1
|
Lin ERH, Veenker FN, Manza P, Yonga MV, Abey S, Wang GJ, Volkow ND. The Limbic System in Co-Occurring Substance Use and Anxiety Disorders: A Narrative Review Using the RDoC Framework. Brain Sci 2024; 14:1285. [PMID: 39766484 PMCID: PMC11674329 DOI: 10.3390/brainsci14121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Substance use disorders (SUDs) and anxiety disorders (ADs) are highly comorbid, a co-occurrence linked to worse clinical outcomes than either condition alone. While the neurobiological mechanisms involved in SUDs and anxiety disorders are intensively studied separately, the mechanisms underlying their comorbidity remain an emerging area of interest. This narrative review explores the neurobiological processes underlying this comorbidity, using the Research Domain Criteria (RDoC) framework to map disruptions in positive valence, negative valence, and cognitive systems across the three stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Anxiety and substance use play a reciprocal role at each stage of addiction, marked by significant psychosocial impairment and dysregulation in the brain. A more thorough understanding of the neural underpinnings involved in comorbid SUDs and anxiety disorders will contribute to more tailored and effective therapeutic interventions and assessments.
Collapse
Affiliation(s)
| | | | | | | | | | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (E.R.-H.L.); (F.N.V.); (P.M.); (M.-V.Y.); (S.A.); (N.D.V.)
| | | |
Collapse
|
2
|
Pan G, Zhao B, Zhang M, Guo Y, Yan Y, Dai D, Zhang X, Yang H, Ni J, Huang Z, Li X, Duan S. Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State. Neurosci Bull 2024; 40:1602-1620. [PMID: 38980648 PMCID: PMC11607243 DOI: 10.1007/s12264-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAcCRH) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAcCRH neurons during wakefulness and rewarding stimulation. Activation of NAcCRH neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAcCRH neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAcCRH neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAcCRH-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.
Collapse
Affiliation(s)
- Gaojie Pan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bing Zhao
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Mutian Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Yanan Guo
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Yuhua Yan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dan Dai
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Zhang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Yang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinfei Ni
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Shumin Duan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
3
|
Zhao W, Yu YM, Wang XY, Xia SH, Ma Y, Tang H, Tao M, Li H, Xu Z, Yang JX, Wu P, Zhang H, Ding HL, Cao JL. CRF regulates pain sensation by enhancement of corticoaccumbal excitatory synaptic transmission. Mol Psychiatry 2024; 29:2170-2184. [PMID: 38454083 DOI: 10.1038/s41380-024-02488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huimei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingshu Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - He Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
4
|
Gozen O, Aypar B, Ozturk Bintepe M, Tuzcu F, Balkan B, Koylu EO, Kanit L, Keser A. Chronic Nicotine Consumption and Withdrawal Regulate Melanocortin Receptor, CRF, and CRF Receptor mRNA Levels in the Rat Brain. Brain Sci 2024; 14:63. [PMID: 38248278 PMCID: PMC10813117 DOI: 10.3390/brainsci14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Alterations in the various neuropeptide systems in the mesocorticolimbic circuitry have been implicated in negative effects associated with drug withdrawal. The corticotropin-releasing factor (CRF) and α-melanocyte-stimulating hormone are two peptides that may be involved. This study investigated the regulatory effects of chronic nicotine exposure and withdrawal on the mRNA levels of melanocortin receptors (MC3R, MC4R), CRF, and CRF receptors (CRFR1 and CRFR2) expressed in the mesocorticolimbic system. Rats were given drinking water with nicotine or without nicotine (control group) for 12 weeks, after which they continued receiving nicotine (chronic exposure) or were withdrawn from nicotine for 24 or 48 h. The animals were decapitated following behavioral testing for withdrawal signs. Quantitative real-time PCR analysis demonstrated that nicotine exposure (with or without withdrawal) increased levels of CRF and CRFR1 mRNA in the amygdala, CRF mRNA in the medial prefrontal cortex, and CRFR1 mRNA in the septum. Nicotine withdrawal also enhanced MC3R and MC4R mRNA levels in different brain regions, while chronic nicotine exposure was associated with increased MC4R mRNA levels in the nucleus accumbens. These results suggest that chronic nicotine exposure and withdrawal regulate CRF and melanocortin signaling in the mesocorticolimbic system, possibly contributing to negative affective state and nicotine addiction.
Collapse
Affiliation(s)
- Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Buket Aypar
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Meliha Ozturk Bintepe
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Fulya Tuzcu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Ersin O. Koylu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Aysegul Keser
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
5
|
Reynaga DD, Cano M, Belluzzi JD, Leslie FM. Chronic exposure to cigarette smoke extract increases nicotine withdrawal symptoms in adult and adolescent male rats. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11324. [PMID: 38389812 PMCID: PMC10880785 DOI: 10.3389/adar.2023.11324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/29/2023] [Indexed: 02/24/2024]
Abstract
The aim of the current study was to determine whether non-nicotine constituents of cigarette smoke contribute to nicotine dependence in adolescent and adult male Sprague Dawley rats. For 10 days animals were given three times daily intravenous injections of nicotine (1.5 mg/kg/day) or cigarette smoke extract (CSE) containing an equivalent dose of nicotine. Both spontaneous and mecamylamine-precipitated withdrawal were then measured. Chronic treatment with CSE induced significantly greater somatic and affective withdrawal signs than nicotine in both adolescents and adults. Mecamylamine-precipitated somatic signs were similar at both ages. In contrast, animals spontaneously withdrawn from chronic drug treatment exhibited significant age differences: whereas adolescents chronically treated with nicotine did not show somatic signs, those treated with CSE showed similar physical withdrawal to those of adults. Mecamylamine did not precipitate anxiety-like behavior at either age. However, both adolescents and adults showed significant anxiety in a light-dark box test 18 h after spontaneous withdrawal. Anxiety-like behavior was still evident in an open field test 1 month after termination of drug treatment, with adolescents showing significantly greater affective symptoms than adults. Our findings indicate that non-nicotine constituents of cigarette smoke do contribute to dependence in both adolescents and adults and emphasize the importance of including smoke constituents with nicotine in animal models of tobacco dependence.
