1
|
Mao K, Wang X, Hou Y, He X, Geng S, Sadiq FA, Lian Y, Sang Y. Integrated network pharmacology and transcriptomic approach reveal the role of equol in reducing colorectal cancer via regulating multiple cell cycle genes in HCT116 cells. Int J Biol Macromol 2024; 282:136832. [PMID: 39461627 DOI: 10.1016/j.ijbiomac.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Equol is an isoflavone-derived metabolite known to exhibit strong estrogenic and antioxidant activities. The aim of this paper is twofold: first, to confirm the anticancer potential of equol against colorectal cancer, and second, to reveal the underlying mechanisms. After treatment with 40 μg/mL equol, cell proliferation, cell migration, and colony formation of HCT116 colon cancer cells were inhibited. Network pharmacology and transcriptomics analysis revealed the downregulation of genes related to DNA replication (CCND1, E2F1, CDC6, CDC45, MCM4), leading to G1/S cell cycle arrest and the induction of cell apoptosis, which was confirmed by flow cytometry. Genes associated with the G2-to-M transition (CDK1, CCNA2, CCNB1) were also downregulated. In addition, equol downregulated genes (FOXM1 and ASPM) that control cell migration and invasion. Our data indicate that equol can inhibit colorectal cancer by targeting multiple pathways, suggesting its potential as a key component in the adjuvant treatment of colorectal cancer.
Collapse
Affiliation(s)
- Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xianghong Wang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yakun Hou
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaowei He
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Shuo Geng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, United Kingdom
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Handan, Hebei, China
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China.
| |
Collapse
|
2
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
3
|
Karabulut B, Yukruk FA, Yenidunya S, Kandemir O, Kosemehmetoglu K. Differential cyclin-E1 expression in CIC-rearranged sarcoma. Ann Diagn Pathol 2024; 72:152320. [PMID: 38703529 DOI: 10.1016/j.anndiagpath.2024.152320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
CIC-rearranged sarcoma (CRS) is a group of high-grade undifferentiated small round cell sarcomas examined as a separate entity in the current WHO classification; since it shows more aggressive clinical behavior and distinct morphological and molecular features compared to Ewing sarcoma (ES). As CCNE1 expression is associated with tumor growth in CIC::DUX4 sarcomas, we aimed to demonstrate the value of cyclin E1 expression in CRS. Cyclin E1 immunohistochemistry and break-apart FISH for EWSR1 and CIC gene rearrangements were performed on 3-mm tissue microarrays composed of 40 small round cell tumors. Five cases were classified as CRS, whereas 22 were ES and 13 were unclassified (EWSR1-/CIC-). Among all three diagnostic groups, we found cyclin E1 expression level to be higher in CRS (80 %) and unclassified groups (61.5 %) compared to ES (4.5 %, p < 0.001). In addition, high cyclin E1 expression levels were associated with higher mean age at diagnosis, presence of atypical histology and myxoid stroma, low CD99 expression, and presence of metastasis at diagnosis. The sensitivity and specificity of high cyclin E1 expression in detecting non-ES cases were 95.5 % and 66.7 %, respectively. However, the correlation between cyclin E1 expression level and survival was not statistically significant. This is the first study that shows cyclin E1 immunohistochemical expression in EWSR1-negative undifferentiated small cell sarcomas, particularly CRS.
Collapse
MESH Headings
- Humans
- Male
- Oncogene Proteins/metabolism
- Oncogene Proteins/genetics
- Female
- Adult
- Cyclin E/metabolism
- Cyclin E/genetics
- Middle Aged
- Gene Rearrangement
- Adolescent
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Young Adult
- Child
- Repressor Proteins/metabolism
- Repressor Proteins/genetics
- Immunohistochemistry/methods
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/genetics
- Sarcoma/pathology
- Sarcoma/metabolism
- Sarcoma/genetics
- Sarcoma/diagnosis
- In Situ Hybridization, Fluorescence/methods
- Aged
- Child, Preschool
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Small Cell/metabolism
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Sarcoma, Small Cell/diagnosis
Collapse
Affiliation(s)
- Berna Karabulut
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey.
| | - Fisun Ardic Yukruk
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey
| | - Sibel Yenidunya
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey
| | | | - Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey.
| |
Collapse
|
4
|
Bose GS, Kalakoti G, Kulkarni AP, Mittal S. AP-1/C-FOS and AP-1/FRA2 differentially regulate early and late adipogenic differentiation of mesenchymal stem cells. J Cell Biochem 2024; 125:e30543. [PMID: 38440920 DOI: 10.1002/jcb.30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Obesity is defined as an abnormal accumulation of adipose tissue in the body and is a major global health problem due to increased morbidity and mortality. Adipose tissue is made up of adipocytes, which are fat-storing cells, and the differentiation of these fat cells is known as adipogenesis. Several transcription factors (TFs) such as CEBPβ, CEBPα, PPARγ, GATA, and KLF have been reported to play a key role in adipogenesis. In this study, we report one more TF AP-1, which is found to be involved in adipogenesis. Human mesenchymal stem cells were differentiated into adipocytes, and the expression pattern of different subunits of AP-1 was examined during adipogenesis. It was observed that C-FOS was predominantly expressed at an early stage (Day 2), whereas FRA2 expression peaked at later stages (Days 6 and 8) of adipogenesis. Chromatin immunoprecipitation-sequencing analysis revealed that C-FOS binds mainly to the promoters of WNT1, miR-30a, and ANAPC7 and regulates their expression during mitotic clonal expansion. In contrast, FRA2 binds to the promoters of CIDEA, NOTCH1, ARAF, and MYLK, regulating their expression and lipid metabolism. Data obtained clearly indicate that the differential expression of C-FOS and FRA2 is crucial for different stages of adipogenesis. This also raises the possibility of considering AP-1 as a therapeutic target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Garima Kalakoti
- Bioinformatics Center, Savitribai Phule Pune University, Pune, India
| | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, Taslim NA, Kim B, Syahputra RA, Nurkolis F. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar Drugs 2024; 22:338. [PMID: 39195454 DOI: 10.3390/md22080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.
