1
|
Xi R, Cao Y, Fu N, Sheng Y, Yu J, Li L, Zhang G, Wang F. Allosteric inhibition of the tyrosine phosphatase SHP2 enhances the anti-tumor immunity of interferon α through induction of caspase-1-mediated pyroptosis in renal cancer. Int Immunopharmacol 2024; 143:113498. [PMID: 39467353 DOI: 10.1016/j.intimp.2024.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Interferon alpha (IFNα) leads to therapeutic effects on various tumors, especially renal cell cancer (RCC), by directly protecting against tumors cell proliferation or indirectly inducing an anti-tumor immune response. However, new combination therapies are needed to enhance the efficacy of IFNα and reduce its adverse effects during long-term treatment. In this study, we found that the anti-proliferative effects of IFNα on RCC cells in vitro and in vivo were greater after the allosteric inhibition of SHP2 by SHP099 than after treatment with enzymatic inhibitors of SHP2. SHP099 increased IFNα-induced pro-caspase-1 expression in RCC cells, activated the NLRP3 inflammasome, and induced pyroptosis. Mechanistically, SHP099 not only increased the expression of NLRP3 inflammasome components via the NF-κB signaling pathway, but also further activated the NLRP3 inflammasome by regulating mitochondrial homeostasis through ANT1-mediated reactive oxygen species modulation. Allosteric inhibition of SHP2 by SHP099 also potently enhanced the anti-tumor immunity induced by IFNα by modulating T cell proliferation and infiltration in vitro and in vivo. These results reveal the new function of SHP2 in NLRP3 inflammasome activation and pyroptosis in RCC and provide a basis for further investigating the combination of allosteric SHP2 inhibitors with IFNα in cancer immunotherapy.
Collapse
Affiliation(s)
- Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Naijie Fu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
2
|
Jia M, Liu Y, Liu J, Meng J, Cao J, Miao L, Zhang H, Zhu Y, Sun M, Yang J. Xuanfei Baidu decoction ameliorates bleomycin-elicited idiopathic pulmonary fibrosis in mice by regulating the lung-gut crosstalk via IFNγ/STAT1/STAT3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155997. [PMID: 39312850 DOI: 10.1016/j.phymed.2024.155997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia, the available treatment option is limited because the etiology and pathological process are not well understood. Although gut-lung axis reported with an emerging area of host-associated microbiota exist in many chronic lung diseases, the connection between gut-lung microbiota composition with in-site inflammation in IPF development is not yet established. PURPOSE We aimed to address the microbiota and immunity connection, and make it clear how a listed drug, Xuanfei Baidu Decoction (XFBD) affect the lung-gut crosstalk for IPF amelioration, which was previously reported for restoring disrupted lung in IPF and protecting intestinal injury. METHODS Firstly, Micro-CT (μCT) and histopathology were used to check for pathological changes in the lungs and intestines of bleomycin (BLM)-induced IPF mice. Then, Reverse Transcription and Quantitative Real-time PCR (RT-qPCR) and Western blot (WB) assays were employed to detect the integrity of the barrier of lungs and intestines in IPF mice. Subsequently, flow cytometry and 16S rRNA sequencing were used to evaluate the immune and microbial microenvironment of the lungs and intestines. We analyzed the lung-gut microbiota crosstalk for further mechanism exploration. RESULTS Firstly, we revealed that XFBD protected the integrity of the lung and intestinal barriers in the IPF mice, as evidenced by the up-regulation of ZO-1, Claudin-1, Occludin, and VE Cadherin protein expression. Then, we analyzed the changing microbiota and T cell in the gut-lung axis in IPF, and with XFBD, six highly relevant microenvironments were demonstrated that crossing damaged lung-gut barriers and XFBD could reverse these chaotic bacterial and immunity micro-environment, among them Akkermansia was an essential bacteria affecting the expression of systemic IFN-γ downstream STAT1/STAT3 axis was also studied. XFBD prominently up-regulated the production of IFN-γ and p-STAT1 and down-regulated p-STAT3, consequently exerting effects on the lung barrier and gut barrier. Taken together, XFBD ameliorated BLM-induced IPF mice by regulating IFNγ/STAT1/STAT3 axis. CONCLUSION Altogether, our results revealed that XFBD improved the BLM-elicited IPF mice by regulating gut-lung crosstalk via IFN-γ/STAT1/STAT3 axis and provided a new insight of gut-lung crosstalk in IPF, especially the dynamic changes of microorganisms in the damaged lungs needed to pay more attention during IPF therapy.
Collapse
Affiliation(s)
- Mengjie Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junyu Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, Changchun 130117, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, Changchun 130117, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Dorry S, Perla S, Bennett AM. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway. Mol Cell Biol 2024:1-15. [PMID: 39607740 DOI: 10.1080/10985549.2024.2426665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute members of the dual-specificity family of protein phosphatases that dephosphorylate the MAPKs. MKP-5 dephosphorylates the stress-responsive MAPKs, p38 MAPK and JNK, and has been shown to promote tissue fibrosis. Here, we provide insight into how MKP-5 regulates the transforming growth factor-β (TGF-β) pathway, a well-established driver of fibrosis. We show that MKP-5-deficient fibroblasts in response to TGF-β are impaired in SMAD2 phosphorylation at canonical and non-canonical sites, nuclear translocation, and transcriptional activation of fibrogenic genes. Consistent with this, pharmacological inhibition of MKP-5 is sufficient to block TGF-β signaling, and that this regulation occurs through a JNK-dependent pathway. By utilizing RNA sequencing and transcriptomic analysis, we identify TGF-β signaling activators regulated by MKP-5 in a JNK-dependent manner, providing mechanistic insight into how MKP-5 promotes TGF-β signaling. This study elucidates a novel mechanism whereby MKP-5-mediated JNK inactivation is required for TGF-β signaling and provides insight into the role of MKP-5 in tissue fibrosis.
Collapse
Affiliation(s)
- Sam Dorry
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
She X, Xu J, Zhang H, Yu C, Rao Z, Zhang J, Zhan W, Hu F, Song D, Li H, Luo X, Wang G, Hu J, Lai S. ETHE1 dampens colorectal cancer angiogenesis by promoting TC45 Dephosphorylation of STAT3 to inhibit VEGF-A expression. Cell Death Dis 2024; 15:631. [PMID: 39198402 PMCID: PMC11358511 DOI: 10.1038/s41419-024-07021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Angiogenesis is critical for colorectal cancer (CRC) progression, but its mechanisms remain unclear. Here, we reveal that ethylmalonic encephalopathy protein 1 (ETHE1), an essential enzyme in hydrogen sulfide catabolism, inhibits VEGF-A expression and tumor angiogenesis in vitro and in vivo. Moreover, we find that this biological function of ETHE1 depends on the STAT3/VEGF-A pathway. Further investigation demonstrates that ETHE1 promotes the interaction between T cell protein tyrosine phosphatase (TC45) and STAT3, resulting in decreased STAT3 phosphorylation and inhibition of the STAT3 signaling pathway. In clinical samples, we find that ETHE1 is downregulated in CRC and positively correlates with survival outcomes of CRC patients. Meanwhile, the negative correlation of ETHE1 and VEGF-A expression is verified in CRC specimens, and the patients with low ETHE1 and high VEGF-A expression exhibits poorer prognosis. Collectively, our study identifies ETHE1 as a novel regulator of tumor angiogenesis, implying its potential as a prognostic biomarker and promising antiangiogenic target for CRC patients.
Collapse
Affiliation(s)
- Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haokun Zhang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zejun Rao
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiakun Zhang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Zhan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haijie Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Senyan Lai
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Feng TM, Wei JM, Tan S, Chen LX, Liu GN. Involvement of PD-1 +CD4 + T cells in the development of traumatic tracheal stenosis by regulating the IL-17/STAT3 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167216. [PMID: 38718843 DOI: 10.1016/j.bbadis.2024.167216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Studies have highlighted an upregulation of PD-1 expression in CD4+ T cells, which accelerates lung fibrosis by activating the IL-17/STAT3 pathway, leading to IL-17A and TGF-β1 secretion. However, the relation with traumatic tracheal stenosis (TS) remains unexplored. Our analysis found significant increases in PD-1+CD4+ T cells, IL-17A, and TGF-β1 in the TS patients (n = 10). The cellular model used CD4+ T cells co-cultured with bronchial fibroblasts while the animal model used a nylon brush to scrape the damaged tracheal mucosa. Interventions with PD-1 and STAT3 inhibitors both in vitro (n = 5) and in vivo (n = 6) showed decreased expression of TGF-β1 and IL-17A in CD4+ T cells, decreased collagen I synthesis in vitro, and reduced tractal fibrosis in vivo. Furthermore, PD-1's modulation of the STAT3 was evident. This research unveils PD-1+CD4+ T cells' role in TS, thus suggesting a novel immunotherapeutic strategy to counteract tracheal fibrosis.