Collapse
Affiliation(s)
- Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Marshall SA, Robinson SL, Ebert SE, Companion MA, Thiele TE. Chemogenetic inhibition of corticotropin-releasing factor neurons in the central amygdala alters binge-like ethanol consumption in male mice. Behav Neurosci 2022; 136:541-550. [PMID: 35771510 PMCID: PMC9671851 DOI: 10.1037/bne0000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption. The present study extends this research by assessing the effects of silencing CRF-producing neurons in CeA on binge-like ethanol drinking stemming from "Drinking in the Dark" (DID) procedures. CRF-ires-Cre mice underwent surgery to infuse Gi/o-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus or a control virus into either the CeA or basolateral amygdala (BLA). Gi/o-DREADD-induced CRF-neuronal inhibition in the CeA resulted in a 33% decrease in binge-like ethanol consumption. However, no effect on ethanol consumption was seen after DREADD manipulation in the BLA. Moreover, CeA CRF-neuronal inhibition had no effect on sucrose consumption. The effects of silencing CRF neurons in the CeA on ethanol consumption are not secondary to changes in motor function or anxiety-like behaviors as assessed in the open-field test (OFT). Finally, the DREADD construct's functional ability to inhibit CRF-neuronal activity was demonstrated by reduced ethanol-induced c-Fos following DREADD activation. Together, these data suggest that the CRF neurons in the CeA play an important role in binge ethanol consumption and that inhibition of the CRF-signaling pathway remains a viable target for manipulating binge-like ethanol consumption. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- S. Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Biological & Biomedical Sciences Department, The University of North Carolina, Chapel Hill, NC 27599
| | - Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Suzahn E. Ebert
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
8
|
Tschetter KE, Callahan LB, Flynn SA, Rahman S, Beresford TP, Ronan PJ. Early life stress and susceptibility to addiction in adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:277-302. [PMID: 34801172 DOI: 10.1016/bs.irn.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Early life stress (ELS) is a risk factor for developing a host of psychiatric disorders. Adolescence is a particularly vulnerable period for the onset of these disorders and substance use disorders (SUDs). Here we discuss ELS and its effects in adolescence, especially SUDs, and their correlates with molecular changes to signaling systems in reward and stress neurocircuits. Using a maternal separation (MS) model of neonatal ELS, we studied a range of behaviors that comprise a "drug-seeking" phenotype. We then investigated potential mechanisms underlying the development of this phenotype. Corticotropin releasing factor (CRF) and serotonin (5-HT) are widely believed to be involved in "stress-induced" disorders, including addiction. Here, we show that ELS leads to the development of a drug-seeking phenotype indicative of increased susceptibility to addiction and concomitant sex-dependent upregulation of CRF and 5-HT system components throughout extended brain reward/stress neurocircuits.
Collapse
Affiliation(s)
- K E Tschetter
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - L B Callahan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S A Flynn
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - T P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - P J Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States.
| |
Collapse
|
9
|
Chellian R, Behnood-Rod A, Wilson R, Bruijnzeel AW. Rewarding Effects of Nicotine Self-administration Increase Over Time in Male and Female Rats. Nicotine Tob Res 2021; 23:2117-2126. [PMID: 33987656 DOI: 10.1093/ntr/ntab097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Smoking and the use of other nicotine-containing products is rewarding in humans. The self-administration of nicotine is also rewarding in male rats. However, it is unknown if there are sex differences in the reward-enhancing effects of nicotine self-administration and if the rewarding effects of nicotine change over time. METHODS Rats were prepared with catheters and intracranial self-stimulation (ICSS) electrodes to investigate the effects of nicotine and saline self-administration on reward function. A decrease in thresholds in the ICSS procedure reflects an enhancement of reward function. The ICSS parameters were determined before and after the self-administration sessions from days 1 to 10, and after the self-administration sessions from days 11 to 15. RESULTS During the first 10 days, there was no sex difference in nicotine intake, but during the last 5 days, the females took more nicotine than the males. During the first 10 days, nicotine self-administration did not lower the brain reward thresholds but decreased the response latencies. During the last 5 days, nicotine lowered the reward thresholds and decreased the response latencies. An analysis with the 5-day averages (days 1-5, 6-10, and 11-15) showed that the reward enhancing and stimulatory effects of nicotine increased over time. There were no sex differences in the reward-enhancing and stimulatory effects of nicotine. The nicotinic receptor antagonist mecamylamine diminished the reward-enhancing and stimulatory effects of nicotine. CONCLUSION These findings indicate that the rewarding effects of nicotine self-administration increase over time, and there are no sex differences in the reward-enhancing effects of nicotine self-administration in rats. IMPLICATIONS This study investigated the rewarding effect of nicotine and saline self-administration in male and female rats. The self-administration of nicotine, but not saline, enhanced brain reward function and had stimulatory effects. The rewarding effects of nicotine increased over time in the males and the females. Despite that the females had a higher level of nicotine intake than the males, the reward-enhancing effects of nicotine self-administration were the same. These findings suggest that in new tobacco and e-cigarette users, nicotine's rewarding effects might increase quickly, and a higher level of nicotine use in females might not translate into greater rewarding effects.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
11
|
Flook EA, Luchsinger JR, Silveri MM, Winder DG, Benningfield MM, Blackford JU. Anxiety during abstinence from alcohol: A systematic review of rodent and human evidence for the anterior insula's role in the abstinence network. Addict Biol 2021; 26:e12861. [PMID: 31991531 PMCID: PMC7384950 DOI: 10.1111/adb.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing disease that impacts almost a third of Americans. Despite effective treatments for attaining sobriety, the majority of patients relapse within a year, making relapse a substantial barrier to long-term treatment success. A major factor contributing to relapse is heightened negative affect that results from the combination of abstinence-related increases in stress-reactivity and decreases in reward sensitivity. Substantial research has contributed to the understanding of reward-related changes in AUD. However, less is known about anxiety during abstinence, a critical component of understanding addiction as anxiety during abstinence can trigger relapse. Most of what we know about abstinence-related negative affect comes from rodent studies which have identified key brain regions responsible for abstinence-related behaviors. This abstinence network is composed of brain regions that make up the extended amygdala: the nucleus accumbens (NAcc), the central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BNST). More recently, emerging evidence from rodent and human studies suggests a fourth brain region, the anterior insula, might be part of the abstinence network. Here, we review current rodent and human literature on the extended amygdala's role in alcohol abstinence and anxiety, present evidence for the anterior insula's role in the abstinence network, and provide future directions for research to further elucidate the neural underpinnings of abstinence in humans. A better understanding of the abstinence network is critical toward understanding and possibly preventing relapse in AUD.