Collapse
Affiliation(s)
- Visuddho Visuddho
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23123, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| |
Collapse
|
7
|
Ibrahim BT, Allam HA, El-Dydamony NM, Fouad MA, Mohammed ER. Exploring new quinazolin-4(3H)-one derivatives as CDK2 inhibitors: Design, synthesis, and anticancer evaluation. Drug Dev Res 2024; 85:e22163. [PMID: 38419305 DOI: 10.1002/ddr.22163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
In the present work, five series of new 2,3-disubstituted quinazolin-4(3H)-ones 4a-c, 5a-d, 6a-g, 7a,b, and 9a-c were designed, synthesized, and screened in vitro for their cytotoxic activity against 60 cancer cell lines by the National Cancer Institute, USA. Five candidates 4c, 6a, 6b, 6d, and 6g revealed promising cytotoxicity with significant percentage growth inhibition in the range of 81.98%-96.45% against the central nervous system (CNS) (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The in vitro cytotoxic half maximal inhibitory concentration (IC50 ) values for the most active compounds 4c, 6a, 6b, 6d, and 6g against the most sensitive cell lines were evaluated. Additionally, screening their cyclin-dependent kinase 2 (CDK2) inhibitory activity was performed. Ortho-chloro-benzylideneamino derivative 6b emerged as the most potent compound with IC50 = 0.67 µM compared to Roscovitine (IC50 = 0.64 µM). The most active candidates arrested the cell cycle at G1, S phases, or both, leading to cell death and inducing apoptosis against CNS (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The molecular docking study verified the resulting outcomes for the most active candidates in the CDK2-binding pocket. Finally, physicochemical, and pharmacokinetic properties deduced that compounds 4c, 6a, 6b, 6d, and 6g displayed significant drug-likeness properties. According to the obtained results, the newly targeted compounds are regarded as promising scaffolds for the continued development of novel CDK2 inhibitors.
Collapse
Affiliation(s)
- Basant T Ibrahim
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | | | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, New Giza University, Cairo, Egypt
| | - Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Hummel JR, Xiao KJ, Yang JC, Epling LB, Mukai K, Ye Q, Xu M, Qian D, Huo L, Weber M, Roman V, Lo Y, Drake K, Stump K, Covington M, Kapilashrami K, Zhang G, Ye M, Diamond S, Yeleswaram S, Macarron R, Deller MC, Wee S, Kim S, Wang X, Wu L, Yao W. Discovery of (4-Pyrazolyl)-2-aminopyrimidines as Potent and Selective Inhibitors of Cyclin-Dependent Kinase 2. J Med Chem 2024; 67:3112-3126. [PMID: 38325398 DOI: 10.1021/acs.jmedchem.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
CDK2 is a critical regulator of the cell cycle. For a variety of human cancers, the dysregulation of CDK2/cyclin E1 can lead to tumor growth and proliferation. Historically, early efforts to develop CDK2 inhibitors with clinical applications proved unsuccessful due to challenges in achieving selectivity over off-target CDK isoforms with associated toxicity. In this report, we describe the discovery of (4-pyrazolyl)-2-aminopyrimidines as a potent class of CDK2 inhibitors that display selectivity over CDKs 1, 4, 6, 7, and 9. SAR studies led to the identification of compound 17, a kinase selective and highly potent CDK2 inhibitor (IC50 = 0.29 nM). The evaluation of 17 in CCNE1-amplified mouse models shows the pharmacodynamic inhibition of CDK2, measured by reduced Rb phosphorylation, and antitumor activity.
Collapse
Affiliation(s)
- Joshua R Hummel
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kai-Jiong Xiao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Jeffrey C Yang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Leslie B Epling
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Ken Mukai
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Qinda Ye
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Meizhong Xu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Dingquan Qian
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Lu Huo
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Michael Weber
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Valerie Roman
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yvonne Lo
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Katherine Drake
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kristine Stump
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Maryanne Covington
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kanishk Kapilashrami
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Guofeng Zhang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Min Ye
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Sharon Diamond
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Swamy Yeleswaram
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Ricardo Macarron
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Marc C Deller
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Susan Wee
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Sunkyu Kim
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Xiaozhao Wang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Liangxing Wu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| |
Collapse
|
9
|
Abdel-Mohsen HT, Anwar MM, Ahmed NS, Abd El-Karim SS, Abdelwahed SH. Recent Advances in Structural Optimization of Quinazoline-Based Protein Kinase Inhibitors for Cancer Therapy (2021-Present). Molecules 2024; 29:875. [PMID: 38398626 PMCID: PMC10892255 DOI: 10.3390/molecules29040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complicated, multifaceted disease that can impact any organ in the body. Various chemotherapeutic agents have a low selectivity and are very toxic when used alone or in combination with others. Resistance is one of the most important hurdles that develop due to the use of many anticancer therapeutics. As a result, treating cancer requires a target-specific palliative care strategy. Remarkable scientific discoveries have shed light on several of the molecular mechanisms underlying cancer, resulting in the development of various targeted anticancer agents. One of the most important heterocyclic motifs is quinazoline, which has a wide range of biological uses and chemical reactivities. Newer, more sophisticated medications with quinazoline structures have been found in the last few years, and great strides have been made in creating effective protocols for building these pharmacologically active scaffolds. A new class of chemotherapeutic agents known as quinazoline-based derivatives possessing anticancer properties consists of several well-known compounds that block different protein kinases and other molecular targets. This review highlights recent updates (2021-2024) on various quinazoline-based derivatives acting against different protein kinases as anticancer chemotherapeutics. It also provides guidance for the design and synthesis of novel quinazoline analogues that could serve as lead compounds.
