1
|
Baniulyte G, Hicks SM, Sammons MA. p53motifDB: integration of genomic information and tumor suppressor p53 binding motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614594. [PMID: 39386591 PMCID: PMC11463528 DOI: 10.1101/2024.09.24.614594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tumor suppressor gene TP53 encodes the DNA binding transcription factor p53 and is one of the most commonly mutated genes in human cancer. Tumor suppressor activity requires binding of p53 to its DNA response elements and subsequent transcriptional activation of a diverse set of target genes. Despite decades of close study, the logic underlying p53 interactions with its numerous potential genomic binding sites and target genes is not yet fully understood. Here, we present a database of DNA and chromatin-based information focused on putative p53 binding sites in the human genome to allow users to generate and test new hypotheses related to p53 activity in the genome. Users can query genomic locations based on experimentally observed p53 binding, regulatory element activity, genetic variation, evolutionary conservation, chromatin modification state, and chromatin structure. We present multiple use cases demonstrating the utility of this database for generating novel biological hypotheses, such as chromatin-based determinants of p53 binding and potential cell type-specific p53 activity. All database information is also available as a precompiled sqlite database for use in local analysis or as a Shiny web application.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Sawyer M Hicks
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| |
Collapse
|
2
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Jung B, An YH, Jang SH, Ryu G, Jung S, Kim S, Kim C, Jang H. The tumor suppressive effect and apoptotic mechanism of TRAIL gene-containing recombinant NDV in TRAIL-resistant colorectal cancer HT-29 cells and TRAIL-nonresistant HCT116 cells, with each cell bearing a mouse model. Cancer Med 2023; 12:20380-20395. [PMID: 37843231 PMCID: PMC10652305 DOI: 10.1002/cam4.6622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND TRAIL is an anticancer drug that induces cancer cell apoptosis by interacting with death receptors (DRs). However, owing to low cell-surface expression of DRs, certain colorectal cancer (CRC) cells resist TRAIL-induced apoptosis. Newcastle disease virus (NDV) infection can elevate DR protein expression in cancer cells, potentially influencing their TRAIL sensitivity. However, the precise mechanism by which NDV infection modulates DR expression and impacts TRAIL sensitivity in cancer cells remains unknown. METHODS Herein, we developed nonpathogenic NDV VG/GA strain-based recombinant NDV (rNDV) and TRAIL gene-containing rNDV (rNDV-TRAIL). We observed that viral infections lead to increased DR and TRAIL expressions and activate signaling proteins involved in intrinsic and extrinsic apoptosis pathways. Experiments were conducted in vitro using TRAIL-resistant CRC cells (HT-29) and nonresistant CRC cells (HCT116) and in vivo using relevant mouse models. RESULTS rNDV-TRAIL was found to exhibit better apoptotic efficacy than rNDV in CRC cells. Notably, rNDV-TRAIL had the stronger cancer cell-killing effect in TRAIL-resistant CRC cells. Western blot analyses showed that both rNDV and rNDV-TRAIL infections activate signaling proteins involved in the intrinsic and extrinsic apoptotic pathways. Notably, rNDV-TRAIL promotes concurrent intrinsic and extrinsic signal transduction in both HCT-116 and HT-29 cells. CONCLUSIONS Therefore, rNDV-TRAIL infection effectively enhances DR expression in DR-depressed HT-29 cells. Moreover, the TRAIL protein expressed by rNDV-TRAIL effectively interacts with DR, leading to enhanced apoptosis in TRAIL-resistant HT-29 cells. Therefore, rNDV-TRAIL has potential as a promising therapeutic approach for treating TRAIL-resistant cancers.
Collapse
Affiliation(s)
| | | | - Sung Hoon Jang
- Graduate School of Medical Science, College of medicineYonsei UniversitySeoulRepublic of Korea
| | | | | | - Seonhee Kim
- Department of Physiology & Medical Science, College of MedicineChungnam National UniversityDaejeonRepublic of Korea
| | - Cuk‐Seong Kim
- Department of Physiology & Medical Science, College of MedicineChungnam National UniversityDaejeonRepublic of Korea
| | - Hyun Jang
- Libentech Co. LTDDaejeonRepublic of Korea
| |
Collapse
|
4
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Poulianiti C, Polyzou Konsta MA, Liakopoulos V, Stefanidis I. Routes of Albumin Overload Toxicity in Renal Tubular Epithelial Cells. Int J Mol Sci 2023; 24:ijms24119640. [PMID: 37298591 DOI: 10.3390/ijms24119640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Besides being a marker of kidney disease severity, albuminuria exerts a toxic effect on renal proximal tubular epithelial cells (RPTECs). We evaluated whether an unfolded protein response (UPR) or DNA damage response (DDR) is elicited in RPTECs exposed to high albumin concentration. The deleterious outcomes of the above pathways, apoptosis, senescence, or epithelial-to-mesenchymal transition (EMT) were evaluated. Albumin caused reactive oxygen species (ROS) overproduction and protein modification, and a UPR assessed the level of crucial molecules involved in this pathway. ROS also induced a DDR evaluated by critical molecules involved in this pathway. Apoptosis ensued through the extrinsic pathway. Senescence also occurred, and the RPTECs acquired a senescence-associated secretory phenotype since they overproduced IL-1β and TGF-β1. The latter may contribute to the observed EMT. Agents against endoplasmic reticulum stress (ERS) only partially alleviated the above changes, while the inhibition of ROS upregulation prevented both UPR and DDR and all the subsequent harmful effects. Briefly, albumin overload causes cellular apoptosis, senescence, and EMT in RPTECs by triggering UPR and DDR. Promising anti-ERS factors are beneficial but cannot eliminate the albumin-induced deleterious effects because DDR also occurs. Factors that suppress ROS overproduction may be more effective since they could halt UPR and DDR.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Anna Polyzou Konsta
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| |
Collapse
|
5
|
Induction of DR5-Dependent Apoptosis by PGA 2 through ATF4-CHOP Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123804. [PMID: 35744931 PMCID: PMC9230093 DOI: 10.3390/molecules27123804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023]
Abstract
Prostaglandin (PG) A2, a cyclopentenone PG, induced apoptosis in both HCT116 and HCT116 p53 -/- cells. Although PGA2-induced apoptosis in HCT116 cells was dependent on the p53-DR5 pathway, the mechanism underlying PGA2-induced apoptosis in HCT116 p53 -/- cells remains unknown. In this study, we observed that PGA2 caused an increase of mRNA expression of DR5 and protein expression even in HCT116 p53 -/- cells, accompanied by caspase-dependent apoptosis. Knockdown of DR5 expression by RNA interference inhibited PGA2-induced apoptosis in HCT116 p53 -/- cells. Parallel to the induction of apoptosis, PGA2 treatment upregulated expression of genes upstream of DR5 such as ATF4 and CHOP. Knockdown of CHOP prevented DR5-dependent cell death as well as the expression of DR5 protein. Furthermore, knockdown of ATF4 by RNA interference decreased both mRNA and protein levels of CHOP and DR5, thereby suppressing PGA2-induced cell death. Consistently, the DR5 promoter activity increased by PGA2 was not stimulated when the CHOP binding site in the DR5 promoter was mutated. These results collectively suggest that PGA2 may induce DR5-dependent apoptosis via the ATF4-CHOP pathway in HCT116 p53 null cells.
Collapse
|
6
|
Lopez KE, Bouchier-Hayes L. Lethal and Non-Lethal Functions of Caspases in the DNA Damage Response. Cells 2022; 11:cells11121887. [PMID: 35741016 PMCID: PMC9221191 DOI: 10.3390/cells11121887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the caspase family are well known for their roles in the initiation and execution of cell death. Due to their function in the removal of damaged cells that could otherwise become malignant, caspases are important players in the DNA damage response (DDR), a network of pathways that prevent genomic instability. However, emerging evidence of caspases positively or negatively impacting the accumulation of DNA damage in the absence of cell death demonstrates that caspases play a role in the DDR that is independent of their role in apoptosis. This review highlights the apoptotic and non-apoptotic roles of caspases in the DDR and how they can impact genomic stability and cancer treatment.