Collapse
Affiliation(s)
- T M Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - J M Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - S Tan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - L X Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - G N Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Distler JHW, Hallén J. Reply. Arthritis Rheumatol 2024; 76:1165. [PMID: 38351441 DOI: 10.1002/art.42823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
|
8
|
Dorry S, Perla S, Bennett AM. MAPK Phosphatase-5 is required for TGF-β signaling through a JNK-dependent pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600976. [PMID: 38979264 PMCID: PMC11230413 DOI: 10.1101/2024.06.27.600976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute members of the dual-specificity family of protein phosphatases that dephosphorylate the MAPKs. MKP-5 dephosphorylates the stress-responsive MAPKs, p38 MAPK and JNK, and has been shown to promote tissue fibrosis. Here, we provide insight into how MKP-5 regulates the transforming growth factor-β (TGF-β) pathway, a well-established driver of fibrosis. We show that MKP-5-deficient fibroblasts in response to TGF-β are impaired in SMAD2 phosphorylation at canonical and non-canonical sites, nuclear translocation, and transcriptional activation of fibrogenic genes. Consistent with this, pharmacological inhibition of MKP-5 is sufficient to block TGF-β signaling, and that this regulation occurs through a JNK-dependent pathway. By utilizing RNA sequencing and transcriptomic analysis, we identify TGF-β signaling activators regulated by MKP-5 in a JNK-dependent manner, providing mechanistic insight into how MKP-5 promotes TGF-β signaling. This study elucidates a novel mechanism whereby MKP-5-mediated JNK inactivation is required for TGF-β signaling and provides insight into the role of MKP-5 in fibrosis.
Collapse
Affiliation(s)
- Sam Dorry
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Pandey G, Mazzacurati L, Rowsell TM, Horvat NP, Amin NE, Zhang G, Akuffo AA, Colin-Leitzinger CM, Haura EB, Kuykendall AT, Zhang L, Epling-Burnette PK, Reuther GW. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms. Am J Hematol 2024; 99:1040-1055. [PMID: 38440831 PMCID: PMC11096011 DOI: 10.1002/ajh.27282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Tegan M. Rowsell
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Narmin E. Amin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Guolin Zhang
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Afua A. Akuffo
- Department of Immunology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Eric B. Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Ling Zhang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Gary W. Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL USA
| |
Collapse
|
10
|
Theobald H, Bejarano DA, Katzmarski N, Haub J, Schulte-Schrepping J, Yu J, Bassler K, Ament AL, Osei-Sarpong C, Piattini F, Vornholz L, T'Jonck W, Györfi AH, Hayer H, Yu X, Sheoran S, Al Jawazneh A, Chakarov S, Haendler K, Brown GD, Williams DL, Bosurgi L, Distler JHW, Ginhoux F, Ruland J, Beyer MD, Greter M, Bain CC, Vazquez-Armendariz AI, Kopf M, Schultze JL, Schlitzer A. Apolipoprotein E controls Dectin-1-dependent development of monocyte-derived alveolar macrophages upon pulmonary β-glucan-induced inflammatory adaptation. Nat Immunol 2024; 25:994-1006. [PMID: 38671323 PMCID: PMC11147775 DOI: 10.1038/s41590-024-01830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal β-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, β-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.
Collapse
Affiliation(s)
- H Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - D A Bejarano
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - N Katzmarski
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - J Haub
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - J Schulte-Schrepping
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
| | - J Yu
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - K Bassler
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - A L Ament
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - C Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - F Piattini
- Institute of Molecular Health Science, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - L Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - W T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A H Györfi
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - H Hayer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - X Yu
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - S Sheoran
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - A Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - S Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong School of Medicine, Shanghai, China
| | - K Haendler
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Luebeck & Kiel University, Luebeck, Germany
| | - G D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - D L Williams
- Department of Surgery and Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - L Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - F Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong School of Medicine, Shanghai, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - J Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - M D Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
| | - M Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A I Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - M Kopf
- Institute of Molecular Health Science, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - J L Schultze
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
| | - A Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Liu X, Zhang Z, Yuan J, Yu J, Chen D. Spatial interaction and functional status of CD68 +SHP2 + macrophages in tumor microenvironment correlate with overall survival of NSCLC. Front Immunol 2024; 15:1396719. [PMID: 38799432 PMCID: PMC11116570 DOI: 10.3389/fimmu.2024.1396719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Jupeng Yuan
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
12
|
Trinh-Minh T, Györfi AH, Tomcik M, Tran-Manh C, Zhou X, Dickel N, Tümerdem BS, Kreuter A, Burmann SN, Borchert SV, Hussain RI, Hallén J, Klingelhöfer J, Kunz M, Distler JHW. Effect of Anti-S100A4 Monoclonal Antibody Treatment on Experimental Skin Fibrosis and Systemic Sclerosis-Specific Transcriptional Signatures in Human Skin. Arthritis Rheumatol 2024; 76:783-795. [PMID: 38108109 DOI: 10.1002/art.42781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE S100A4 is a DAMP protein. S100A4 is overexpressed in patients with systemic sclerosis (SSc), and levels correlate with organ involvement and disease activity. S100A4-/- mice are protected from fibrosis. The aim of this study was to assess the antifibrotic effects of anti-S100A4 monoclonal antibody (mAb) in murine models of SSc and in precision cut skin slices of patients with SSc. METHODS The effects of anti-S100A4 mAbs were evaluated in a bleomycin-induced skin fibrosis model and in Tsk-1 mice with a therapeutic dosing regimen. In addition, the effects of anti-S100A4 mAbs on precision cut SSc skin slices were analyzed by RNA sequencing. RESULTS Inhibition of S100A4 was effective in the treatment of pre-established bleomycin-induced skin fibrosis and in regression of pre-established fibrosis with reduced dermal thickening, myofibroblast counts, and collagen accumulation. Transcriptional profiling demonstrated targeting of multiple profibrotic and proinflammatory processes relevant to the pathogenesis of SSc on targeted S100A4 inhibition in a bleomycin-induced skin fibrosis model. Moreover, targeted S100A4 inhibition also modulated inflammation- and fibrosis-relevant gene sets in precision cut SSc skin slices in an ex vivo trial approach. Selected downstream targets of S100A4, such as AMP-activated protein kinase, calsequestrin-1, and phosphorylated STAT3, were validated on the protein level, and STAT3 inhibition was shown to prevent the profibrotic effects of S100A4 on fibroblasts in human skin. CONCLUSION Inhibition of S100A4 confers dual targeting of inflammatory and fibrotic pathways in complementary mouse models of fibrosis and in SSc skin. These effects support the further development of anti-S100A4 mAbs as disease-modifying targeted therapies for SSc.
Collapse
Affiliation(s)
- Thuong Trinh-Minh
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | | | | | - Cuong Tran-Manh
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | - Xiang Zhou
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | - Nicholas Dickel
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Alexander Kreuter
- Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, and Helios St. Johannes Klinik Duisburg, Duisburg, Germany
| | - Sven-Niklas Burmann
- Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | | | | | | | | | - Meik Kunz
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg H W Distler
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Gao Y, Xing S, Hu L. Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics. Molecules 2024; 29:1977. [PMID: 38731468 PMCID: PMC11085718 DOI: 10.3390/molecules29091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Phosphorylation of tyrosine is the basic mode of protein function and signal transduction in organisms. This process is regulated by protein tyrosine kinases (PTKs) and protein tyrosinases (PTPs). Immunoreceptor tyrosine-based inhibition motif (ITIM) has been considered as regulating the PTP activity through the interaction with the partner proteins in the cell signal pathway. The ITIM sequences need to be phosphorylated first to active the downstream signaling proteins. To explore potential regulatory mechanisms, the ITIM sequences of two transmembrane immunoglobulin proteins, myelin P0 protein-related protein (PZR) and programmed death 1 (PD-1), were analyzed to investigate their interaction with proteins involved in regulatory pathways. We discovered that phosphorylated ITIM sequences can selectively interact with the tyrosine phosphatase SHP2. Specifically, PZR-N-ITIM (pY) may be critical in the interaction between the ITIM and SH2 domains of SHP2, while PD1-C-ITSM (pY) may play a key role in the interaction between the ITIM and SH2 domains of SHP2. Quite a few proteins were identified containing the SH2 domain, exhibiting phosphorylation-mediated interaction with PZR-ITIM. In this study, 14 proteins with SH2 structural domains were identified by GO analysis on 339 proteins associated to the affinity pull-down of PZR-N-ITIM (pY). Through the SH2 domains, these proteins may interact with PZR-ITIM in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
| | - Shu Xing
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Lianghai Hu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
14
|
Švec X, Štorkánová H, Trinh-Minh T, Tran MC, Štorkánová L, Hulejová H, Oreská S, Heřmánková B, Bečvář R, Pavelka K, Vencovský J, Klingelhöfer J, Hussain RI, Hallén J, Šenolt L, Distler JHW, Tomčík M. S100A4-neutralizing monoclonal antibody 6B12 counteracts the established experimental skin fibrosis induced by bleomycin. Rheumatology (Oxford) 2024; 63:817-825. [PMID: 37314987 PMCID: PMC10907816 DOI: 10.1093/rheumatology/kead295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-β/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.
