and the University of Pennsylvania were important to my career. Here, I describe the thrill of scientific discovery in two diverse areas of human genetics: DNA haplotypes and their role in solving the molecular basis of beta thalassemia and the role of retrotransposons (jumping genes) in human biology. I hope that this article may inspire others who love human genetics as much as I do.
Collapse
Affiliation(s)
- Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
14
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
15
|
Xie Z, Sun C, Zhang S, Liu Y, Yu M, Zheng Y, Meng L, Acharya A, Cornejo-Sanchez DM, Wang G, Zhang W, Schrauwen I, Leal SM, Wang Z, Yuan Y. Long-read whole-genome sequencing for the genetic diagnosis of dystrophinopathies. Ann Clin Transl Neurol 2020; 7:2041-2046. [PMID: 32951359 PMCID: PMC7545597 DOI: 10.1002/acn3.51201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The precise genetic diagnosis of dystrophinopathies can be challenging, largely due to rare deep intronic variants and more complex structural variants (SVs). We report on the genetic characterization of a dystrophinopathy patient. He remained without a genetic diagnosis after routine genetic testing, dystrophin protein and mRNA analysis, and short‐ and long‐read whole DMD gene sequencing. We finally identified a novel complex SV in DMD via long‐read whole‐genome sequencing. The variant consists of a large‐scale (~1Mb) inversion/deletion‐insertion rearrangement mediated by LINE‐1s. Our study shows that long‐read whole‐genome sequencing can serve as a clinical diagnostic tool for genetically unsolved dystrophinopathies.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Chengyue Sun
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | | | - Yilin Liu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Anushree Acharya
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Diana M Cornejo-Sanchez
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Gao Wang
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
16
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
17
|
Zhou W, Emery SB, Flasch DA, Wang Y, Kwan KY, Kidd JM, Moran JV, Mills RE. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 2020; 48:1146-1163. [PMID: 31853540 PMCID: PMC7026601 DOI: 10.1093/nar/gkz1173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Long Interspersed Element-1 (LINE-1) retrotransposition contributes to inter- and intra-individual genetic variation and occasionally can lead to human genetic disorders. Various strategies have been developed to identify human-specific LINE-1 (L1Hs) insertions from short-read whole genome sequencing (WGS) data; however, they have limitations in detecting insertions in complex repetitive genomic regions. Here, we developed a computational tool (PALMER) and used it to identify 203 non-reference L1Hs insertions in the NA12878 benchmark genome. Using PacBio long-read sequencing data, we identified L1Hs insertions that were absent in previous short-read studies (90/203). Approximately 81% (73/90) of the L1Hs insertions reside within endogenous LINE-1 sequences in the reference assembly and the analysis of unique breakpoint junction sequences revealed 63% (57/90) of these L1Hs insertions could be genotyped in 1000 Genomes Project sequences. Moreover, we observed that amplification biases encountered in single-cell WGS experiments led to a wide variation in L1Hs insertion detection rates between four individual NA12878 cells; under-amplification limited detection to 32% (65/203) of insertions, whereas over-amplification increased false positive calls. In sum, these data indicate that L1Hs insertions are often missed using standard short-read sequencing approaches and long-read sequencing approaches can significantly improve the detection of L1Hs insertions present in individual genomes.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PA, Weischenfeldt J, Puiggròs M, Chong Z, Chen K, Lee EA, Wala JA, Raine KM, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Beroukhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Van Loo P, Kazazian HH, Burns KH, Campbell PJ, Tubio JMC. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020; 52:306-319. [PMID: 32024998 PMCID: PMC7058536 DOI: 10.1038/s41588-019-0562-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Martin
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva G Alvarez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge Zamora
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Martin Santamarina
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Javier Temes
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harald Detering
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, Vigo, Spain
| | - Yilong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dueso-Barroso
- Faculty of Science and Technology, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Alicia L Bruzos
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefan C Dentro
- The Francis Crick Institute, London, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | - Miguel G Blanco
- DNA Repair and Genome Integrity, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gianmarco Contino
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Daniel Ardeljan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Marta Tojo
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Nicola D Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sonia Zumalave
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paul A Edwards
- University of Cambridge, Cambridge, UK
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Finsen Laboratory and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics and Informatics Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA
| | - Ken Chen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremiah A Wala
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keiran M Raine
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Adam Butler
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Steven E Schumacher
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Francesco Maura
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolo Bolli
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - David C Wedge
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Torrents
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain.
