1
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed Pharmacother 2023; 159:114248. [PMID: 36645960 DOI: 10.1016/j.biopha.2023.114248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and poorly differentiated cancer with high-grade neuroendocrine (NE) features, accounting for approximately 15 % of all lung cancers. For decades, chemotherapy and radiotherapy have predominated the treatment strategy for SCLC, but relapses ensue quickly and result in poor survival of patients. Immunotherapy has brought novel insights, yet the efficacy is still restricted to a limited population with SCLC. Notch signaling is identified to play a key role in the initiation and development of SCLC, and the Notch ligand, Delta-like ligand 3 (DLL3) is found broadly and specifically expressed in SCLC cells. Thus, Notch signaling is under active exploration as a potential therapeutic target in SCLC. Herein, we summarized and updated the functional relevance of Notch signaling in SCLC, discussed Notch signaling-targeted therapy for SCLC and the correspondent preclinical and clinical trials, and investigated the promising synergy effects of Notch signaling targeted therapy and immune checkpoint inhibitors (ICIs) treatment.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Yunkai Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xuchang Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
3
|
Zhai Y, He K, Huang L, Shang X, Wang G, Yuan G, Han ZG. DLK1-directed chimeric antigen receptor T-cell therapy for hepatocellular carcinoma. Liver Int 2022; 42:2524-2537. [PMID: 36002393 DOI: 10.1111/liv.15411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Delta-like homologue 1 (DLK1), a transmembrane protein, is highly expressed in hepatocellular carcinoma (HCC). We explored whether DLK1-directed chimeric antigen receptor (CAR) T cells can specifically eliminate DLK1-positive HCC cells and serve as a therapeutic strategy for HCC immunotherapy. METHODS We first characterized a homemade anti-human DLK1 monoclonal antibody, sequenced the single-chain Fragment variable (scFv) and integrated it into the second-generation CAR lentiviral vector, and then developed the DLK1-directed CAR-T cells. The cytotoxic activities of DLK1-directed CAR-T cells against different HCC cells were evaluated in vitro and in vivo. RESULTS The genetically modified human T cells with the DLK1-directed CARs produced cytotoxic activity against DLK1-positive HCC cells. Additionally, the DLK1-directed CARs enhanced T cell proliferation and activation in a DLK1-dependent manner. Interestingly, the DLK1-targeted CAR-T cells significantly inhibited both subcutaneous and peritoneal xenograft tumours derived from human liver cancer cell lines HepG2 or Huh-7. CONCLUSION DLK1-directed CAR-T cells specifically suppresses DLK1-positive HCC cells in vitro and in vivo. This study provides a novel transmembrane antigen DLK1 as a potential therapeutic target appropriate for CAR-T cell therapy, which may be further developed as a clinical therapeutic strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Yangyang Zhai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuyang Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guandou Yuan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Lung Cancer Stage Prediction Using Multi-Omics Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2279044. [PMID: 35880092 PMCID: PMC9308511 DOI: 10.1155/2022/2279044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the leading causes of cancer death. Patients with early-stage lung cancer can be treated by surgery, while patients in the middle and late stages need chemotherapy or radiotherapy. Therefore, accurate staging of lung cancer is crucial for doctors to formulate accurate treatment plans for patients. In this paper, the random forest algorithm is used as the lung cancer stage prediction model, and the accuracy of lung cancer stage prediction is discussed in the microbiome, transcriptome, microbe, and transcriptome fusion groups, and the accuracy of the model is measured by indicators such as ACC, recall, and precision. The results showed that the prediction accuracy of microbial combinatorial transcriptome fusion analysis was the highest, reaching 0.809. The study reveals the role of multimodal data and fusion algorithm in accurately diagnosing lung cancer stage, which could aid doctors in clinics.