Collapse
Affiliation(s)
- Karla E. Lopez
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
7
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
8
|
Wu X, Lu Y, Qin X. Combination of Compound Kushen Injection and cisplatin shows synergistic antitumor activity in p53-R273H/P309S mutant colorectal cancer cells through inducing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114690. [PMID: 34597653 DOI: 10.1016/j.jep.2021.114690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is one type of worldwide popular and refractory tumors. Compound Kushen Injection (CKI) is a frequently applied traditional Chinese medicine formula as an adjuvant drug for the chemotherapy of CRC. P53 is the most commonly mutated gene in CRC, accounting for the development, malignant and prognosis progression of CRC. However, effect of CKI on the therapeutic efficacy of p53-mutant CRC remains understood. Besides, the combined efficacy of different chemotherapeutics drugs in combination with CKI for CRC treatment is rarely concerned. AIM OF STUDY To investigate the combined efficacy of the CKI-derived combination strategies in the p53-mutant CRC. MATERIALS AND METHODS Two CRC cell lines HCT116 and SW480 cells, which respectively harbor wild-type p53 and p53-R273H/P309S mutant, were applied. Cisplatin (Cis) and 5-fluorouracil (5FU) were combined chemotherapeutics drugs of CKI-derived combination strategies in this article. In vitro antitumor activity was detected by sulforhodamine B (SRB) assay and colony formation assay. Combenefit soft was applied to evaluate the synergetic/antagonistic effect of drug combination. Lentivirus-mediated overexpression method was used to generate a set of p53-mutant and wild-type CRC cell lines harboring identical genomes. Transcriptomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were applied to predicate the underlying mechanism of synergetic interaction between drug combination. Western blot was performed to verify predicated pathways contributing to the synergy of drug combination. RESULTS CKI preferentially combined with Cis but not 5FU, to produce a synergistical antitumor efficiency for p53-R273H/P309S mutant, rather than wild-type p53 harboring CRC cells. The combination of CKI and Cis strongly reprogrammed the transcriptional profiles of SW480 cells. Cytokine-cytokine receptor interaction pathway was a key pathway involved in cooperativity between CKI and Cis in SW480 cells. Mechanistically, compared to that Cis individually triggered necroptosis, the co-treatment of CKI and Cis reinforced the cell death of SW480 cells in a possible synergistic manner by inducing extrinsic apoptosis pathway. CONCLUSION This article provides a novel perspective into the precision clinical application of CKI-derived combination therapy programs of CRC based on genetic variation and the classes of chemotherapeutics drugs.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Yufang Lu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
9
|
Zhou X, Soto-Gamez A, Nijdam F, Setroikromo R, Quax WJ. Dihydroartemisinin-Transferrin Adducts Enhance TRAIL-Induced Apoptosis in Triple-Negative Breast Cancer in a P53-Independent and ROS-Dependent Manner. Front Oncol 2022; 11:789336. [PMID: 35047402 PMCID: PMC8762273 DOI: 10.3389/fonc.2021.789336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Fleur Nijdam
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
TRAIL-receptor 2-a novel negative regulator of p53. Cell Death Dis 2021; 12:757. [PMID: 34333527 PMCID: PMC8325694 DOI: 10.1038/s41419-021-04048-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation. In addition, nuclear TRAIL-R2 (nTRAIL-R2) promotes malignancy by inhibiting miRNA let-7-maturation. Here, we show that TRAIL-R2 interacts with the tumor suppressor protein p53 in the nucleus, assigning a novel pro-tumor function to TRAIL-R2. Knockdown of TRAIL-R2 in p53 wild-type cells increases the half-life of p53 and the expression of its target genes, whereas its re-expression decreases p53 protein levels. Interestingly, TRAIL-R2 also interacts with promyelocytic leukemia protein (PML), a major regulator of p53 stability. PML-nuclear bodies are also the main sites of TRAIL-R2/p53 co-localization. Notably, knockdown or destruction of PML abolishes the TRAIL-R2-mediated regulation of p53 levels. In summary, our finding that nTRAIL-R2 facilitates p53 degradation and thereby negatively regulates p53 target gene expression provides insight into an oncogenic role of TRAIL-R2 in tumorigenesis that particularly manifests in p53 wild-type tumors.
Collapse
|
11
|
Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021; 13:3257. [PMID: 34209840 PMCID: PMC8268032 DOI: 10.3390/cancers13133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The p53 tumour suppressor is best known for its canonical role as "guardian of the genome", activating cell cycle arrest and DNA repair in response to DNA damage which, if irreparable or sustained, triggers activation of cell death. However, despite an enormous amount of work identifying the breadth of the gene regulatory networks activated directly and indirectly in response to p53 activation, how p53 activation results in different cell fates in response to different stress signals in homeostasis and in response to p53 activating anti-cancer treatments remains relatively poorly understood. This is likely due to the complex interaction between cell death mechanisms in which p53 has been activated, their neighbouring stressed or unstressed cells and the local stromal and immune microenvironment in which they reside. In this review, we evaluate our understanding of the burgeoning number of cell death pathways affected by p53 activation and how these may paradoxically suppress cell death to ensure tissue integrity and organismal survival. We also discuss how these functions may be advantageous to tumours that maintain wild-type p53, the understanding of which may provide novel opportunity to enhance treatment efficacy.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| | | | - Simon McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| |
Collapse
|
12
|
Khawaja H, Campbell A, Roberts JZ, Javadi A, O'Reilly P, McArt D, Allen WL, Majkut J, Rehm M, Bardelli A, Di Nicolantonio F, Scott CJ, Kennedy R, Vitale N, Harrison T, Sansom OJ, Longley DB, Evergren E, Van Schaeybroeck S. RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death Dis 2020; 11:930. [PMID: 33122623 PMCID: PMC7596570 DOI: 10.1038/s41419-020-03131-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023]
Abstract
RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.
Collapse
Affiliation(s)
- Hajrah Khawaja
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Jamie Z Roberts
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Paul O'Reilly
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Darragh McArt
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Wendy L Allen
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Joanna Majkut
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Christopher J Scott
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Richard Kennedy
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Timothy Harrison
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Daniel B Longley
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Evergren
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
13
|
Zhou X, Zijlstra SN, Soto-Gamez A, Setroikromo R, Quax WJ. Artemisinin Derivatives Stimulate DR5-Specific TRAIL-Induced Apoptosis by Regulating Wildtype P53. Cancers (Basel) 2020; 12:E2514. [PMID: 32899699 PMCID: PMC7563660 DOI: 10.3390/cancers12092514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin derivatives, widely known as commercial anti-malaria drugs, may also have huge potential in treating cancer cells. It has been reported that artemisinin derivatives can overcome resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in liver and cervical cancer cells. In our study, we demonstrated that artesunate (ATS) and dihydroartemisinin (DHA) are more efficient in killing colon cancer cells compared to artemisinin (ART). ATS/DHA induces the expression of DR5 in a P53 dependent manner in HCT116 and DLD-1 cells. Both ATS and DHA overcome the resistance to DHER-induced apoptosis in HCT116, mainly through upregulating death receptor 5 (DR5). We also demonstrate that DHA sensitizes HCT116 cells to DHER-induced apoptosis via P53 regulated DR5 expression in P53 knockdown assays. Nevertheless, a lower effect was observed in DLD-1 cells, which has a single Ser241Phe mutation in the P53 DNA binding domain. Thus, the status of P53 could be one of the determinants of TRAIL resistance in some cancer cells. Finally, the combination treatment of DHA and the TRAIL variant DHER increases cell death in 3D colon cancer spheroid models, which shows its potential as a novel therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (S.N.Z.); (A.S.-G.); (R.S.)
| |
Collapse
|
14
|
Bi R, Deng Y, Tang C, Xuan L, Xu B, Du Y, Wang C, Wei W. Andrographolide sensitizes human renal carcinoma cells to TRAIL‑induced apoptosis through upregulation of death receptor 4. Oncol Rep 2020; 44:1939-1948. [PMID: 33000263 PMCID: PMC7551412 DOI: 10.3892/or.2020.7737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, with minimal toxicity to normal tissues. However, accumulating evidence suggests that certain cancer types are insensitive to TRAIL signaling. The aim of this study was to identify an effective combination regimen, which can overcome TRAIL resistance in renal cancer cell. Herein, we found that human renal carcinoma cells (RCCs) are widely resistant to TRAIL-mediated growth inhibition and subsequently identified that andrographolide (Andro), a major constituent of Andrographis paniculate, an annual herbaceous plant in the family Acanthaceae, counteracts TRAIL resistance in RCCs. Combined treatment with TRAIL and Andro suppressed cell viability as determined by MTS and proliferation as determined by EdU in a dose-dependent manner and inactivated the clonogenic and migration ability of RCCs. Andro significantly enhances TRAIL-mediated cell cycle arrest at the G2/M phase as determined by flow cytometry and senescence. Moreover, Andro restored TRAIL signaling, which in turns activated pro-apoptosis caspases as determined by immunoblot assay. The TRAIL receptor, death receptor (DR)4, but not DR5, was found to be significantly upregulated in Andro-treated RCC cells, which contributed to the role of Andro as a TRAIL sensitizer. The present study demonstrated that the combined treatment of Andro and TRAIL has potential therapeutic value against renal cancer.