Collapse
Affiliation(s)
- Xiao Švec
- Institute of Rheumatology, Prague, Czech Republic
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Štorkánová
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thuong Trinh-Minh
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Manh Cuong Tran
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | | | | | - Sabína Oreská
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Heřmánková
- Institute of Rheumatology, Prague, Czech Republic
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Radim Bečvář
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Rizwan I Hussain
- Arxx Therapeutics, Oslo, Norway
- Agiana Pharmaceuticals, Oslo, Norway
| | | | - Ladislav Šenolt
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jörg H W Distler
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Michal Tomčík
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Uriol-Rivera MG, Obrador-Mulet A, Juliá MR, Daza-Cajigal V, Delgado-Sanchez O, Garcia Alvarez A, Gomez-Lobon A, Carrillo-Garcia P, Saus-Sarrias C, Gómez-Cobo C, Ramis-Cabrer D, Gasco Company J, Molina-Infante J. Sequential administration of paricalcitol followed by IL-17 blockade for progressive refractory IgA nephropathy patients. Sci Rep 2024; 14:4866. [PMID: 38418932 PMCID: PMC10902332 DOI: 10.1038/s41598-024-55425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
There is no established treatment for progressive IgA nephropathy refractory to steroids and immunosuppressant drugs (r-IgAN). Interleukin 17 (IL-17) blockade has garnered interest in immune-mediated diseases involving the gut-kidney axis. However, single IL-17A inhibition induced paradoxical effects in patients with Crohn's disease and some cases of de novo glomerulonephritis, possibly due to the complete Th1 cell response, along with the concomitant downregulation of regulatory T cells (Tregs). Seven r-IgAN patients were treated with at least six months of oral paricalcitol, followed by the addition of subcutaneous anti-IL-17A (secukinumab). After a mean follow-up of 28 months, proteinuria decreased by 71% (95% CI: 56-87), P < 0.001. One patient started dialysis, while the annual eGFR decline in the remaining patients [mean (95% CI)] was reduced by 4.9 mL/min/1.73 m2 (95% CI: 0.1-9.7), P = 0.046. Circulating Th1, Th17, and Treg cells remained stable, but Th2 cells decreased, modifying the Th1/Th2 ratio. Intriguingly, accumulation of circulating Th17.1 cells was observed. This novel sequential therapy appears to optimize renal advantages in patients with r-IgAN and elicit alterations in potentially pathogenic T helper cells.
Collapse
Affiliation(s)
- Miguel G Uriol-Rivera
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain.
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
| | - Aina Obrador-Mulet
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Rosa Juliá
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Vanessa Daza-Cajigal
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Olga Delgado-Sanchez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Angel Garcia Alvarez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Ana Gomez-Lobon
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Paula Carrillo-Garcia
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Carlos Saus-Sarrias
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Cristina Gómez-Cobo
- Laboratory Medicine Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Daniel Ramis-Cabrer
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Joan Gasco Company
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
16
|
Chen H, Liu C, Zhan Y, Wang Y, Hu Q, Zeng Z. Alpinetin ameliorates bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2024; 171:116101. [PMID: 38228032 DOI: 10.1016/j.biopha.2023.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease with a poor prognosis. Alpinetin (ALP), derived from Alpinia katsumadai Hayata, has shown potential as a therapeutic measure of various diseases. However, the utilization of ALP in managing pulmonary fibrosis and its underlying mechanisms are still not fully understood. METHODS A well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM) was used in this study. The antifibrotic effects of ALP on histopathologic manifestations and expression levels of fibrotic markers were examined. Subsequently, the impact of ALP on fibroblast differentiation, proliferation, apoptosis, and associated signaling pathways was investigated to elucidate the underlying mechanisms. RESULTS In the present study, we observed that ALP effectively mitigated BLM-induced pulmonary fibrosis in mice, as evidenced by histopathological manifestations and the expression levels of fibrotic markers. Furthermore, the in vitro experiments demonstrated that ALP treatment attenuated the ability of fibroblasts to differentiate into myofibroblasts. Mechanically, our findings provided evidence that ALP suppressed fibroblast-to-myofibroblast differentiation by repressing TGF-β/ALK5/Smad signaling pathway. ALP was found to possess the capability of inhibiting fibroblast proliferation and promoting apoptosis of fibroblasts induced by TGF-β. CONCLUSION In general, ALP may exert therapeutic effects on pulmonary fibrosis by modulating the differentiation, proliferation, and apoptosis of fibroblasts. Although its safety has been demonstrated in mice, further studies are required to investigate the efficacy of ALP in treatment of patients with IPF.
Collapse
Affiliation(s)
- Huilong Chen
- Department and Institute of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Imbody D, Arce K, Solanki HS, Haura EB, Pellini B. Targeting SHP2 Signaling in Lung Cancer. J Thorac Oncol 2024; 19:18-24. [PMID: 37574134 DOI: 10.1016/j.jtho.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Denis Imbody
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Keishla Arce
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Hitendra S Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Bruna Pellini
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
18
|
Hong T, Xiong X, Chen Y, Wang Q, Fu X, Meng Q, Lu Y, Li X. Parathyroid hormone receptor-1 signaling aggravates hepatic fibrosis through upregulating cAMP response element-binding protein-like 2. Hepatology 2023; 78:1763-1776. [PMID: 36939197 DOI: 10.1097/hep.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/23/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND AIMS Parathyroid hormone receptor-1 (PTH1R) is a class B G protein-coupled receptor central to skeletal development, bone turnover, and calcium homeostasis. However, the role of PTH1R signaling in liver fibrosis is largely unknown. Here, the role of PTH1R signaling in the activation of HSCs and hepatic fibrosis was examined. APPROACH AND RESULTS PTH1R was highly expressed in activated HSCs and fibrotic liver by using human liver specimens or carbon tetrachloride (CCl 4 )-treated or methionine and choline-deficient diet (MCD)-fed C57/BL6 mice. The mRNA level of hepatic PTH1R was positively correlated to α-smooth muscle actin in patients with liver cirrhosis. Mice with HSCs-specific PTH1R deletion were protected from CCl 4 , MCD, or western diet, plus low-dose CCl 4 -induced liver fibrosis. Conversely, parathyroid hormone (PTH) aggravated liver fibrosis in CCl 4 -treated mice. Mouse primary HSCs and LX2 cell lines were used for in vitro experiments. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with mRNA sequencing in HSCs revealed that cAMP response element-binding protein-like 2 (Crebl2), a novel regulator in HSCs treated by PTH that interacted with mothers against decapentaplegic homolog 3 (SMAD3) and increased the transcription of TGFβ in activating HSCs and collagen deposition. In agreement, HSCs-specific Crebl2 deletion ameliorated PTH-induced liver fibrosis in CCl 4 -treated mice. CONCLUSIONS In both mouse and human models, we found that PTH1R was highly expressed in activated HSCs and fibrotic liver. PTH1R signaling regulated collagen production in the HSCs through Crebl2/SMAD3/TGFβ regulatory circuits. Blockade of PTH1R signaling in HSCs might help mitigate the development of liver fibrosis.
Collapse
Affiliation(s)
- Ting Hong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuelian Xiong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqiong Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyu Wang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Fu
- Department of General Surgery, Institute of Translational Medicine, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingnan Meng
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Chen C, Cheng Y, Lei H, Feng X, Zhang H, Qi L, Wan J, Xu H, Zhao X, Zhang Y, Yang B. SHP2 potentiates anti-PD-1 effectiveness through intervening cell pyroptosis resistance in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115797. [PMID: 37913735 DOI: 10.1016/j.biopha.2023.115797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1β, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China
| | - Yuanyuan Cheng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haoqi Lei
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xuefei Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Hongxia Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Lingling Qi
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jufeng Wan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haiying Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xin Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
20
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
21
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
22
|
Celada SI, Lim CX, Carisey AF, Ochsner SA, Arce Deza CF, Rexie P, Poli De Frias F, Cardenas-Castillo R, Polverino F, Hengstschläger M, Tsoyi K, McKenna NJ, Kheradmand F, Weichhart T, Rosas IO, Van Kaer L, Celada LJ. SHP2 promotes sarcoidosis severity by inhibiting SKP2-targeted ubiquitination of TBET in CD8 + T cells. Sci Transl Med 2023; 15:eade2581. [PMID: 37703351 PMCID: PMC11126869 DOI: 10.1126/scitranslmed.ade2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Clarice X. Lim
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Hospital, Memphis, TN 38105, USA
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Carlos F. Arce Deza
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Rexie
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Fernando Poli De Frias
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Mout Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Rafael Cardenas-Castillo
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Konstantin Tsoyi
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Lindsay J. Celada
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
23
|
Wang R, Yang YM. Identification of potential biomarkers for idiopathic pulmonary fibrosis and validation of TDO2 as a potential therapeutic target. World J Cardiol 2023; 15:293-308. [PMID: 37397828 PMCID: PMC10308271 DOI: 10.4330/wjc.v15.i6.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a high mortality rate. On this basis, exploring potential therapeutic targets to meet the unmet needs of IPF patients is important.
AIM To explore novel hub genes for IPF therapy.