Collapse
|
5
|
Abstract
DLK1 is a maternally imprinted, paternally expressed gene coding for the transmembrane protein Delta-like homologue 1 (DLK1), a non-canonical NOTCH ligand with well-described roles during development, and tumor-supportive functions in several aggressive cancer forms. Here, we review the many functions of DLK1 as a regulator of stem cell pools and tissue differentiation in tissues such as brain, muscle, and liver. Furthermore, we review recent evidence supporting roles for DLK1 in the maintenance of aggressive stem cell characteristics of tumor cells, specifically focusing on central nervous system tumors, neuroblastoma, and hepatocellular carcinoma. We discuss NOTCH -dependent as well as NOTCH-independent functions of DLK1, and focus particularly on the complex pattern of DLK1 expression and cleavage that is finely regulated from a spatial and temporal perspective. Progress in recent years suggest differential functions of extracellular, soluble DLK1 as a paracrine stem cell niche-secreted factor, and has revealed a role for the intracellular domain of DLK1 in cell signaling and tumor stemness. A better understanding of DLK1 regulation and signaling may enable therapeutic targeting of cancer stemness by interfering with DLK1 release and/or intracellular signaling.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Pref-1 induced lung fibroblast differentiation by hypoxia through integrin α5β1/ERK/AP-1 cascade. Eur J Pharmacol 2021; 909:174385. [PMID: 34331953 DOI: 10.1016/j.ejphar.2021.174385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022]
Abstract
Chronic obstructive asthma is characterized by airway fibrosis. Hypoxia and connective tissue growth factor (CTGF) play important roles in airway fibrosis. Preadipocyte factor-1 (Pref-1) participates in adipocyte differentiation and liver fibrosis. Herein, we investigated the role of Pref-1 in airway fibrosis in chronic obstructive asthma. We found that Pref-1 was overexpressed in lung tissues from chronic obstructive asthma patients compared to normal subjects. Extracellular matrix proteins were inhibited by Pref-1 small interfering (si)RNA in airway fibroblasts from chronic obstructive asthma patients. Furthermore, ovalbumin induced prominent Pref-1 expression and fibronectin coexpression. Hypoxia induced Pref-1 upregulation and its release into medium of WI-38 cells. Hypoxia-induced CTGF expression was inhibited by Pref-1 siRNA. We also found that Pref-1-stimulated fibrotic protein expressions were reduced by ATN-161, curcumin, U0126, and c-Jun siRNA in WI-38. Furthermore, ATN161 inhibited Pref-1-induced ERK phosphorylation, and ITGA5 siRNA inhibited c-Jun phosphorylation. Moreover, expression of CTGF, Fibronectin, α-SMA, and ERK and c-Jun phosphorylation were all increased in fibroblasts from patients with chronic obstructive asthma. Taken together, these results suggest that Pref-1 participates in airway fibrosis and hypoxia-induced CTGF expression via the integrin receptor α5β1/ERK/AP-1 pathway.
Collapse
|
7
|
Lozano-Ureña A, Jiménez-Villalba E, Pinedo-Serrano A, Jordán-Pla A, Kirstein M, Ferrón SR. Aberrations of Genomic Imprinting in Glioblastoma Formation. Front Oncol 2021; 11:630482. [PMID: 33777782 PMCID: PMC7994891 DOI: 10.3389/fonc.2021.630482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated. Genomic imprinting is an epigenetic marking process that causes genes to be expressed depending on their parental origin. The dysregulation of the imprinting pattern or the loss of genomic imprinting (LOI) have been described in different tumors including GBM, being one of the earliest and most common events that occurs in human cancers. Here we have gathered the current knowledge of the role of imprinted genes in normal NSCs function and how the imprinting process is altered in human GBM. We also review the changes at particular imprinted loci that might be involved in the development of the tumor. Understanding the mechanistic similarities in the regulation of genomic imprinting between normal NSCs and GBM cells will be helpful to identify molecular players that might be involved in the development of human GBM.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | | | | | | | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | - Sacri R Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
8
|
Takagi H, Zhao S, Muto S, Yokouchi H, Nishihara H, Harada T, Yamaguchi H, Mine H, Watanabe M, Ozaki Y, Inoue T, Yamaura T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Kanno R, Aoki M, Tan C, Shimoyama S, Yamazaki S, Kikuchi H, Sakakibara-Konishi J, Oizumi S, Harada M, Akie K, Sugaya F, Fujita Y, Takamura K, Kojima T, Honjo O, Minami Y, Nishimura M, Dosaka-Akita H, Nakamura K, Inano A, Isobe H, Suzuki H. Delta-like 1 homolog (DLK1) as a possible therapeutic target and its application to radioimmunotherapy using 125I-labelled anti-DLK1 antibody in lung cancer models (HOT1801 and FIGHT004). Lung Cancer 2021; 153:134-142. [PMID: 33508526 DOI: 10.1016/j.lungcan.2021.