1
|
Li Y, Mu L, Li Y, Mi Y, Hu Y, Li X, Tao D, Qin J. Golgi dispersal in cancer stem cells promotes chemoresistance of colorectal cancer via the Golgi stress response. Cell Death Dis 2024; 15:417. [PMID: 38879509 PMCID: PMC11180190 DOI: 10.1038/s41419-024-06817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024]
Abstract
Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.
Collapse
Affiliation(s)
- Yangkun Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lei Mu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanqi Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350013, Fujian, China
| | - Yibing Hu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jichao Qin
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
3
|
Li RS, Wen C, Huang CZ, Li N. Functional molecules and nano-materials for the Golgi apparatus-targeted imaging and therapy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Wei YY, Chen L, Zhang X, Du JL, Li Q, Luo J, Liu XG, Yang YZ, Yu SP, Gao YD. Orange-emissive carbon quantum dots for ligand-directed Golgi apparatus-targeting and in vivo imaging. Biomater Sci 2022; 10:4345-4355. [PMID: 35781543 DOI: 10.1039/d2bm00429a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Golgi apparatus is one of the most important organelles in cells. Targeting and monitoring the morphology and structure of Golgi apparatus are crucial and challenging. Aimed at the cysteine (Cys)...
Collapse
Affiliation(s)
- Ying Ying Wei
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jing Lei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xu Guang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong Zhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China
| | - Shi Ping Yu
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Yu Duan Gao
- Ophthalmology Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongii Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| |
Collapse
|
5
|
Li RS, Liu J, Shi H, Hu PP, Wang Y, Gao PF, Wang J, Jia M, Li H, Li YF, Mao C, Li N, Huang CZ. Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. NANO LETTERS 2021; 21:8455-8465. [PMID: 34569805 DOI: 10.1021/acs.nanolett.1c03112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Golgi apparatus is a major subcellular organelle responsible for drug resistance. Golgi apparatus-targeted nanomechanical disruption provides an attractive approach for killing cancer cells by multimodal mechanism and avoiding drug resistance. Inspired by the poisonous twisted fibrils in Alzheimer's brain tissue and enhanced rigidity of helical structure in nature, we designed transformable peptide C6RVRRF4KY that can self-assemble into nontoxic nanoparticles in aqueous medium but transformed into left-handed helical fibrils (L-HFs) after targeting and furin cleavage in the Golgi apparatus of cancer cells. The L-HFs can mechanically disrupt the Golgi apparatus membrane, resulting in inhibition of cytokine secretion, collapse of the cellular structure, and eventually death of cancer cells. Repeated stimulation of the cancers by the precursors causes no acquired drug resistance, showing that mechanical disruption of subcellular organelle is an excellent strategy for cancer therapy without drug resistance. This nanomechanical disruption concept should also be applicable to multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Jiahui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Moye Jia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 United States
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
6
|
Bozelli JC, Epand RM. Membrane Shape and the Regulation of Biological Processes. J Mol Biol 2020; 432:5124-5136. [DOI: 10.1016/j.jmb.2020.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
|
7
|
Gupta R, Malvi P, Parajuli KR, Janostiak R, Bugide S, Cai G, Zhu LJ, Green MR, Wajapeyee N. KLF7 promotes pancreatic cancer growth and metastasis by up-regulating ISG expression and maintaining Golgi complex integrity. Proc Natl Acad Sci U S A 2020; 117:12341-12351. [PMID: 32430335 PMCID: PMC7275752 DOI: 10.1073/pnas.2005156117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Currently, there is no effective therapy for PDAC, and a detailed molecular and functional evaluation of PDACs is needed to identify and develop better therapeutic strategies. Here we show that the transcription factor Krüppel-like factor 7 (KLF7) is overexpressed in PDACs, and that inhibition of KLF7 blocks PDAC tumor growth and metastasis in cell culture and in mice. KLF7 expression in PDACs can be up-regulated due to activation of a MAP kinase pathway or inactivation of the tumor suppressor p53, two alterations that occur in a large majority of PDACs. ShRNA-mediated knockdown of KLF7 inhibits the expression of IFN-stimulated genes (ISGs), which are necessary for KLF7-mediated PDAC tumor growth and metastasis. KLF7 knockdown also results in the down-regulation of Discs Large MAGUK Scaffold Protein 3 (DLG3), resulting in Golgi complex fragmentation, and reduced protein glycosylation, leading to reduced secretion of cancer-promoting growth factors, such as chemokines. Genetic or pharmacologic activation of Golgi complex fragmentation blocks PDAC growth and metastasis similar to KLF7 inhibition. Our results demonstrate a therapeutically amenable, KLF7-driven pathway that promotes PDAC growth and metastasis by activating ISGs and maintaining Golgi complex integrity.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Keshab Raj Parajuli
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233;
| |
Collapse
|
8
|
The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants (Basel) 2020; 9:antiox9040280. [PMID: 32224940 PMCID: PMC7222192 DOI: 10.3390/antiox9040280] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an oxidizing agent that induces cellular damage at inappropriate concentrations and gives rise to an arrest during cell cycle progression, causing cell death. Recent evidence indicates that H2O2 also acts as a promoter for cell cycle progression by oxidizing specific thiol proteins. The intracellular concentration of H2O2 is regulated tightly, enabling its use as a cellular signaling molecule while minimizing its potential to cause cellular damage. Peroxiredoxins (Prxs) have peroxidase activity toward H2O2, organic hydroperoxides, and peroxynitrite for protecting cells from oxidative stress. They are suggested to work as signaling mediators, allowing the local accumulation of H2O2 by inactivating their peroxidase activity uniquely compared with other antioxidant proteins such as catalase and glutathione peroxidase. Given that Prxs are highly sensitive to oxidation by H2O2, they act as sensors and transducers of H2O2 signaling via transferring their oxidation state to effector proteins. The concentrations of intracellular H2O2 increase as the cell cycle progresses from G1 to mitosis. Here, we summarize the roles of Prxs with regard to the regulation of cell cycle-dependent kinase activity and anaphase-promoting complex/cyclosome in terms of changes in H2O2 levels. Protection of the cell from unwanted progression of the cell cycle is suggested to be a role of Prx. We discuss the possible roles of Prxs to control H2O2 levels.