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
19
|
Alekseeva LA, Sen'kova AV, Zenkova MA, Mironova NL. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:50-61. [PMID: 32146418 PMCID: PMC7058713 DOI: 10.1016/j.omtn.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Tumor-associated cell-free DNAs (cfDNAs) are found to play some important roles at different stages of tumor progression; they are involved in the transformation of normal cells and contribute to tumor migration and invasion. DNase I is considered a promising cancer cure, due to its ability to degrade cfDNAs. Previous studies using murine tumor models have proved the high anti-metastatic potential of DNase I. Later circulating cfDNAs, especially tandem repeats associated with short-interspersed nuclear elements (SINEs) and long-interspersed nuclear elements (LINEs), have been found to be the enzyme's main molecular targets. Here, using Lewis lung carcinoma, melanoma B16, and lymphosarcoma RLS40 murine tumor models, we reveal that tumor progression is accompanied by an increase in the level of SINE and LINEs in the pool of circulating cfDNAs. Treatment with DNase I decreased in the number and area of metastases by factor 3-10, and the size of the primary tumor node by factor 1.5-2, which correlated with 5- to 10-fold decreasing SINEs and LINEs. We demonstrated that SINEs and LINEs from cfDNA of tumor-bearing mice are able to penetrate human cells. The results show that SINEs and LINEs could be important players in metastasis, and this allows them to be considered as attractive new targets for anticancer therapy.
Collapse
Affiliation(s)
- Ludmila A Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
20
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Parry HA, Kavazis AN, Gladden LB, Schwartz TS, Baker BA, Toedebusch RG, Childs TE, Booth FW, Roberts MD. Five months of voluntary wheel running downregulates skeletal muscle LINE-1 gene expression in rats. Am J Physiol Cell Physiol 2019; 317:C1313-C1323. [PMID: 31618076 DOI: 10.1152/ajpcell.00301.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats (n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly (P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.
Collapse
Affiliation(s)
| | | | | | | | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | | | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Brent A Baker
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| |
Collapse
|
21
|
Cajuso T, Sulo P, Tanskanen T, Katainen R, Taira A, Hänninen UA, Kondelin J, Forsström L, Välimäki N, Aavikko M, Kaasinen E, Ristimäki A, Koskensalo S, Lepistö A, Renkonen-Sinisalo L, Seppälä T, Kuopio T, Böhm J, Mecklin JP, Kilpivaara O, Pitkänen E, Palin K, Aaltonen LA. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 2019; 10:4022. [PMID: 31492840 PMCID: PMC6731219 DOI: 10.1038/s41467-019-11770-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retrotransposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initiating events. Insertions are positively associated with the CpG island methylator phenotype and the genomic fraction of allelic imbalance. Clinically, high number of insertions is independently associated with poor disease-specific survival. Retrotransposons are usually dormant in healthy tissue, but become activated during malignancy. Here, in colorectal cancer, Cajuso et al. show that retrotransposon activity associates with clinical features of the disease.