METHODS Here, we used public datasets to identify differentially expressed genes between IPF patients and healthy donors. Potential targets were considered based on multiple bioinformatics analyses, especially the correlation between hub genes and carbon monoxide diffusing capacity of carbon monoxide, forced vital capacity, and patient survival rate. The mRNA levels of the hub genes were determined through quantitative real-time polymerase chain reaction.
RESULTS We found that TDO2 was upregulated in IPF patients and predicted poor prognosis. Surprisingly, single-cell RNA sequencing data analysis revealed significant enrichment of TDO2 in alveolar fibroblasts, indicating that TDO2 may participate in the regulation of proliferation and survival. Therefore, we verified the upregulated expression of TDO2 in an experimental mouse model of transforming growth factor-β (TGF-β)-induced pulmonary fibrosis. Furthermore, the results showed that a TDO2 inhibitor effectively suppressed TGF-β-induced fibroblast activation. These findings suggest that TDO2 may be a potential target for IPF treatment. Based on transcription factors-microRNA prediction and scRNA-seq analysis, elevated TDO2 promoted the IPF proliferation of fibroblasts and may be involved in the P53 pathway and aggravate ageing and persistent pulmonary fibrosis.
CONCLUSION We provided new target genes prediction and proposed blocking TGF-β production as a potential treatment for IPF.
Collapse
Affiliation(s)
- Ru Wang
- Henan University of Chinese Medicine, Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases, Zhengzhou 450046, Henan Province, China
| | - Yan-Mei Yang
- Zhengzhou University, Research Centre of Basic Medicine, Academy of Medical Sciences, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
24
|
Xie M, Yang L, Cheng J, Qu H, Gu Y, Ding C, Xu X, Zhao C, Huang X, Wang L. Gracillin relieves pulmonary fibrosis by suppressing the STAT3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116704. [PMID: 37257706 DOI: 10.1016/j.jep.2023.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a persistent and refractory illness accompanied by inflammation and fibrosis. Gracillin, a natural steroidal saponin, is one of the components of Dioscorea quinqueloba which has been used in herbal medicines for treating some inflammatory diseases. Therefore, it may be a potential drug candidate for PF management. AIM OF THE STUDY This study aims to elucidate and verify the anti-pulmonary fibrosis effect of gracillin. METHODS We established an in vivo model of PF by treatment of mice with bleomycin (BLM) and an in vitro model by treatment of NIH-3T3 cells with TGF-β1. Pathological changes to the structure of lung tissue, pulmonary function, inflammatory exudation of bronchoalveolar lavage fluid (BALF) and deposition of collagen were detected in vivo, and extracellular matrix (ECM) deposition and migration were evaluated in vitro. The significance of gracillin on STAT3 phosphorylation and nuclear translocation were evaluated by western blotting, immunohistochemistry and immunofluorescence assays. The STAT3 transcriptional activity was quantified with a dual-luciferase reporter assay. Recovery experiments were performed by plasmid-directed overexpression of STAT3. RESULTS We found that gracillin could improve pulmonary function, reduce lung inflammation and mitigate collagen deposition to ameliorate BLM-induced PF in mice. Gracillin also suppressed TGF-β1-induced increases in ECM deposition biomarkers, including COL1A1, fibronectin, α-SMA, N-cad and vimentin, and repressed migration in NIH-3T3 cells. Additionally, gracillin suppressed the phosphorylation, nuclear translocation and transcriptional action of STAT3. Furthermore, the decreased ECM deposition and migration upon gracillin treatment were abrogated upon overexpression of STAT3 in NIH-3T3 cells. CONCLUSIONS Gracillin protects against PF by inhibiting the STAT3 axis, providing a safe and efficacious approach to treating PF.
Collapse
Affiliation(s)
- Mengyao Xie
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China
| | - Lehe Yang
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China
| | - Jiayun Cheng
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongyan Qu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanting Gu
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China
| | - Cheng Ding
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China
| | - Xiaomei Xu
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoying Huang
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China.
| | - Liangxing Wang
- Pulmonary Division, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
25
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
26
|
Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 2023; 112:403-421. [PMID: 36422682 DOI: 10.1007/s00223-022-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.
Collapse
Affiliation(s)
- Nathaniel R Jensen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan R Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten D Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Stephanie K Khoo
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Sara J Sidles
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
27
|
Baricitinib Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice by Inhibiting TGF-β1 Signaling Pathway. Molecules 2023; 28:molecules28052195. [PMID: 36903446 PMCID: PMC10004526 DOI: 10.3390/molecules28052195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with unknown etiology, high mortality and limited treatment options. It is characterized by myofibroblast proliferation and extensive deposition of extracellular matrix (ECM), which will lead to fibrous proliferation and the destruction of lung structure. Transforming growth factor-β1 (TGF-β1) is widely recognized as a central pathway of pulmonary fibrosis, and the suppression of TGF-β1 or the TGF-β1-regulated signaling pathway may thus offer potential antifibrotic therapies. JAK-STAT is a downstream signaling pathway regulated by TGF-β1. JAK1/2 inhibitor baricitinib is a marketed drug for the treatment of rheumatoid arthritis, but its role in pulmonary fibrosis has not been reported. This study explored the potential effect and mechanism of baricitinib on pulmonary fibrosis in vivo and in vitro. The in vivo studies have shown that baricitinib can effectively attenuate bleomycin (BLM)-induced pulmonary fibrosis, and in vitro studies showed that baricitinib attenuates TGF-β1-induced fibroblast activation and epithelial cell injury by inhibiting TGF-β1/non-Smad and TGF-β1/JAK/STAT signaling pathways, respectively. In conclusion, baricitinib, a JAK1/2 inhibitor, impedes myofibroblast activation and epithelial injury via targeting the TGF-β1 signaling pathway and reduces BLM-induced pulmonary fibrosis in mice.
Collapse
|
28
|
Zhang Y, Cai B, Li Y, Xu Y, Wang Y, Zheng L, Zheng X, Yin L, Chen G, Wang Y, Liang G, Chen L. Identification of linderalactone as a natural inhibitor of SHP2 to ameliorate CCl 4-induced liver fibrosis. Front Pharmacol 2023; 14:1098463. [PMID: 36843936 PMCID: PMC9946977 DOI: 10.3389/fphar.2023.1098463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Liver fibrosis is characterised by the activation of hepatic stellate cells (HSCs) and matrix deposition. Accumulating evidence has revealed that the oncogenic protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) acts as a therapeutic target of fibrosis. Although several SHP2 inhibitors have reached early clinical trials, there are currently no FDA-approved drugs that target SHP2. In this study, we aimed to identify novel SHP2 inhibitors from an in-house natural product library to treat liver fibrosis. Out of the screened 800 compounds, a furanogermacrane sesquiterpene, linderalactone (LIN), significantly inhibited SHP2 dephosphorylation activity in vitro. Cross-validated enzymatic assays, bio-layer interferometry (BLI) assays, and site-directed mutagenesis were used to confirm that LIN directly binds to the catalytic PTP domain of SHP2. In vivo administration of LIN significantly ameliorated carbon tetrachloride (CCl4)-induced HSC activation and liver fibrosis by inhibiting the TGFβ/Smad3 pathway. Thus, LIN or its derivatives could be considered potential therapeutic agents against SHP2-related diseases, such as liver fibrosis or NASH.
Collapse
Affiliation(s)
- Yi Zhang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Li
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Xu
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Wang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lulu Zheng
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaochun Zheng
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lina Yin
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunxiang Wang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| | - Guang Liang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| | - Lingfeng Chen
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| |
Collapse
|
29
|
Ji H, Dong H, Lan Y, Bi Y, Gu X, Han Y, Yang C, Cheng M, Gao J. Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front Pharmacol 2023; 14:1089812. [PMID: 36817136 PMCID: PMC9936158 DOI: 10.3389/fphar.2023.1089812] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Fibroblasts activation is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis pathogenesis, and transforming growth factor (TGF)-β1 plays a key regulatory role in fibroblast activation. It has been reported that metformin (MET) alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) by regulating TGF-β1-induced fibroblasts activation, but the underlying mechanisms still deserve further investigations. In this study, MET blocked α-smooth muscle actin (α-SMA) accumulation in vivo accompanied with S100A4 expression and STAT3 phosphorylation inhibition, resulting in attenuating the progression of lung fibrosis after BLM administration. We determined that S100A4 plays critical roles in fibroblasts activation in vitro, evidenced by siRNA knockdown of S100A4 expression downregulated TGF-β1 induced α-SMA production in Human fetal lung fibroblast (HFL1) cells. Importantly, we found for the first time that the expression of S100A4 in fibroblasts was regulated by STAT3. Stattic, an effective small molecule inhibitor of STAT3 phosphorylation, reduced S100A4 level in TGF-β1- treated HFL1 cells accompanied with less α-SMA production. We further found that MET, which inhibits STAT3 phosphorylation by AMPK activation, also inhibits fibroblasts activation by targeting S100A4 in vitro. Together all these results, we conclude that S100A4 contributes to TGF-β1- induced pro-fibrogenic function in fibroblasts activation, and MET was able to protect against TGF-β1-induced fibroblasts activation and BLM-induced PF by down-regulating S100A4 expression through AMPK-STAT3 axis. These results provide a useful clue for a clinical strategy to prevent PF.