Collapse
|
9
|
Mendes LFS, Batista MRB, Judge PJ, Watts A, Redfield C, Costa-Filho AJ. Conformational flexibility of GRASPs and their constituent PDZ subdomains reveals structural basis of their promiscuous interactome. FEBS J 2020; 287:3255-3272. [PMID: 31920006 DOI: 10.1111/febs.15206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual β3 α1 β4 β5 α2 β6 β1 β2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable β2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry, University of Oxford, UK
| | - Mariana R B Batista
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, UK
| | | | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Rodríguez-Cruz F, Torres-Cruz FM, Monroy-Ramírez HC, Escobar-Herrera J, Basurto-Islas G, Avila J, García-Sierra F. Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. J Alzheimers Dis 2019; 65:1185-1207. [PMID: 30124450 DOI: 10.3233/jad-180547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.
Collapse
Affiliation(s)
- Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
11
|
Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol 2019; 7:131. [PMID: 31380369 PMCID: PMC6660245 DOI: 10.3389/fcell.2019.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Golgi stacking proteins, GRASP55 and GRASP65, are best known for their roles in Golgi structure formation. These peripheral Golgi proteins form trans-oligomers that hold the flat cisternal membranes into stacks. Depletion of both GRASP proteins in cells disrupts the Golgi stack structure, increases protein trafficking, but impairs accurate glycosylation, and sorting. Golgi unstacking by GRASPs depletion also reduces cell adhesion and migration in an integrin-dependent manner. In addition to Golgi structure formation and regulation of cellular activities, GRASPs, in particular GRASP55, have recently drawn attention in their roles in autophagy, and unconventional secretion. In autophagy, GRASP55 senses the energy level by O-GlcNAcylation, which regulates GRASP55 translocation from the Golgi to the autophagosome-lysosome interface, where it interacts with LC3 and LAMP2 to facilitate autophagosome-lysosome fusion. This newly discovered function of GRASP55 in autophagy may help explain its role in the stress-induced, autophagosome-dependent unconventional secretion. In this review, we summarize the emerging functions of the GRASP proteins, focusing on their roles in cell adhesion and migration, autophagy, unconventional secretion, as well as on novel GRASP-interacting proteins.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Ji G, Song X, Wang L, Li Z, Wu H, Dong H. Golgi apparatus fragmentation participates in oxidized low‐density lipoprotein‐induced endothelial cell injury. J Cell Biochem 2019; 120:18862-18870. [PMID: 31264250 DOI: 10.1002/jcb.29205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guang Ji
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Xueqin Song
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Liang Wang
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Zhenfei Li
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Hongran Wu
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Hui Dong
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| |
Collapse
|
13
|
Mendes LFS, Fontana NA, Oliveira CG, Freire MCLC, Lopes JLS, Melo FA, Costa‐Filho AJ. The
GRASP
domain in golgi reassembly and stacking proteins: differences and similarities between lower and higher Eukaryotes. FEBS J 2019; 286:3340-3358. [DOI: 10.1111/febs.14869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Luís F. S. Mendes
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Natália A. Fontana
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Carolina G. Oliveira
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | | | - José L. S. Lopes
- Departamento de Física Aplicada Instituto de Física Universidade de São Paulo São Paulo Brazil
| | - Fernando A. Melo
- Departamento de Física Centro Multiusuário de Inovação Biomolecular IBILCE Universidade Estadual Paulista Júlio Mesquita São Paulo Brazil
| | - Antonio J. Costa‐Filho
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| |
Collapse
|
14
|
Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Mol Biol Cell 2019; 30:766-777. [PMID: 30649990 PMCID: PMC6589770 DOI: 10.1091/mbc.e18-07-0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Michael E. Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
15
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
16
|
Li RS, Gao PF, Zhang HZ, Zheng LL, Li CM, Wang J, Li YF, Liu F, Li N, Huang CZ. Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem Sci 2017; 8:6829-6835. [PMID: 29147508 PMCID: PMC5643954 DOI: 10.1039/c7sc01316g] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
The targeting and long-term imaging of the Golgi apparatus have been realized vial-cysteine functionalized nanoprobes.