Collapse
Affiliation(s)
- Ran Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xuan
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Xu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yujun Du
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
15
|
Khayam AU, Patel H, Faiola NA, Figueroa Milla AE, Dilshad E, Mirza B, Huang Y, Sheikh MS. Quinovic acid purified from medicinal plant Fagonia indica mediates anticancer effects via death receptor 5. Mol Cell Biochem 2020; 474:159-169. [PMID: 32734538 DOI: 10.1007/s11010-020-03841-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
Plants are major source for discovery and development of anticancer drugs. Several plant-based anticancer drugs are currently in clinical use. Fagonia indica is a plant of medicinal value in the South Asian countries. Using mass spectrometry and NMR spectroscopy, several compounds were purified from the F. indica extract. We have used one of the purified compounds quinovic acid (QA) and found that QA strongly suppressed the growth and viability of human breast and lung cancer cells. QA did not inhibit growth and viability of non-tumorigenic breast cells. QA mediated its anticancer effects by inducing cell death. QA-induced cell death was associated with biochemical features of apoptosis such as activation of caspases 3 and 8 as well as PARP cleavage. QA also upregulated mRNA and protein levels of death receptor 5 (DR5). Further investigation revealed that QA did not alter DR5 gene promoter activity, but enhanced DR5 mRNA and protein stabilities. DR5 is one of the major components of the extrinsic pathway of apoptosis. Accordingly, Apo2L/TRAIL, the DR5 ligand, potentiated the anticancer effects of QA. Our results indicate that QA mediates its anticancer effects, at least in part, by engaging DR5-depentent pathway to induce apoptosis. Based on our results, we propose that QA in combination with Apo2L/TRAIL can be further investigated as a novel therapeutic approach for breast and lung cancers.
Collapse
Affiliation(s)
- Asma Umer Khayam
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Harsh Patel
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nicholas A Faiola
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Andre E Figueroa Milla
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ying Huang
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - M Saeed Sheikh
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| |
Collapse
|
16
|
Lees A, McIntyre AJ, Crawford NT, Falcone F, McCann C, Holohan C, Quinn GP, Roberts JZ, Sessler T, Gallagher PF, Gregg GMA, McAllister K, McLaughlin KM, Allen WL, Egan LJ, Ryan AE, Labonte-Wilson MJ, Dunne PD, Wappett M, Coyle VM, Johnston PG, Kerr EM, Longley DB, McDade SS. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc Natl Acad Sci U S A 2020; 117:17808-17819. [PMID: 32661168 PMCID: PMC7395556 DOI: 10.1073/pnas.2001520117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Alexander J McIntyre
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Nyree T Crawford
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Fiammetta Falcone
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Caitriona Holohan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Gerard P Quinn
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Jamie Z Roberts
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Tamas Sessler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Peter F Gallagher
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Gemma M A Gregg
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Katherine McAllister
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Kirsty M McLaughlin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Wendy L Allen
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Laurence J Egan
- Discipline of Pharmacology & Therapeutics, Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology & Therapeutics, Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Melissa J Labonte-Wilson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Mark Wappett
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Vicky M Coyle
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Patrick G Johnston
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom;
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom;
| |
Collapse
|
17
|
Ferris J, Espona-Fiedler M, Hamilton C, Holohan C, Crawford N, McIntyre AJ, Roberts JZ, Wappett M, McDade SS, Longley DB, Coyle V. Pevonedistat (MLN4924): mechanism of cell death induction and therapeutic potential in colorectal cancer. Cell Death Discov 2020; 6:61. [PMID: 32714568 PMCID: PMC7374701 DOI: 10.1038/s41420-020-00296-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Pevonedistat (MLN4924), a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit (NAE1), has demonstrated significant therapeutic potential in several malignancies. Although multiple mechanisms-of-action have been identified, how MLN4924 induces cell death and its potential as a combinatorial agent with standard-of-care (SoC) chemotherapy in colorectal cancer (CRC) remains largely undefined. In an effort to understand MLN4924-induced cell death in CRC, we identified p53 as an important mediator of the apoptotic response to MLN4924. We also identified roles for the extrinsic (TRAIL-R2/caspase-8) and intrinsic (BAX/BAK) apoptotic pathways in mediating the apoptotic effects of MLN4924 in CRC cells, as well as a role for BID, which modulates a cross-talk between these pathways. Depletion of the anti-apoptotic protein FLIP, which we identify as a novel mediator of resistance to MLN4924, enhanced apoptosis in a p53-, TRAIL-R2/DR5-, and caspase-8-dependent manner. Notably, TRAIL-R2 was involved in potentiating the apoptotic response to MLN4924 in the absence of FLIP, in a ligand-independent manner. Moreoever, when paired with SoC chemotherapies, MLN4924 demonstrated synergy with the irinotecan metabolite SN38. The cell death induced by MLN4924/SN38 combination was dependent on activation of mitochondria through BAX/BAK, but in a p53-independent manner, an important observation given the high frequency of TP53 mutation(s) in advanced CRC. These results uncover mechanisms of cell death induced by MLN4924 and suggest that this second-generation proteostasis-disrupting agent may have its most widespread activity in CRC, in combination with irinotecan-containing treatment regimens.
Collapse
Affiliation(s)
- Jennifer Ferris
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Margarita Espona-Fiedler
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Claudia Hamilton
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Caitriona Holohan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Alex J. McIntyre
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Jamie Z. Roberts
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Mark Wappett
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Simon S. McDade
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| | - Victoria Coyle
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL UK
| |
Collapse
|
18
|
Patel H, Sheikh MS, Huang Y. ECRG2, a novel transcriptional target of p53, modulates cancer cell sensitivity to DNA damage. Cell Death Dis 2020; 11:543. [PMID: 32681017 PMCID: PMC7367829 DOI: 10.1038/s41419-020-2728-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Esophageal Cancer-Related Gene 2 (ECRG2) is a recently identified tumor suppressor, its regulation and involvement in DNA damage response are unknown. Here, we show that DNA damage-induced ECRG2 upregulation coincided with p53 activation and occurred in a p53-dependent manner. We identified two p53-binding sites within ECRG2 promoter and found the promoter activity, mRNA, and protein expression to be regulated by p53. We show that DNA damage significantly enhanced p53 binding to ECRG2 promoter at the anticipated p53-binding sites. We identified a novel natural ECRG2 promoter variant harboring a small deletion that exists in the genomes of ~38.5% of world population and showed this variant to be defective in responding to p53 and DNA-damage. ECRG2 overexpression induced cancer cell death; ECRG2 gene disruption enhanced cell survival following anticancer drug treatments even when p53 was induced. We showed that lower expression of ECRG2 in multiple human malignancies correlated with reduced disease-free survival in patients. Collectively, our novel findings indicate that ECRG2 is an important target of p53 during DNA damage-induced response and plays a critical role in influencing cancer cell sensitivity to DNA damage-inducing cancer therapeutics.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - M Saeed Sheikh
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Ying Huang
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| |
Collapse
|
19
|
Liang R, Yao Y, Wang G, Yue E, Yang G, Qi X, Wang Y, Zhao L, Zheng T, Zhang Y, Wenge Wang E. Repositioning Quinacrine Toward Treatment of Ovarian Cancer by Rational Combination With TRAIL. Front Oncol 2020; 10:1118. [PMID: 32766144 PMCID: PMC7379129 DOI: 10.3389/fonc.2020.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Quinacrine has been identified as a potent DR5-inducing agent that sensitizes cancer cells to TRAIL-induced apoptosis. In the current study, we found that quinacrine increased DR5 mRNA levels significantly in ovarian cancer cell lines regardless of p53 status. Further study showed the half-life of DR5 in quinacrine-treated cells was significantly prolonged, indicating that DR5 protein degradation was inhibited by quinacrine. We tested if the combination of TRAIL and quinacrine could be effective in ovarian cancer treatment in vitro and in ovarian cancer xenograft mouse models. We found that quinacrine enhanced TRAIL sensitivity or reversed TRAIL resistance in all the ovarian cancer cell lines tested. Mice treated with quinacrine and TRAIL remained disease-free for up to 20 weeks, however, mice treated with TRAIL or quinacrine alone and in control group died within ~8 weeks after treatment. Intraperitoneal delivery of quinacrine and TRAIL is rational and practical with extraordinary synergistic anti-cancer effects in preclinical models of ovarian cancer. Clinical investigation of combining quinacrine with TRAIL for ovarian cancer treatment is warranted.