Collapse
Affiliation(s)
- Tatiana Cajuso
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Päivi Sulo
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Tomas Tanskanen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Ulrika A Hänninen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Johanna Kondelin
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Linda Forsström
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Mervi Aavikko
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Eevi Kaasinen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, (Haartmaninkatu 3), FI-00290, Helsinki, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital, University of Helsinki, (Haartmaninkatu 4), FI-00290, Helsinki, Finland
| | - Teijo Kuopio
- Biological and Environmental Science, University of Jyväskylä, PO Box 35, (Seminaarinkatu 15), FI-40014, Jyväskylä, Finland.,Department of Pathology, Central Finland Health Care District, (Keskussairaalantie 19), FI-40620 Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, (Keskussairaalantie 19), FI-40620 Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, (Keskussairaalantie 19), FI-40620, Jyväskylä, Finland.,Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, (Seminaarinkatu 15), FI-40014, Jyväskylä, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Esa Pitkänen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Faculty of Medicine University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.
| |
Collapse
|
22
|
Kawamura Y, Sanchez Calle A, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles mediate the horizontal transfer of an active LINE-1 retrotransposon. J Extracell Vesicles 2019; 8:1643214. [PMID: 31448067 PMCID: PMC6691892 DOI: 10.1080/20013078.2019.1643214] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons replicate through a copy-and-paste mechanism using an RNA intermediate. However, little is known about the physical transmission of retrotransposon RNA between cells. To examine the horizontal transfer of an active human L1 retrotransposon mediated by extracellular vesicles (EVs), human cancer cells were transfected with an expression construct containing a retrotransposition-competent human L1 tagged with a reporter gene. Using this model, active retrotransposition events were detected by screening for the expression of the reporter gene inserted into the host genome by retrotransposition. EVs including exosomes and microvesicles were isolated from cells by differential centrifugation. The enrichment of L1-derived reporter RNA transcripts were detected in EVs isolated from cells expressing active L1 retrotransposition. The delivery of reporter RNA was confirmed in recipient cells, and reporter genes were detected in the genome of recipient cells. Additionally, employing qRT-PCR, we found that host-encoded factors are activated in response to increased exposure to L1-derived RNA transcripts in recipient cells. Our results suggest that the horizontal transfer of retrotransposons can occur through the incorporation of RNA intermediates delivered via EVs and may have important implications for the intercellular regulation of gene expression and gene function.
Collapse
Affiliation(s)
- Yumi Kawamura
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Anna Sanchez Calle
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Taka-Aki Sato
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Sanchez-Luque FJ, Kempen MJHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, García-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Macia A, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD, Faulkner GJ. LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 2019; 75:590-604.e12. [PMID: 31230816 DOI: 10.1016/j.molcel.2019.05.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain.
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dulce B Vargas-Landin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marta García-Cañadas
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Martin Muñoz-Lopez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Laura Sanchez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Mischa Lundberg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara R Heras
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jose L Garcia-Perez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
25
|
Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Mol Cell Biol 2019; 39:MCB.00499-18. [PMID: 30692270 PMCID: PMC6425141 DOI: 10.1128/mcb.00499-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023] Open
Abstract
The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.
Collapse
|
26
|
Latent infection with Kaposi's sarcoma-associated herpesvirus enhances retrotransposition of long interspersed element-1. Oncogene 2019; 38:4340-4351. [PMID: 30770900 DOI: 10.1038/s41388-019-0726-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), a gamma-2 herpesvirus, is the causative agent of KS, primary effusion lymphoma (PEL), and a plasma cell variant of multicentric Castleman's disease. Although KSHV latency is detected in KS-related tumors, oncogenic pathways activated by KSHV latent infection are not fully understood. Here, we found that retrotransposition of long interspersed element-1 (L1), a retrotransposon in the human genome, was enhanced in PEL cells. Among the KSHV latent genes, viral FLICE-inhibitory protein (vFLIP) enhanced L1 retrotransposition in an NF-κB-dependent manner. Intracellular cell adhesion molecule-1 (ICAM-1), an NF-κB target, regulated the vFLIP-mediated enhancement of L1 retrotransposition. Furthermore, ICAM-1 downregulated the expression of Moloney leukemia virus 10 (MOV10), an L1 restriction factor. Knockdown of ICAM-1 or overexpression of MOV10 relieved the vFLIP-mediated enhancement of L1 retrotransposition. Collectively, during KSHV latency, vFLIP upregulates ICAM-1 in an NF-κB-dependent manner, which, in turn, downregulates MOV10 expression and thereby enhances L1 retrotransposition. Because active L1 retrotransposition can lead to genomic instability, which is commonly found in KS and PEL, activation of L1 retrotransposition during KSHV latency may accelerate oncogenic processes through enhancing genomic instability. Our results suggest that L1 retrotransposition may be a novel target for impeding tumor development in KSHV-infected patients.