The Golgi apparatus is an essential subcellular organelle. Targeting and monitoring the Golgi change at the single-cell level over a long time scale are critical but are challenges that have not yet been tackled. Inspired by the precise Golgi positioning ability of galactosyltransferase and protein kinase D, due to their cysteine residues, we developed a method for long-term Golgi imaging. Fluorescent molecules, carbon quantum dots (CQDs) and silica nanoparticles could target the Golgi when they are modified with l-cysteine. l-Cysteine-rich chiral carbon quantum dots (LC-CQDs), which have the benefits of a high Golgi specificity from l-cysteine and excellent photostability and biocompatibility from the CQDs, are proven to be highly suitable for long-term in situ imaging of the Golgi. Investigation of the mechanism showed that free thiol groups and the l-type stereo configuration of LC-CQDs are essential for specific targeting of the Golgi. With the aid of the as-prepared LC-CQDs, the dynamic changes of the Golgi in the early stage of viral infection were visualized. The Golgi targeting and imaging strategy used in this work is beneficial for Golgi-targeted drug delivery and early diagnosis and therapy of Golgi diseases.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Hong Zhi Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Jian Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ;
| | - Yuan Fang Li
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Institute of Analytical Chemistry , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Institute of Analytical Chemistry , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) , Ministry of Education , College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China . ; .,College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
17
|
Wortzel I, Koifman G, Rotter V, Seger R, Porat Z. High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry. Sci Rep 2017; 7:788. [PMID: 28400563 PMCID: PMC5429768 DOI: 10.1038/s41598-017-00909-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle, which regulates the vesicular trafficking. While cellular trafficking requires active changes of the Golgi membranes, these are not accompanied by changes in the general Golgi’s structure. However, cellular processes such as mitosis, apoptosis and migration require fragmentation of the Golgi complex. Currently, these changes are most commonly studied by basic immunofluorescence and quantified by manual and subjective classification of the Golgi structure in 100–500 stained cells. Several other high-throughput methods exist as well, but those are either complicated or do not provide enough morphological information. Therefore, a simple and informative high content methodology should be beneficial for the study of Golgi architecture. Here we describe the use of high-throughput imaging flow cytometry for quantification of Golgi fragmentation, which provides a simple way to analyze the changes in an automated, quantitative and non-biased manner. Furthermore, it provides a rapid and accurate way to analyze more than 50,000 cells per sample. Our results demonstrate that this method is robust and statistically powerful, thus, providing a much-needed analytical tool for future studies on Golgi dynamics, and can be adapted to other experimental systems.
Collapse
Affiliation(s)
- Inbal Wortzel
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Gabriela Koifman
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Dept. of Life Sciences Core Facilities, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
STK16 regulates actin dynamics to control Golgi organization and cell cycle. Sci Rep 2017; 7:44607. [PMID: 28294156 PMCID: PMC5353726 DOI: 10.1038/srep44607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 11/30/2022] Open
Abstract
STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression.
Collapse
|
19
|
Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem 2015; 291:462-77. [PMID: 26507660 DOI: 10.1074/jbc.m115.673582] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Vesicle formation and fission are tightly regulated at the trans-Golgi network (TGN) during constitutive secretion. Two major protein families regulate these processes: members of the adenosyl-ribosylation factor family of small G-proteins (ARFs) and the protein kinase D (PKD) family of serine/threonine kinases. The functional relationship between these two key regulators of protein transport from the TGN so far is elusive. We here demonstrate the assembly of a novel functional protein complex at the TGN and its key members: cytosolic PKD2 binds ARF-like GTPase (ARL1) and shuttles ARL1 to the TGN. ARL1, in turn, localizes Arfaptin2 to the TGN. At the TGN, where PKD2 interacts with active ARF1, PKD2, and ARL1 are required for the assembly of a complex comprising of ARF1 and Arfaptin2 leading to secretion of matrix metalloproteinase-2 and -7. In conclusion, our data indicate that PKD2 is a core factor in the formation of this multiprotein complex at the TGN that controls constitutive secretion of matrix metalloproteinase cargo.
Collapse
Affiliation(s)
- Tim Eiseler
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Christoph Wille
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Conny Koehler
- the Department of Internal Medicine I, Martin-Luther University Halle-Wittenberg, Ernst-Grube, Strasse 40, D-06120 Halle (Saale), Germany
| | - Anett Illing
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Thomas Seufferlein
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| |
Collapse
|
20
|
Watanabe T, Bochimoto H, Koga D, Hosaka M, Ushiki T. Functional implications of the Golgi and microtubular network in gonadotropes. Mol Cell Endocrinol 2014; 385:88-96. [PMID: 24121198 DOI: 10.1016/j.mce.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023]
Abstract
In contrast to the widely accepted images of the Golgi apparatus as a cup-like shape, the Golgi in pituitary gonadotropes is organized as a spherical shape in which the outer and inner faces are cis- and trans-Golgi elements, respectively. At the center of the spherical Golgi, a pair of centrioles is situated as a microtubule-organizing center from which radiating microtubules isotropically extend toward the cell periphery. This review focuses on the significance of the characteristic organization of the Golgi and microtubule network in gonadotropes, considering the roles of microtubule-dependent membrane transport in the formation and maintenance of the Golgi structure. Because the highly symmetrical organization of the Golgi is possibly perturbed in response to experimental treatments of gonadotropes, monitoring of the Golgi structure in gonadotropes under various experimental conditions will be a novel in vivo approach to elucidate the biogenesis of the Golgi apparatus.
Collapse
Affiliation(s)
- Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan.
| | - Hiroki Bochimoto
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Daisuke Koga
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
21
|
Petrosyan A, Cheng PW. Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyltransferases. Cell Stress Chaperones 2014; 19:241-54. [PMID: 23990450 PMCID: PMC3933620 DOI: 10.1007/s12192-013-0450-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023] Open
Abstract
The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)-C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases-core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA-C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.