Collapse
Affiliation(s)
- Rui Liang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Department of Pharmacy, Suzhou Vocational Health College, Suzhou, China
| | - Yuanfei Yao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Guangyu Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Er Yue
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Guangchao Yang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Xiuying Qi
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Yang Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Ling Zhao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Tongsen Zheng
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yanqiao Zhang
- Cancer Hospital, Harbin Medical University, Harbin, China
| | - Edward Wenge Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
20
|
Singh AK, Verma A, Singh A, Arya RK, Maheshwari S, Chaturvedi P, Nengroo MA, Saini KK, Vishwakarma AL, Singh K, Sarkar J, Datta D. Salinomycin inhibits epigenetic modulator EZH2 to enhance death receptors in colon cancer stem cells. Epigenetics 2020; 16:144-161. [PMID: 32635858 DOI: 10.1080/15592294.2020.1789270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Akhilesh Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Rakesh Kumar Arya
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Shrankhla Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | - Priyank Chaturvedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Krishan Kumar Saini
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | | | - Kavita Singh
- Electron Microscopy Unit, CSIR-CDRI , Lucknow, India
| | | | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| |
Collapse
|
21
|
Wang Y, Guo S, Li D, Tang Y, Li L, Su L, Liu X. YIPF2 promotes chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B recycling to plasma membrane in non-small cell lung cancer cells. Cell Death Dis 2020; 11:242. [PMID: 32303681 PMCID: PMC7165181 DOI: 10.1038/s41419-020-2436-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer, and the identification of the apoptotic process of NSCLC is vital for its treatment. Usually, both the expression level and the cell surface level of TNFRSF10B (TNF Receptor superfamily member 10B) will increase after treatment with some chemotherapeutic agents, which plays a critical role in the apoptosis induction. However, the exact molecular mechanism underlying TNFRSF10B regulation remains largely elusive. Here, we found that TNFRSF10B, along with a vesicular trafficking regulator protein, YIPF2, were upregulated after treatment with pemetrexed (PEM) in NSCLC cells. Besides, YIPF2 increased the surface level of TNFRF10B, while YIPF2 knockdown inhibited the upregulation of TNFRSF10B and its recycling to plasma membrane. In addition, RAB8 decreased the cell surface TNFRSF10B by promoting its removing from plasma membrane to cytoplasm. Furthermore, we found that YIPF2, RAB8 and TNFRSF10B proteins interacted physically with each other. YIPF2 could further inhibit the physical interaction between TNFRSF10B and RAB8, thereby suppressing the removing of TNFRSF10B from plasma membrane to cytoplasm mediated by RAB8 and maintaining its high level on cell surface. Finally, using bioinformatics database, the YIPF2-TNFRSF10B axis was confirmed to be associated with the malignant progression of lung cancer. Taken together, we show that YIPF2 promotes chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B recycling to plasma membrane in NSCLC cells. These findings may be beneficial for the development of potential prognostic markers of NSCLC and may provide effective treatment strategy.
Collapse
Affiliation(s)
- Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Sen Guo
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Dongmei Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yongkang Tang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lei Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
22
|
Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway. Cell Death Discov 2019; 5:153. [PMID: 31839995 PMCID: PMC6904486 DOI: 10.1038/s41420-019-0228-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Disulfide bond-disrupting agents (DDAs) are a new chemical class of agents recently shown to have activity against breast tumors in animal models. Blockade of tumor growth is associated with downregulation of EGFR, HER2, and HER3 and reduced Akt phosphorylation, as well as the induction of endoplasmic reticulum stress. However, it is not known how DDAs trigger cancer cell death without affecting nontransformed cells. As demonstrated here, DDAs are the first compounds identified that upregulate the TRAIL receptor DR5 through transcriptional and post-transcriptional mechanisms to activate the extrinsic cell death pathway. At the protein level, DDAs alter DR5 disulfide bonding to increase steady-state DR5 levels and oligomerization, leading to downstream caspase 8 and 3 activation. DDAs and TRAIL synergize to kill cancer cells and are cytotoxic to HER2+ cancer cells with acquired resistance to the EGFR/HER2 tyrosine kinase inhibitor Lapatinib. Investigation of the mechanisms responsible for DDA selectivity for cancer cells reveals that DDA-induced upregulation of DR5 is enhanced in the context of EGFR overexpression. DDA-induced cytotoxicity is strongly amplified by MYC overexpression. This is consistent with the known potentiation of TRAIL-mediated cell death by MYC. Together, the results demonstrate selective DDA lethality against oncogene-transformed cells, DDA-mediated DR5 upregulation, and protein stabilization, and that DDAs have activity against drug-resistant cancer cells. Our results indicate that DDAs are unique in causing DR5 accumulation and oligomerization and inducing downstream caspase activation and cancer cell death through mechanisms involving altered DR5 disulfide bonding. DDAs thus represent a new therapeutic approach to cancer therapy.
Collapse
|
23
|
p53-Mediated Oxidative Stress Enhances Indirubin-3'-Monoxime-Induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-Related Apoptosis-Inducing Ligand Expression. Antioxidants (Basel) 2019; 8:antiox8100423. [PMID: 31546731 PMCID: PMC6826553 DOI: 10.3390/antiox8100423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023] Open
Abstract
Indirubin-3′-monoxime (I3M) exhibits anti-proliferative activity in various cancer cells; however, its anti-cancer mechanism remains incompletely elucidated. This study revealed that I3M promotes the expression of death receptor 5 (DR5) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in HCT116 p53+/+ cells, resulting in caspase-mediated apoptosis. However, this study demonstrated that HCT116 p53−/− cells were insensitive to I3M-mediated apoptosis, indicating that I3M-induced apoptosis depends on the p53 status of HCT116 cells. Additionally, in HCT116 p53-/- cells, I3M significantly increased Ras expression, while in HCT116 p53+/+ cells, it reduced Ras expression. Furthermore, I3M remarkably increased the production of reactive oxygen species (ROS), which were reduced in transient p53 knockdown, indicating that I3M-mediated apoptosis was promoted by p53-mediated ROS production. Our results also showed that I3M enhanced transcription factor C/EBP homologous protein (CHOP) expression, resulted in endoplasmic reticulum (ER) stress-mediated DR5 expression, which was upregulated by ROS production in HCT116 p53+/+ cells. Moreover, co-treatment with I3M and TRAIL enhanced DR5 expression, thereby triggering TRAIL-induced apoptosis of HCT116 p53+/+ cells, which was interfered by a DR5-specific blocking chimeric antibody. In summary, I3M potently enhances TRAIL-induced apoptosis by upregulating DR5 expression via p53-mediated ROS production in HCT116 p53+/+ cells. However, HCT116 p53−/− cells were less sensitive to I3M-mediated apoptosis, suggesting that I3M could be a promising anti-cancer candidate against TRAIL-resistant p53+/+ cancer cells. Additionally, this study also revealed that I3M sensitizes colorectal cancer cells such as HT29 and SW480 to TRAIL-mediated apoptosis.
Collapse
|
24
|
Liu W, Guo TF, Jing ZT, Tong QY. Repression of Death Receptor-Mediated Apoptosis of Hepatocytes by Hepatitis B Virus e Antigen. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2181-2195. [PMID: 31449776 DOI: 10.1016/j.ajpath.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) is associated with viral persistence and pathogenesis. Resistance of HBV-infected hepatocytes to apoptosis is seen as one of the primary promotors for HBV chronicity and malignancy. Fas receptor/ligand (Fas/FasL) and the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) system plays a key role in hepatic death during HBV infection. We found that HBeAg mediates resistance of hepatocytes to FasL or TRAIL-induced apoptosis. Introduction of HBeAg into human hepatocytes rendered resistance to FasL or TRAIL cytotoxicity in a p53-dependent manner. HBeAg further inhibited the expression of p53, total Fas, membrane-bound Fas, TNF receptor superfamily member 10a, and TNF receptor superfamily member 10b at both mRNA and protein levels. In contrast, HBeAg enhanced the expression of soluble forms of Fas through facilitation of Fas alternative mRNA splicing. In a mouse model, expression of HBeAg in mice injected with recombinant adenovirus-associated virus 8 inhibited agonistic anti-Fas antibody-induced hepatic apoptosis. Xenograft tumorigenicity assay also found that HBeAg-induced carcinogenesis was resistant to the proapoptotic effect of TRAIL and chemotherapeutic drugs. These results indicate that HBeAg may prevent hepatocytes from FasL and TRAIL-induced apoptosis by regulating the expression of the proapoptotic and antiapoptotic forms of death receptors, which may contribute to the survival and persistence of infected hepatocytes during HBV infection.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| | - Teng-Fei Guo
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
| | - Zhen-Tang Jing
- Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Yun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
25
|
Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discov 2019; 5:102. [PMID: 31231550 PMCID: PMC6561911 DOI: 10.1038/s41420-019-0182-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin is an important anticancer drug in the clinic. Unfortunately, it causes cumulative and dose-dependent cardiotoxic side effects. As the population of cancer survivors who have been exposed to treatment continues to grow, there is increased interest in assessing the long-term cardiac effects of doxorubicin and understanding the underlying mechanisms at play. In this study, we investigated doxorubicin-induced transcriptomic changes using RNA-sequencing (RNAseq) and a cellular model comprised of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Analyses of predicted upstream regulators identified the p53 protein as a key regulator of transcriptomic changes induced by doxorubicin. Clustering and pathway analyses showed that increased death receptor (DR) expression and enrichment of the extrinsic apoptotic pathway are significantly associated with doxorubicin-induced cardiotoxicity. Increased expression of p53 and DRs were confirmed via immunoblotting. Our data pinpoints increased DR expression as an early transcriptomic indicator of cardiotoxicity, suggesting that DR expression might function as a predictive biomarker for cardiac damage.