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Delta-like 1 homolog (DLK1) is a non-canonical Notch ligand known to be expressed in several cancers but whose role in lung cancer is not yet fully understood. We sought to confirm DLK1 expression in small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), and to examine DLK1's clinical significance. Furthermore, we examined the possible utility of DLK1 as a novel target in radioimmunotherapy (RIT). METHODS We retrospectively assessed the correlation between clinical features and DLK1 expression by immunohistochemistry in resected specimens from 112 patients with SCLC and 101 patients with NSCLC. Moreover, we performed cell and animal experiments, and examined the possibility of RIT targeting DLK1 in SCLC using iodine-125 (125I) -labeled anti-DLK1 antibody, knowing that 125I can be replaced with the alpha-particle-emitter astatine-211 (211At). RESULTS In SCLC and NSCLC, 20.5 % (23/112) and 16.8 % (17/101) of patients (respectively) had DLK1-positive tumors. In NSCLC, DLK1 expression was associated with recurrence-free survival (P < 0.01) but not with overall survival. In SCLC, there was no association between DLK1 expression and survival. In addition, 125I-labeled anti-DLK1 antibody specifically targeted DLK1 on human SCLC tumor cell lines. Furthermore, 125I-labeled anti-DLK1 antibody was incorporated into tumor tissue in a mouse model. CONCLUSION A proportion of SCLC and NSCLC exhibits DLK1 expression. As a clinical feature, DLK1 expression could be a promising prognostic factor for recurrence in patients with resected NSCLC. In addition, DLK1 could serve as a new therapeutic target, including RIT, as suggested by our pilot study using a radiolabeled anti-DLK1 antibody in SCLC.
Collapse
Affiliation(s)
- Hironori Takagi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Yokouchi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Hikaru Yamaguchi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hayato Mine
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takuya Inoue
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takumi Yamaura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Mitsuro Fukuhara
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takeo Hasegawa
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Jun Osugi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Mika Hoshino
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Mitsunori Higuchi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yutaka Shio
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Ryuzo Kanno
- Department of Thoracic Surgery, Fukushima Red Cross Hospital, Fukushima, Japan
| | - Miho Aoki
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Saki Shimoyama
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shigeo Yamazaki
- Department of Thoracic Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Hajime Kikuchi
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan; Department of Respiratory Medicine, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Satoshi Oizumi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Kenji Akie
- Department of Respiratory Disease, Sapporo City General Hospital, Sapporo, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Kei Takamura
- Department of Respiratory Medicine, Obihiro Kosei Hospital, Obihiro, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Osamu Honjo
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan; Department of Respiratory Medicine, Sapporo Minami Sanjo Hospital, Sapporo, Japan
| | - Yoshinori Minami
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Akihiro Inano
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
9
|
Grassi ES, Jeannot P, Pantazopoulou V, Berg TJ, Pietras A. Niche-derived soluble DLK1 promotes glioma growth. Neoplasia 2020; 22:689-701. [PMID: 33142235 PMCID: PMC7587507 DOI: 10.1016/j.neo.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Tumor cell behaviors associated with aggressive tumor growth such as proliferation, therapeutic resistance, and stem cell characteristics are regulated in part by soluble factors derived from the tumor microenvironment. Tumor-associated astrocytes represent a major component of the glioma tumor microenvironment, and astrocytes have an active role in maintenance of normal neural stem cells in the stem cell niche, in part via secretion of soluble delta-like noncanonical Notch ligand 1 (DLK1). We found that astrocytes, when exposed to stresses of the tumor microenvironment such as hypoxia or ionizing radiation, increased secretion of soluble DLK1. Tumor-associated astrocytes in a glioma mouse model expressed DLK1 in perinecrotic and perivascular tumor areas. Glioma cells exposed to recombinant DLK1 displayed increased proliferation, enhanced self-renewal and colony formation abilities, and increased levels of stem cell marker genes. Mechanistically, DLK1-mediated effects on glioma cells involved increased and prolonged stabilization of hypoxia-inducible factor 2alpha, and inhibition of hypoxia-inducible factor 2alpha activity abolished effects of DLK1 in hypoxia. Forced expression of soluble DLK1 resulted in more aggressive tumor growth and shortened survival in a genetically engineered mouse model of glioma. Together, our data support DLK1 as a soluble mediator of glioma aggressiveness derived from the tumor microenvironment.