Collapse
Affiliation(s)
- Elizabeth A. Flook
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R. Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisa M. Silveri
- Neurodevelopmental Laboratory on Addictions and Mental
Health, Brain Imaging Center, McLean Hospital
- Department of Psychiatry, Harvard Medical School
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M. Benningfield
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Research Health Scientist, Research and Development,
Department of Veterans Affairs Medical Center, Nashville, TN
| |
Collapse
|
12
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
13
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
14
|
Geste JR, Levin B, Wilks I, Pompilus M, Zhang X, Esser KA, Febo M, O'Dell L, Bruijnzeel AW. Relationship Between Nicotine Intake and Reward Function in Rats With Intermittent Short Versus Long Access to Nicotine. Nicotine Tob Res 2020; 22:213-223. [PMID: 30958557 DOI: 10.1093/ntr/ntz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Tobacco use improves mood states and smoking cessation leads to anhedonia, which contributes to relapse. Animal studies have shown that noncontingent nicotine administration enhances brain reward function and leads to dependence. However, little is known about the effects of nicotine self-administration on the state of the reward system. METHODS To investigate the relationship between nicotine self-administration and reward function, rats were prepared with intracranial self-stimulation electrodes and intravenous catheters. The rats were trained on the intracranial self-stimulation procedure and allowed to self-administer 0.03 mg/kg/infusion of nicotine. All rats self-administered nicotine daily for 10 days (1 hour/day) and were then switched to an intermittent short access (ShA, 1 hour/day) or long access (LgA, 23 hour/day) schedule (2 days/week, 5 weeks). RESULTS During the first 10 daily, 1-hour sessions, nicotine self-administration decreased the reward thresholds, which indicates that nicotine potentiates reward function. After switching to the intermittent LgA or ShA schedule, nicotine intake was lower in the ShA rats than the LgA rats. The LgA rats increased their nicotine intake over time and they gradually consumed a higher percentage of their nicotine during the light phase. The nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine induced a larger increase in reward thresholds (ie, anhedonia) in the LgA rats than the ShA rats. In the LgA rats, nAChR blockade with mecamylamine decreased nicotine intake for 2 hours and this was followed by a rebound increase in nicotine intake. CONCLUSIONS A brief period of nicotine self-administration enhances reward function and a high level of nicotine intake leads to dependence. IMPLICATIONS These animal studies indicate that there is a strong relationship between the level of nicotine intake and brain reward function. A high level of nicotine intake was more rewarding than a low level of nicotine intake and nicotine dependence was observed after long, but not short, access to nicotine. This powerful combination of nicotine reward and withdrawal makes it difficult to quit smoking. Blockade of nAChRs temporarily decreased nicotine intake, but this was followed by a large rebound increase in nicotine intake. Therefore, nAChR blockade might not decrease the use of combustible cigarettes or electronic cigarettes.
Collapse
Affiliation(s)
- Jean R Geste
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Brandon Levin
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| | - Laura O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Xue S, Behnood-Rod A, Wilson R, Wilks I, Tan S, Bruijnzeel AW. Rewarding Effects of Nicotine in Adolescent and Adult Male and Female Rats as Measured Using Intracranial Self-stimulation. Nicotine Tob Res 2020; 22:172-179. [PMID: 30452710 DOI: 10.1093/ntr/nty249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tobacco is highly addictive, and after the development of dependence, it is difficult to quit smoking. Therefore, it is important to understand the factors that play a role in the initiation of smoking. The rewarding effects of nicotine play a role in the initiation of smoking and the goal of the present study was to determine the rewarding effects of nicotine in adolescent and adult male and female rats. METHODS Male and female Wistar rats were prepared with intracranial self-stimulation (ICSS) electrodes between postnatal day (P) 23 and 33. They were then trained on the ICSS procedure and the effect of nicotine (0, 0.03, 0.1, 0.3 mg/kg) on the reward thresholds and response latencies was investigated during adolescence (P40-59) or adulthood (>P75). RESULTS Nicotine lowered the brain reward thresholds of the adult and adolescent male and female rats. The nicotine-induced decrease in the reward thresholds was the same in the adult male and adult female rats. However, nicotine induced a greater decrease in the reward thresholds of the adolescent female rats than the adolescent male rats. Nicotine decreased the response latencies of all groups and there was no effect of age or sex. CONCLUSIONS Nicotine enhances reward function and psychomotor performance in adolescent and adult male and female rats. Adolescent female rats are more sensitive to the acute rewarding effects of nicotine than adolescent male rats. Therefore, the rewarding effects of nicotine might play a greater role in the initiation of smoking in adolescent females than in adolescent males. IMPLICATIONS The great majority of people start smoking during adolescence. The present studies suggest that during this period female rats are more sensitive to the acute rewarding effects of low and intermediate doses of nicotine than male rats. The rewarding properties of nicotine play a role in the initiation of smoking and establishing habitual smoking. Therefore, the present findings might explain why adolescent females are at a higher risk for becoming nicotine dependent than adolescent males.
Collapse
Affiliation(s)
- Song Xue
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Sijie Tan
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Histology and Embryology, University of South China, Hengyang, Hunan, China
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
17
|
Addiction and stress: An allostatic view. Neurosci Biobehav Rev 2019; 106:245-262. [DOI: 10.1016/j.neubiorev.2018.09.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 01/24/2023]
|
18
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, Badhon S, Short A, Baram TZ, Xu X. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol 2019; 527:2474-2487. [PMID: 30861133 DOI: 10.1002/cne.24676] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) is an essential, evolutionarily-conserved stress neuropeptide. In addition to hypothalamus, CRH is expressed in brain regions including amygdala and hippocampus where it plays crucial roles in modulating the function of circuits underlying emotion and cognition. CRH+ fibers are found in nucleus accumbens (NAc), where CRH modulates reward/motivation behaviors. CRH actions in NAc may vary by the individual's stress history, suggesting roles for CRH in neuroplasticity and adaptation of the reward circuitry. However, the origin and extent of CRH+ inputs to NAc are incompletely understood. We employed viral genetic approaches to map both global and CRH+ projection sources to NAc in mice. We injected into NAc variants of a new designer adeno-associated virus that permits robust retrograde access to NAc-afferent projection neurons. Cre-dependent viruses injected into CRH-Cre mice enabled selective mapping of CRH+ afferents. We employed anterograde AAV1-directed axonal tracing to verify NAc CRH+ fiber projections and established the identity of genetic reporter-labeled cells via validated antisera against native CRH. We quantified the relative contribution of CRH+ neurons to total NAc-directed projections. Combined retrograde and anterograde tracing identified the paraventricular nucleus of the thalamus, bed nucleus of stria terminalis, basolateral amygdala, and medial prefrontal cortex as principal sources of CRH+ projections to NAc. CRH+ NAc afferents were selectively enriched in NAc-projecting brain regions involved in diverse aspects of the sensing, processing and memory of emotionally salient events. These findings suggest multiple, complex potential roles for the molecularly-defined, CRH-dependent circuit in modulation of reward and motivation behaviors.