Collapse
|
27
|
Inhibition of LINE-1 Retrotransposition by Capsaicin. Int J Mol Sci 2018; 19:ijms19103243. [PMID: 30347711 PMCID: PMC6214084 DOI: 10.3390/ijms19103243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE-1 or L1) is a non-long terminal repeat (LTR) retrotransposon that constitutes approximately 17% of the human genome. Since approximately 100 copies are still competent for retrotransposition to other genomic loci, dysregulated retrotransposition of L1 is considered to be a major risk factor of endogenous mutagenesis in humans. Thus, it is important to find drugs to regulate this process. Although various chemicals are reportedly capable of affecting L1 retrotransposition, it is poorly understood whether phytochemicals modulate L1 retrotransposition. Here, we screened a library of compounds that were derived from phytochemicals for reverse transcriptase (RT) inhibition with an in vitro RT assay. We identified capsaicin as a novel RT inhibitor that also suppressed L1 retrotransposition. The inhibitory effect of capsaicin on L1 retrotransposition was mediated neither through its receptor, nor through its modulation of the L1 promoter and/or antisense promoter activity, excluding the possibility that capsaicin indirectly affected L1 retrotransposition. Collectively, capsaicin suppressed L1 retrotransposition most likely by inhibiting the RT activity of L1 ORF2p, which is the L1-encoded RT responsible for L1 retrotransposition. Given that L1-mediated mutagenesis can cause tumorigenesis, our findings suggest the potential of capsaicin for suppressing cancer development.
Collapse
|
28
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
29
|
Schauer SN, Carreira PE, Shukla R, Gerhardt DJ, Gerdes P, Sanchez-Luque FJ, Nicoli P, Kindlova M, Ghisletti S, Santos AD, Rapoud D, Samuel D, Faivre J, Ewing AD, Richardson SR, Faulkner GJ. L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis. Genome Res 2018; 28:639-653. [PMID: 29643204 PMCID: PMC5932605 DOI: 10.1101/gr.226993.117] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.
Collapse
Affiliation(s)
- Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ruchi Shukla
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, 20146 Milan, Italy
| | - Michaela Kindlova
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif 94800, France
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
30
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
31
|
Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 2017; 13:e1007051. [PMID: 29028794 PMCID: PMC5656329 DOI: 10.1371/journal.pgen.1007051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.
Collapse
|
32
|
Gonçalves A, Oliveira J, Coelho T, Taipa R, Melo-Pires M, Sousa M, Santos R. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene. Genes (Basel) 2017; 8:genes8100253. [PMID: 28972564 PMCID: PMC5664103 DOI: 10.3390/genes8100253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD.
Collapse
Affiliation(s)
- Ana Gonçalves
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, 4050-106 Porto, Portugal.
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Jorge Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, 4050-106 Porto, Portugal.
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Teresa Coelho
- Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, 4099-001 Porto, Portugal.
| | - Ricardo Taipa
- Unidade de Neuropatologia, Centro Hospitalar do Porto, 4099-001 Porto, Portugal.
| | - Manuel Melo-Pires
- Unidade de Neuropatologia, Centro Hospitalar do Porto, 4099-001 Porto, Portugal.
| | - Mário Sousa
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
- Departamento de Microscopia, Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
- Centro de Genética da Reprodução Prof. Alberto Barros, 4050-313 Porto, Portugal.
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, 4050-106 Porto, Portugal.