Collapse
Affiliation(s)
- Heba T. Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A & M University, Prairie View, TX 77446, USA
| |
Collapse
|
10
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
11
|
Pal A, Tripathi SK, Rani P, Rastogi M, Das S. p53 and RNA viruses: The tug of war. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1826. [PMID: 37985142 DOI: 10.1002/wrna.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Meghana Rastogi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India, Kalyani, West Bengal, India
| |
Collapse
|
12
|
Wang H, Han R, Li Q, Kang W, Dong Q, Yin H, Niu L, Dai J, Yan Y, Su Y, Yao X, Zhang H, Yuan G, Pan Y. EEF1E1 promotes glioma proliferation by regulating cell cycle through PTEN/AKT signaling pathway. Mol Carcinog 2023; 62:1731-1744. [PMID: 37589446 DOI: 10.1002/mc.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
The cell cycle, a pivotal regulator of cell proliferation, can be significantly influenced by the phosphatase and tensin homolog (PTEN)/AKT signaling pathway's modulation of cyclin-related proteins. In our study, we discovered the crucial role of EEF1E1 in this process, as it appears to downregulate PTEN expression. Furthermore, our findings affirmed that EEF1E1 modulates downstream cell cycle-related proteins by suppressing the PTEN/AKT pathway. Cell cycle assay results revealed that EEF1E1 downregulation stunted the advancement of glioma cells in both the G1 and S phases. A suite of assays-Cell Counting Kit-8, colony formation, and ethyl-2'-deoxyuridine-substantiated that the EEF1E1 downregulation markedly curtailed glioma proliferation. We further validated this phenomenon through animal studies and coculture experiments on brain slices. Our comprehensive investigation indicates that EEF1E1 knockdown can effectively inhibit the glioma cell proliferation by regulating the cell cycle via the PTEN/AKT signaling pathway. Consequently, EEF1E1 emerges as a potential therapeutic target for glioma treatment, signifying critical clinical implications.
Collapse
Affiliation(s)
- Hongyu Wang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hang Yin
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Niu
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junqiang Dai
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yunji Yan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yuanping Su
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xuan Yao
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - He Zhang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Zhao Y, Culman J, Cascorbi I, Nithack N, Marx M, Zuhayra M, Lützen U. PSMA-617 inhibits proliferation and potentiates the 177Lu-PSMA-617-induced death of human prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3315-3326. [PMID: 37284895 PMCID: PMC10567812 DOI: 10.1007/s00210-023-02539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The human prostate-specific membrane antigen (PSMA) is substantially up-regulated in metastatic prostate cancer (PCa) cells. PSMA can be targeted by 177Lu conjugated to PSMA-617, a high-affinity ligand for the PSMA. The binding of the radioligand, 177Lu-PSMA-617, results in its internalisation and delivery of β-radiation into the cancer cells. However, PSMA-617, a component of the final product in the synthesis of the radioligand, may also play a role in the pathophysiology of PCa cells. The present study aimed to clarify the effects of PSMA-617 (10, 50 and 100 nM) on the expression of PSMA in PSMA-positive LNCaP cells, their proliferation, 177Lu-PSMA-617-induced cell death by WST-1 and lactate dehydrogenase assays, immunohistochemistry, western blotting, immunofluorescence staining and uptake of 177Lu-PSMA-617. PSMA-617 at 100 nM concentration induced cell-growth arrest, down-regulated cyclin D1 and cyclin E1 (by 43 and 36%, respectively) and up-regulated the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (by 48%). Immunofluorescence staining demonstrated reduced content of DNA, pointing to a lower rate of cell division. PSMA-617 (up to 100 nM) did not alter the uptake of 177Lu-PSMA-617 into the LNCaP cells. Interestingly, simultaneous treatment with 177Lu-PSMA-617 and PSMA-617 for 24 and 48 h substantially potentiated the cell-death promoting effects of the radioligand. In conclusion, the combination of impeding tumour cell proliferation by PSMA-617 and its potentiation of the radiation-induced cell death brought about by 177Lu-PSMA-617 in PCa cells may considerably improve the outcome of the radiation therapy with 177Lu-PSMA-617, especially in patients with decreased radiosensitivity of PCa cells to the radioligand.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Niklas Nithack
- Central Rhine Community Hospital-Clinic for Urology and Pediatric Urology, Koblenz, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Kubota Y, Tsumura H. Tumor-suppressive microRNA-152 inhibits the proliferation of Ewing's sarcoma cells by targeting CDK5R1. Sci Rep 2023; 13:18546. [PMID: 37899376 PMCID: PMC10613623 DOI: 10.1038/s41598-023-45833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
We elucidated the mechanism through which the reduced expression of miR-152 leads to the overexpression of its target cyclin-dependent kinase-5 activator 1 (CDK5R1) in Ewing's sarcoma (ES) cells and the role of this mechanism in the proliferation of ES cells. To explore possible oncogenic factors in ES, we conducted microarray-based investigation and profiled the changes in miRNA expression and their effects on downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs). miR-152 was significantly downregulated, while cyclin-dependent kinase-5 activator 1 (CDK5R1) expression was significantly upregulated in all tested ES cells as compared to hMSCs. The overexpression of CDK5R1 led to the activation of CDK5, enabling the phosphorylation of retinoblastoma protein and persistent overexpression of CCNE. Moreover, miR-152 suppressed cell proliferation via cell cycle retardation, and its upregulation reduced tumor size and CCNE expression in tumor tissues. The overexpression of cyclin E (CCNE) has been detected in ES cells, but the detailed mechanisms have not been previously elucidated. These findings identify the miR152-CDK5R1 signaling axis as a critical mechanism for tumorigenesis that may serve as a new therapeutic target in Ewing's sarcoma. We believe that our results will aid in the development of effective treatment strategies for patients with ES.
Collapse
Affiliation(s)
- Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan.