Collapse
Affiliation(s)
- Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Yuncai Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Cameron Fateri
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Paula A Echeverry
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jennifer M Lai
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jasmine Delgado
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Shapatur Badhon
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Annabel Short
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
20
|
Changes in striatal dopamine release and locomotor activity following acute withdrawal from chronic nicotine are mediated by CRF1, but not CRF2, receptors. Brain Res 2018; 1706:41-47. [PMID: 30722977 DOI: 10.1016/j.brainres.2018.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in the alterations of the dorsal and ventral striatal dopamine release and the vertical and horizontal locomotor activity observed in rats following chronic nicotine treatment and consequent acute withdrawal. In this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) injection with nicotine or saline solution for 7 days. On the 8th day or the 9th day the rats were injected intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B or saline solution. Thirty minutes after the icv injection the changes of the horizontal and vertical locomotor activity were recorded in an in vivo conducta system. Immediately after the behavioral recordings the changes of the dorsal and ventral striatal dopamine release were determined in an in vitro superfusion system. On the 8th day, the horizontal and vertical locomotor activities and the dorsal and ventral striatal dopamine releases increased significantly in nicotine-treated rats, compared to the saline-treated ones. On the 9th day, the horizontal locomotor activity and the dorsal striatal dopamine release increased significantly, whereas the vertical locomotor activity and the ventral striatal dopamine release decreased significantly in nicotine-treated rats, compared to the saline-treated ones. All the changes observed were attenuated significantly by antalarmin, but not astressin2B. The present study demonstrates that the changes of striatal dopamine release and locomotor activity observed following chronic nicotine treatment and consequent acute withdrawal are mediated by CRF1, but not CRF2, receptor.
Collapse
|
21
|
Carboni L, Romoli B, Bate ST, Romualdi P, Zoli M. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats. Drug Alcohol Depend 2018; 189:12-20. [PMID: 29857328 DOI: 10.1016/j.drugalcdep.2018.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. METHODS Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). RESULTS Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. CONCLUSIONS This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy; Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon T Bate
- Statistical Sciences, GlaxoSmithKline, 980 Great West Rd, Brentford, Middlesex, TW8 9GS, UK
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| |
Collapse
|
22
|
Self-administration of the synthetic cathinone MDPV enhances reward function via a nicotinic receptor dependent mechanism. Neuropharmacology 2018; 137:286-296. [PMID: 29778945 DOI: 10.1016/j.neuropharm.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 01/28/2023]
Abstract
Methylenedioxypyrovalerone (MDPV) is an addictive synthetic drug with severe side effects. Previous studies have shown that MDPV has positive reinforcing properties. However, little is known about the effect of MDPV self-administration on the state of the brain reward system and the neuronal mechanisms by which MDPV mediates its effects. The goal of the present studies was to determine the effect of MDPV self-administration on reward function and the role of cholinergic neurotransmission in the reinforcing effects of MDPV. To study the effect of MDPV self-administration on the brain reward system, rats were prepared with intravenous catheters and intracranial self-stimulation electrodes (ICSS). For 10 days, the reward thresholds were assessed immediately before (23 h post prior session) and after 1 h of MDPV self-administration. The reward thresholds were decreased immediately after MDPV self-administration, which is indicative of a potentiation of brain reward function. The reward thresholds 23 h after MDPV intake gradually increased over time, which is indicative of anhedonia. Pretreatment with the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine decreased the self-administration of MDPV and completely prevented the decrease in reward thresholds. A control study with palatable chocolate pellets showed that responding for a natural reinforcer does not affect the state of the brain reward system. Furthermore, mecamylamine did not affect responding for food pellets. In conclusion, the self-administration of MDPV potentiates reward function and nAChR blockade prevents the reward enhancing effects of MDPV self-administration. Preventing the MDPV-induced increase in cholinergic neurotransmission might be a safe approach to diminish MDPV abuse.
Collapse
|
23
|
Sambo DO, Lin M, Owens A, Lebowitz JJ, Richardson B, Jagnarine DA, Shetty M, Rodriquez M, Alonge T, Ali M, Katz J, Yan L, Febo M, Henry LK, Bruijnzeel AW, Daws L, Khoshbouei H. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat Commun 2017; 8:2228. [PMID: 29263318 PMCID: PMC5738444 DOI: 10.1038/s41467-017-02087-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022] Open
Abstract
Dopamine neurotransmission is highly dysregulated by the psychostimulant methamphetamine, a substrate for the dopamine transporter (DAT). Through interactions with DAT, methamphetamine increases extracellular dopamine levels in the brain, leading to its rewarding and addictive properties. Methamphetamine also interacts with the sigma-1 receptor (σ1R), an inter-organelle signaling modulator. Using complementary strategies, we identified a novel mechanism for σ1R regulation of dopamine neurotransmission in response to methamphetamine. We found that σ1R activation prevents methamphetamine-induced, DAT-mediated increases in firing activity of dopamine neurons. In vitro and in vivo amperometric measurements revealed that σ1R activation decreases methamphetamine-stimulated dopamine efflux without affecting basal dopamine neurotransmission. Consistent with these findings, σ1R activation decreases methamphetamine-induced locomotion, motivated behavior, and enhancement of brain reward function. Notably, we revealed that the σ1R interacts with DAT at or near the plasma membrane and decreases methamphetamine-induced Ca2+ signaling, providing potential mechanisms. Broadly, these data provide evidence for σ1R regulation of dopamine neurotransmission and support the σ1R as a putative target for the treatment of methamphetamine addiction.
Collapse
Affiliation(s)
- Danielle O Sambo
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Owens
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joseph J Lebowitz
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Ben Richardson
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Darin A Jagnarine
- Department of Psychiatry, University of Florida, Gainesville, FL, 32611, USA
| | - Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Meghan Rodriquez
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Taiwo Alonge
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Mishaal Ali
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Long Yan
- Max Plank Institute for Neuroscience Jupiter, Jupiter, FL, 33458, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, 32611, USA
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | | | - Lynette Daws
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
25
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
26
|
Koob GF. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction. Psychopharmacology (Berl) 2017; 234:1315-1332. [PMID: 28050629 DOI: 10.1007/s00213-016-4484-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Abstract
RATIONALE AND OBJECTIVES Addiction is defined as a chronically relapsing disorder characterized by compulsive drug seeking that is hypothesized to derive from multiple sources of motivational dysregulation. METHODS AND RESULTS Dr. Athina Markou made seminal contributions to our understanding of the neurobiology of addiction with her studies on the dysregulation of reward function using animal models with construct validity. Repeated overstimulation of the reward systems with drugs of abuse decreases reward function, characterized by brain stimulation reward and presumbably reflecting dysphoria-like states. The construct of negative reinforcement, defined as drug taking that alleviates a negative emotional state that is created by drug abstinence, is particularly relevant as a driving force in both the withdrawal/negative affect and preoccupation/anticipation stages of the addiction cycle. CONCLUSIONS The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of key neurochemical circuits that drive incentive-salience/reward systems (dopamine, opioid peptides) in the ventral striatum and from the recruitment of brain stress systems (corticotropin-releasing factor, dynorphin) within the extended amygdala. As drug taking becomes compulsive-like, the factors that motivate behavior are hypothesized to shift to drug-seeking behavior that is driven not only by positive reinforcement but also by negative reinforcement. This shift in motivation is hypothesized to reflect the allostatic misregulation of hedonic tone such that drug taking makes the hedonic negative emotional state worse during the process of seeking temporary relief with compulsive drug taking.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, Room 2001, Suite 2000, Rockville, MD, 20852, USA.