Collapse
Affiliation(s)
- Elisa S Grassi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pauline Jeannot
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Masoudzadeh SH, Mohammadabadi M, Khezri A, Stavetska RV, Oleshko VP, Babenko OI, Yemets Z, Kalashnik OM. Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Grassi ES, Pantazopoulou V, Pietras A. Hypoxia-induced release, nuclear translocation, and signaling activity of a DLK1 intracellular fragment in glioma. Oncogene 2020; 39:4028-4044. [PMID: 32205867 PMCID: PMC7220882 DOI: 10.1038/s41388-020-1273-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme is characterized in part by severe hypoxia associated with tumor necrosis. The cellular response to hypoxia can influence several properties of tumor cells associated with aggressive tumor growth, including metabolic adaptations and tumor cell migration and invasion. Here, we found that Delta Like Non-Canonical Notch Ligand 1 (DLK1) expression was elevated as compared with normal brain in a genetically engineered mouse model of glioma, and that DLK1 expression increased with tumor grade in human glioma samples. DLK1 expression was highest in hypoxic and perivascular tumor areas, and we found that hypoxia induced the release and nuclear translocation of an intracellular fragment of DLK1 in murine glioma as well as in human glioma cultures. Release of the intracellular fragment was dependent on ADAM17 and Hypoxia-inducible Factor 1alpha and 2alpha (HIF-1alpha/HIF-2alpha), as ADAM17 inhibitors and HIF1A/HIF2A siRNA blocked DLK1 cleavage. Expression of a cleavable form of DLK1 amplified several hypoxia-induced traits of glioma cells such as colony formation, stem cell marker gene expression, a PI3K-pathway-mediated metabolic shift, and enhanced invasiveness. Effects of DLK1 were dependent on DLK1-cleavage by ADAM17, as expression of non-cleavable DLK1 could not replicate the DLK1-induced hypoxic phenotype. Finally, forced expression of DLK1 resulted in more invasive tumor growth in a PDGFB-induced glioma mouse model without affecting overall survival. Together, our findings suggest a previously undescribed role for DLK1 as an intracellular signaling molecule.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Vasiliki Pantazopoulou
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
MicroRNA-127 Inhibits the Progression of Melanoma by Downregulating Delta-Like Homologue 1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8523465. [PMID: 32051829 PMCID: PMC6995326 DOI: 10.1155/2020/8523465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Objective Melanoma is the most common form of skin cancer with low survival rate and poor prognosis. MicroRNAs (miRNAs) have been reported to play essential roles in progression of melanoma. However, the role and mechanism of miR-127 in the process of melanoma remain poorly understood. Methods The expressions of miR-127 and delta-like homologue 1 (DLK1) were measured in melanoma tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Cell proliferation and apoptosis were measured by MTT assay, flow cytometry, and Western blot. The interaction between miR-127 and DLK1 was investigated by bioinformatics analysis, luciferase activity assay, and RNA immunoprecipitation (RIP). Murine xenograft model was conducted to investigate the effect of miR-127 on tumor growth in vivo. Results miR-127 was inhibited and DLK1 mRNA was enhanced in melanoma tissues and cells. Low abundance of miR-127 in melanoma tissues predicted a poor prognosis and was associated with the malignant clinicopathological features. Overexpression of miR-127 inhibited cell proliferation and induced apoptosis in melanoma cells. Moreover, DLK1 was targeted by miR-127 and its restoration reversed the regulatory effect of miR-127 on the process of melanoma. Besides, the addition of miR-127 suppressed xenograft tumor growth via suppressing DLK1 protein level in nude mice. Conclusion miR-127 blocked the development of melanoma by targeting DLK1, providing a novel biomarker for the treatment of melanoma.
Collapse
|
13
|
Hadjidemetriou I, Mariniello K, Ruiz-Babot G, Pittaway J, Mancini A, Mariannis D, Gomez-Sanchez CE, Parvanta L, Drake WM, Chung TT, Abdel-Aziz TE, DiMarco A, Palazzo FF, Wierman ME, Kiseljak-Vassiliades K, King PJ, Guasti L. DLK1/PREF1 marks a novel cell population in the human adrenal cortex. J Steroid Biochem Mol Biol 2019; 193:105422. [PMID: 31265901 PMCID: PMC6736711 DOI: 10.1016/j.jsbmb.2019.105422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/10/2019] [Accepted: 06/28/2019] [Indexed: 01/20/2023]
Abstract
The adrenal cortex governs fundamental metabolic processes though synthesis of glucocorticoid, mineralocorticoids and androgens. Studies in rodents have demonstrated that the cortex undergoes a self-renewal process and that capsular/subcapsular stem/progenitor cell pools differentiate towards functional steroidogenic cells supporting the dynamic centripetal streaming of adrenocortical cells throughout life. We previously demonstrated that the Notch atypical ligand Delta-like homologue 1 (DLK1)/preadipocyte factor 1 (PREF1) is expressed in subcapsular Sf1 and Shh-positive, CYP11B1-negative and CYP11B2-partially positive cortical progenitor cells in rat adrenals, and that secreted DLK1 can modulate GLI1 expression in H295R cells. Here we show that the human adrenal cortex remodels with age to generate clusters of relatively undifferentiated cells expressing DLK1. These clusters (named DLK1-expressing cell clusters or DCCs) increased with age in size and were found to be different entities to aldosterone-producing cell clusters, another well-characterized and age-dependent cluster structure. DLK1 was markedly overexpressed in adrenocortical carcinomas but not in aldosterone-producing adenomas. Thus, this data identifies a novel cell population in the human adrenal cortex and might suggest a yet-to be identified role of DLK1 in the pathogenesis of adrenocortical carcinoma in humans.