Collapse
Affiliation(s)
- Armen Petrosyan
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Pi-Wan Cheng
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
22
|
Quantitative analysis of intra-Golgi transport shows intercisternal exchange for all cargo. Proc Natl Acad Sci U S A 2013; 110:15692-7. [PMID: 24019488 DOI: 10.1073/pnas.1303358110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms controlling the transport of proteins through the Golgi stack of mammalian and plant cells is the subject of intense debate, with two models, cisternal progression and intercisternal exchange, emerging as major contenders. A variety of transport experiments have claimed support for each of these models. We reevaluate these experiments using a single quantitative coarse-grained framework of intra-Golgi transport that accounts for both transport models and their many variants. Our analysis makes a definitive case for the existence of intercisternal exchange both for small membrane proteins and large protein complexes--this implies that membrane structures larger than the typical protein-coated vesicles must be involved in transport. Notwithstanding, we find that current observations on protein transport cannot rule out cisternal progression as contributing significantly to the transport process. To discriminate between the different models of intra-Golgi transport, we suggest experiments and an analysis based on our extended theoretical framework that compare the dynamics of transiting and resident proteins.
Collapse
|
23
|
Xu H, Su W, Cai M, Jiang J, Zeng X, Wang H. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope. PLoS One 2013; 8:e61596. [PMID: 23613878 PMCID: PMC3628984 DOI: 10.1371/journal.pone.0061596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.
Collapse
Affiliation(s)
- Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Weiheng Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
- National engineering laboratory for AIDS vaccine, College of Life Science, Jilin University, Changchun, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (HW); (XZ)
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
- * E-mail: (HW); (XZ)
| |
Collapse
|
24
|
Mao L, Li N, Guo Y, Xu X, Gao L, Xu Y, Zhou L, Liu W. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 2013; 126:1498-505. [PMID: 23418352 DOI: 10.1242/jcs.121954] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during mitosis; this is required not only for the partitioning of the complex but also for the process of mitosis. However, the molecular mechanism underlying the mitotic fragmentation of the Golgi is far from clear. Here, we show that AMP-activated protein kinase (AMPK) is phosphorylated and activated when cells enter mitosis. Activated AMPK phosphorylates GBF1, a guanine nucleotide exchange factor (GEF) for Arf-GTPases, disassociating GBF1 from the Golgi membrane and abolishing the action of GBF1 as an Arf1-GEF. We further demonstrate that the phosphorylation of AMPK and GBF1 is essential for Golgi disassembly and subsequent mitosis entry. These data suggest that AMPK-GBF1-Arf1 signaling is involved in the regulation of Golgi fragmentation during mitosis.
Collapse
Affiliation(s)
- Luna Mao
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Viewing Golgi structure and function from a different perspective--insights from electron tomography. Methods Cell Biol 2013; 118:259-79. [PMID: 24295312 DOI: 10.1016/b978-0-12-417164-0.00016-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Historically, ultrastructural investigations, which have focused on elucidating the biological idiosyncrasies of the Golgi apparatus, have tended towards oversimplified or fallacious hypotheses when postulating how the Golgi apparatus reorganizes itself both structurally and functionally to fulfill the plethora of cellular processes underpinned by this complex organelle. Key questions are still unanswered with regard to how changes in Golgi architecture correlate so reproducibly to changes in its functional priorities under different physiological conditions or experimental perturbations. This fact alone serves to highlight how the technical limitations associated with conventional two-dimensional imaging approaches employed in the past failed to adequately capture the extraordinary complexity of the Golgi's three-dimensional (3D) structure-now a hallmark of this challenging organelle. Consequently, this has hampered progress towards developing a clear understanding of how changes in its structure and function typically occur in parallel. In this chapter, we highlight but a few of the significant new insights regarding variations in the Golgi's structure-function relationships that have been afforded over recent years through advanced electron microscopic techniques for 3D image reconstruction, commonly referred to as electron tomography.
Collapse
|
26
|
Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell 2012; 23:3203-14. [PMID: 22740633 PMCID: PMC3418314 DOI: 10.1091/mbc.e12-01-0034] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/05/2012] [Accepted: 06/22/2012] [Indexed: 11/11/2022] Open
Abstract
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Keiko Shoda
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Petrosyan A, Ali MF, Verma SK, Cheng H, Cheng PW. Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. Int J Biochem Cell Biol 2012; 44:1153-65. [PMID: 22525330 PMCID: PMC4011501 DOI: 10.1016/j.biocel.2012.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022]
Abstract
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.
Collapse
Affiliation(s)
- Armen Petrosyan
- Omaha Western Iowa Health System, VA Service, Department of Veterans Affairs Medical Center, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
28
|
Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ. Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 2012; 13:727-44. [PMID: 22335553 DOI: 10.1111/j.1600-0854.2012.01343.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/17/2022]
Abstract
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.
Collapse
Affiliation(s)
- Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The coronavirus E protein: assembly and beyond. Viruses 2012; 4:363-82. [PMID: 22590676 PMCID: PMC3347032 DOI: 10.3390/v4030363] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022] Open
Abstract
The coronavirus E protein is a small membrane protein that has an important role in the assembly of virions. Recent studies have indicated that the E protein has functions during infection beyond assembly, including in virus egress and in the host stress response. Additionally, the E protein has ion channel activity, interacts with host proteins, and may have multiple membrane topologies. The goal of this review is to highlight the properties and functions of the E protein, and speculate on how they may be related.