| |
Collapse
|
27
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Qi X, Guzhva L, Yang Z, Febo M, Shan Z, Wang KKW, Bruijnzeel AW. Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats. Eur Neuropsychopharmacol 2016; 26:1378-1389. [PMID: 27461514 PMCID: PMC5067082 DOI: 10.1016/j.euroneuro.2016.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/06/2016] [Accepted: 07/02/2016] [Indexed: 01/08/2023]
Abstract
Smoking cessation leads to dysphoria and anxiety, which both increase the risk for relapse. This negative affective state is partly mediated by an increase in activity in brain stress systems. Recent studies indicate that prolonged viral vector-mediated overexpression of stress peptides diminishes stress sensitivity. Here we investigated whether the overexpression of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST) diminishes nicotine withdrawal symptoms in rats. The effect of nicotine withdrawal on brain reward function was investigated with an intracranial self-stimulation (ICSS) procedure. Anxiety-like behavior was investigated in the elevated plus maze test and a large open field. An adeno-associated virus (AAV) pseudotype 2/5 vector was used to overexpress CRF in the lateral BNST and nicotine dependence was induced using minipumps. Administration of the nicotinic receptor antagonist mecamylamine and cessation of nicotine administration led to a dysphoria-like state, which was prevented by the overexpression of CRF in the BNST. Nicotine withdrawal also increased anxiety-like behavior in the elevated plus maze test and large open field test and slightly decreased locomotor activity in the open field. The overexpression of CRF in the BNST did not prevent the increase in anxiety-like behavior or decrease in locomotor activity. The overexpression of CRF increased CRF1 and CRF2 receptor gene expression and increased the CRF2/CRF1 receptor ratio. In conclusion, the overexpression of CRF in the BNST prevents the dysphoria-like state associated with nicotine withdrawal and increases the CRF2/CRF1 receptor ratio, which may diminish the negative effects of CRF on mood.
Collapse
Affiliation(s)
- Xiaoli Qi
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Lidia Guzhva
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Zhihui Yang
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Zhiying Shan
- Department of Physiology and Functional Genomics, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Targeting the Brain Stress Systems for the Treatment of Tobacco/Nicotine Dependence: Translating Preclinical and Clinical Findings. CURRENT ADDICTION REPORTS 2016; 3:314-322. [PMID: 31275802 DOI: 10.1007/s40429-016-0115-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco use is the leading cause of preventable mortality in the United States, and Food and Drug Administration (FDA) approved medications fail to maintain long-term abstinence for the majority of smokers. One of the principal mechanisms associated with the initiation, maintenance of, and relapse to smoking is stress. Targeting the brain stress systems as a potential treatment strategy for tobacco dependence may be of therapeutic benefit. This review explores brain stress systems in tobacco use and dependence. The corticotropin-releasing factor (CRF) system, the hypothalamic-pituitary-adrenal (HPA) axis, and the noradrenergic system are discussed in relation to tobacco use. Preclinical and clinical investigations targeting these stress systems as treatment strategies for stress-induced tobacco use are also discussed. Overall, nicotine-induced activation of the CRF system, and subsequent activation of the HPA axis and noradrenergic system may be related to stress-induced nicotine-motivated behaviors. Pharmacological agents that decrease stress-induced hyperactivation of these brain stress systems may improve smoking-related outcomes.
Collapse
|
30
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
31
|
Qi X, Guzhva L, Ji Y, Bruijnzeel AW. Chronic treatment with the vasopressin 1b receptor antagonist SSR149415 prevents the dysphoria associated with nicotine withdrawal in rats. Behav Brain Res 2015; 292:259-65. [PMID: 26112757 DOI: 10.1016/j.bbr.2015.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/29/2022]
Abstract
Nicotine addiction is a chronic brain disorder that is characterized by dysphoria upon smoking cessation and relapse after brief periods of abstinence. It has been hypothesized that the negative mood state associated with nicotine withdrawal is partly mediated by a heightened activity of brain stress systems. Animal studies suggest that blockade of vasopressin 1b (V1b) receptors diminishes high levels of drug intake in dependent animals and attenuates the emotional response to stressors. The goal of the present studies was to investigate the effect of acute and chronic treatment with the V1b receptor antagonist SSR149415 on the negative mood state associated with nicotine withdrawal in rats. An intracranial self-stimulation (ICSS) procedure was used to assess mood states and nicotine dependence was induced using minipumps. The nicotinic receptor antagonist mecamylamine was used to precipitate withdrawal. Mecamylamine elevated the brain reward thresholds of the nicotine dependent rats, which reflects a negative mood state. Mecamylamine did not affect the brain reward thresholds of the saline-treated control rats. Chronic treatment with SSR149415 completely prevented the elevations in brain reward thresholds associated with nicotine withdrawal while acute treatment only partly prevented nicotine withdrawal. These data suggest that chronic treatment with V1b receptor antagonists may prevent the dysphoria associated with smoking cessation and thereby improve relapse rates.
Collapse
Affiliation(s)
- Xiaoli Qi
- Department of Psychiatry, University of Florida, Gainesville, Florida 32611, USA
| | - Lidia Guzhva
- Department of Psychiatry, University of Florida, Gainesville, Florida 32611, USA
| | - Yue Ji
- Department of Psychiatry, University of Florida, Gainesville, Florida 32611, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida 32611, USA; Department of Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
32
|
Kirshenbaum A, Green J, Fay M, Parks A, Phillips J, Stone J, Roy T. Reinforcer devaluation as a consequence of acute nicotine exposure and withdrawal. Psychopharmacology (Berl) 2015; 232:1583-94. [PMID: 25401169 PMCID: PMC4397123 DOI: 10.1007/s00213-014-3792-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/24/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Nicotine discontinuation produces behaviors in rats that are congruent with anhedonia, and these symptoms may be related to the devaluation of non-nicotine reinforcers. OBJECTIVE Four separate experiments were performed to explore the parameters surrounding nicotine-induced reinforcer devaluation. METHODS In Experiments 1 and 2, nicotine (0.1 or 0.3 mg/kg) or 0.3 mg/kg nicotine plus 1.0 mg/kg mecamylamine was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. In order to evaluate (a) reinforcer enhancement by nicotine and (b) reinforcer devaluation in the absence of nicotine, all rats experienced two PR schedule sessions per day for 10 days. Experiment 3 involved nicotine (0.3 mg/kg) and a visual stimulus in place of sucrose reinforcement. In Experiment 4, rats received nicotine (0.3 mg/kg) either before or after a single PR schedule session for 10 days. RESULTS Experiments 1 and 2 demonstrate that reinforcer devaluation is related to the occupation of nicotinic-acetylcholine receptors. Results from Experiment 3 provide some evidence that devaluation occurs with either sucrose or visual-stimulus reinforcement. Experiment 4 demonstrates that a necessary condition for reinforcer devaluation to occur is the concurrent exposure to the reinforcer and nicotine. CONCLUSIONS Reinforcer devaluation in rats emerges rapidly in a progressive, orderly fashion that coincides with accumulated exposure to nicotine. These results suggest that reinforcer devaluation may be a feature of nicotine that contributes to the abuse liability of tobacco products.