Collapse
Affiliation(s)
- Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James Pittaway
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Mancini
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Demetris Mariannis
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Celso E Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Medicine, University of Mississippi Medical Centre, Jackson MS, USA
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - William M Drake
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Teng-Teng Chung
- Department of Endocrinology, University College Hospital NHS Foundation Trust, NW1 2PG, London, UK
| | - Tarek Ezzat Abdel-Aziz
- Department of Endocrinology, University College Hospital NHS Foundation Trust, NW1 2PG, London, UK
| | - Aimee DiMarco
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London, UK
| | - Fausto F Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London, UK
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA; Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Aurora, CO, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA; Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Aurora, CO, USA
| | - Peter J King
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
15
|
Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene 2019; 38:3201-3215. [PMID: 30626939 DOI: 10.1038/s41388-018-0658-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/26/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Ovarian carcinoma is the most lethal type of gynecologic malignancies. Alterations of Notch pathway are prevalent in ovarian carcinogenesis. This study investigated the expression profile and function of delta-like 1 homolog (DLK1), a non-canonical Notch ligand, during ovarian carcinogenesis. Tissue microarray (TMA) consisting of surgically resected samples from 221 patients with ovarian carcinoma was constructed for DLK1 expression. DLK1 overexpression or knockdown was achieved by adenovirus gene delivery to evaluate the effect of DLK1 on the oncogenic behaviors in ovarian cancer cells and in xenografted tumors. TMA analysis revealed that elevated DLK1 expression was correlated with stages, lymph node metastasis and E-cadherin downregulation. Despite no influence on survival among ovarian carcinoma patients, DLK1 overexpression was specially associated with overall survival and progression free survival in high-grade serous carcinoma (HGSC) patients, constituting an independent prognostic factor for these patients. By adenovirus gene delivery, it was found modulation of cellular DLK1 level regulated the tumorigenic behaviors and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Immunohistochemical analysis further showed that DLK1 overexpression resulted in escalated proliferation, angiogenesis, EMT and Notch activities. Application of recombinant DLK1 extracellular domain (rDLK1-EC) recapitulated the tumorigenic behaviors of DLK1 in ovarian cancer cells. By using neutralizing antibody or pharmaceutical inhibitor, blockade of Notch signaling attenuated the tumorigenic behaviors evoked by DLK1 overexpression. The present study indicates that DLK1 overexpression participates in ovarian carcinogenesis through Notch activation and EMT induction. Moreover, DLK1 may constitute a novel diagnostic biomarker and therapeutic target for HGSC.
Collapse
|
16
|
El Faitwri T, Huber K. Expression pattern of delta-like 1 homolog in developing sympathetic neurons and chromaffin cells. Gene Expr Patterns 2018; 30:49-54. [PMID: 30144579 DOI: 10.1016/j.gep.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
Delta-like 1 homolog (DLK1) is a member of the epidermal growth factor (EGF)-like family and an atypical notch ligand that is widely expressed during early mammalian development with putative functions in the regulation of cell differentiation and proliferation. During later stages of development, DLK1 is downregulated and becomes increasingly restricted to specific cell types, including several types of endocrine cells. DLK1 has been linked to various tumors and associated with tumor stem cell features. Sympathoadrenal precursors are neural crest derived cells that give rise to either sympathetic neurons of the autonomic nervous system or the endocrine chromaffin cells located in the adrenal medulla or extraadrenal positions. As these cells are the putative cellular origin of neuroblastoma, one of the most common malignant tumors in early childhood, their molecular characterization is of high clinical importance. In this study we have examined the precise spatiotemporal expression of DLK1 in developing sympathoadrenal cells. We show that DLK1 mRNA is highly expressed in early sympathetic neuron progenitors and that its expression depends on the presence of Phox2B. DLK1 expression becomes quickly restricted to a small subpopulation of cells in sympathetic ganglia, while virtually all chromaffin cells in the adrenal medulla and the Organ of Zuckerkandl still express high levels of DLK1 at late gestational stages.