Collapse
Affiliation(s)
- Huimin Ji
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hongliang Dong
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jilin Province People's Hospital, Changchun, Jilin, China
| | - Yuqian Bi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Gu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,3201 Hospital, Hanzhong, Shaanxi, China
| | - Yongyue Han
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongyang Yang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghan Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| |
Collapse
|
30
|
Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, Guo H, Fang Y, Lin R, Liu W, Wang L, Zheng Q, Xu J, Zhou Y, Qian J, Ding M, Luo J, Li Y, Yang K, Sun D, Yao H, He J, Lu W. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J 2022; 60:13993003.02307-2021. [PMID: 35777761 PMCID: PMC9808813 DOI: 10.1183/13993003.02307-2021] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accumulation of myofibroblasts is critical to fibrogenesis in idiopathic pulmonary fibrosis (IPF). Senescence and insufficient mitophagy in fibroblasts contribute to their differentiation into myofibroblasts, thereby promoting the development of lung fibrosis. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor, is essential for the early stage of lung development; however, the role of BMP4 in modulating lung fibrosis remains unknown. METHODS The aim of this study was to evaluate the role of BMP4 in lung fibrosis using BMP4-haplodeleted mice, BMP4-overexpressed mice, primary lung fibroblasts and lung samples from patients with IPF. RESULTS BMP4 expression was downregulated in IPF lungs and fibroblasts compared to control individuals, negatively correlated with fibrotic genes, and BMP4 decreased with transforming growth factor (TGF)-β1 stimulation in lung fibroblasts in a time- and dose-dependent manner. In mice challenged with bleomycin, BMP4 haploinsufficiency perpetuated activation of lung myofibroblasts and caused accelerated lung function decline, severe fibrosis and mortality. BMP4 overexpression using adeno-associated virus 9 vectors showed preventative and therapeutic efficacy against lung fibrosis. In vitro, BMP4 attenuated TGF-β1-induced fibroblast-to-myofibroblast differentiation and extracellular matrix (ECM) production by reducing impaired mitophagy and cellular senescence in lung fibroblasts. Pink1 silencing by short-hairpin RNA transfection abolished the ability of BMP4 to reverse the TGF-β1-induced myofibroblast differentiation and ECM production, indicating dependence on Pink1-mediated mitophagy. Moreover, the inhibitory effect of BMP4 on fibroblast activation and differentiation was accompanied with an activation of Smad1/5/9 signalling and suppression of TGF-β1-mediated Smad2/3 signalling in vivo and in vitro. CONCLUSION Strategies for enhancing BMP4 signalling may represent an effective treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jingpei Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Ziying Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaowei Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Jieping Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China .,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
31
|
Jiang M, Wang J, Shen Y, Zhu J, Liu Z, Gong W, Yu Y, Zhang S, Zhou X, He S, Song Y, Zhu Z, Jin L, Cong W. Ribosomal S6 Protein Kinase 2 Aggravates the Process of Systemic Scleroderma. J Invest Dermatol 2022; 142:3175-3183.e5. [PMID: 35853487 DOI: 10.1016/j.jid.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Systemic sclerosis is a complex process of pathogenesis, and the contributions of inherited genes, infections, and chemicals remain largely unknown. In this study, we showed that p90 ribosomal S6 protein kinase 2 (RSK2) was selectively upregulated in fibrotic skin and fibroblasts treated with the profibrotic cytokine TGF-β. Moreover, knockout of Rsk2 specifically in skin fibroblasts or pharmacological inhibition of RSK2 attenuated skin fibrosis in a mouse model. Mechanistically, RSK2 directly interacted with glycogen synthase kinase 3β in vivo and in vitro and thereby induced phosphorylation of glycogen synthase kinase 3β at Ser9 to inhibit ubiquitination and degradation of GLI1, which promoted fibroblast differentiation and skin fibrosis. Consequently, RSK2 plays an important role in the dermal skin of systemic sclerosis. These findings provided a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Mengying Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jianan Wang
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhili Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo, China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
32
|
Muntyanu A, Le M, Ridha Z, O’Brien E, Litvinov IV, Lefrançois P, Netchiporouk E. Novel role of long non-coding RNAs in autoimmune cutaneous disease. J Cell Commun Signal 2022; 16:487-504. [PMID: 34346026 PMCID: PMC9733767 DOI: 10.1007/s12079-021-00639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic autoimmune rheumatic diseases (SARDs) are a heterogeneous group of chronic multisystem inflammatory disorders that are thought to have a complex pathophysiology, which is not yet fully understood. Recently, the role of non-coding RNAs, including long non-coding RNA (lncRNA), has been of particular interest in the pathogenesis of SARDs. We aimed to summarize the potential roles of lncRNA in SARDs affecting the skin including, systemic sclerosis (SSc), dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). We conducted a narrative review summarizing original articles published until July 19, 2021, regarding lncRNA associated with SSc, DM, and CLE. Several lncRNAs were hypothesized to play an important role in disease pathogenesis of SSc, DM and CLE. In SSc, Negative Regulator of IFN Response (NRIR) was thought to modulate Interferon (IFN) response in monocytes, anti-sense gene to X-inactivation specific transcript (TSIX) to regulate increased collagen stability, HOX transcript antisense RNA (HOTAIR) to increase numbers of myofibroblasts, OTUD6B-Anti-Sense RNA 1 to decrease fibroblast apoptosis, ncRNA00201 to regulate pathways in SSc pathogenesis and carcinogenesis, H19X potentiating TGF-β-driven extracellular matrix production, and finally PSMB8-AS1 potentiates IFN response. In DM, linc-DGCR6-1 expression was hypothesized to target the USP18 protein, a type 1 IFN-inducible protein that is considered a key regulator of IFN signaling. Additionally, AL136018.1 is suggested to regulate the expression Cathepsin G, which increases the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells in peripheral blood and muscle tissue in DM. Lastly, lnc-MIPOL1-6 and lnc-DDX47-3 in discoid CLE were thought to be associated with the expression of chemokines, which are significant in Th1 mediated disease. In this review, we summarize the key lncRNAs that may drive pathogenesis of these connective tissue diseases and could potentially serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Anastasiya Muntyanu
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Michelle Le
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Zainab Ridha
- Faculty of Medicine, Université de Laval, Québec, QC Canada
| | - Elizabeth O’Brien
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Ivan V. Litvinov
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Philippe Lefrançois
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Elena Netchiporouk
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| |
Collapse
|
33
|
Tang Q, Xing C, Li M, Jia Q, Bo C, Zhang Z. Pirfenidone ameliorates pulmonary inflammation and fibrosis in a rat silicosis model by inhibiting macrophage polarization and JAK2/STAT3 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114066. [PMID: 36108436 DOI: 10.1016/j.ecoenv.2022.114066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Macrophages play an important role in causing silicosis eventually becoming an irreversible fibrotic disease, and there are no specific drugs for silicosis in the clinic so far. Pirfenidone has consistently been shown to have anti-inflammatory and anti-fibrotic effects, but the specific mechanism by which it ameliorates fibrosis in silicosis is unclear. A rat silicosis model was established in this study, and lung tissues and serum were collected by batch execution at 14, 28, and 56 days. Also, the effects of Pirfenidone on macrophage polarization and pulmonary fibrosis were evaluated in silicosis with early intervention and late treatment by histological examination, Enzyme-linked immunosorbent assay, Hydroxyproline assay, Western blot and Quantitative reverse transcription polymerase chain reaction. The results showed that Pirfenidone significantly reduced pulmonary fibrosis in rats with silicosis, and both early intervention and late treatment effectively inhibited the expression of α-SMA, Col-I, Vimentin, Hydroxyproline, IL-1β, IL-18, and the M2 macrophage marker CD206 and Arg-1, while only early intervention effectively inhibited E-cad, TGF-β1, TNF-α, and the M1 macrophage marker iNOS, CD86. Furthermore, Pirfenidone dramatically reduced the mRNA expression of the JAK2/STAT3. These findings imply that Pirfenidone may reduce pulmonary fibrosis in silicosis rats by inhibiting macrophage polarization via the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Qiong Tang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250000, China
| | - Chen Xing
- Jinan Center For Disease Control And Prevention, Jinan, Shandong 250000, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250000, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250000, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250000, China.