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Yuta Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| |
Collapse
|
15
|
Cai Z, Shi Q, Li Y, Jin L, Li S, Wong LL, Wang J, Jiang X, Zhu M, Lin J, Wang Q, Yang W, Liu Y, Zhang J, Gong C, Yao H, Yao Y, Liu Q. LncRNA EILA promotes CDK4/6 inhibitor resistance in breast cancer by stabilizing cyclin E1 protein. SCIENCE ADVANCES 2023; 9:eadi3821. [PMID: 37801505 PMCID: PMC10558131 DOI: 10.1126/sciadv.adi3821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
CDK4/6 inhibitors (CDK4/6i) plus endocrine therapy are now standard first-line therapy for advanced HR+/HER2- breast cancer, but developing resistance is just a matter of time in these patients. Here, we report that a cyclin E1-interacting lncRNA (EILA) is up-regulated in CDK4/6i-resistant breast cancer cells and contributes to CDK4/6i resistance by stabilizing cyclin E1 protein. EILA overexpression correlates with accelerated cell cycle progression and poor prognosis in breast cancer. Silencing EILA reduces cyclin E1 protein and restores CDK4/6i sensitivity both in vitro and in vivo. Mechanistically, hairpin A of EILA binds to the carboxyl terminus of cyclin E1 protein and hinders its binding to FBXW7, thereby blocking its ubiquitination and degradation. EILA is transcriptionally regulated by CTCF/CDK8/TFII-I complexes and can be inhibited by CDK8 inhibitors. This study unveils the role of EILA in regulating cyclin E1 stability and CDK4/6i resistance, which may serve as a biomarker to predict therapy response and a potential therapeutic target to overcome resistance.
Collapse
Affiliation(s)
- Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lok Lam Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingru Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoting Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mengdi Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinna Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen 518067, China
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
16
|
Fleifel D, Cook JG. G1 Dynamics at the Crossroads of Pluripotency and Cancer. Cancers (Basel) 2023; 15:4559. [PMID: 37760529 PMCID: PMC10526231 DOI: 10.3390/cancers15184559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.
Collapse
Affiliation(s)
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
17
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
18
|
Lapcik P, Sulc P, Janacova L, Jilkova K, Potesil D, Bouchalova P, Müller P, Bouchal P. Desmocollin-1 is associated with pro-metastatic phenotype of luminal A breast cancer cells and is modulated by parthenolide. Cell Mol Biol Lett 2023; 28:68. [PMID: 37620794 PMCID: PMC10464112 DOI: 10.1186/s11658-023-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Sulc
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Katerina Jilkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Müller
- Masaryk Memorial Cancer Institute, RECAMO, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
19
|
Hild V, Mellert K, Möller P, Barth TFE. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers (Basel) 2023; 15:3702. [PMID: 37509363 PMCID: PMC10377796 DOI: 10.3390/cancers15143702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Giant cells (GCs) are thought to originate from the fusion of monocytic lineage cells and arise amid multiple backgrounds. To compare GCs of different origins, we immunohistochemically characterised the GCs of reactive and neoplastic lesions (n = 47). We studied the expression of 15 molecules including HLA class II molecules those relevant to the cell cycle, bone metabolism and lineage affiliation. HLA-DR was detectable in the GCs of sarcoidosis, sarcoid-like lesions, tuberculosis, and foreign body granuloma. Cyclin D1 was expressed by the GCs of neoplastic lesions as well as the GCs of bony callus, fibroid epulis, and brown tumours. While cyclin E was detected in the GCs of all lesions, p16 and p21 showed a heterogeneous expression pattern. RANK was expressed by the GCs of all lesions except sarcoid-like lesions and xanthogranuloma. All GCs were RANK-L-negative, and the GCs of all lesions were osteoprotegerin-positive. Osteonectin was limited to the GCs of chondroblastoma. Osteopontin and TRAP were detected in the GCs of all lesions except xanthogranuloma. RUNX2 was heterogeneously expressed in the reactive and neoplastic cohort. The GCs of all lesions except foreign body granuloma expressed CD68, and all GCs were CD163- and langerin-negative. This profiling points to a functional diversity of GCs despite their similar morphology.
Collapse
Affiliation(s)
- Vivien Hild
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
20
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Hakim SG, von der Gracht A, Pries R, Rades D, Steller D. Protective impact of nicotinamide mononucleotide (NMN) and platelet-rich fibrin (PRF) on replicative and radiation-induced senescence of human osteoblasts. J Craniomaxillofac Surg 2023; 51:497-507. [PMID: 37438229 DOI: 10.1016/j.jcms.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
The aim of this study was to investigate the cellular changes induced by spontaneous/replicative senescence and radiation in human osteoblasts (OBs), and the impact of cultivation with nicotinamide mononucleotide (NMN) and platelet-rich fibrin (PRF) on apoptosis, senescence-associated β-galactosidase staining (SA β-gal), and senescence-related gene expression using RT2 Profiler PCR array. The results showed that replicative OB aging follows a different pattern from that of radiation-induced cellular senescence. SA β-gal intensity score showed a significant elevation after spontaneous replicative aging of OB (agiT1) 7 days following the start of the experiment, compared with their initial control condition (T0) (T0 = 2.1 ± 0.47; agiT1 = 9.60 ± 1.56; p = 0.001). Concurrent treatment by NMN and PRF showed a protective effect on OBs undergoing replicative senescence, and reduced SA β-gal staining significantly (agiT1 = 9.60 ± 1.56; agiT1+PRF = 3.19 ± 0.52; agiT1+NMN = 3.38 ± 0.36; p < 0.001). These results provide evidence for the potential clinical implications of systematic NMN administration and local PRF application to prevent age-related bone disturbances in elderly patients.