Collapse
Affiliation(s)
- Tehani El Faitwri
- Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany; Department of Histology and Anatomy, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Katrin Huber
- Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany; Department of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
17
|
Cai CM, Xiao X, Wu BH, Wei BF, Han ZG. Targeting endogenous DLK1 exerts antitumor effect on hepatocellular carcinoma through initiating cell differentiation. Oncotarget 2018; 7:71466-71476. [PMID: 27683116 PMCID: PMC5342093 DOI: 10.18632/oncotarget.12214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation and progression. We previously showed that Delta-like homolog 1 (DLK1) may be a therapeutic target against the CSCs of human hepatocellular carcinoma (HCC). However, the therapeutic efficacy and underlying mechanism remain unclear. Here we demonstrated that knockdown of DLK1 using a tet-inducible short hairpin RNA (shRNA) system significantly inhibited proliferation, spheroid formation and in vivo xenograft tumor growth of human HCC cells. Furthermore, in an orthotopic xenograft mouse model, adenovirus-mediated DLK1 knockdown could significantly reduce tumor size, as shown by in vivo imaging approach. Subsequently, an adenoviral vector harboring mouse Dlk1 shRNA was applied. The results showed that Dlk1 knockdown also could inhibit tumor progression in a diethylnitrosamine (DEN) induced mouse HCC model. At cellular mechanism, DLK1 knockdown delayed the cell cycle G1-S transition, along with the decreased expression of cyclin E1 and D1. Significantly, DLK1 knockdown resulted in the decrease of molecular markers such as AFP and EpCAM for hepatic progenitor cells, but the increase of KRT18 and KRT19 for the differentiated hepatocytes. The collective data indicated that targeting endogenous DLK1 may exert antitumor effect on HCCs possibly through initiating cell differentiation.
Collapse
Affiliation(s)
- Chun-Miao Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Xu Xiao
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Bing-Hao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,Shanghai Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bao-Feng Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,Shanghai Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis 2018; 21:299-312. [PMID: 29383634 DOI: 10.1007/s10456-018-9596-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
AIM Delta-like 1 homolog (DLK1) is a non-canonical ligand of Notch signaling, which plays a pivotal role in vascular development and tumor angiogenesis. This study aimed to elucidate the function and mechanism of DLK1 in angiogenesis. METHODS AND RESULTS By using in situ hybridization and immunohistochemical studies, expression analysis revealed a unique vascular tropism of DLK1 in vasculature of neuroblastoma and vascular tumors. Thus, it was hypothesized that DLK1 may be cleaved and then bound to endothelial cells, thereby regulating the endothelial function. To test such hypothesis, soluble DLK1 encompassing DLK1 extracellular domain (DLK1-EC) was generated and validated by its inhibitory function in adipogenesis assay. Recombinant DLK1-EC exhibited the preferential binding capability toward endothelial cells and stimulated the microvessels sprouting in aorta rings. Above all, implantation of DLK1-EC dose-dependently elicited the cornea neovascularization in rats. By using various angiogenesis assays, it was delineated that DLK1-EC stimulated the angiogenesis by promoting the proliferation, motility and tube formation of endothelial cells. By immunoblot and luciferase analysis, it was elucidated that DLK1-EC enhanced the expression and activities of Notch1/Akt/eNOS/Hes-1 signaling in dose- and time-dependent manners. Pharmaceutical blockage of Notch signaling using γ-secretase inhibitor DAPT abrogated the DLK1-EC-induced endothelial migration and Hes-1-driven luciferase activities. Furthermore, Notch1 inactivation by neutralizing antibodies or RNA interference reversed the DLK1-EC-induced angiogenesis. CONCLUSIONS The present study unveils the pro-angiogenic function and mechanism of soluble DLK1 through activation of Notch1 signaling in endothelial cells.