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250000, China.
| |
Collapse
|
34
|
Hsu MF, Ito Y, Afkarian M, Haj FG. Deficiency of the Src homology phosphatase 2 in podocytes is associated with renoprotective effects in mice under hyperglycemia. Cell Mol Life Sci 2022; 79:516. [PMID: 36102977 PMCID: PMC10987040 DOI: 10.1007/s00018-022-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Diabetic nephropathy (DN) is a significant complication of diabetes and the leading cause of end-stage renal disease. Hyperglycemia-induced dysfunction of the glomerular podocytes is a major contributor to the deterioration of renal function in DN. Previously, we demonstrated that podocyte-specific disruption of the Src homology phosphatase 2 (Shp2) ameliorated lipopolysaccharide-induced renal injury. This study aims to evaluate the contribution of Shp2 to podocyte function under hyperglycemia and explore the molecular underpinnings. We report elevated Shp2 in the E11 podocyte cell line under high glucose and the kidney under streptozotocin- and high-fat diet-induced hyperglycemia. Consistently, Shp2 disruption in podocytes was associated with partial renoprotective effects under hyperglycemia, as evidenced by the preserved renal function. At the molecular level, Shp2 deficiency was associated with altered renal insulin signaling and diminished hyperglycemia-induced renal endoplasmic reticulum stress, inflammation, and fibrosis. Additionally, Shp2 knockdown in E11 podocytes mimicked the in vivo deficiency of this phosphatase and ameliorated the deleterious impact of high glucose, whereas Shp2 reconstitution reversed these effects. Moreover, Shp2 deficiency attenuated high glucose-induced E11 podocyte migration. Further, we identified the protein tyrosine kinase FYN as a putative mediator of Shp2 signaling in podocytes under high glucose. Collectively, these findings suggest that Shp2 inactivation may afford protection to podocytes under hyperglycemia and highlight this phosphatase as a potential target to ameliorate glomerular dysfunction in DN.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA.
| | - Yoshihiro Ito
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
- Department of Endocrinology and Diabetes, and Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Maryam Afkarian
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA.
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
35
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
36
|
Li H, Zhao C, Muhetaer G, Guo L, Yao K, Zhang G, Ji Y, Xing S, Zhou J, Huang X. Integrated RNA-sequencing and network pharmacology approach reveals the protection of Yiqi Huoxue formula against idiopathic pulmonary fibrosis by interfering with core transcription factors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154301. [PMID: 35792448 DOI: 10.1016/j.phymed.2022.154301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a refractory disease. Therefore, developing effective therapies for IPF is the need of the hour. PURPOSE Yiqi Huoxue Formula (YQHX) is an herbal formula comprising three herbal medicines: Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma, CR), Panax notoginseng (Burk.) F. H. Chen (Notoginseng Radix Et Rhizoma, NR) and Panax ginseng C. A. Mey. (Ginseng Radix Et Rhizoma, GR). This study aims to determine the anti-pulmonary fibrosis effect of YQHX and explore its mechanism of action. STUDY Design and Methods: The chemical components in the GR, CR and NR extracts were identified by High Performance Liquid Chromatography. A TGF-β1-induced myofibroblast cell model was used to test the anti-fibrosis effect of GR, CR, NR and YQHX. RNA-sequencing was used to identify the differentially expressed genes (DEGs) after YQHX treatment. Subsequently, gene enrichment analysis and key transcription factors (TFs) prediction for YQHX-regulated DEGs was performed. The active constituents of GR, CR and NR were obtained from the Traditional Chinese Medicine Database and Analysis Platform. Targets of the active constituents were predicted using the similarity ensemble approach search server and Swiss Target Prediction tool. YQHX-targeted key TFs that transcribed the DEGs were screened out. Then, the effect of YQHX on the bleomycin-induced pulmonary fibrosis mouse model was studied. Finally, one of the predicted TFs, STAT3, was selected to validate the prediction accuracy. RESULTS Seven, two, and five compounds were identified in the GR, CR, and NR extracts, respectively. YQHX and its constituents-GR, CR and NR-inhibited the expression of fibrotic markers, including α -SMA and fibronectin, indicating that YQHX inhibited TGF-β1-induced myofibroblast activation. RNA-sequencing identified 291 genes that were up-regulated in the TGF-β1 group but down-regulated after YQHX treatment. In total, 55 key TFs that transcribed YQHX-regulated targets were predicted. A regulatory network of 24 active ingredients and 232 corresponding targets for YQHX was established. Among YQHX's predicted targets, 20 were TFs. On overlapping YQHX-targeted TFs and DEGs' key TFs, six key TFs, including HIF1A, STAT6, STAT3, PPARA, DDIT3 and AR, were identified as the targets of YQHX. Additionally, YQHX alleviated bleomycin-induced pulmonary fibrosis in a mouse model by inhibiting the phosphorylation of STAT3 in the lungs of pulmonary fibrosis mice. CONCLUSIONS This study provides pharmacological support for the use of YQHX in the treatment of IPF. The potential mechanism of action of YQHX is speculated to involve the modulation of core TFs and inhibition of pathogenetic gene expressions in IPF.
Collapse
Affiliation(s)
- Hang Li
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China.
| | - Caiping Zhao
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Gulizeba Muhetaer
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Longgang Guo
- Guangzhou Chromap Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Kainan Yao
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Guiyu Zhang
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Yichun Ji
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Sizhong Xing
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China
| | - Jihong Zhou
- Department of Respiratory Medicine, Central lab, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Yu'an Second Road, No. 21, Shenzhen 518133, China.
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Jichang Road, No. 12, Guangzhou 510405, China.
| |
Collapse
|
37
|
Dynamic changes in O-GlcNAcylation regulate osteoclast differentiation and bone loss via nucleoporin 153. Bone Res 2022; 10:51. [PMID: 35879285 PMCID: PMC9314416 DOI: 10.1038/s41413-022-00218-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Bone mass is maintained by the balance between osteoclast-induced bone resorption and osteoblast-triggered bone formation. In inflammatory arthritis such as rheumatoid arthritis (RA), however, increased osteoclast differentiation and activity skew this balance resulting in progressive bone loss. O-GlcNAcylation is a posttranslational modification with attachment of a single O-linked β-D-N-acetylglucosamine (O-GlcNAc) residue to serine or threonine residues of target proteins. Although O-GlcNAcylation is one of the most common protein modifications, its role in bone homeostasis has not been systematically investigated. We demonstrate that dynamic changes in O-GlcNAcylation are required for osteoclastogenesis. Increased O-GlcNAcylation promotes osteoclast differentiation during the early stages, whereas its downregulation is required for osteoclast maturation. At the molecular level, O-GlcNAcylation affects several pathways including oxidative phosphorylation and cell-cell fusion. TNFα fosters the dynamic regulation of O-GlcNAcylation to promote osteoclastogenesis in inflammatory arthritis. Targeted pharmaceutical or genetic inhibition of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) arrests osteoclast differentiation during early stages of differentiation and during later maturation, respectively, and ameliorates bone loss in experimental arthritis. Knockdown of NUP153, an O-GlcNAcylation target, has similar effects as OGT inhibition and inhibits osteoclastogenesis. These findings highlight an important role of O-GlcNAcylation in osteoclastogenesis and may offer the potential to therapeutically interfere with pathologic bone resorption.
Collapse
|
38
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
39
|
Chen K, Henn D, Januszyk M, Barrera JA, Noishiki C, Bonham CA, Griffin M, Tevlin R, Carlomagno T, Shannon T, Fehlmann T, Trotsyuk AA, Padmanabhan J, Sivaraj D, Perrault DP, Zamaleeva AI, Mays CJ, Greco AH, Kwon SH, Leeolou MC, Huskins SL, Steele SR, Fischer KS, Kussie HC, Mittal S, Mermin-Bunnell AM, Diaz Deleon NM, Lavin C, Keller A, Longaker MT, Gurtner GC. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci Transl Med 2022; 14:eabj9152. [PMID: 35584231 DOI: 10.1126/scitranslmed.abj9152] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.
Collapse
Affiliation(s)
- Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chikage Noishiki
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clark A Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Theresa Carlomagno
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara Shannon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Artem A Trotsyuk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David P Perrault
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alsu I Zamaleeva
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chyna J Mays
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn H Greco
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sun Hyung Kwon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa C Leeolou
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Savana L Huskins
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sydney R Steele
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katharina S Fischer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hudson C Kussie
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Smiti Mittal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alana M Mermin-Bunnell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M Diaz Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
40
|
Fan C, Zhao Y, Chen Y, Qin T, Lin J, Han S, Yan R, Lei T, Xie Y, Wang T, Gu S, Ouyang H, Shen W, Yin Z, Chen X. A Cd9 +Cd271 + stem/progenitor population and the SHP2 pathway contribute to neonatal-to-adult switching that regulates tendon maturation. Cell Rep 2022; 39:110762. [PMID: 35476985 DOI: 10.1016/j.celrep.2022.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2022] [Accepted: 04/08/2022] [Indexed: 11/03/2022] Open
Abstract
Tendon maturation lays the foundation for postnatal tendon development, its proper mechanical function, and regeneration, but the critical cell populations and the entangled mechanisms remain poorly understood. Here, by integrating the structural, mechanical, and molecular properties, we show that post-natal days 7-14 are the crucial transitional stage for mouse tendon maturation. We decode the cellular and molecular regulatory networks at the single-cell level. We find that a nerve growth factor (NGF)-secreting Cd9+Cd271+ tendon stem/progenitor cell population mainly prompts conversion from neonate to adult tendon. Through single-cell gene regulatory network analysis, in vitro inhibitor identification, and in vivo tendon-specific Shp2 deletion, we find that SHP2 signaling is a regulator for tendon maturation. Our research comprehensively reveals the dynamic cell population transition during tendon maturation, implementing insights into the critical roles of the maturation-related stem cell population and SHP2 signaling pathway during tendon differentiation and regeneration.