Collapse
Affiliation(s)
- Samer G Hakim
- Department of Oral and Maxillofacial Surgery, Helios Medical Center, Schwerin, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Campus Lübeck), Lübeck, Germany.
| | - Anij von der Gracht
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Campus Lübeck), Lübeck, Germany
| | - Ralph Pries
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein (Campus Lübeck), Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Hospital Schleswig-Holstein (Campus Lübeck), Lübeck, Germany
| | - Daniel Steller
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Campus Lübeck), Lübeck, Germany
| |
Collapse
|
22
|
Bezerra PHA, Amaral C, Almeida CF, Correia-da-Silva G, Torqueti MR, Teixeira N. In Vitro Effects of Combining Genistein with Aromatase Inhibitors: Concerns Regarding Its Consumption during Breast Cancer Treatment. Molecules 2023; 28:4893. [PMID: 37446555 DOI: 10.3390/molecules28134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The third-generation of aromatase inhibitors (AIs)-Exemestane (Exe), Letrozole (Let), and Anastrozole (Ana)-is the main therapeutic approach applied for estrogen receptor-positive (ER+) breast cancer (BC), the most common neoplasm in women worldwide. Despite their success, the development of resistance limits their efficacy. Genistein (G), a phytoestrogen present in soybean, has promising anticancer properties in ER+ BC cells, even when combined with anticancer drugs. Thus, the potential beneficial effects of combining G with AIs were investigated in sensitive (MCF7-aro) and resistant (LTEDaro) BC cells. METHODS The effects on cell proliferation and expression of aromatase, ERα/ERβ, and AR receptors were evaluated. RESULTS Unlike the combination of G with Ana or Let, which negatively affects the Ais' therapeutic efficacy, G enhanced the anticancer properties of the steroidal AI Exe, increasing the antiproliferative effect and apoptosis relative to Exe. The hormone targets studied were not affected by this combination when compared with Exe. CONCLUSIONS This is the first in vitro study that highlights the potential benefit of G as an adjuvant therapy with Exe, emphasizing, however, that soy derivatives widely used in the diet or applied as auxiliary medicines may increase the risk of adverse interactions with nonsteroidal AIs used in therapy.
Collapse
Affiliation(s)
- Patrícia H A Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cristina F Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
Knowles T, Huang T, Qi J, An S, Burket N, Cooper S, Nazarian J, Saratsis AM. LIN28B and Let-7 in Diffuse Midline Glioma: A Review. Cancers (Basel) 2023; 15:3241. [PMID: 37370851 DOI: 10.3390/cancers15123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG.
Collapse
Affiliation(s)
- Truman Knowles
- W.M. Keck Science Department, Scripps, Pitzer, and Claremont McKenna Colleges, Claremont, CA 91711, USA
| | - Tina Huang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin Qi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shejuan An
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Noah Burket
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Javad Nazarian
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Zurich Children's Hospital, 8032 Zurich, Switzerland
| | - Amanda M Saratsis
- Department of Neurosurgery, Lutheran General Hospital, Park Ridge, IL 60068, USA
| |
Collapse
|
24
|
Awadia S, Sitto M, Ram S, Ji W, Liu Y, Damani R, Ray D, Lawrence TS, Galban CJ, Cappell SD, Rehemtulla A. The adapter protein FADD provides an alternate pathway for entry into the cell cycle by regulating APC/C-Cdh1 E3 ubiquitin ligase activity. J Biol Chem 2023; 299:104786. [PMID: 37146968 PMCID: PMC10248554 DOI: 10.1016/j.jbc.2023.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sundaresh Ram
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wenbin Ji
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Raheema Damani
- Department of Biomedical Engineering, University of Alabama, Birmingham, Alabama, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Craig J Galban
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
25
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
26
|
Chen X, Bai K, Zhang Y, Xu Y, Huo Y, Wang S, Zou Y, Qi X, Guo R, Ou Q, Liu D, Yin S, Chen S, Bu H. Genomic alterations of cerebrospinal fluid cell-free DNA in leptomeningeal metastases of gastric cancer. J Transl Med 2023; 21:296. [PMID: 37131253 PMCID: PMC10155444 DOI: 10.1186/s12967-023-04077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Leptomeningeal metastases (LM) were rare in gastric cancer (GC), and GC patients with LM (GCLM) generally suffer from poor prognosis. Nevertheless, the clinical utility of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) was underinvestigated in GCLM. METHODS We retrospectively studied 15 GCLM patients, and all patients had paired primary tumor tissue samples and post-LM CSF samples while 5 patients also had post-LM plasma samples. All samples were analyzed using next-generation sequencing (NGS), and the molecular and clinical features were correlated with clinical outcomes. RESULTS CSF had higher mutation allele frequency (P = 0.015), more somatic mutations (P = 0.032), and more copy-number variations (P < 0.001) than tumor or plasma samples. Multiple genetic alterations and aberrant signal pathways were enriched in post-LM CSF, including CCNE1 amplification and cell cycle-related genes, and CCNE1 amplification was significantly associated with patients' overall survival (P = 0.0062). More potential LM progression-related markers were detected in CSF samples than in tumor samples, including PREX2 mutation (P = 0.014), IGF1R mutation (P = 0.034), AR mutation (P = 0.038), SMARCB1 deletion (P < 0.001), SMAD4 deletion (P = 0.0034), and TGF-beta pathway aberration (P = 0.0038). Additionally, improvement in intracranial pressure (P < 0.001), improvement in CSF cytology (P = 0.0038), and relatively low levels of CSF ctDNA (P = 0.0098) were significantly associated with better PFS. Lastly, we reported a GCLM case whose CSF ctDNA dynamic changes were well correlated with his clinical assessment. CONCLUSIONS CSF ctDNA could more sensitively detect molecular markers and metastasis-related mechanisms than tumor tissues in GCLM patients, and our study sheds light on utilizing CSF ctDNA in prognostic estimation and clinical assessment in GCLM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Cancer Research, Affiliated Hospital Xingtai People's Hospital of Hebei Medical University, 818 Xiangdu North Road, Xiangdu District, Xingtai, Hebei, 054001, People's Republic of China
- Department of Neurology, Affiliated Hospital Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, 054001, People's Republic of China
| | - Kaixuan Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Yinghao Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Rongyun Guo
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Dengxiang Liu
- Key Laboratory of Cancer Research, Affiliated Hospital Xingtai People's Hospital of Hebei Medical University, 818 Xiangdu North Road, Xiangdu District, Xingtai, Hebei, 054001, People's Republic of China
| | - Shaohua Yin
- Department of Neurology, Affiliated Hospital Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, 054001, People's Republic of China
| | - Shubo Chen
- Key Laboratory of Cancer Research, Affiliated Hospital Xingtai People's Hospital of Hebei Medical University, 818 Xiangdu North Road, Xiangdu District, Xingtai, Hebei, 054001, People's Republic of China.