Collapse
Affiliation(s)
- Ari Kirshenbaum
- Department of Psychology, Saint Michael's College, 1 Winooski Park Avenue, Colchester, VT, 05439-0001, USA,
| | | | | | | | | | | | | |
Collapse
|
33
|
Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753:73-87. [PMID: 25583178 PMCID: PMC4380644 DOI: 10.1016/j.ejphar.2014.11.044] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA.
| |
Collapse
|
34
|
Torres OV, Pipkin JA, Ferree P, Carcoba LM, O'Dell LE. Nicotine withdrawal increases stress-associated genes in the nucleus accumbens of female rats in a hormone-dependent manner. Nicotine Tob Res 2015; 17:422-30. [PMID: 25762751 DOI: 10.1093/ntr/ntu278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Previous work led to our hypothesis that sex differences produced by nicotine withdrawal are modulated by stress and dopamine systems in the nucleus accumbens (NAcc). We investigated our hypothesis by studying intact females to determine whether the mechanisms that promote withdrawal are ovarian-hormone mediated. METHODS Female rats were ovariectomized (OVX) or received sham surgery (intact) on postnatal day (PND 45-46). On PND 60, they received sham surgery (controls) or were prepared with nicotine pumps. Fourteen days later, half of the rats had their pumps removed (nicotine withdrawal) and the other half received sham surgery (nicotine exposure). Twenty-four hours later, the rats were tested for anxiety-like behavior using the elevated plus maze and light/dark transfer procedures. The NAcc was then dissected for analysis of several genes related to stress (CRF, UCN, CRF-R1, CRF-R2, CRF-BP, and Arrb2) or receptors for dopamine (Drd1 and Drd2) and estradiol (Esr2). RESULTS During withdrawal, intact females displayed an increase in anxiety-like behavior in both tests and CRF, UCN, and Drd1 gene expression. During nicotine exposure, intact females displayed a decrease in CRF-R1, CRF-R2, Drd3, and Esr2 gene expression and an increase in CRF-BP. This pattern of results was absent in OVX females. CONCLUSIONS Nicotine withdrawal produced an increase in anxiety-like behavior and stress-associated genes in intact females that is distinct from changes produced by nicotine exposure. The latter effects were absent in OVX females, suggesting that stress produced by withdrawal is ovarian-hormone mediated. These findings have important implications towards understanding tobacco use liability among females.
Collapse
Affiliation(s)
- Oscar V Torres
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Joseph A Pipkin
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Patrick Ferree
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Luis M Carcoba
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
35
|
Qi X, Yamada H, Corrie LW, Ji Y, Bauzo RM, Alexander JC, Bruijnzeel AW. A critical role for the melanocortin 4 receptor in stress-induced relapse to nicotine seeking in rats. Addict Biol 2015; 20:324-35. [PMID: 24612112 DOI: 10.1111/adb.12129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tobacco addiction is characterized by a lack of control over smoking and relapse after periods of abstinence. Smoking cessation leads to a dysphoric state that contributes to relapse to smoking. After the acute withdrawal phase, exposure to stressors increases the risk for relapse. Blockade of melanocortin 4 (MC4 ) receptors has anxiolytic and antidepressant-like effects in animal models. The aim of these studies was to investigate the role of MC4 receptors in the dysphoria associated with nicotine withdrawal and stress-induced reinstatement of nicotine seeking. To study stress-induced reinstatement, rats self-administered nicotine for 16 days and then nicotine seeking was extinguished by substituting saline for nicotine. Nicotine seeking was reinstated by intermittent footshock stress. The intracranial self-stimulation (ICSS) procedure was used to assess the negative mood state associated with nicotine withdrawal. Elevations in the ICSS thresholds are indicative of a dysphoric state. The selective MC4 receptor antagonists HS014 and HS024 prevented stress-induced reinstatement of extinguished nicotine seeking. Drug doses that prevented stress-induced relapse did not affect responding for food pellets, which indicates that the drugs did not induce sedation or motor impairments. In the ICSS experiments, the nicotinic acetylcholine receptor antagonist mecamylamine elevated the ICSS thresholds of the nicotine-dependent rats. Pre-treatment with HS014 or HS024 did not prevent the elevations in ICSS thresholds. These studies indicate that MC4 receptors play a critical role in stress-induced reinstatement of nicotine seeking, but these receptors may not play a role in the dysphoria associated with acute nicotine withdrawal.
Collapse
Affiliation(s)
- Xiaoli Qi
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Hidetaka Yamada
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Lu W. Corrie
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Yue Ji
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Rayna M. Bauzo
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Jon C. Alexander
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Adrie W. Bruijnzeel
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| |
Collapse
|
36
|
The discriminative stimulus effects of mecamylamine in nicotine-treated and untreated rhesus monkeys. Behav Pharmacol 2015; 25:296-305. [PMID: 24978703 DOI: 10.1097/fbp.0000000000000054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The extent to which chronic nicotine treatment can alter the effects of the nicotinic acetylcholine receptor antagonist mecamylamine, and whether those effects can be attenuated by nicotine have not been clearly established in the literature. Here, the discriminative stimulus effects of mecamylamine were compared between one group of rhesus monkeys receiving a continuous infusion of nicotine base (5.6 mg/kg/day subcutaneously) and another group of monkeys not receiving nicotine treatment. Both groups responded under a fixed ratio 5 schedule of stimulus-shock termination. Stimulus control was obtained at doses of 1.78 mg/kg mecamylamine in monkeys receiving continuous nicotine and 5.6 mg/kg mecamylamine in monkeys not receiving continuous nicotine treatment. Nicotine did not attenuate the discriminative stimulus effects of mecamylamine in either group. Discontinuation of continuous nicotine produced responding on the mecamylamine lever within 24 h in some but not all monkeys. This may indicate a qualitative difference in the discriminative stimulus effects of mecamylamine between groups, perhaps reflecting antagonism of nicotine and nicotine withdrawal in monkeys receiving continuous nicotine. The failure of nicotine to reverse the effects of mecamylamine is consistent with a noncompetitive interaction at nicotinic acetylcholine receptors and indicates that mecamylamine-induced withdrawal cannot be readily modified by nicotine.