Collapse
|
30
|
Lisauskas T, Matula P, Claas C, Reusing S, Wiemann S, Erfle H, Lehmann L, Fischer P, Eils R, Rohr K, Storrie B, Starkuviene V. Live-cell assays to identify regulators of ER-to-Golgi trafficking. Traffic 2012; 13:416-32. [PMID: 22132776 DOI: 10.1111/j.1600-0854.2011.01318.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022]
Abstract
We applied fluorescence microscopy-based quantitative assays to living cells to identify regulators of endoplasmic reticulum (ER)-to-Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors which influence Golgi-to-ER relocalization of GalT-CFP (β1,4-galactosyltransferase I-cyan fluorescent protein) after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when overexpressed for a role in ER-to-Golgi trafficking. Nine of them interfered with the rate of BFA-induced redistribution of GalT-CFP from the Golgi complex to the ER, six of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e. the Golgi complex) after BFA wash-out and six of them were positive effectors in both assays. Notably, our live-cell approach captures regulator function in ER-to-Golgi trafficking, which was missed in previous fixed cell assays, as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens.
Collapse
|
31
|
Ying H, Yue BYJT. Cellular and molecular biology of optineurin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:223-58. [PMID: 22364875 DOI: 10.1016/b978-0-12-394305-7.00005-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a gene linked to glaucoma, amyotrophic lateral sclerosis, other neurodegenerative diseases, and Paget's disease of bone. This review describes the characteristics of optineurin and summarizes the cellular and molecular biology investigations conducted so far on optineurin. Data from a number of laboratories indicate that optineurin is a cytosolic protein containing 577 amino acid residues. Interacting with proteins such as myosin VI, Rab8, huntingtin, transferrin receptor, and TANK-binding kinase 1, optineurin is involved in basic cellular functions including protein trafficking, maintenance of the Golgi apparatus, as well as NF-κB pathway, antiviral, and antibacteria signaling. Mutation or alteration of homeostasis of optineurin (such as overexpression or knockdown) results in adverse consequences in the cells, leading to the development of neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
32
|
Gloor Y, Müller-Reichert T, Walch-Solimena C. Co-regulation of the arf-activation cycle and phospholipid-signaling during golgi maturation. Commun Integr Biol 2012; 5:12-5. [PMID: 22482002 DOI: 10.4161/cib.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus is the central protein sorting station inside eukaryotic cells. Although many regulators of Golgi trafficking have been identified, little is known about their crosstalk. Both the Arf activation cycle and phosphatidylinositol 4-phosphate metabolism have been recognized as key processes in the regulation of vesicular transport from this organelle. However, the mechanism ensuring the proper co-regulation of these processes has eluded our understanding thus far. We recently identified a physical interaction between the late yeast Golgi Arf activator Sec7p and the PI4-kinase Pik1p, and showed that the two proteins cooperate in the formation of clathrin-coated vesicles. This finding gives the first insight on the coordinated generation of a dual key signal by a small GTPase and a signaling phospholipid at the Golgi. In addition, it opens new perspectives for a better understanding of Golgi maturation through coordinated regulation of highly dynamic lipid and protein composition of this organelle.
Collapse
|
33
|
Abstract
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.
Collapse
Affiliation(s)
- Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
34
|
Chia PZC, Gleeson PA. The Regulation of Endosome-to-Golgi Retrograde Transport by Tethers and Scaffolds. Traffic 2011; 12:939-47. [DOI: 10.1111/j.1600-0854.2011.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Abstract
The Golgi complex is the central organelle in the secretory membrane trafficking and its organization strongly depends upon the flow of coming and leaving material. The principles of cargo transfer to, through, and away from the Golgi complex were investigated in numerous studies. However, the knowledge of how the Golgi complex responses to changes in diverse trafficking events (e.g., ER exit block) on a molecular level is far from being complete. In order to identify regulatory molecules playing a role in the dynamic organization of the Golgi complex, we established a fluorescent microscopy-based quantitative assay to measure rates of the Golgi redistribution and assembly after addition and washout of BFA, respectively. At first, we tested our system under the condition of over-expression of GFP-tagged proteins. We measured their influence upon BFA-induced effects in a format, suitable for large-scale studies in living cell, namely cell arrays. The approach can be applied for large-scale RNA interference studies as well as for chemical screening.
Collapse
|
36
|
Structural organization of the Golgi apparatus. Curr Opin Cell Biol 2011; 23:85-93. [DOI: 10.1016/j.ceb.2010.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/17/2010] [Indexed: 11/21/2022]
|
37
|
Hossler P. Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:187-219. [PMID: 22015728 DOI: 10.1007/10_2011_113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is a post-translational modification of paramount importance for the function, immunogenicity, and efficacy of recombinant glycoprotein therapeutics. Within the repertoire of post-translational modifications, glycosylation stands out as having the most significant proven role towards affecting pharmacokinetics and protein physiochemical characteristics. In mammalian cell culture, the understanding and controllability of the glycosylation metabolic pathway has achieved numerous successes. However, there is still much that we do not know about the regulation of the pathway. One of the frequent conclusions regarding protein glycosylation control is that it needs to be studied on a case-by-case basis since there are often conflicting results with respect to a control variable and the resulting glycosylation. In attempts to obtain a more multivariate interpretation of these potentially controlling variables, gene expression analysis and systems biology have been used to study protein glycosylation in mammalian cell culture. Gene expression analysis has provided information on how glycosylation pathway genes both respond to culture environmental cues, and potentially facilitate changes in the final glycoform profile. Systems biology has allowed researchers to model the pathway as well-defined, inter-connected systems, allowing for the in silico testing of pathway parameters that would be difficult to test experimentally. Both approaches have facilitated a macroscopic and microscopic perspective on protein glycosylation control. These tools have and will continue to enhance our understanding and capability of producing optimal glycoform profiles on a consistent basis.