Collapse
|
26
|
Identification of Kinases Responsible for p53-Dependent Autophagy. iScience 2019; 15:109-118. [PMID: 31048145 PMCID: PMC6495467 DOI: 10.1016/j.isci.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
In cancer, autophagy is upregulated to promote cell survival and tumor growth during times of nutrient stress and can confer resistance to drug treatments. Several major signaling networks control autophagy induction, including the p53 tumor suppressor pathway. In response to DNA damage and other cellular stresses, p53 is stabilized and activated, while HDM2 binds to and ubiquitinates p53 for proteasome degradation. Thus blocking the HDM2-p53 interaction is a promising therapeutic strategy in cancer; however, the potential survival advantage conferred by autophagy induction may limit therapeutic efficacy. In this study, we leveraged an HDM2 inhibitor to identify kinases required for p53-dependent autophagy. Interestingly, we discovered that p53-dependent autophagy requires several kinases, including the myotonic dystrophy protein kinase-like alpha (MRCKα). MRCKα is a CDC42 effector reported to activate actin-myosin cytoskeletal reorganization. Overall, this study provides evidence linking MRCKα to autophagy and reveals additional insights into the role of kinases in p53-dependent autophagy. HDM2 inhibitors stabilize and activate p53 leading to robust autophagy induction RNAi screen uncovers kinases involved in p53-dependent autophagy ULK1 and the actin cytoskeleton kinase MRCKα mediate p53-induced autophagy
Collapse
|
27
|
Park JS, Oh Y, Park YJ, Park O, Yang H, Slania S, Hummers LK, Shah AA, An HT, Jang J, Horton MR, Shin J, Dietz HC, Song E, Na DH, Park EJ, Kim K, Lee KC, Roschke VV, Hanes J, Pomper MG, Lee S. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat Commun 2019; 10:1128. [PMID: 30850660 PMCID: PMC6408468 DOI: 10.1038/s41467-019-09101-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Scleroderma is an autoimmune rheumatic disorder accompanied by severe fibrosis in skin and other internal organs. During scleroderma progression, resident fibroblasts undergo activation and convert to α-smooth muscle actin (α-SMA) expressing myofibroblasts (MFBs) with increased capacity to synthesize collagens and fibrogenic components. Accordingly, MFBs are a major therapeutic target for fibrosis in scleroderma and treatment with blocking MFBs could produce anti-fibrotic effects. TLY012 is an engineered human TNF-related apoptosis-inducing ligand (TRAIL) which induces selective apoptosis in transformed cells expressing its cognate death receptors (DRs). Here we report that TLY012 selectively blocks activation of dermal fibroblasts and induces DR-mediated apoptosis in α-SMA+ MFBs through upregulated DR5 during its activation. In vivo, TLY012 reverses established skin fibrosis to near-normal skin architecture in mouse models of scleroderma. Thus, the TRAIL pathway plays a critical role in tissue remodeling and targeting upregulated DR5 in α-SMA+ MFBs is a viable therapy for fibrosis in scleroderma.
Collapse
Affiliation(s)
- Jong-Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Yong Joo Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Ogyi Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Theraly Fibrosis Inc., Germantown, 20876, MD, USA
| | - Hoseong Yang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Stephanie Slania
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Laura K Hummers
- Scleroderma Center, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA
| | - Ami A Shah
- Scleroderma Center, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA
| | - Hyoung-Tae An
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Jiyeon Jang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Maureen R Horton
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Joseph Shin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06520, CT, USA
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwangmeyung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kang Choon Lee
- School of Pharmacy, SungKyunKwan University, Jangangu, 16419, Suwon, Republic of Korea
| | | | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Department of Materials and Science, Johns Hopkins University, Baltimore, 21218, MD, USA
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
- Department of Materials and Science, Johns Hopkins University, Baltimore, 21218, MD, USA.
| |
Collapse
|
28
|
Yano S, Wu S, Sakao K, Hou DX. Involvement of ERK1/2-mediated ELK1/CHOP/DR5 pathway in 6-(methylsulfinyl)hexyl isothiocyanate-induced apoptosis of colorectal cancer cells. Biosci Biotechnol Biochem 2019; 83:960-969. [PMID: 30730256 DOI: 10.1080/09168451.2019.1574206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabi. Although 6-MSITC is reported to have cancer chemopreventive activities in rat model, the molecular mechanism is unclear. In this study, we investigated the anticancer mechanisms using two types of human colorectal cancer cells (HCT116 p53+/+ and p53-/-). 6-MSITC caused cell cycle arrest in G2/M phase and induced apoptosis in both types of cells in the same fashion. Signaling data revealed that the activation of ERK1/2, rather than p53, is recruited for 6-MSITC-induced apoptosis. 6-MSITC stimulated ERK1/2 phosphorylation, and then activated ERK1/2 signaling including ELK1 phosphorylation, and upregulation of C/EBP homologous protein (CHOP) and death receptor 5 (DR5). The MEK1/2 inhibitor U0126 blocked all of these molecular events induced by 6-MSITC, and enhanced the cell viability in both types of cells in the same manner. These results indicated that ERK1/2-mediated ELK1/CHOP/DR5 pathway is involved in 6-MSITC-induced apoptosis in colorectal cancer cells. Abbreviations: CHOP: C/EBP homologous protein; DR5: death receptor 5; ELK1: ETS transcription factor; ERK1/2: extracellular signal-regulated kinase 1/2; JNK: Jun-N-terminal kinase; MAPK: mitogen-activated protein kinase; MEK1/2: MAP/ERK kinase 1/2; 6-MSITC: 6-(methylsulfinyl)hexyl isothiocyanate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PARP: poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- Satoshi Yano
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan
| | - Shusong Wu
- b Department of Animal Nutrition and Feed Science, College of Animal Science and Technology , Hunan Agricultural University , Changsha , China
| | - Kozue Sakao
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan.,c Department of Food Science and Biotechnology, Faculty of Agriculture , Kagoshima University , Kagoshima , Japan
| | - De-Xing Hou
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan.,c Department of Food Science and Biotechnology, Faculty of Agriculture , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
29
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
30
|
Zhuo FF, Zhang C, Zhang H, Xia Y, Xue GM, Yang L, Kong LY. Chrysanthemulide A induces apoptosis through DR5 upregulation via JNK-mediated autophagosome accumulation in human osteosarcoma cells. J Cell Physiol 2018; 234:13191-13208. [PMID: 30556589 DOI: 10.1002/jcp.27991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor, and it generally develops a multidrug resistance. Chrysanthemulide A (CA) is a sesquiterpenoid from the herb Chrysanthemum indicum that has demonstrated a great anti-osteosarcoma potential. In this study, CA-induced apoptotic cell death resulted in the activation of the caspase-8-mediated caspase cascade, as evidenced by the cleavage of the substrate protein Bid and the caspase-8 inhibitor Z-VAD-FMK. The CA treatment upregulated the expression of death receptor 5 (DR5) in both whole cells and the cell membrane. Blocking DR5 expression by the small interfering RNA (siRNA) treatment decreased the caspase-8-mediated caspase cascade and efficiently attenuated CA-induced apoptosis, suggesting the critical role of DR5 in CA-induced apoptotic cell death. CA-induced upregulation of the DR5 protein was accompanied by the accumulation of LC3B-II, indicating the formation of autophagosomes. Importantly, DR5 upregulation was mediated by transcriptionally controlled autophagosome accumulation, as blockade of autophagosomes by LC3B or ATG-5 siRNA substantially decreased DR5 upregulation. Furthermore, CA activated the c-Jun N-terminal kinase (JNK) signaling pathway, and treatment with JNK siRNAs or inhibitor SP600125 significantly attenuated CA-mediated autophagosome accumulation and DR5-mediated cell apoptosis. Finally, CA sensitized the osteosarcoma cells to the DR5 ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death. Above all, these results suggest that CA induces apoptosis through upregulating DR5 via JNK-mediated autophagosome accumulation and that combined treatment with CA and TRAIL might be a promising therapy for osteosarcoma.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Gui-Min Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
A Novel Naphthyridine Derivative, 3u, Induces Necroptosis at Low Concentrations and Apoptosis at High Concentrations in Human Melanoma A375 Cells. Int J Mol Sci 2018; 19:ijms19102975. [PMID: 30274263 PMCID: PMC6213440 DOI: 10.3390/ijms19102975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Naphthyridine derivatives are a widely-used class of heterocycles due to their pharmacological activities. A novel compound (10-Methoxy-1,2,3,4-tetrahydrobenzo(g)(1,3) diazepino(1,2-a)-(1,8)naphthyridin-6-yl)(phenyl) methanone (named 3u), showed good anticancer activity in the human malignant melanoma cell line A375 via Thiazolyl Blue Tetrazolium Bromide (MTT) assay. After Western blotting confirmed, we found that 3u induces necroptosis at low concentrations and apoptosis at high concentrations via the upregulation of death receptors and scaffold protein in A375 cells. Furthermore, by combining 3u with the caspase inhibitor zVAD-fmk or Receptor Interacting Serine/Threonine Kinase 1 (RIP1) kinase inhibitor Necrostatin-1 (Nec-1), we found that the activity of caspase-8 was the crucial factor that determined whether either apoptosis or necroptosis occurred. The results indicate that 3u should be considered as a potential chemical substance for melanoma treatment.