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
33
|
Kazazian HH. Fifty years in human genetics--a career retrospective. FASEB J 2017; 31:3712-3718. [PMID: 28860307 DOI: 10.1096/fj.201700502rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Haig H Kazazian
- Institute for Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
Affiliation(s)
- Kathleen H Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
35
|
Transposable elements in cancer. NATURE REVIEWS. CANCER 2017. [PMID: 28642606 DOI: 10.1038/nrc.2017.35+[doi]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
|
36
|
Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesuadian JS, Kempen MJHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH, Ewing AD, Faulkner GJ. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 2017; 27:1395-1405. [PMID: 28483779 PMCID: PMC5538555 DOI: 10.1101/gr.219022.116] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.
Collapse
Affiliation(s)
- Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Gabriela-Oana Bodea
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - J Samuel Jesuadian
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Jose L Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Haig H Kazazian
- Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,School of Biomedical Sciences.,Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
37
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
38
|
Ariumi Y. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition. Front Chem 2016; 4:28. [PMID: 27446907 PMCID: PMC4924340 DOI: 10.3389/fchem.2016.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research and International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
39
|
Next-generation sequencing-based detection of germline L1-mediated transductions. BMC Genomics 2016; 17:342. [PMID: 27161561 PMCID: PMC4862182 DOI: 10.1186/s12864-016-2670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background While active LINE-1 (L1) elements possess the ability to mobilize flanking sequences to different genomic loci through a process termed transduction influencing genomic content and structure, an approach for detecting polymorphic germline non-reference transductions in massively-parallel sequencing data has been lacking. Results Here we present the computational approach TIGER (Transduction Inference in GERmline genomes), enabling the discovery of non-reference L1-mediated transductions by combining L1 discovery with detection of unique insertion sequences and detailed characterization of insertion sites. We employed TIGER to characterize polymorphic transductions in fifteen genomes from non-human primate species (chimpanzee, orangutan and rhesus macaque), as well as in a human genome. We achieved high accuracy as confirmed by PCR and two single molecule DNA sequencing techniques, and uncovered differences in relative rates of transduction between primate species. Conclusions By enabling detection of polymorphic transductions, TIGER makes this form of relevant structural variation amenable for population and personal genome analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2670-x) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
41
|
Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, Corbin A, Nigumann P, Cristofari G. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 2016; 5. [PMID: 27016617 PMCID: PMC4866827 DOI: 10.7554/elife.13926] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/25/2016] [Indexed: 12/26/2022] Open
Abstract
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI:http://dx.doi.org/10.7554/eLife.13926.001 Retrotransposons, also known as jumping genes, have invaded the genomes of most living organisms. These fragments of DNA have the ability to move or copy themselves from one location of a chromosome to another. Depending on where they insert themselves, retrotransposons can modify the sequence of nearby genes, which can alter or even abolish their activity. Although these genetic modifications have contributed significantly to the evolution of different species, retrotransposons can also have detrimental effects; for example, by causing new cases of genetic diseases. Adult human cells have a number of mechanisms that work to keep the activity of retrotransposons at a very low level. However, in many types of cancers retrotransposons escape these defense mechanisms and ‘jump’ actively. This is thought to contribute to the development and spread of cancerous tumors. To understand how jumping genes are mobilized, a fundamental question must be answered: is the high jumping gene activity observed in some cell types a result of activating many copies of the retrotransposons, or only a few of them? This question has been difficult to address because there are more than one hundred copies of retrotransposons that could potentially move in humans, many of which have not even been referenced in the human genome map. Furthermore, each copy is almost identical to another one, making it difficult to discriminate between them. Philippe et al. have now developed an approach that can map where individual retrotransposons are located in the genome of normal and cancerous cells and measure how active these jumping genes are. This revealed that only a very restricted number of them are active in any given cell type. Moreover, different subsets of jumping genes are active in different cell types, and their locations in the genome often do not overlap. Thus, whether jumping genes are activated depends on the cell type and their position in the genome. These results are in contrast to the prevalent view that retrotransposons are activated in a more widespread manner across the genome, at least in cancerous cells. Overall, Philippe et al.’s findings pave the way towards characterizing the chromosome regions in which retrotransposons are frequently activated and understanding how they contribute to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.13926.002