Collapse
Affiliation(s)
- Chunmei Fan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanyan Zhao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yangwu Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tian Qin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Junxin Lin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Shan Han
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Ruojin Yan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingyun Lei
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yuanhao Xie
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shen Gu
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
41
|
Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. J Immunol Res 2022; 2022:1810804. [PMID: 35465350 PMCID: PMC9020142 DOI: 10.1155/2022/1810804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims. Prostate cancer (PCa) is one of the neoplasms with the highest incidence and mortality rate in men worldwide. Advanced stages of the disease are usually very aggressive, and most are treated with chemotherapeutic drugs that generally cause side effects in these patients. However, additional therapeutic targets such as the IL6R/STAT-3 axis and TIGIT have been proposed, mainly due to their relevance in the development of PCa and regulation of NK cell-mediated cytotoxicity. Here, we evaluate the effect of inhibitors directed against these therapeutic targets primarily via an analysis of NK cell function versus prostate cancer cells. Methods. We analyzed the secretion of cytokines, chemokines, and growth factors in 22Rv1, LNCaP, and DU145 cells. In these cells, we also evaluated the expression of NK ligands, IL6R, STAT-3, and phosporylated STAT-3. In NK-92 cells, we evaluated the effects of Stattic (Stt) and tocilizumab (Tcz) on NK receptors. In addition, we assessed if the disruption of the IL6R/STAT-3 pathway and blockade of TIGIT potentiated the cytotoxicity of NK-92 cells versus DU145 cells. Results. DU145 abundantly secretes M-CSF, VEGF, IL-6, CXCL8, and TGF-β. Furthermore, the expression of CD155 was found to increase in accordance with aggressiveness and metastatic status in the prostate cancer cells. Stt and Tcz induce a decrease in STAT-3 phosphorylation in the DU145 cells and, in turn, induce an increase of NKp46 and a decrease of TIGIT expression in NK-92 cells. Finally, the disruption of the IL6R/STAT-3 axis in prostate cancer cells and the blocking of TIGIT on NK-92 were observed to increase the cytotoxicity of NK-92 cells against DU145 cells through an increase in sFasL, granzyme A, granzyme B, and granulysin. Conclusions. Our results reveal that the combined use of inhibitors directed against the IL6R/STAT-3 axis and TIGIT enhances the functional activity of NK cells against castration-resistant prostate cancer cells.
Collapse
|
42
|
Li Z, Geng J, Xie B, He J, Wang J, Peng L, Hu Y, Dai H, Wang C. Dihydromyricetin Alleviates Pulmonary Fibrosis by Regulating Abnormal Fibroblasts Through the STAT3/p-STAT3/GLUT1 Signaling Pathway. Front Pharmacol 2022; 13:834604. [PMID: 35359847 PMCID: PMC8964100 DOI: 10.3389/fphar.2022.834604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with a poor prognosis. Although dihydromyricetin (DHM), extracted from vine tea and other Ampelopsis species, has been proven to have anti-inflammatory and antioxidant functions, the effects of DHM on IPF remain unclear. Methods: The effects of DHM on the differentiation, migration, proliferation, and respiratory functions of primary mouse lung fibroblasts (PMLFs) and primary human lung fibroblasts (PHLFs) were detected by western blotting, the Transwell assay, EdU staining, and the Mito Stress test. Then, the impacts of DHM on bleomycin (BLM)-induced pulmonary fibrosis were evaluated by pathological staining, western blotting, and coimmunofluorescence staining. The signaling pathway influenced by DHM was also investigated. Results: DHM could regulate the differentiation of fibroblasts to myofibroblasts and suppress the abnormal migration, proliferation, and respiratory functions of myofibroblasts induced by TGF-β1 or myofibroblasts from IPF patients. DHM could also alleviate pulmonary fibrosis induced by BLM. All these effects were achieved by regulating the STAT3/p-STAT3/GLUT1 signaling pathway. Conclusion: DHM could regulate the abnormal functions of myofibroblasts induced by TGF-β1 and myofibroblasts from IPF patients and alleviate pulmonary fibrosis induced by BLM; thus, DHM might be a candidate medicinal treatment for IPF.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingbing Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiarui He
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yinan Hu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| |
Collapse
|
43
|
Ajay AK, Zhao L, Vig S, Fujiwara M, Thakurela S, Jadhav S, Cho A, Chiu IJ, Ding Y, Ramachandran K, Mithal A, Bhatt A, Chaluvadi P, Gupta MK, Shah SI, Sabbisetti VS, Waaga-Gasser AM, Frank DA, Murugaiyan G, Bonventre JV, Hsiao LL. Deletion of STAT3 from Foxd1 cell population protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration. Cell Rep 2022; 38:110473. [PMID: 35263586 PMCID: PMC10027389 DOI: 10.1016/j.celrep.2022.110473] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Signal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function. STAT3 is phosphorylated in tubular epithelial cells in acute kidney injury, whereas it is expanded to interstitial cells in fibrosis in mice and humans. Foxd1-mediated deletion of Stat3 protects mice from folic-acid- and aristolochic-acid-induced kidney fibrosis. Mechanistically, STAT3 upregulates the inflammation and differentiates pericytes into myofibroblasts. STAT3 activation increases migration and profibrotic signaling in genome-edited, pericyte-like cells. Conversely, blocking Stat3 inhibits detachment, migration, and profibrotic signaling. Furthermore, STAT3 binds to the Collagen1a1 promoter in mouse kidneys and cells. Together, our study identifies a previously unknown function of STAT3 that promotes kidney fibrosis and has therapeutic value in fibrosis.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Li Zhao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shruti Vig
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sudhir Thakurela
- Broad Institute of MIT and Harvard, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shreyas Jadhav
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Cho
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - I-Jen Chiu
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yan Ding
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Krithika Ramachandran
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Arushi Mithal
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aanal Bhatt
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pratyusha Chaluvadi
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Venkata S Sabbisetti
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana Maria Waaga-Gasser
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Research Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Ding Y, Ouyang Z, Zhang C, Zhu Y, Xu Q, Sun H, Qu J, Sun Y. Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm (Beijing) 2022; 3:e120. [PMID: 35281792 PMCID: PMC8906448 DOI: 10.1002/mco2.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, often accompanied by increased infiltration of immune cells, especially neutrophils. However, the detailed mechanism of the neutrophil function in psoriasis progression remains unclear. Here, we found that both Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) and neutrophils were highly correlated to developing psoriasis by single-cell ribonucleic acid (RNA) sequencing and experiment verification. The deficiency of SHP2 in neutrophils significantly alleviated psoriasis-like phenotype in an imiquimod-induced murine model. Interestingly, high levels of neutrophil extracellular traps (NETs) were produced in the inflamed lesions of psoriatic patients. In addition, imiquimod-induced psoriasis-like symptoms were remarkably ameliorated in peptidyl arginine deiminase 4 (PAD4) knockout mice, which cannot form NETs. Mechanistically, RNA-seq analysis revealed that SHP2 promoted the formation of NETs in neutrophils via the ERK5 pathway. Functionally, this mechanism resulted in the infiltration of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-17A, and CXCL-15, which enhances the inflammatory response in skin lesions and reinforces the cross-talk between neutrophils and keratinocytes, ultimately aggravating psoriasis. Our findings uncover a role for SHP2 in NET release and subsequent cell death known as NETosis in the progression of psoriasis and suggest that SHP2 may be a promising therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Yan Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation Center (ChemBIC)Nanjing UniversityNanjingChina
| |
Collapse
|
45
|
Endothelial Shp2 deficiency controls alternative activation of macrophage preventing radiation-induced lung injury through Notch signaling. iScience 2022; 25:103867. [PMID: 35243230 PMCID: PMC8859005 DOI: 10.1016/j.isci.2022.103867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Radiation-induced lung injury is a common late side effect of thoracic radiotherapy. Endothelial dysfunction following leukocytes infiltration is a prominent feature in this process. Here, we established a clinical-mimicking mouse model of radiation-induced lung injury and found the activity of phosphatase Shp2 was elevated in endothelium after injury. Endothelium-specific Shp2 deletion mice showed relieved collagen deposition along with disrupted radiation-induced Jag1 expression in the endothelium. Furthermore, endothelium-derived Jag1 activated the alternative activation of macrophages in vitro and in vivo by paracrine Notch signaling. Consistently, the Notch pathway was significantly activated by chest irradiation in the peripheral blood leukocytes of patients with cancer. Collectively, our work demonstrates that Shp2 participates in the radiation-induced endothelial dysfunction and subsequently inflammatory microenvironment producing during radiation-induced lung injury. Our findings indicate Shp2 as a potential target for radiation-induced lung injury and provide another way for endothelium to participate in the pathological process of radiation-induced lung injury. Phosphatase activity of endothelial Shp2 is elevated by irradiation in vitro and in vivo Radiation-induced Jag1 is blocked in Shp2-deficient endothelium Loss of Shp2 in endothelium relieves radiation-induced pulmonary injury Shp2-deficient endothelium restrains macrophage activation via Notch signaling
Collapse
|
46
|
Zhou Q, Gong J, Bi J, Yang X, Zhang L, Lu C, Li L, Chen M, Cai J, Yang R, Li X, Li Z, Wang X. Keratinocyte growth factor-2 regulates signal-transducing adaptor protein-2-mediated signal transducer and activator of transcription 3 signaling and reduces skin scar formation. J Invest Dermatol 2022; 142:2003-2013.e5. [PMID: 34999107 DOI: 10.1016/j.jid.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Hypertrophic scar (HS) is a common complication of burns, skin trauma, and postoperative trauma, which involves excessive proliferation of fibroblasts and accumulation of a large amount of disorganized collagen fibers and extracellular matrix (ECM). Keratinocyte growth factor-2 (KGF-2) plays important roles in the regulation of cellular homeostasis and wound healing. In this study, we investigate the effect and underlying mechanism of KGF-2 on scar formation following wound healing both in vitro and in vivo. We show that KGF-2 attenuates mechanical stress-induced scar formation while promoting wound healing. Mechanistically, KGF-2 inhibits STAP2 expression and STAT3 activation, leading to significantly reduced COLI and COLIII levels. Our results provide a insight into the role of KGF-2 in wound healing and scar formation, and the therapeutic potential for reducing scarring while promoting wound healing.