Collapse
|
32
|
Huang M, Zhu H, Yi C, Yan J, Wei L, Yang X, Chen S, Huang Y. A novel TRAIL mutant-TRAIL-Mu3 enhances the antitumor effects by the increased affinity and the up-expression of DR5 in pancreatic cancer. Cancer Chemother Pharmacol 2018; 82:829-838. [PMID: 30167846 DOI: 10.1007/s00280-018-3658-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE Pancreatic cancer is a malignant tumor of the digestive system with poor prognosis and high mortality, and the treatment of pancreatic cancer still remains a major challenge. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis selectively in cancer cells while causing virtually no damage to normal cells, which is promising for cancer therapy. However, many primary tumors and cancer cell lines including various human pancreatic cancer cell lines were found to be resistant to TRAIL-induced apoptosis. Therefore, the purpose of the study was to improve antitumor effect of TRAIL on pancreatic cancer. METHODS The 114-121 amino acid coding sequence "VRERGPQR" of wild type TRAIL protein that was selected changed into "RRRRRRRR", and the novel membrane-penetrating peptide-alike mutant protein was named TRAIL-Mu3. The antitumor effect of TRAIL-Mu3 was analyzed both in vitro and in vivo. Western blotting, immunofluorescence and flow cytometry were used to investigate the underlying mechanisms. RESULTS TRAIL-Mu3 could enhance the antitumor effects on pancreatic cancer cell lines, and the antitumor effect of TRAIL-Mu3 was stronger than gemcitabine in vivo. The immunofluorescence results suggested that TRAIL-Mu3 could remarkably enhance the affinity to pancreatic cancer cells. The Western blot results showed that treatment with TRAIL-Mu3 caused a clear cleavage of caspase-3 and caspase-8. In addition, both the Western blot and flow cytometry suggested a significantly up-expression of DR5 in TRAIL-Mu3 group. CONCLUSIONS Membrane-penetrating peptide-alike mutant-TRAIL-Mu3 induced pancreatic cancer cell death more efficiently than TRAIL, and this effect was supposed to be mediated by the increased affinity to cell membrane, the up-regulation of DR5 and the enhancement of activated caspase.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Physiology, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Hong Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng Yi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Juan Yan
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan, People's Republic of China
| | - Lijia Wei
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan, People's Republic of China
| | - Xi Yang
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan, People's Republic of China.
| | - Ying Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Kim SY, Hong M, Heo SH, Park S, Kwon TK, Sung YH, Oh Y, Lee S, Yi GS, Kim I. Inhibition of euchromatin histone-lysine N-methyltransferase 2 sensitizes breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through reactive oxygen species-mediated activating transcription factor 4-C/EBP homologous protein-death receptor 5 pathway activation. Mol Carcinog 2018; 57:1492-1506. [PMID: 29964331 DOI: 10.1002/mc.22872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been characterized as an anti-cancer therapeutic agent with prominent cancer cell selectivity over normal cells. However, breast cancer cells are generally resistant to TRAIL, thus limiting its therapeutic potential. In this study, we found that BIX-01294, a selective inhibitor of euchromatin histone methyltransferase 2/G9a, is a strong TRAIL sensitizer in breast cancer cells. The combination of BIX-01294 and TRAIL decreased cell viability and led to an increase in the annexin V/propidium iodide-positive cell population, DNA fragmentation, and caspase activation. BIX-01294 markedly increased death receptor 5 (DR5) expression, while silencing of DR5 using small interfering RNAs abolished the TRAIL-sensitizing effect of BIX-01294. Specifically, BIX-01294 induced C/EBP homologous protein (CHOP)-mediated DR5 gene transcriptional activation and DR5 promoter activation was induced by upregulation of the protein kinase R-like endoplasmic reticulum kinase-mediated activating transcription factor 4 (ATF4). Moreover, inhibition of reactive oxygen species by N-acetyl-L-cysteine efficiently blocked BIX-01294-induced DR5 upregulation by inhibiting ATF4/CHOP expression, leading to diminished sensitization to TRAIL. These findings suggest that BIX-01294 sensitizes breast cancer cells to TRAIL by upregulating ATF4/CHOP-dependent DR5 expression with a reactive oxygen species-dependent manner. Furthermore, combination treatment with BIX-01294 and TRAIL suppressed tumor growth and induced apoptosis in vivo. In conclusion, we found that epigenetic regulation can contribute to the development of resistance to cancer therapeutics such as TRAIL, and further studies of unfolded protein responses and the associated epigenetic regulatory mechanisms may lead to the discovery of new molecular targets for effective cancer therapy.
Collapse
Affiliation(s)
- So Young Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - MiNa Hong
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Seung-Ho Heo
- Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Sojung Park
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Young Hoon Sung
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Ralff MD, El-Deiry WS. TRAIL pathway targeting therapeutics. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:197-204. [PMID: 30740527 DOI: 10.1080/23808993.2018.1476062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction Despite decades of focused research efforts, cancer remains a significant cause of morbidity and mortality. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is capable of inducing cell death selectively in cancer cells while sparing normal cells. Areas covered In this review, the authors cover TRA therapy and strategies that have been undertaken to improve their efficacy, as well as unconventional approaches to TRAIL pathway activation including TRAIL-inducing small molecules. They also discuss mechanisms of resistance to TRAIL and the use of combination strategies to overcome it. Expert commentary Targeting the TRAIL pathway has been of interest in oncology, and although initial clinical trials of TRAIL receptor agonists (TRAs) showed limitations, novel approaches represent the future of TRAIL-based therapy.
Collapse
Affiliation(s)
- Marie D Ralff
- MD/PhD Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
35
|
Shishodia G, Koul S, Dong Q, Koul HK. Tetrandrine (TET) Induces Death Receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and Sensitizes Prostate Cancer Cells to TRAIL-Induced Apoptosis. Mol Cancer Ther 2018; 17:1217-1228. [PMID: 29549167 PMCID: PMC10186773 DOI: 10.1158/1535-7163.mct-17-1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, but not in normal cells; as such, it is a promising therapeutic agent. However, therapeutic resistance limits its clinical use in many malignancies, including prostate cancer. Strategies to sensitize cancer cells to TRAIL are urgently needed. We demonstrate here that small-molecule tetrandrine (TET) potentially sensitizes previously resistant (LNCaP and C4-2B cells) and mildly sensitive (PC3 cells) prostate cancer cells to TRAIL-induced apoptosis, and they do so by upregulating mRNA expression and protein levels of death receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5). Using shRNA knockdown, we show critical requirement of DR4 and DR5 in sensitization of prostate cancer cells to TRAIL. We show that double knockdown of DR4 and DR5 abrogated the apoptotic effects of TET and TRAIL. We also demonstrate that TET-induced DR4 and DR5 expression is independent of p53 status. Given that loss of p53 is associated with progression of prostate cancer to CRPC and NEPC, our results show that TET, by acting as a TRAIL-sensitizing agent in prostate cancer, could serve as a potential therapeutic agent in CRPC and NEPC, for which there is no cure to date. Mol Cancer Ther; 17(6); 1217-28. ©2018 AACR.