Collapse
|
37
|
Cohen A, Treweek J, Edwards S, Leão RM, Schulteis G, Koob GF, George O. Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addict Biol 2015; 20:56-68. [PMID: 23869743 DOI: 10.1111/adb.12077] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tobacco dependence is associated with the emergence of negative emotional states during withdrawal, including anxiety and nociceptive hypersensitivity. However, the current animal models of nicotine dependence have focused on the mechanisms that mediate the acute reinforcing effects of nicotine and failed to link increased anxiety and pain during abstinence with excessive nicotine self-administration. Here, we tested the hypothesis that the activation of corticotropin-releasing factor-1 (CRF1 ) receptors and emergence of the affective and motivational effects of nicotine abstinence only occur in rats with long access (>21 hours/day, LgA) and not short (1 hour/day, ShA) access to nicotine self-administration. ShA and LgA rats were tested for anxiety-like behavior, nociceptive thresholds, somatic signs of withdrawal and nicotine intake after 3 days of abstinence. The role of CRF1 receptors during abstinence was tested using systemic or intracerebral infusion of MPZP (N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo(1,5α)pyrimidin-7-amine), a CRF1 receptor antagonist, in the central nucleus of the amygdala (CeA). LgA but not ShA rats exhibited abstinence-induced increases in anxiety-like behavior and nociceptive hypersensitivity, which both predicted subsequent excessive nicotine intake and were prevented by systemic administration of MPZP. Intra-CeA MPZP infusion prevented abstinence-induced increases in nicotine intake and nociceptive hypersensitivity. These findings demonstrate that the model of short access to nicotine self-administration has limited validity for tobacco dependence, highlight the translational relevance of the model of extended-intermittent access to nicotine self-administration for tobacco dependence and demonstrate that activation of CRF1 receptors is required for the emergence of abstinence-induced anxiety-like behavior, hyperalgesia and excessive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- The Scripps Research Institute; La Jolla CA USA
| | | | | | | | - Gery Schulteis
- Research Service; VA San Diego Healthcare System; San Diego CA USA
- Department of Anesthesiology; University of California San Diego School of Medicine; La Jolla CA USA
| | | | | |
Collapse
|
38
|
FKBP5 variation is associated with the acute and chronic effects of nicotine. THE PHARMACOGENOMICS JOURNAL 2014; 15:340-6. [PMID: 25532758 DOI: 10.1038/tpj.2014.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/24/2014] [Accepted: 11/05/2014] [Indexed: 01/20/2023]
Abstract
Stress and hormones released in response to stress influence the effects of nicotine and the severity of nicotine withdrawal. Here, we systematically examine the contribution of a stress response gene, FKBP5, to the acute and chronic behavioral effects of nicotine in smokers. Subjects were European- and African-American (EA and AA) heavy smokers who participated in an intravenous (IV) nicotine administration study (total n=169). FKBP5 rs3800373 genotype was analyzed for association to several outcomes, including nicotine withdrawal and the acute subjective, heart rate (HR), blood pressure and plasma cortisol responses to IV nicotine. Nicotine withdrawal was also examined in relation to rs3800373 allele frequencies in an independent cohort of EA and AA current smokers (n=3821). For a subset of laboratory subjects FKBP5 mRNA (n=48) expression was explored for an association to the same outcomes. The rs3800373 minor allele was associated with less severe nicotine withdrawal in laboratory subjects and the independent cohort of smokers. The rs3800373 minor allele was also associated with lower subjective ratings of negative drug effects in response to IV nicotine. Low FKBP5 mRNA expression was associated lower cortisol levels, lower subjective ratings of negative drug effects and a blunted HR response to nicotine. Stress hormone regulation via FKBP5 warrants further investigation as a potential contributor to the effects of nicotine withdrawal, which occurs commonly, and has an important role in the maintenance of smoking behavior and relapse following a quit attempt.
Collapse
|
39
|
Rosenthal DG, Weitzman M, Benowitz NL. Nicotine Addiction: Mechanisms and Consequences. INTERNATIONAL JOURNAL OF MENTAL HEALTH 2014. [DOI: 10.2753/imh0020-7411400102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Neal L. Benowitz
- b Departments of Medicine, Bioengineering, and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
40
|
Grieder TE, Herman MA, Contet C, Tan LA, Vargas-Perez H, Cohen A, Chwalek M, Maal-Bared G, Freiling J, Schlosburg JE, Clarke L, Crawford E, Koebel P, Repunte-Canonigo V, Sanna PP, Tapper AR, Roberto M, Kieffer BL, Sawchenko PE, Koob GF, van der Kooy D, George O. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat Neurosci 2014; 17:1751-8. [PMID: 25402857 PMCID: PMC4241147 DOI: 10.1038/nn.3872] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA (encoding CRF) in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of Crh mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal and limited the escalation of nicotine intake. These results link the brain reward and stress systems in the same brain region to signaling of the negative motivational effects of nicotine withdrawal.
Collapse
Affiliation(s)
- Taryn E Grieder
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Laura A Tan
- The Salk Institute, La Jolla, California, USA
| | - Hector Vargas-Perez
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Michal Chwalek
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Geith Maal-Bared
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John Freiling
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Joel E Schlosburg
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Laura Clarke
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elena Crawford
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS / INSERM / Université de Strasbourg, Illkirch, France
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Brigitte L Kieffer
- 1] Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS / INSERM / Université de Strasbourg, Illkirch, France. [2] Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Derek van der Kooy
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
41
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
42
|
Varani AP, Moutinho Machado L, Balerio GN. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice. Synapse 2014; 68:508-17. [DOI: 10.1002/syn.21763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés P. Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Graciela N. Balerio
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 956 5° Piso, (C1113AAD) Buenos Aires Argentina
| |
Collapse
|
43
|
Sustained AAV-mediated overexpression of CRF in the central amygdala diminishes the depressive-like state associated with nicotine withdrawal. Transl Psychiatry 2014; 4:e385. [PMID: 24755994 PMCID: PMC4012288 DOI: 10.1038/tp.2014.25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/17/2022] Open
Abstract
Smoking cessation leads to a dysphoric state and this increases the risk for relapse. Animal studies indicate that the dysphoric state associated with nicotine withdrawal is at least partly mediated by an increase in corticotropin-releasing factor (CRF) release in the central nucleus of the amygdala (CeA). In the present study, we investigated whether a sustained overexpression of CRF in the CeA affects the dysphoric-like state associated with nicotine withdrawal. To study brain reward function, rats were prepared with intracranial self-stimulation (ICSS) electrodes in the medial forebrain bundle. An adeno-associated virus (AAV, pseudotype 2/5) was used to overexpress CRF or green fluorescent protein (GFP, control) in the CeA and minipumps were used to induce nicotine dependence. The AAV2/5-CRF vector induced a 40% increase in CRF protein and mRNA levels in the CeA. Administration of the nicotinic receptor antagonist mecamylamine (precipitated withdrawal) or nicotine pump removal (spontaneous withdrawal) led to elevations in ICSS thresholds. Elevations in ICSS thresholds are indicative of a dysphoric-like state. The overexpression of CRF did not affect baseline ICSS thresholds but diminished the elevations in ICSS thresholds associated with precipitated and spontaneous nicotine withdrawal. The real-time reverse transcriptase (RT)-PCR analysis showed that the overexpression of CRF led to a decrease in CRF1 mRNA levels and an increase in CRF2 mRNA levels in the CeA. In conclusion, the overexpression of CRF in the CeA diminishes the dysphoric-like state associated with nicotine withdrawal and this might be driven by neuroadaptive changes in CRF1 and CRF2 receptor gene expression.