Collapse
|
19
|
Molina-Pinelo S, Salinas A, Moreno-Mata N, Ferrer I, Suarez R, Andrés-León E, Rodríguez-Paredes M, Gutekunst J, Jantus-Lewintre E, Camps C, Carnero A, Paz-Ares L. Impact of DLK1-DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget 2018; 9:4395-4410. [PMID: 29435111 PMCID: PMC5796982 DOI: 10.18632/oncotarget.10611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is important for gene expression and genome stability, and its disruption is thought to play a key role in the initiation and progression of cancer and other diseases. The DLK1-DIO3 cluster has been shown to be imprinted in humans, and some of its components are relevant to diverse pathological processes. The purpose of this study was to assess the methylation patterns of the DLK1-DIO3 cluster in patients with lung cancer to study its relevance in the pathogenesis of this disease. We found a characteristic methylation pattern of this cluster in smoking associated lung cancer, as compared to normal lung tissue. This methylation profile is not patent however in lung cancer of never smokers nor in lung tissue of COPD patients. We found 3 deregulated protein-coding genes at this locus: one was hypermethylated (DIO3) and two were hypomethylated (DLK1 and RTL1). Statistically significant differences were also detected in two different families of SNORDs, two miRNA clusters and four lncRNAs (MEG3, MEG8, MEG9 and LINC00524). These findings were validated using data from the cancer genome atlas (TCGA) database. We have then showed an inverse correlation between DNA methylation and expression levels in 5 randomly selected genes. Several targets of miRNAs included in the DLK1-DIO3 cluster have been experimentally verified as tumor suppressors. All of these results suggest that the dysmethylation of the imprinted DLK1-DIO3 cluster could have a relevant role in the pathogenesis of lung cancer in current and former smokers and may be used for diagnostic and/or therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Ana Salinas
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Nicolás Moreno-Mata
- Thoracic Surgery Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Rocío Suarez
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Eduardo Andrés-León
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- University Tumor Center Düsseldorf, University of Düsseldorf, Düsseldorf, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de Valencia, Valencia, Spain
| | - Carlos Camps
- Department of Medicine, University of Valencia, Valencia, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Luis Paz-Ares
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| |
Collapse
|
20
|
Lozano-Ureña A, Montalbán-Loro R, Ferguson-Smith AC, Ferrón SR. Genomic Imprinting and the Regulation of Postnatal Neurogenesis. Brain Plast 2017; 3:89-98. [PMID: 29765862 PMCID: PMC5928554 DOI: 10.3233/bpl-160041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. Recent studies on the postnatal neurogenic niches raise many intriguing questions concerning the role of genomic imprinting and gene dosage during postnatal neurogenesis, including how imprinted genes operate in concert with signalling cues to contribute to newborn neurons’ formation during adulthood. Here we have gathered the current knowledge on the imprinting process in the neurogenic niches. We also review the phenotypes associated with genetic mutations at particular imprinted loci in order to consider the impact of imprinted genes in the maintenance and/or differentiation of the neural stem cell pool in vivo and during brain tumour formation.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| | | | | | - Sacri R Ferrón
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| |
Collapse
|
21
|
Chen H, Zhang K, Lu J, Wu G, Yang H, Chen K. Comprehensive analysis of mRNA-lncRNA co-expression profile revealing crucial role of imprinted gene cluster DLK1-MEG3 in chordoma. Oncotarget 2017; 8:112623-112635. [PMID: 29348851 PMCID: PMC5762536 DOI: 10.18632/oncotarget.22616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Chordoma is a rare bone tumor with high recurrence rate, but the mechanism of its development is unclear. Long non-coding RNAs(lncRNAs) are recently revealed to be regulators in a variety of biological processed by targeting on mRNA transcription. Their expression profile and function in chordoma have not been investigated yet. In this study, we firstly performed the comprehensive analysis of the lncRNA and coding genes expression analysis with three chordoma samples and three fetal nucleus pulposus tissues. lncRNA and gene microarrays were used to determine the differentially expressed lncRNAs and protein coding genes. 2786 lncRNAs and 3286 coding genes were significantly up-regulated in chordoma, while 2042 lncRNAs and 1006 coding genes were down-regulated. Pearson correlation analysis was conducted to correlate differentially expressed lncRNAs with protein coding genes, indicating a comprehensive lncRNA-coding gene co-expression network in chordoma. Cis-correlation analysis showed that various transcripts of MEG3 and MEG8 were paired with the most differentially expressed gene DLK1. As located in the same locus, we further analyzed the miRNA clusters in this region, and identified that 61.22% of these miRNAs were significantly down-regulated, implying the silence of the imprinted gene cluster DLK1-MEG3. Overexpression of MEG3 suppressed the proliferation of chordoma cells. Our study pointed out the potential role of lncRNAs in chordoma, presented the lncRNA-coding genes co-expression profile, and revealed that imprinted gene cluster DLK1-MEG3 contributes to the pathogenesis of chordoma development.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Lu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guizhong Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Institute of Orthopedics, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kangwu Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