Collapse
Affiliation(s)
- Claude Philippe
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dulce B Vargas-Landin
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure, Paris, France
| | - Aurélien J Doucet
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dominic van Essen
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Jorge Vera-Otarola
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Monika Kuciak
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Pilvi Nigumann
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Gaël Cristofari
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
42
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
43
|
A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell 2015; 60:728-741. [PMID: 26585388 DOI: 10.1016/j.molcel.2015.10.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
L1 retrotransposons express proteins (ORF1p and ORF2p) that preferentially mobilize their encoding RNA in cis, but they also can mobilize Alu RNA and, more rarely, cellular mRNAs in trans. Although these RNAs differ in sequence, each ends in a 3' polyadenosine (poly(A)) tract. Here, we replace the L1 polyadenylation signal with sequences derived from a non-polyadenylated long non-coding RNA (MALAT1), which can form a stabilizing triple helix at the 3' end of an RNA. L1/MALAT RNAs accumulate in cells, lack poly(A) tails, and are translated; however, they cannot retrotranspose in cis. Remarkably, the addition of a 16 or 40 base poly(A) tract downstream of the L1/MALAT triple helix restores retrotransposition in cis. The presence of a poly(A) tract also allows ORF2p to bind and mobilize RNAs in trans. Thus, a 3' poly(A) tract is critical for the retrotransposition of sequences that comprise approximately one billion base pairs of human DNA.
Collapse
|
44
|
Paterson AL, Weaver JMJ, Eldridge MD, Tavaré S, Fitzgerald RC, Edwards PAW. Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis. BMC Genomics 2015; 16:473. [PMID: 26159513 PMCID: PMC4498532 DOI: 10.1186/s12864-015-1685-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mobile elements are active in the human genome, both in the germline and cancers, where they can mutate driver genes. RESULTS While analysing whole genome paired-end sequencing of oesophageal adenocarcinomas to find genomic rearrangements, we identified three ways in which new mobile element insertions appear in the data, resembling translocation or insertion junctions: inserts where unique sequence has been transduced by an L1 (Long interspersed element 1) mobile element; novel inserts that are confidently, but often incorrectly, mapped by alignment software to L1s or polyA tracts in the reference sequence; and a combination of these two ways, where different sequences within one insert are mapped to different loci. We identified nine unique sequences that were transduced by neighbouring L1s, both L1s in the reference genome and L1s not present in the reference. Many of the resulting inserts were small fragments that include little or no recognisable mobile element sequence. We found 6 loci in the reference genome to which sequence reads from inserts were frequently mapped, probably erroneously, by alignment software: these were either L1 sequence or particularly long polyA runs. Inserts identified from such apparent rearrangement junctions averaged 16 inserts/tumour, range 0-153 insertions in 43 tumours. However, many inserts would not be detected by mapping the sequences to the reference genome, because they do not include sufficient mappable sequence. To estimate total somatic inserts we searched for polyA sequences that were not present in the matched normal or other normals from the same tumour batch, and were not associated with known polymorphisms. Samples of these candidate inserts were verified by sequencing across them or manual inspection of surrounding reads: at least 85 % were somatic and resembled L1-mediated events, most including L1Hs sequence. Approximately 100 such inserts were detected per tumour on average (range zero to approximately 700). CONCLUSIONS Somatic mobile elements insertions are abundant in these tumours, with over 75 % of cases having a number of novel inserts detected. The inserts create a variety of problems for the interpretation of paired-end sequencing data.
Collapse
Affiliation(s)
- Anna L Paterson
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
- Department of Pathology, Addenbrookes Hospital, Cambridge, UK.
| | - Jamie M J Weaver
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Paul A W Edwards
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
| |
Collapse
|
45
|
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 2015; 11:e1005121. [PMID: 25951186 PMCID: PMC4423928 DOI: 10.1371/journal.pgen.1005121] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. L1s comprise ~17% of human DNA and it is estimated that an average human genome has ~80–100 active L1s. L1 moves throughout the genome via a “copy-and-paste” mechanism known as retrotransposition. L1 retrotransposition is known to cause mutations; thus, it stands to reason that the host cell has evolved mechanisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemical and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP initially may have evolved to combat endogenous retrotransposons and subsequently was co-opted as a viral restriction factor.