Collapse
|
44
|
Varenicline and cytisine diminish the dysphoric-like state associated with spontaneous nicotine withdrawal in rats. Neuropsychopharmacology 2014; 39:455-65. [PMID: 23966067 PMCID: PMC3870769 DOI: 10.1038/npp.2013.216] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 02/04/2023]
Abstract
Tobacco addiction is characterized by a negative mood state upon smoking cessation and relapse after periods of abstinence. Clinical studies indicate that negative mood states lead to craving and relapse. The partial α4/α6/β2* nicotinic acetylcholine receptor (nAChR) agonists varenicline and cytisine are widely used as smoking cessation treatments. Varenicline has been approved in the United States for smoking cessation and cytisine is used in Eastern European countries. Despite the widespread use of these compounds, very little is known about their effects on mood states. These studies investigated the effects of varenicline, cytisine, and the cytisine-derivative 3-(pyridin-3'-yl)-cytisine (3-pyr-Cyt) on brain reward function in nicotine-naive and nicotine-withdrawing rats. The cytisine-derivative 3-pyr-Cyt is a very weak α4β2* nAChR partial agonist and like cytisine and varenicline has antidepressant-like effects in animal models. The intracranial self-stimulation (ICSS) procedure was used to investigate the effects of these compounds on brain reward function. Elevations in ICSS thresholds reflect a dysphoric state and a lowering of thresholds is indicative of a potentiation of brain reward function. It was shown that acute administration of nicotine and varenicline lowered ICSS thresholds. Acute administration of cytisine or 3-pyr-Cyt did not affect ICSS thresholds. Discontinuation of chronic, 14 days, nicotine administration led to elevations in ICSS thresholds that lasted for about 2 days. Varenicline and cytisine, but not 3-pyr-Cyt, diminished the nicotine withdrawal-induced elevations in ICSS thresholds. In conclusion, these studies indicate that varenicline and cytisine diminish the dysphoric-like state associated with nicotine withdrawal and may thereby prevent relapse to smoking in humans.
Collapse
|
45
|
Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW, George O. Addiction as a stress surfeit disorder. Neuropharmacology 2014; 76 Pt B:370-82. [PMID: 23747571 PMCID: PMC3830720 DOI: 10.1016/j.neuropharm.2013.05.024] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fox H, Sinha R. The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:217-65. [PMID: 24484979 DOI: 10.1016/b978-0-12-420118-7.00006-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathophysiology of cocaine addiction is linked to changes within neural systems and brain regions that are critical mediators of stress system sensitivity and behavioral processes associated with the regulation of adaptive goal-directed behavior. This is characterized by the upregulation of core adrenergic and corticotropin-releasing factor mechanisms that subserve negative affect and anxiety and impinge upon intracellular pathways in the prefrontal cortex underlying cognitive regulation of stress and negative emotional state. Not only are these mechanisms essential to the severity of cocaine withdrawal symptoms, and hence the trajectory of clinical outcome, but also they may be particularly pertinent to the demography of cocaine dependence. The ability of guanfacine to target overlapping stress, reward, and anxiety pathophysiology suggests that it may be a useful agent for attenuating the stress- and cue-induced craving state not only in women but also in men. This is supported by recent research findings from our own laboratory. Additionally, the ability of guanfacine to improve regulatory mechanisms that are key to exerting cognitive and emotional control over drug-seeking behavior also suggests that guanfacine may be an effective medication for reducing craving and relapse vulnerability in many drugs of abuse. As cocaine-dependent individuals are typically polydrug abusers and women may be at a greater disadvantage for compulsive drug use than men, it is plausible that medications that target catecholaminergic frontostriatal inhibitory circuits and simultaneously reduce stress system arousal may provide added benefits for attenuating cocaine dependence.
Collapse
Affiliation(s)
- Helen Fox
- Yale Stress Center, Yale University School of Medicine, New Haven Connecticut USA.
| | - Rajita Sinha
- Yale Stress Center, Yale University School of Medicine, New Haven Connecticut USA
| |
Collapse
|
47
|
Effects of oxytocin on nicotine withdrawal in rats. Pharmacol Biochem Behav 2014; 116:84-9. [DOI: 10.1016/j.pbb.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
|
48
|
Baiamonte BA, Valenza M, Roltsch EA, Whitaker AM, Baynes BB, Sabino V, Gilpin NW. Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA). Neuropharmacology 2013; 77:217-23. [PMID: 24107576 DOI: 10.1016/j.neuropharm.2013.09.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/29/2022]
Abstract
Because tobacco use has a large negative health and financial impact on society, it is critical to identify the factors that drive excessive use. These factors include the aversive withdrawal symptoms that manifest upon cessation of tobacco use, and may include increases in nociceptive processing. Corticotropin-releasing factor (CRF) signalling in the central amygdala (CeA) has been attributed an important role in: (1) central processing of pain, (2) excessive nicotine use that results in nicotine dependence, and (3) in mediating the aversive symptoms that manifest following cessation of tobacco exposure. Here, we describe three experiments in which the main hypothesis was that CRF/CRF1 receptor (CRF1R) signalling in the CeA mediates nicotine withdrawal-induced increases in nociceptive sensitivity in rats that are dependent on nicotine. In Experiment 1, nicotine-dependent rats withdrawn from chronic intermittent (14-h/day) nicotine vapor exhibited decreased hind paw withdrawal latencies in response to a painful thermal stimulus in the Hargreaves test, and this effect was attenuated by systemic administration of the CRF1R antagonist, R121919. In Experiment 2, nicotine-dependent rats withdrawn from nicotine vapor exhibited robust increases in mRNA for CRF and CRF1Rs in CeA. In Experiment 3, intra-CeA administration of R121919 reduced thermal nociception only in nicotine-dependent rats. Collectively, these results suggest that nicotine dependence increases CRF/CRF1R signalling in the CeA that mediates withdrawal-induced increases in sensitivity to a painful stimulus. Future studies will build on these findings by exploring the hypothesis that nicotine withdrawal-induced reduction in pain thresholds drive excessive nicotine use via CRF/CRF1R signalling pathways.
Collapse
Affiliation(s)
- Brandon A Baiamonte
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Marta Valenza
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Emily A Roltsch
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Annie M Whitaker
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Brittni B Baynes
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
49
|
Abstract
Drug addiction can be defined by a three-stage cycle - binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation - that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.
Collapse
Affiliation(s)
- George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry 2013; 4:41. [PMID: 23761766 PMCID: PMC3671664 DOI: 10.3389/fpsyt.2013.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022] Open
Abstract
Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|