Collapse
Affiliation(s)
- Patrick Hossler
- Abbott Laboratories, Abbott Bioresearch Center, Worcester, MA, 01605, USA,
| |
Collapse
|
38
|
Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 2010; 30:6398-408. [PMID: 20445066 DOI: 10.1523/jneurosci.0780-10.2010] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cerebral vascular endothelial cell (CEC) degeneration significantly contributes to blood-brain barrier (BBB) breakdown and neuronal loss after cerebral ischemia. Recently, emerging data suggest that peroxisome proliferator-activated receptor delta (PPARdelta) activation has a potential neuroprotective role in ischemic stroke. Here we report for the first time that PPARdelta is significantly reduced in oxygen-glucose deprivation (OGD)-induced mouse CEC death. Interestingly, PPARdelta overexpression can suppress OGD-induced caspase-3 activity, Golgi fragmentation, and CEC death through an increase of bcl-2 protein levels without change of bcl-2 mRNA levels. To explore the molecular mechanisms, we have identified that upregulation of PPARdelta can alleviate ODG-activated microRNA-15a (miR-15a) expression in CECs. Moreover, we have demonstrated that bcl-2 is a translationally repressed target of miR-15a. Intriguingly, gain- or loss-of-miR-15a function can significantly reduce or increase OGD-induced CEC death, respectively. Furthermore, we have identified that miR-15a is a transcriptional target of PPARdelta. Consistent with the in vitro findings, we found that intracerebroventricular infusion of a specific PPARdelta agonist, GW 501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid), significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity and subsequent DNA fragmentation in isolated cerebral microvessels, leading to decreased BBB disruption and reduced cerebral infarction in mice after transient focal cerebral ischemia. Together, these results suggest that PPARdelta plays a vascular-protective role in ischemia-like insults via transcriptional repression of miR-15a, resulting in subsequent release of its posttranscriptional inhibition of bcl-2. Thus, regulation of PPARdelta-mediated miR-15a inhibition of bcl-2 could provide a novel therapeutic strategy for the treatment of stroke-related vascular dysfunction.
Collapse
|
39
|
Persico A, Cervigni RI, Barretta ML, Colanzi A. Mitotic inheritance of the Golgi complex. FEBS Lett 2009; 583:3857-62. [PMID: 19879264 DOI: 10.1016/j.febslet.2009.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 12/13/2022]
|
40
|
Pietro ES, Capestrano M, Polishchuk EV, DiPentima A, Trucco A, Zizza P, Mariggiò S, Pulvirenti T, Sallese M, Tete S, Mironov AA, Leslie CC, Corda D, Luini A, Polishchuk RS. Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLoS Biol 2009; 7:e1000194. [PMID: 19753100 PMCID: PMC2732982 DOI: 10.1371/journal.pbio.1000194] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/31/2009] [Indexed: 11/18/2022] Open
Abstract
The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.
Collapse
Affiliation(s)
- Enrica San Pietro
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | | | - Elena V. Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alessio DiPentima
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alvar Trucco
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Teodoro Pulvirenti
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Michele Sallese
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Stefano Tete
- Department of Oral Sciences, University “G. D'Annunzio”, Chieti, Italy
| | - Alexander A. Mironov
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado, United States of America
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (AL); (RSP)
| | - Roman S. Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (AL); (RSP)
| |
Collapse
|
41
|
Calura E, Cagnin S, Raffaello A, Laveder P, Lanfranchi G, Romualdi C. Meta-analysis of expression signatures of muscle atrophy: gene interaction networks in early and late stages. BMC Genomics 2008; 9:630. [PMID: 19108710 PMCID: PMC2642825 DOI: 10.1186/1471-2164-9-630] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 12/23/2008] [Indexed: 12/28/2022] Open
Abstract
Background Skeletal muscle mass can be markedly reduced through a process called atrophy, as a consequence of many diseases or critical physiological and environmental situations. Atrophy is characterised by loss of contractile proteins and reduction of fiber volume. Although in the last decade the molecular aspects underlying muscle atrophy have received increased attention, the fine mechanisms controlling muscle degeneration are still incomplete. In this study we applied meta-analysis on gene expression signatures pertaining to different types of muscle atrophy for the identification of novel key regulatory signals implicated in these degenerative processes. Results We found a general down-regulation of genes involved in energy production and carbohydrate metabolism and up-regulation of genes for protein degradation and catabolism. Six functional pathways occupy central positions in the molecular network obtained by the integration of atrophy transcriptome and molecular interaction data. They are TGF-β pathway, apoptosis, membrane trafficking/cytoskeleton organization, NFKB pathways, inflammation and reorganization of the extracellular matrix. Protein degradation pathway is evident only in the network specific for muscle short-term response to atrophy. TGF-β pathway plays a central role with proteins SMAD3/4, MYC, MAX and CDKN1A in the general network, and JUN, MYC, GNB2L1/RACK1 in the short-term muscle response network. Conclusion Our study offers a general overview of the molecular pathways and cellular processes regulating the establishment and maintenance of atrophic state in skeletal muscle, showing also how the different pathways are interconnected. This analysis identifies novel key factors that could be further investigated as potential targets for the development of therapeutic treatments. We suggest that the transcription factors SMAD3/4, GNB2L1/RACK1, MYC, MAX and JUN, whose functions have been extensively studied in tumours but only marginally in muscle, appear instead to play important roles in regulating muscle response to atrophy.