Collapse
Affiliation(s)
- Qingde Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianxiang Gong
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianing Bi
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Xuanxin Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Li Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Lu
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Lijia Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Min Chen
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianqiu Cai
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Rongshuai Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science
| | - Zhiming Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaojie Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science.
| |
Collapse
|
47
|
Assmann JLJC, Leon LG, Stavast CJ, van den Bogaerdt SE, Schilperoord-Vermeulen J, Sandberg Y, Bellido M, Erkeland SJ, Feith DJ, Loughran TP, Langerak AW. miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia 2021; 36:983-993. [PMID: 34873301 PMCID: PMC8979821 DOI: 10.1038/s41375-021-01480-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
T-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.
Collapse
Affiliation(s)
- Jorn L J C Assmann
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leticia G Leon
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christiaan J Stavast
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sanne E van den Bogaerdt
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joyce Schilperoord-Vermeulen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Yorick Sandberg
- Department of Hematology, Maasstadziekenhuis, Rotterdam, The Netherlands
| | - Mar Bellido
- Department of Hematology, Faculty of Medical Sciences, Groningen University Medical Center, Groningen, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - David J Feith
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Loughran
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,ACE Rare Immunological Diseases Center, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Jiang M, Dai J, Yin M, Jiang C, Ren M, Tian L. LncRNA MEG8 sponging miR-181a-5p contributes to M1 macrophage polarization by regulating SHP2 expression in Henoch-Schonlein purpura rats. Ann Med 2021; 53:1576-1588. [PMID: 34477472 PMCID: PMC8425717 DOI: 10.1080/07853890.2021.1969033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) are regulatory molecules that play important roles in various biological and pathological processes. Herein, we aimed to explore whether maternally expressed gene 8 (MEG8) promotes M1 macrophage polarization among Henoch-Schonlein purpura (HSP) rats, and to investigate the underlying mechanism. METHODS Relative mRNA expression of MEG8, miR-181a-5p and suppressor of SH2 domain-containing tyrosine phosphatase 2 (SHP2) were examined using quantitative reverse transcription polymerase chain reaction. Furthermore, expression of SHP2 and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway-related proteins was identified using western blot. Luciferase activity assay was conducted to evaluate whether miR-181a-5p could bind to MEG8 or SHP2. The macrophage phenotype was determined using flow cytometry and enzyme-linked immunosorbent assay. RESULTS We observed macrophage polarization towards the M2 phenotype in the peripheral blood of HSP rats. Furthermore, MEG8 and SHP2 expression were down-regulated, while miR-181a-5p was up-regulated in monocyte-derived macrophages from the HSP rats compared to the control group. Furthermore, MEG8 functioned as a sponge for miR-181a-5p in order to facilitate SHP2 expression. Moreover, miR-181a-5p mimic and SHP2 knockdown significantly reversed the MEG8 overexpression-mediated suppression of JAK2/STAT3 signalling, and promotion of M1 polarization. CONCLUSIONS The lncRNA MEG8 sponged miR-181a-5p, which contributes to M1 macrophage polarization by regulating SHP2 expression in HSP rats.Key MessagesLncRNA MEG8 downregulation and M2 polarization in Henoch Schonlein purpura rats.MEG8 upregulation enhances M1 polarization and suppresses JAK2/STAT3 pathway.MEG8 sponges miRNA-181a-5p to regulate SHP2 expression.MiRNA-181a-5p upregulation reverses lncRNA MEG8-mediated enhancement of M1 polarization and inhibition of JAK2/STAT3 pathway.SHP2 downregulation reverses lncRNA MEG8-mediated enhancement of M1 polarization and inhibition of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jicheng Dai
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Mingying Yin
- Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Chunming Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Mingyong Ren
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
49
|
Li G, Li D, Yuan F, Cheng C, Chen L, Wei X. Synergistic effect of chidamide and venetoclax on apoptosis in acute myeloid leukemia cells and its mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1575. [PMID: 34790781 PMCID: PMC8576699 DOI: 10.21037/atm-21-5066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023]
Abstract
Background Acute myeloid leukemia (AML) is a hematological malignancy with a low remission rate and high recurrence rate. Overexpression of the antiapoptotic protein Bcl-2 is associated with a lower overall survival rate in AML patients. Venetoclax (ABT199) is a selective inhibitor of Bcl-2 that has a significant effect in AML, but single-drug resistance often occurs due to the high expression of Mcl-1 protein. Studies have confirmed that chidamide can downregulate the expression levels of Bcl-2 and Mcl-1 and induce apoptosis. Methods This study aimed to use AML cell lines and primary cells to study the effects of venetoclax and chidamide combination therapy on AML cell apoptosis, the cell cycle, and changes in related signaling pathways in vitro; establish an AML mouse model to observe the efficacy and survival time of combination therapy in vivo; and analyze the drug effects with multi-omics sequencing technology. The changes in gene and protein expression before and after treatment were examined to clarify the molecular mechanism driving the synergistic effect of the two drugs. Results (I) Both venetoclax and chidamide promoted apoptosis in AML cell lines and primary cells in a time- and concentration-dependent manner. The effect was further enhanced when the two drugs were combined, and a synergistic effect was observed (combination index <1). (II) At both the mRNA and protein levels, the expression of Mcl-1 was upregulated by venetoclax and downregulated by chidamide, and the expression of Mcl-1 decreased further after combination treatment. (III) Transcriptome sequencing showed that differentially expressed genes in the combination group compared with the venetoclax monotherapy group were mainly enriched in the PI3K-AKT pathway and JAK2/STAT3 pathway. Moreover, qRT-PCR and Western blot confirmed these results. (IV) The combination therapy group exhibited significantly inhibited disease progression and a prolonged survival time among AML mice. Conclusions Chidamide combined with venetoclax synergistically promoted apoptosis in AML cell lines and primary cells by inhibiting activation of the PI3K/AKT pathway and JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Gangping Li
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongbei Li
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Yuan
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng Cheng
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Chen
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Wei
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Xu Z, Guo C, Ye Q, Shi Y, Sun Y, Zhang J, Huang J, Huang Y, Zeng C, Zhang X, Ke Y, Cheng H. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization. Nat Commun 2021; 12:6310. [PMID: 34728626 PMCID: PMC8564544 DOI: 10.1038/s41467-021-26697-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
SHP2 mediates the activities of multiple receptor tyrosine kinase signaling and its function in endothelial processes has been explored extensively. However, genetic studies on the role of SHP2 in tumor angiogenesis have not been conducted. Here, we show that SHP2 is activated in tumor endothelia. Shp2 deletion and pharmacological inhibition reduce tumor growth and microvascular density in multiple mouse tumor models. Shp2 deletion also leads to tumor vascular normalization, indicated by increased pericyte coverage and vessel perfusion. SHP2 inefficiency impairs endothelial cell proliferation, migration, and tubulogenesis through downregulating the expression of proangiogenic SRY-Box transcription factor 7 (SOX7), whose re-expression restores endothelial function in SHP2-knockdown cells and tumor growth, angiogenesis, and vascular abnormalization in Shp2-deleted mice. SHP2 stabilizes apoptosis signal-regulating kinase 1 (ASK1), which regulates SOX7 expression mediated by c-Jun. Our studies suggest SHP2 in tumor associated endothelial cells is a promising anti-angiogenic target for cancer therapy.
Collapse
Affiliation(s)
- Zhiyong Xu
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunyi Guo
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoli Ye
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yihui Sun
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- grid.13402.340000 0004 1759 700XDepartment of Urology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhou Huang
- grid.13402.340000 0004 1759 700XDepartment of Gynecology of Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- grid.469539.40000 0004 1758 2449Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Xue Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| | - Hongqiang Cheng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|