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
27
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533346. [PMID: 36993685 PMCID: PMC10055274 DOI: 10.1101/2023.03.19.533346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether changes in human cells alter requirements for essential genes. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells, providing support for the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells can reshape the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Nathan K. Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J. Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| | - Alex A. Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
28
|
Au-Yeung G, Mileshkin L, Bowtell DDL. CCNE1 Amplification as a Therapeutic Target. J Clin Oncol 2023; 41:1770-1773. [PMID: 36730890 DOI: 10.1200/jco.22.02267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- George Au-Yeung
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Iroquois Family Genes in Gastric Carcinogenesis: A Comprehensive Review. Genes (Basel) 2023; 14:genes14030621. [PMID: 36980893 PMCID: PMC10048635 DOI: 10.3390/genes14030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFβ, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.
Collapse
|
30
|
Chen C, Chen J, Wang Y, Fang L, Guo C, Sang T, Peng H, Zhao Q, Chen S, Lin X, Wang X. Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154626. [PMID: 36603342 DOI: 10.1016/j.phymed.2022.154626] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN Both CCl4-induced mouse and TGF-β1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-β1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-β/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-β/Smad signaling in mice, and reduced TGF-β1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Jiajun Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Ying Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Liu Fang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Cuiling Guo
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Tingting Sang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - He Peng
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Qian Zhao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Shengjia Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xingya Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China.
| |
Collapse
|
31
|
Molano-Fernández M, Hickson ID, Herranz H. Cyclin E overexpression in the Drosophila accessory gland induces tissue dysplasia. Front Cell Dev Biol 2023; 10:992253. [PMID: 36704199 PMCID: PMC9871066 DOI: 10.3389/fcell.2022.992253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Héctor Herranz,
| |
Collapse
|
32
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
33
|
van Wagensveld L, van Baal JOAM, Timmermans M, Gaillard D, Borghuis L, Coffelt SB, Rosenberg EH, Lok CAR, Nijman HW, Kooreman LFS, Sanders J, de Bruijn M, Wessels LFA, van der Wiel R, Rausch C, Broeks A, Kruitwagen RFPM, van der Aa MA, Sonke GS, Schouten PC, Van de Vijver KK, Horlings HM. Homologous Recombination Deficiency and Cyclin E1 Amplification Are Correlated with Immune Cell Infiltration and Survival in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235965. [PMID: 36497449 PMCID: PMC9738162 DOI: 10.3390/cancers14235965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND How molecular profiles are associated with tumor microenvironment (TME) in high-grade serous ovarian cancer (HGSOC) is incompletely understood. Therefore, we analyzed the TME and molecular profiles of HGSOC and assessed their associations with overall survival (OS). METHODS Patients with advanced-stage HGSOC treated in three Dutch hospitals between 2008-2015 were included. Patient data were collected from medical records. BRCA1/2 mutation, BRCA1 promotor methylation analyses, and copy number variations were used to define molecular profiles. Immune cells were assessed with immunohistochemical staining. RESULTS 348 patients were categorized as BRCA mutation (BRCAm) (BRCAm or promotor methylation) (30%), non-BRCA mutated HRD (19%), Cyclin E1 (CCNE1)-amplification (13%), non-BRCAmut HRD and CCNE1-amplification (double classifier) (20%), and no specific molecular profile (NSMP) (18%). BRCAm showed highest immune cell densities and CCNE1-amplification lowest. BRCAm showed the most favorable OS (52.5 months), compared to non-BRCAmut HRD (41.0 months), CCNE1-amplification (28.0 months), double classifier (27.8 months), and NSMP (35.4 months). Higher immune cell densities showed a favorable OS compared to lower, also within the profiles. CD8+, CD20+, and CD103+ cells remained associated with OS in multivariable analysis. CONCLUSIONS Molecular profiles and TME are associated with OS. TME differs per profile, with higher immune cell densities showing a favorable OS, even within the profiles. HGSOC does not reflect one entity but comprises different entities based on molecular profiles and TME.
Collapse
Affiliation(s)
- Lilian van Wagensveld
- Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), 3511 DT Utrecht, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW, School for Oncology and Reproduction, 6229 HX Maastricht, The Netherlands
- Correspondence:
| | - Juliette O. A. M. van Baal
- Department of Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
| | - Maite Timmermans
- Department of Obstetrics and Gynecology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Duco Gaillard
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lauri Borghuis
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Seth B. Coffelt
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow G61 1BD, UK
| | - Efraim H. Rosenberg
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Christianne A. R. Lok
- Department of Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Loes F. S. Kooreman
- GROW, School for Oncology and Reproduction, 6229 HX Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marco de Bruijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Lodewyk F. A. Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rianne van der Wiel
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Christian Rausch
- Department of Pathology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
- BioLizard nv, 9000 Ghent, Belgium
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Roy F. P. M. Kruitwagen
- GROW, School for Oncology and Reproduction, 6229 HX Maastricht, The Netherlands
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Maaike A. van der Aa
- Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), 3511 DT Utrecht, The Netherlands
| | - Gabe S. Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Philip C. Schouten
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Koen K. Van de Vijver
- Department of Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
- Department of Pathology & Cancer Research Institute Ghent (CRIG), Ghent University Hospital, 9000 Ghent, Belgium
| | - Hugo M. Horlings
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
34
|
Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022; 13:1071176. [DOI: 10.3389/fphar.2022.1071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.
Collapse
|
35
|
Mohammed ER, Elmasry GF. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. J Enzyme Inhib Med Chem 2022; 37:686-700. [PMID: 35139719 PMCID: PMC8843100 DOI: 10.1080/14756366.2022.2036985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Inhibiting Cyclin-dependent kinase 2 (CDK2) has been established as a therapeutic strategy for the treatment of many cancers. Accordingly, this study aimed at developing a new set of quinazolinone-based derivatives as CDK2 inhibitors. The new compounds were evaluated for their anticancer activity against sixty tumour cell lines. Compounds 5c and 8a showed excellent growth inhibition against the melanoma cell line MDA-MB-435 with GI% of 94.53 and 94.15, respectively. Cell cycle analysis showed that compound 5c led to cell cycle cessation at S phase and G2/M phase revealing that CDK2 could be the plausible biological target. Thus, the most cytotoxic candidates 5c and 8a were evaluated in vitro for their CDK2 inhibitory activity and were able to display significant inhibitory action. The molecular docking study confirmed the obtained results. ADME study predicted that 5c had appropriate drug-likeness properties. These findings highlight a rationale for further development and optimisation of novel CDK2 inhibitors.