Collapse
Affiliation(s)
- John B. Moldovan
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| | - John V. Moran
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| |
Collapse
|
46
|
piRNA involvement in genome stability and human cancer. J Hematol Oncol 2015; 8:38. [PMID: 25895683 PMCID: PMC4412036 DOI: 10.1186/s13045-015-0133-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a large family of small, single-stranded, non-coding RNAs present throughout the animal kingdom. They form complexes with several members of the PIWI clade of Argonaute proteins and carry out regulatory functions. Their best established biological role is the inhibition of transposon mobilization, which they enforce both at the transcriptional level, through regulation of heterochromatin formation, and by promoting transcript degradation. In this capacity, piRNAs and PIWI proteins are at the heart of the germline cells’ efforts to preserve genome integrity. Additional regulatory roles of piRNAs and PIWI proteins in gene expression are becoming increasingly apparent. PIWI proteins and piRNAs are often detected in human cancers deriving from germline cells as well as somatic tissues. Their detection in cancer correlates with poorer clinical outcomes, suggesting that they play a functional role in the biology of cancer. Nonetheless, the currently available information, while highly suggestive, is still not sufficient to entirely discriminate between a ‘passenger’ role for the ectopic expression of piRNAs and PIWI proteins in cancer from a ‘driver’ role in the pathogenesis of these diseases. In this article, we review some of the key available evidence for the role of piRNAs and PIWI in human cancer and discuss ways in which our understanding of their functions may be improved.
Collapse
|
47
|
Helman E, Lawrence MS, Stewart C, Sougnez C, Getz G, Meyerson M. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res 2014; 24:1053-63. [PMID: 24823667 PMCID: PMC4079962 DOI: 10.1101/gr.163659.113] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
Abstract
Retrotransposons constitute a major source of genetic variation, and somatic retrotransposon insertions have been reported in cancer. Here, we applied TranspoSeq, a computational framework that identifies retrotransposon insertions from sequencing data, to whole genomes from 200 tumor/normal pairs across 11 tumor types as part of The Cancer Genome Atlas (TCGA) Pan-Cancer Project. In addition to novel germline polymorphisms, we find 810 somatic retrotransposon insertions primarily in lung squamous, head and neck, colorectal, and endometrial carcinomas. Many somatic retrotransposon insertions occur in known cancer genes. We find that high somatic retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer.
Collapse
Affiliation(s)
- Elena Helman
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Masachusetts 02142, USA
| | | | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, Masachusetts 02142, USA
| | - Carrie Sougnez
- Broad Institute of MIT and Harvard, Cambridge, Masachusetts 02142, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Masachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Matthew Meyerson
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Masachusetts 02142, USA
- Center for Cancer Genome Discovery and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Terasaki N, Goodier JL, Cheung LE, Wang YJ, Kajikawa M, Kazazian HH, Okada N. In vitro screening for compounds that enhance human L1 mobilization. PLoS One 2013; 8:e74629. [PMID: 24040300 PMCID: PMC3770661 DOI: 10.1371/journal.pone.0074629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022] Open
Abstract
The Long interspersed element 1 (LINE1 or L1) retrotransposon constitutes 17% of the human genome. There are currently 80-100 human L1 elements that are thought to be active in any diploid human genome. These elements can mobilize into new locations of the genome, resulting in changes in genomic information. Active L1s are thus considered to be a type of endogenous mutagen, and L1 insertions can cause disease. Certain stresses, such as gamma radiation, oxidative stress, and treatment with some agents, can induce transcription and/or mobilization of retrotransposons. In this study, we used a reporter gene assay in HepG2 cells to screen compounds for the potential to enhance the transcription of human L1. We assessed 95 compounds including genotoxic agents, substances that induce cellular stress, and commercially available drugs. Treatment with 15 compounds increased the L1 promoter activity by >1.5-fold (p<0.05) after 6 or 24 hours of treatment. In particular, genotoxic agents (benzo[a]pyrene, camptothecin, cytochalasin D, merbarone, and vinblastine), PPARα agonists (bezafibrate and fenofibrate), and non-steroidal anti-inflammatory drugs (diflunisal, flufenamic acid, salicylamide, and sulindac) induced L1 promoter activity. To examine their effects on L1 retrotransposition, we developed a high-throughput real-time retrotransposition assay using a novel secreted Gaussia luciferase reporter cassette. Three compounds (etomoxir, WY-14643, and salicylamide) produced a significant enhancement in L1 retrotransposition. This is the first study to report the effects of a wide variety of compounds on L1 transcription and retrotransposition. These results suggest that certain chemical- and drug-induced stresses might have the potential to cause genomic mutations by inducing L1 mobilization. Thus, the risk of induced L1 transcription and retrotransposition should be considered during drug safety evaluation and environmental risk assessments of chemicals.