Collapse
|
36
|
Akpinar B, Safarikova B, Laukova J, Debnath S, Vaculova AH, Zhivotovsky B, Olsson M. Aberrant DR5 transport through disruption of lysosomal function suggests a novel mechanism for receptor activation. Oncotarget 2018; 7:58286-58301. [PMID: 27506940 PMCID: PMC5295431 DOI: 10.18632/oncotarget.11073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
To examine reciprocal or unilateral implications between two cell destruction processes, autophagy and apoptosis, in 5-Fluorouracil (5-FU)-treated tumor cells, a combination of chemical inhibitors, RNAi and genetic approaches were used. In contrast to cancer cells harboring obstructed apoptosis, either at the DISC or the mitochondrial level, p53-deficiency generated signs of autophagy deregulation upon chemotherapy. On the other, hand disruption of lysosomal function by chloroquine, caused a profound decrease in apoptotic markers appearing in response to 5-FU. DR5, which is essential for 5-FU-induced apoptosis, accumulated in lysosomes and autophagosomes upon chloroquine treatment. Since neither 3-MA, RNAi of critical autophagy regulators or inhibition of cathepsins reversed apoptosis in a similar manner, it is likely that not autophagy per se but rather correct receptor transport is an important factor for 5-FU cytotoxicity. We found that apoptosis generated by TRAIL, the cognate ligand for DR5, remained unchanged upon chloroquine lysosomal interference, indicating that 5-FU activates the receptor by a discrete mechanism. In support, depletion of membrane cholesterol or hampering cholesterol transport drastically reduced 5-FU cytotoxicity. We conclude that targeting of lysosomes by chloroquine deregulates DR5 trafficking and abrogates 5-FU- but not TRAIL-stimulated cell elimination, hence suggesting a novel mechanism for receptor activation.
Collapse
Affiliation(s)
- Birce Akpinar
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barbora Safarikova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Jarmila Laukova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Shubhranshu Debnath
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alena Hyrslova Vaculova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells. PLoS One 2017; 12:e0190221. [PMID: 29272311 PMCID: PMC5741252 DOI: 10.1371/journal.pone.0190221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Molt-4 leukemia cells undergo p53-dependent apoptosis accompanied by accumulation of de novo ceramide after 14 hours of γ-irradiation. In order to identify the potential mediators involved in ceramide accumulation and the cell death response, differentially expressed genes were identified by Affymetrix Microarray Analysis. Molt-4-LXSN cells, expressing wild type p53, and p53-deficient Molt-4-E6 cells were irradiated and harvested at 3 and 8 hours post-irradiation. Human genome U133 plus 2.0 array containing >47,000 transcripts was used for gene expression profiling. From over 10,000 probes, 281 and 12 probes were differentially expressed in Molt-4-LXSN and Molt-4-E6 cells, respectively. Data analysis revealed 63 (upregulated) and 20 (downregulated) genes (>2 fold) in Molt-4-LXSN at 3 hours and 140 (upregulated) and 21 (downregulated) at 8 hours post-irradiation. In Molt-4-E6 cells, 5 (upregulated) genes each were found at 3 hours and 8 hours, respectively. In Molt-4-LXSN cells, a significant fraction of the genes with altered expression at 3 hours were found to be involved in apoptosis signaling pathway (BCL2L11), p53 pathway (PMAIP1, CDKN1A and FAS) and oxidative stress response (FDXR, CROT and JUN). Similarly, at 8 hours the genes with altered expression were involved in the apoptosis signaling pathway (BAX, BIK and JUN), p53 pathway (BAX, CDKN1A and FAS), oxidative stress response (FDXR and CROT) and p53 pathway feedback loops 2 (MDM2 and CDKN1A). A global molecular and biological interaction map analysis showed an association of these altered genes with apoptosis, senescence, DNA damage, oxidative stress, cell cycle arrest and caspase activation. In a targeted study, activation of apoptosis correlated with changes in gene expression of some of the above genes and revealed sequential activation of both intrinsic and extrinsic apoptotic pathways that precede ceramide accumulation and subsequent execution of apoptosis. One or more of these altered genes may be involved in p53-dependent ceramide accumulation.
Collapse
|
38
|
Wang W, Li J, Wen Q, Luo J, Chu S, Chen L, Qing Z, Xie G, Xu L, Alnemah MM, Li M, Fan S, Zhang H. 4EGI-1 induces apoptosis and enhances radiotherapy sensitivity in nasopharyngeal carcinoma cells via DR5 induction on 4E-BP1 dephosphorylation. Oncotarget 2017; 7:21728-41. [PMID: 26942880 PMCID: PMC5008318 DOI: 10.18632/oncotarget.7824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The eIF4F complex regulated by a various group of eIF4E-binding proteins (4E-BPs) can initial the protein synthesis. Small molecule compound 4EGI-1, an inhibitor of the cap-dependent translation initiation through disturbing the interaction between eIF4E and eIF4G which are main elements of the eIF4E complex, has been reported to suppress cell proliferation by inducing apoptosis in many types of cancer. And death receptor 5 (DR5) is a major component in the extrinsic apoptotic pathway. However, the correlation among 4EGI-1, DR5 and 4E-BPs have not been discovered in NPC now. Therefore, we intend to find out the effect of 4EGI-1 on the apoptosis process of NPC and the relationship among 4EGI-1, DR5 and 4E-BPs. Our results revealed a significant down regulation of DR5 expression in NPC tissues, which inversely correlated with lymph node metastasis status and clinical stages. Depressed DR5 expression was an independent biomarker for poor prognosis in NPC, and elevated DR5 expression showed longer overall survival time in 174 NPC patients. Besides, 4EGI-1 induced apoptosis in NPC cells through the DR5-caspase-8 axis on 4E-BP1 and eIF4E dephosphorylation exerting positive influence on their anti-tumor activities. The induction of DR5 also sensitized NPC cells to radiotherapy, and the SER was 1.195. These results establish the death receptor pathway as a novel anticancer mechanism of eIF4E/eIF4G interaction inhibitor in NPC.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuzhou Chu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenzhen Qing
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mohannad Ma Alnemah
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meirong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Plissonnier ML, Fauconnet S, Bittard H, Mougin C, Rommelaere J, Lascombe I. Cell death and restoration of TRAIL-sensitivity by ciglitazone in resistant cervical cancer cells. Oncotarget 2017; 8:107744-107762. [PMID: 29296202 PMCID: PMC5746104 DOI: 10.18632/oncotarget.22632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Known activators of the Peroxisome Proliferator-Activated Receptor γ (PPARγ), thiazolidinediones (TZD) induce apoptosis in a variety of cancer cells through dependent and/or independent mechanisms of the receptor. We tested a panel of TZD (Rosiglitazone, Pioglitazone, Ciglitazone) to shed light on their potential therapeutic effects on three cervical cancer cell lines (HeLa, Ca Ski, C-33 A). In these cells, only ciglitazone triggered apoptosis through PPARγ-independent mechanisms and in particular via both extrinsic and intrinsic pathways in Ca Ski cells containing Human PapillomaVirus (HPV) type 16. It also inhibits cervical cancer xenograft development in nude mice. Ciglitazone kills cervical cancer cells by activating death receptor signalling pathway, caspase cascade and BH3 interacting-domain death agonist (Bid) cleavage through the up-regulation of Death Receptor 4 (DR4)/DR5 and soluble and membrane-bound TNF related apoptosis inducing ligand (TRAIL). Importantly, the drug let TRAIL-resistant Ca Ski cells to respond to TRAIL through the downregulation of cellular FLICE-Like Inhibitory Protein (c-FLIP) level. For the first time, we revealed that ciglitazone is able to decrease E6 viral oncoprotein expression known to block TRAIL pathway and this was associated with cell death. Our results highlight the capacity of ciglitazone to restore TRAIL sensitivity and to prevent E6 blocking action to induce apoptosis in cervical cancer cells.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Cancer Research Center of Lyon, INSERM U1052, Lyon F-69424, France
| | - Sylvie Fauconnet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Hugues Bittard
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Christiane Mougin
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Pathology, University Hospital of Besançon, Besançon F-25030, France
| | - Jean Rommelaere
- German Cancer Research Center Tumor Virology F010, Heidelberg 69120, Germany
| | - Isabelle Lascombe
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France
| |
Collapse
|
40
|
Zingoni A, Fionda C, Borrelli C, Cippitelli M, Santoni A, Soriani A. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Front Immunol 2017; 8:1194. [PMID: 28993779 PMCID: PMC5622151 DOI: 10.3389/fimmu.2017.01194] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy). However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristiana Borrelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
41
|
Singh AK, Chauhan SS, Singh SK, Verma VV, Singh A, Arya RK, Maheshwari S, Akhtar MS, Sarkar J, Rangnekar VM, Chauhan PMS, Datta D. Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer. Carcinogenesis 2017; 37:1027-1040. [PMID: 27543608 DOI: 10.1093/carcin/bgw088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/16/2016] [Indexed: 01/25/2023] Open
Abstract
Mouse double minute 2 (MDM2) protein functionally inactivates the tumor suppressor p53 in human cancer. Conventional MDM2 inhibitors provide limited clinical application as they interfere only with the MDM2-p53 interaction to release p53 from MDM2 sequestration but do not prevent activated p53 from transcriptionally inducing MDM2 expression. Here, we report a rationally synthesized chalcone-based pyrido[ b ]indole, CPI-7c, as a unique small-molecule inhibitor of MDM2, which not only inhibited MDM2-p53 interaction but also promoted MDM2 degradation. CPI-7c bound to both RING and N-terminal domains of MDM2 to promote its ubiquitin-mediated degradation and p53 stabilization. CPI-7c-induced p53 directly recruited to the promoters of DR4 and DR5 genes and enhanced their expression, resulting in sensitization of TNF-related apoptosis-inducing ligand (TRAIL)-resistant cancer cells toward TRAIL-induced apoptosis. Collectively, we identified CPI-7c as a novel small-molecule inhibitor of MDM2 with a unique two-prong mechanism of action that sensitized TRAIL-resistant cancer cells to apoptosis by modulating the MDM2-p53-DR4/DR5 pathway.