Collapse
Affiliation(s)
- Eman R. Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghada F. Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Leeming RC, Koutros S, Karagas MR, Baris D, Schwenn M, Johnson A, Zens MS, Schned AR, Rothman N, Silverman DT, Passarelli MN. Diet quality, common genetic polymorphisms, and bladder cancer risk in a New England population-based study. Eur J Nutr 2022; 61:3905-3913. [PMID: 35759030 PMCID: PMC10329807 DOI: 10.1007/s00394-022-02932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE We examined the interaction between common genetic bladder cancer variants, diet quality, and bladder cancer risk in a population-based case-control study conducted in New England. METHODS At the time of enrollment, 806 bladder cancer cases and 974 controls provided a DNA sample and completed a diet history questionnaire. Diet quality was assessed using the 2010 Alternate Healthy Eating Index (AHEI-2010) score. Single nucleotide polymorphisms (SNPs) reported in genome-wide association studies to be associated with bladder cancer risk were combined into a polygenic risk score and also examined individually for interaction with the AHEI-2010. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression. RESULTS A 1-standard deviation increase in polygenic risk score was associated with higher bladder cancer risk (OR, 1.34; 95% CI 1.21-1.49). Adherence to the AHEI-2010 was not associated with bladder cancer risk (OR, 0.99; 95% CI 0.98-1.00) and the polygenic risk score did not appear to modify the association between the AHEI-2010 and bladder cancer risk. In single-SNP analyses, rs8102137 (bladder cancer risk allele, C) modified the association between the AHEI-2010 total score and bladder cancer risk, with the strongest evidence for the AHEI-2010 long chain fat guideline (OR for TT, 0.92; 95% CI 0.87-0.98; OR for CT, 1.02; 95% CI 0.96-1.08; OR for CC, 1.03; 95% CI 0.93-1.14; p for interaction, 0.02). CONCLUSIONS In conclusion, rs8102137 near the cyclin E1 gene ( CCNE1 ) may be involved in gene-diet interactions for bladder cancer risk.
Collapse
Affiliation(s)
- Reno C Leeming
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | | | | | - Michael S Zens
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Alan R Schned
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA.
| |
Collapse
|
37
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
38
|
Barot S, Stephenson OJ, Priya Vemana H, Yadav A, Bhutkar S, Trombetta LD, Dukhande VV. Metabolic alterations and mitochondrial dysfunction underlie hepatocellular carcinoma cell death induced by a glycogen metabolic inhibitor. Biochem Pharmacol 2022; 203:115201. [PMID: 35926650 PMCID: PMC10039449 DOI: 10.1016/j.bcp.2022.115201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. There is an urgent need for new targets to treat HCC due to limited treatment options and drug resistance. Many cancer cells are known to have high amount of glycogen than their tissue of origin and inhibition of glycogen catabolism induces cancer cell death by apoptosis. To further understand the role of glycogen in HCC and target it for pharmacotherapy, we studied metabolic adaptations and mitochondrial function in HepG2 cells after pharmacological inhibition of glycogen phosphorylase (GP) by CP-91149 (CP). GP inhibition increased the glycogen levels in HepG2 cells without affecting overall glucose uptake. Glycolytic capacity and importantly glycolytic reserve decreased significantly. Electron microscopy revealed that CP treatment altered mitochondrial morphology leading to mitochondrial swelling with less defined cristae. A concomitant decrease in mitochondrial oxygen consumption and mitochondria-linked ATP generation was observed. Metabolomics and enzyme activity / expression studies showed a decrease in the pentose phosphate pathway. In addition, CP treatment decreased the growth of HepG2 3D tumor spheroids in a dose- and time-dependent manner. Taken together, our study provides insights into metabolic alterations and mitochondrial dysfunction accompanying apoptosis in HepG2 cells upon GP inhibition. Our study can aid in the understanding of the mechanism and development of metabolic inhibitors to treat HCC.
Collapse
Affiliation(s)
- Shrikant Barot
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Olivia J Stephenson
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Anjali Yadav
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shraddha Bhutkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
39
|
Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam SS, Sun SY, Coskun AF. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience 2022; 25:104980. [PMID: 36093051 PMCID: PMC9460555 DOI: 10.1016/j.isci.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S. Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author
| |
Collapse
|
40
|
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2516653. [PMID: 36004205 PMCID: PMC9393965 DOI: 10.1155/2022/2516653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022]
Abstract
The cell cycle is composed of a series of ordered, highly regulated processes through which a cell grows and duplicates its genome and eventually divides into two daughter cells. According to the complex changes in cell structure and biosynthesis, the cell cycle is divided into four phases: gap 1 (G1), DNA synthesis (S), gap 2 (G2), and mitosis (M). Determining which cell cycle phases a cell is in is critical to the research of cancer development and pharmacy for targeting cell cycle. However, current detection methods have the following problems: (1) they are complicated and time consuming to perform, and (2) they cannot detect the cell cycle on a large scale. Rapid developments in single-cell technology have made dissecting cells on a large scale possible with unprecedented resolution. In the present research, we construct efficient classifiers and identify essential gene biomarkers based on single-cell RNA sequencing data through Boruta and three feature ranking algorithms (e.g., mRMR, MCFS, and SHAP by LightGBM) by utilizing four advanced classification algorithms. Meanwhile, we mine a series of classification rules that can distinguish different cell cycle phases. Collectively, we have provided a novel method for determining the cell cycle and identified new potential cell cycle-related genes, thereby contributing to the understanding of the processes that regulate the cell cycle.