Collapse
Affiliation(s)
- Natsuko Terasaki
- Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ling E. Cheung
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yue J. Wang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Masaki Kajikawa
- Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Haig H. Kazazian
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Norihiro Okada
- Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Macfarlane CM, Collier P, Rahbari R, Beck CR, Wagstaff JF, Igoe S, Moran JV, Badge RM. Transduction-specific ATLAS reveals a cohort of highly active L1 retrotransposons in human populations. Hum Mutat 2013; 34:974-85. [PMID: 23553801 DOI: 10.1002/humu.22327] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposons are the only autonomously active transposable elements in the human genome. The average human genome contains ∼80-100 active L1s, but only a subset of these L1s are highly active or 'hot'. Human L1s are closely related in sequence, making it difficult to decipher progenitor/offspring relationships using traditional phylogenetic methods. However, L1 mRNAs can sometimes bypass their own polyadenylation signal and instead utilize fortuitous polyadenylation signals in 3' flanking genomic DNA. Retrotransposition of the resultant mRNAs then results in lineage specific sequence "tags" (i.e., 3' transductions) that mark the descendants of active L1 progenitors. Here, we developed a method (Transduction-Specific Amplification Typing of L1 Active Subfamilies or TS-ATLAS) that exploits L1 3' transductions to identify active L1 lineages in a genome-wide context. TS-ATLAS enabled the characterization of a putative active progenitor of one L1 lineage that includes the disease causing L1 insertion L1RP , and the identification of new retrotransposition events within two other "hot" L1 lineages. Intriguingly, the analysis of the newly discovered transduction lineage members suggests that L1 polyadenylation, even within a lineage, is highly stochastic. Thus, TS-ATLAS provides a new tool to explore the dynamics of L1 lineage evolution and retrotransposon biology.
Collapse
|
50
|
Retroelements in human disease. Gene 2013; 518:231-41. [PMID: 23333607 DOI: 10.1016/j.gene.2013.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022]
Abstract
Retroelements are an abundant class of noncoding DNAs present in about half of the human genome. Among them, L1, Alu and SVA are currently active. They "jump" by retrotransposition, shuffle genomic regions by 5' and 3' transduction, and promote or inhibit gene transcription by providing alternative promoters or generating antisense and/or regulatory noncoding RNAs. Recent data also suggest that retroelement insertions into exons and introns of genes induce different types of genetic disease, including cancer. Retroelements interfere with the expression of genes by inducing alternative splicing via exon skipping and exonization using cryptic splice sites, and by providing polyadenylation signals. Here we summarize our current understanding of the molecular mechanisms of retroelement-induced mutagenesis which causes fifty different types of human disease. We categorize these mutagenic effects according to eleven different mechanisms and show that most of them may be explained either by traditional exon definition or transcriptional interference, a previously unrecognized molecular mechanism. In summary, this review gives an overview of retroelement insertions in genes that cause significant changes in their transcription and cotranscriptional splicing and show a remarkable level of complexity.
Collapse
|