Collapse
Affiliation(s)
| | - Shikha S Chauhan
- Medicinal and Process Chemistry Division and.,Present address: Pennsylvania State University, University Park, PA 16801, USA
| | - Sudhir Kumar Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh 226031 , India
| | - Ved Vrat Verma
- Department of Biophysics, Delhi University , South Campus, New Delhi 110021 , India
| | | | | | - Shrankhla Maheshwari
- Biochemistry Division.,Academy of Scientific and Innovative Research, New Delhi 110025, India and
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh 226031 , India
| | | | - Vivek M Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky , Lexington, KY 40536 , USA and
| | | | - Dipak Datta
- Biochemistry Division.,Academy of Scientific and Innovative Research, New Delhi 110025, India and
| |
Collapse
|
42
|
Min KJ, Nam JO, Kwon TK. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells. Molecules 2017; 22:molecules22081285. [PMID: 28767099 PMCID: PMC6151974 DOI: 10.3390/molecules22081285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| |
Collapse
|
43
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 615] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Schipp R, Varga J, Bátor J, Vecsernyés M, Árvai Z, Pap M, Szeberényi J. Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells. Mol Cell Biochem 2017; 434:41-50. [PMID: 28432551 DOI: 10.1007/s11010-017-3035-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
The bacterial antibiotic anisomycin is known to induce apoptosis by activating several mitogen-activated protein kinases and by inhibiting protein synthesis. In this study, the influence of p53 protein on the apoptosis-inducing effect of anisomycin was investigated. The effect of protein synthesis-inhibiting concentration of anisomycin on apoptotic events was analyzed using Western blot, DNA fragmentation, and cell viability assays in wild-type PC12 and in mutant p53 protein expressing p143p53PC12 cells. Anisomycin stimulated the main apoptotic pathways in both cell lines, but p143p53PC12 cells showed lower sensitivity to the drug than their wild-type counterparts. Anisomycin caused the activation of the main stress kinases, phosphorylation of the p53 protein and the eukaryotic initiation factor eIF2α, proteolytic cleavage of protein kinase R, Bid, caspase-9 and -3. Furthermore, anisomycin treatment led to the activation of TRAIL and caspase-8, two proteins involved in the extrinsic apoptotic pathway. All these changes were stronger and more sustained in wtPC12 cells. In the presence of the dominant inhibitory p53 protein, p53- dependent genes involved in the regulation of apoptosis may be less transcribed and this can lead to the decrease of apoptotic processes in p143p53PC12 cells.
Collapse
Affiliation(s)
- R Schipp
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Varga
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Bátor
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Vecsernyés
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - Z Árvai
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Pap
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary. .,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
45
|
Li X, Yang B, Wang L, Chen L, Luo X, Liu L. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes. Oncol Rep 2017; 37:2839-2846. [DOI: 10.3892/or.2017.5540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
|
46
|
Hung JH, Chen CY, Omar HA, Huang KY, Tsao CC, Chiu CC, Chen YL, Chen PH, Teng YN. Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins. ENVIRONMENTAL TOXICOLOGY 2016; 31:1888-1898. [PMID: 26370073 DOI: 10.1002/tox.22190] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 05/04/2023]
Abstract
Terbufos (S-t-butylthiomethyl-O,O-diethyl phosphorodithioate) is a highly toxic organophosphate which is extensively used as an insecticide and nematicide. Chronic exposure to terbufos causes neuronal injury and predisposes to neurodegenerative diseases. Accumulating evidence has shown that the exposure to terbufos, as an occupational risk factor, may also cause reproductive disorders. However, the exact mechanisms of reproductive toxicity remain unclear. The present study aimed to investigate the toxic effect of terbufos on testicular cells and to explore the mechanism of toxicity on a cellular level. The cytotoxic effects of terbufos on mouse immortalized spermatogonia (GC-1), spermatocytes (GC-2), Leydig (TM3), and Sertoli (TM4) cell lines were assessed by MTT assays, caspase activation, flow cytometry, TUNEL assay, Western blot, and cell cycle analysis. The exposure to different concentrations of terbufos ranging from 50 to 800 μM for 6 h caused significant death in all the used testicular cell lines. Terbufos increased reactive oxygen species (ROS) production, reduced mitochondrial membrane potential, and initiated apoptosis, which was confirmed by a dose-dependent increase in the number of TUNEL-positive apoptotic cells. Blocking ROS production by N-acetyl cysteine (NAC) protected GC-1 cells from terbufos-induced cell death. The results demonstrated that terbufos induces ROS, apoptosis, and DNA damage in testicular cell lines and it should be considered potentially hazardous to testis. Together, this study provided potential molecular mechanisms of terbufos-induced toxicity in testicular cells and suggests a possible protective measure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1888-1898, 2016.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yun Chen
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Pharmacology, College of Pharmacy, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Che-Chia Tsao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Po-Han Chen
- Department of Cosmetic Application & Management, Far East University, Tainan, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
47
|
Transcriptomic Analysis Implicates the p53 Signaling Pathway in the Establishment of HIV-1 Latency in Central Memory CD4 T Cells in an In Vitro Model. PLoS Pathog 2016; 12:e1006026. [PMID: 27898737 PMCID: PMC5127598 DOI: 10.1371/journal.ppat.1006026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
The search for an HIV-1 cure has been greatly hindered by the presence of a viral reservoir that persists despite antiretroviral therapy (ART). Studies of HIV-1 latency in vivo are also complicated by the low proportion of latently infected cells in HIV-1 infected individuals. A number of models of HIV-1 latency have been developed to examine the signaling pathways and viral determinants of latency and reactivation. A primary cell model of HIV-1 latency, which incorporates the generation of primary central memory CD4 T cells (TCM), full-length virus infection (HIVNL4-3) and ART to suppress virus replication, was used to investigate the establishment of HIV latency using RNA-Seq. Initially, an investigation of host and viral gene expression in the resting and activated states of this model indicated that the resting condition was reflective of a latent state. Then, a comparison of the host transcriptome between the uninfected and latently infected conditions of this model identified 826 differentially expressed genes, many of which were related to p53 signaling. Inhibition of the transcriptional activity of p53 by pifithrin-α during HIV-1 infection reduced the ability of HIV-1 to be reactivated from its latent state by an unknown mechanism. In conclusion, this model may be used to screen latency reversing agents utilized in shock and kill approaches to cure HIV, to search for cellular markers of latency, and to understand the mechanisms by which HIV-1 establishes latency.
Collapse
|
48
|
Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, Corchado JM, Al Ashwal H. Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Comput Biol Med 2016; 77:102-15. [PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 01/03/2023]
Abstract
Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
Collapse
Affiliation(s)
- Weng Howe Chan
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Safaai Deris
- Faculty of Creative Technology & Heritage, Universiti Malaysia Kelantan, Locked Bag 01, Bachok, 16300 Kota Bharu, Kelantan, Malaysia
| | - Nazar Zaki
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| | - Shahreen Kasim
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Malaysia
| | - Sigeru Omatu
- Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Juan Manuel Corchado
- Biomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
49
|
Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells. Sci Rep 2016; 6:27379. [PMID: 27271479 PMCID: PMC4895350 DOI: 10.1038/srep27379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of γH2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways.
Collapse
|
50
|
Sharma M. Selective cytotoxicity and modulation of apoptotic signature of breast cancer cells byPithecellobium dulceleaf extracts. Biotechnol Prog 2016; 32:756-66. [DOI: 10.1002/btpr.2261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Monika Sharma
- Dept. of Biotechnology; Panjab University; Chandigarh 160014 India
| |
Collapse
|