Collapse
|
41
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Yang Q, Yan R, Mo Y, Xia H, Deng H, Wang X, Li C, Kato K, Zhang H, Jin T, Zhang J, An Y. The Potential Key Role of the NRF2/NQO1 Pathway in the Health Effects of Arsenic Pollution on SCC. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138118. [PMID: 35805773 PMCID: PMC9265438 DOI: 10.3390/ijerph19138118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yuemei Mo
- Physical Examination Department, Center for Disease Control and Prevention of Suzhou Industrial Park, Suzhou 215100, China;
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, China;
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan;
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China;
- Jiangsu Preventive Medicine Association, Nanjing 210009, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (T.J.); (Y.A.)
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- Correspondence: (T.J.); (Y.A.)
| |
Collapse
|
43
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
44
|
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type. mSphere 2022; 7:e0016022. [PMID: 35587658 PMCID: PMC9241542 DOI: 10.1128/msphere.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan Toxoplasma gondii is a highly successful obligate intracellular parasite that, upon invasion of its host cell, releases an array of host-modulating protein effectors to counter host defenses and further its own replication and dissemination. Early studies investigating the impact of T. gondii infection on host cell function revealed that this parasite can force normally quiescent cells to activate their cell cycle program. Prior reports by two independent groups identified the dense granule protein effector HCE1/TEEGR as being solely responsible for driving host cell transcriptional changes through its direct interaction with the cyclin E regulatory complex DP1 and associated transcription factors. Our group independently identified HCE1/TEEGR through the presence of distinct repeated regions found in a number of host nuclear targeted parasite effectors and verified its central role in initiating host cell cycle changes. Additionally, we report here the time-resolved kinetics of host cell cycle transition in response to HCE1/TEEGR, using the fluorescence ubiquitination cell cycle indicator reporter line (FUCCI), and reveal the existence of a block in S-phase progression and host DNA synthesis in several cell lines commonly used in the study of T. gondii. Importantly, we have observed that this S-phase block is not due to additional dense granule effectors but rather is dependent on the host cell line background and contact inhibition status of the host monolayer in vitro. This work highlights intriguing differences in the host response to reprogramming by the parasite and raises interesting questions regarding how parasite effectors differentially manipulate the host cell depending on the in vitro or in vivo context. IMPORTANCEToxoplasma gondii chronically infects approximately one-third of the global population and can produce severe pathology in immunologically immature or compromised individuals. During infection, this parasite releases numerous host-targeted effector proteins that can dramatically alter the expression of a variety of host genes. A better understanding of parasite effectors and their host targets has the potential to not only provide ways to control infection but also inform us about our own basic biology. One host pathway that has been known to be altered by T. gondii infection is the cell cycle, and prior reports have identified a parasite effector, known as HCE1/TEEGR, as being responsible. In this report, we further our understanding of the kinetics of cell cycle transition induced by this effector and show that the capacity of HCE1/TEEGR to induce host cell DNA synthesis is dependent on both the cell type and the status of contact inhibition.
Collapse
|
45
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
46
|
Witkiewicz AK, Kumarasamy V, Sanidas I, Knudsen ES. Cancer cell cycle dystopia: heterogeneity, plasticity, and therapy. Trends Cancer 2022; 8:711-725. [PMID: 35599231 PMCID: PMC9388619 DOI: 10.1016/j.trecan.2022.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ioannis Sanidas
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
47
|
Toma MA, Liu Z, Wang Q, Zhang L, Li D, Sommar P, Landén NX. Circular Rna Signatures Of Human Healing And Non-Healing Wounds. J Invest Dermatol 2022; 142:2793-2804.e26. [DOI: 10.1016/j.jid.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
|
48
|
Garrido MP, Vallejos C, Girardi S, Gabler F, Selman A, López F, Vega M, Romero C. NGF/TRKA Promotes ADAM17-Dependent Cleavage of P75 in Ovarian Cells: Elucidating a Pro-Tumoral Mechanism. Int J Mol Sci 2022; 23:ijms23042124. [PMID: 35216240 PMCID: PMC8877415 DOI: 10.3390/ijms23042124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Nerve growth factor (NGF) and its high-affinity receptor TRKA are overexpressed in epithelial ovarian cancer (EOC) displaying a crucial role in the disease progression. Otherwise, NGF interacts with its low-affinity receptor P75, activating pro-apoptotic pathways. In neurons, P75 could be cleaved by metalloproteinases (α and γ-secretases), leading to a decrease in P75 signaling. Therefore, this study aimed to evaluate whether the shedding of P75 occurs in EOC cells and whether NGF/TRKA could promote the cleavage of the P75 receptor. The immunodetection of the α-secretase, ADAM17, TRKA, P75, and P75 fragments was assessed by immunohisto/cytochemistry and Western blot in biopsies and ovarian cell lines. The TRKA and secretases' inhibition was performed using specific inhibitors. The results show that P75 immunodetection decreased during EOC progression and was negatively correlated with the presence of TRKA in EOC biopsies. NGF/TRKA increases ADAM17 levels and the fragments of P75 in ovarian cells. This effect is abolished when cells are previously treated with ADAM17, γ-secretase, and TRKA inhibitors. These results indicate that NGF/TRKA promotes the shedding of P75, involving the activation of secretases such as ADAM17. Since ADAM17 has been proposed as a screening marker for early detection of EOC, our results contribute to understanding better the role of ADAM17 and NGF/TRKA in EOC pathogenesis, which includes the NGF/TRKA-mediated cleavage of P75.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Christopher Vallejos
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Silvanna Girardi
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Fernando Gabler
- Departamento de Patología, Escuela de Medicina, Hospital San Borja Arriarán, Universidad de Chile, Santiago 8360160, Chile;
| | - Alberto Selman
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Instituto Nacional del Cáncer, Santiago 8380455, Chile
| | - Fernanda López
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence:
| |
Collapse
|
49
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
50
|
Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front Cell Dev Biol 2021; 9:774845. [PMID: 34901021 PMCID: PMC8652076 DOI: 10.3389/fcell.2021.774845] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.
Collapse
Affiliation(s)
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|