Collapse
Affiliation(s)
- Enrica Calura
- Department of Biology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Wei S, Dunn TA, Isaacs WB, De Marzo AM, Luo J. GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus. Prostate 2008; 68:1387-95. [PMID: 18543251 PMCID: PMC4124602 DOI: 10.1002/pros.20806] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Malignant transformation is often accompanied by morphological and functional alterations in subcellular organelles. The Golgi apparatus is a subcellular structure primarily involved in modification and sorting of macromolecules for secretion and transport to other cellular destinations. Molecular alterations associated with the Golgi apparatus may take place during prostate carcinogenesis but such alterations have not been documented. METHODS To demonstrate that the Golgi apparatus undergoes alterations during prostate carcinogenesis, we examined the expression and localization of two candidate molecules, Golgi phosphoprotein 2 (GOLPH2) and myosin VI (MYO6), both overexpressed in prostate cancer as initially identified by expression microarray analysis. RESULTS Elevated GOLPH2 expression in prostate cancers was validated through real-time RT-PCR, Western blot, and tissue microarray analysis, and its Golgi localization in surgical prostate cancer tissues confirmed using two-color immunofluorescence. In addition, distinctive juxtanuclear MYO6 staining pattern consistent with Golgi localization was observed in surgical prostate cancer tissues. Two-color immunofluorescence revealed intensive Golgi-specific staining for both GOLPH2 and myosin VI in prostate cancer cells but not in the adjacent normal prostate epithelium. CONCLUSIONS We show that the Golgi apparatus in prostate cancer cells differs from the normal Golgi by elevated levels of two molecules, GOLPH2 and MYO6. These results for the first time demonstrated consistent cancer cell-specific alterations in the molecular composition of the Golgi apparatus. Such alterations can be explored for discovery of novel prostate cancer biomarkers through targeted organellar approaches.
Collapse
Affiliation(s)
- Shuanzeng Wei
- Departmentof Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas A. Dunn
- Departmentof Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B. Isaacs
- Departmentof Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departmentof Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M. De Marzo
- Departmentof Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departmentof Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Luo
- Departmentof Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departmentof Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Jun Luo, Department of Urology, 411 Marburg Building, 600 N. Wolfe St., Baltimore, MD 21287.,
| |
Collapse
|
43
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
44
|
Banie H, Sinha A, Thomas RJ, Sircar JC, Richards ML. 2-phenylimidazopyridines, a new series of Golgi compounds with potent antiviral activity. J Med Chem 2007; 50:5984-93. [PMID: 17973358 DOI: 10.1021/jm0704907] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs targeted to viral proteins are highly vulnerable to the development of resistant strains. We previously characterized a group of 2-phenylbenzimidazole compounds for their activity against allergy and asthma and more recently established the Golgi as their probable site of action. Herein we describe their activity against the propagation of several virus types through an action on the host cell. The most potent derivatives are the novel 2-phenylimidazopyridines, the lead compound of which is highly effective for blocking the spread of topical herpes infection in an animal model. These agents may provide an alternative antiviral approach, particularly for treating resistant strains.
Collapse
Affiliation(s)
- Homayon Banie
- Avanir Pharmaceuticals, 101 Enterprise, Aliso Viejo, CA 92656, USA
| | | | | | | | | |
Collapse
|
45
|
Lio SC, Johnson J, Chatterjee A, Ludwig JW, Millis D, Banie H, Sircar JC, Sinha A, Richards ML. Disruption of Golgi processing by 2-phenyl benzimidazole analogs blocks cell proliferation and slows tumor growth. Cancer Chemother Pharmacol 2007; 61:1045-58. [PMID: 17690881 DOI: 10.1007/s00280-007-0564-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 07/22/2007] [Indexed: 01/08/2023]
Abstract
PURPOSE Cancer chemotherapy continues to be challenged by the emergence of resistant tumors, and one organelle entwined in the development of drug resistance is the Golgi apparatus. Recently, we discovered a group of 2-(substituted phenyl)-benzimidazole (2-PB) compounds that displace resident Golgi proteins from the juxtanuclear region resulting in their degradation. These compounds are also potent anti-proliferative agents, which together with their action on the Golgi made a compelling case for testing them against cancer. METHODS The anti-tumor activity of a group of 2-PB compounds was examined both in vitro and in vivo. The role of the Golgi in the anti-proliferative effect was assessed by comparing the proliferation of individual cell lines with the distribution and total cellular expression of selected resident Golgi proteins. RESULTS The anti-proliferative activity of 2-PB compounds is partially reversible (time- and concentration-dependent), non-cell-cycle-specific, and translates to tumor growth inhibition in vivo. While 2-PB compounds displace resident Golgi proteins from the juxtanuclear region in all cells, those that are resistant to the anti-proliferative effects differ from sensitive cells in that they have the capacity to protect these Golgi proteins from degradation. CONCLUSIONS These results illustrate the utility of targeting the Golgi for cancer drug development. They also reveal a cellular strategy for resisting 2-PB drug effects through protection of displaced Golgi proteins from degradation thus allowing their continued function.
Collapse
Affiliation(s)
- Shirley Cruz Lio
- Avanir Pharmaceuticals, 101 Enterprise, Aliso Viejo, CA 92656, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev 2007; 59:782-97. [PMID: 17669543 PMCID: PMC2134838 DOI: 10.1016/j.addr.2007.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/12/2007] [Indexed: 11/29/2022]
Abstract
The targeted delivery of drugs to the cell interior can be accomplished by taking advantage of the various receptor-mediated endocytic pathways operating in a particular cell. Among these pathways, the retrograde trafficking pathway from endosomes to the Golgi apparatus, and endoplasmic reticulum is of special importance since it provides a route to deliver drugs bypassing the acid pH, hydrolytic environment of the lysosome. The existence of pathways for drug or antigen delivery to the endoplasmic reticulum and Golgi apparatus has been to a large extent an outcome of research on the trafficking of A/B type-bacterial or plant toxins such as Shiga toxin within the cell. The targeting properties of these toxins reside in their B subunit. In this article we present an overview of the multiplicity of pathways to deliver drugs intracellularly. We highlight the retrograde trafficking pathway illustrated by Shiga toxin and Shiga-like toxin, and the potential role of the B subunit of these toxins as carriers of drugs, antigens and imaging agents.
Collapse
Affiliation(s)
- Maria Teresa Tarragó-Trani
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
47
|
Hossler P, Mulukutla BC, Hu WS. Systems analysis of N-glycan processing in mammalian cells. PLoS One 2007; 2:e713. [PMID: 17684559 PMCID: PMC1933599 DOI: 10.1371/journal.pone.0000713] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/03/2007] [Indexed: 11/28/2022] Open
Abstract
N-glycosylation plays a key role in the quality of many therapeutic glycoprotein biologics. The biosynthesis reactions of these oligosaccharides are a type of network in which a relatively small number of enzymes give rise to a large number of N-glycans as the reaction intermediates and terminal products. Multiple glycans appear on the glycoprotein molecules and give rise to a heterogeneous product. Controlling the glycan distribution is critical to the quality control of the product. Understanding N-glycan biosynthesis and the etiology of microheterogeneity would provide physiological insights, and facilitate cellular engineering to enhance glycoprotein quality. We developed a mathematical model of glycan biosynthesis in the Golgi and analyzed the various reaction variables on the resulting glycan distribution. The Golgi model was modeled as four compartments in series. The mechanism of protein transport across the Golgi is still controversial. From the viewpoint of their holding time distribution characteristics, the two main hypothesized mechanisms, vesicular transport and Golgi maturation models, resemble four continuous mixing-tanks (4CSTR) and four plug-flow reactors (4PFR) in series, respectively. The two hypotheses were modeled accordingly and compared. The intrinsic reaction kinetics were first evaluated using a batch (or single PFR) reactor. A sufficient holding time is needed to produce terminally-processed glycans. Altering enzyme concentrations has a complex effect on the final glycan distribution, as the changes often affect many reaction steps in the network. Comparison of the glycan profiles predicted by the 4CSTR and 4PFR models points to the 4PFR system as more likely to be the true mechanism. To assess whether glycan heterogeneity can be eliminated in the biosynthesis of biotherapeutics the 4PFR model was further used to assess whether a homogeneous glycan profile can be created through metabolic engineering. We demonstrate by the spatial localization of enzymes to specific compartments all terminally processed N-glycans can be synthesized as homogeneous products with a sufficient holding time in the Golgi compartments. The model developed may serve as a guide to future engineering of glycoproteins.
Collapse
Affiliation(s)
- Patrick Hossler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 2007; 19:386-93. [PMID: 17689238 DOI: 10.1016/j.ceb.2007.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/29/2007] [Accepted: 06/03/2007] [Indexed: 11/20/2022]
Abstract
In mammals, the Golgi complex is structured in the form of a continuous membranous system composed of up to 100 stacks connected by tubular bridges, the 'Golgi ribbon'. During mitosis, the Golgi undergoes extensive fragmentation through a multistage process that allows its correct partitioning and inheritance by daughter cells. Strikingly, this Golgi fragmentation is required not only for inheritance but also for mitotic entrance itself, since its block results in the arrest of the cell cycle in G2. This is called the 'Golgi mitotic checkpoint'. Recent studies have identified the severing of the ribbon into its constituent stacks during early G2 as the precise stage of Golgi fragmentation that controls mitotic entry. This opens new ways to elucidate the mechanism of the Golgi checkpoint.
Collapse
Affiliation(s)
- Antonino Colanzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy
| | | |
Collapse
|
49
|
Li X, Kaloyanova D, van Eijk M, Eerland R, van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB. Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. Mol Biol Cell 2007; 18:1261-71. [PMID: 17251550 PMCID: PMC1838991 DOI: 10.1091/mbc.e06-03-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 12/22/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023] Open
Abstract
The Golgi apparatus consists of a series of flattened cisternal membranes that are aligned in parallel to form stacks. Cytosolic-oriented Golgi-associated proteins have been identified that may coordinate or maintain the Golgi architecture. Here, we describe a novel GPI-anchored protein, Golgi-resident GPI-anchored protein (GREG) that has a brefeldin A-sensitive Golgi localization. GREG resides in the Golgi lumen as a cis-oriented homodimer, due to strong interactions between coiled-coil regions in the C termini. Dimerization of GREG as well as its Golgi localization depends on a unique tandem repeat sequence within the coiled-coil region. RNA-mediated interference of GREG expression or expression of GREG mutants reveals an essential role for GREG in maintenance of the Golgi integrity. Under these conditions, secretion of the vesicular stomatitis virus glycoprotein protein as a marker for protein transport along the secretory pathway is inhibited, suggesting a loss of Golgi function as well. These results imply the involvement of a luminal protein in Golgi structure and function.
Collapse
Affiliation(s)
- Xueyi Li
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Dora Kaloyanova
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Ruud Eerland
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Gisou van der Goot
- Institut des Maladies Infectieuses, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | - Vytaute Starkuviene
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Felix T. Wieland
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Affiliation(s)
- Brad J Marsh
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|