22
|
Xu W, Wang Y, Zhao H, Fan B, Guo K, Cai M, Zhang S. Delta-like 2 negatively regulates chondrogenic differentiation. J Cell Physiol 2017; 233:6574-6582. [PMID: 29057471 DOI: 10.1002/jcp.26244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Abstract
Delta-like 2 (Dlk2), a glycoprotein highly homologous to Dlk1, belongs to the Notch/Delta/Serrata family. Dlk2 has been shown to be an important regulator of adipogenesis; however, its role in other cellular differentiation processes is still unknown. Therefore, in this study, we aimed to determine the role of Dlk2 in chondrogenic differentiation. We found that Dlk2 overexpression promoted the growth of ATDC5 cells but inhibited insulin-induced ATDC5 chondrogenic differentiation, as supported by the reduction in cartilage matrix formation and gene expression of aggrecan (acan), collagentype II (col2a1) and X (col10a1). In contrast, Dlk2 silencing inhibited the proliferation of ATDC5 cells but enhanced their chondrogenic differentiation. We then evaluated the roles of mitogen-activated protein kinases (MAPKs), which are activated by insulin during the chondrogenesis of ATDC5 cells. Overexpression of Dlk2 protein strongly promoted the activation of p38, but not extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). Moreover, as expected, Dlk2 silencing inhibited the activation of p38, but had no effect on the ERK1/2 and JNK pathways. Finally, we also detected the expression of Dlk2 in mouse epiphyseal cartilage during embryo development. The expression of the Dlk2 protein in the limb bud could be detected at embryonic day 11.5; additionally, it was found to decrease in the superficial zones, but remained unchanged in the deep/hypertrophic zones. In conclusion, our results suggested that Dlk2 acted as an important regulator of chondrogenesis through the p38 pathway. These findings may lead to strategies for the treatment of cartilage-related diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Weifeng Xu
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yexin Wang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haoming Zhao
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Baotin Fan
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ke Guo
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ming Cai
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Craniomaxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shanyong Zhang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
23
|
Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med 2017; 11:749-761. [PMID: 28715922 DOI: 10.1080/17476348.2017.1355241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The imprinted DLK1-DIO3 locus at 14q32.1-32.31 holds biological significance in fetal development, whereby imprinting errors are causal to developmental disorders. Emerging evidence has implicated this locus in other diseases including cancer, highlighting the biological parallels between fetal organ and tumour development. Areas covered: Controlled regulation of gene expression from the imprinted DLK1-DIO3 locus at 14q32.1-32.31 is crucial for proper fetal development. Deregulation of locus gene expression due to imprinting errors has been mechanistically linked to the developmental disorders Kagami-Ogata Syndrome and Temple Syndrome. In adult tissues, deregulation of locus genes has been associated with multiple malignancies although the causal genetic mechanisms remain largely uncharacterised. Here, we summarize the genetic mechanisms underlying the developmental disorders that arise as a result of improper locus imprinting and the resulting developmental phenotypes, emphasizing both the coding and noncoding components of the locus. We further highlight biological parallels common to both fetal development and disease, with a specific focus on lung development, respiratory disease, and lung cancer. Expert commentary: Many commonalities between respiratory and developmental defects have emerged with respect to the 14q32 locus, emphasizing the importance of studying the effects of imprinting on gene regulation patterns at this locus in both biological settings.
Collapse
Affiliation(s)
- Jhon R Enterina
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | | | | | - Erin A Marshall
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Kevin W Ng
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Wan L Lam
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| |
Collapse
|
24
|
Nueda ML, Naranjo AI, Baladrón V, Laborda J. Different expression levels of DLK1 inversely modulate the oncogenic potential of human MDA-MB-231 breast cancer cells through inhibition of NOTCH1 signaling. FASEB J 2017; 31:3484-3496. [PMID: 28461338 DOI: 10.1096/fj.201601341rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023]
Abstract
NOTCH receptors participate in cancer cell proliferation and survival. Accumulated evidence indicates that, depending on the cellular context, these receptors can function as oncogenes or as tumor-suppressor genes. The epidermal growth factor-like protein delta-like homolog (DLK)1 acts as a NOTCH inhibitor and is involved in the regulation of normal and tumoral growth. In this work, we focused on the role of DLK1 in the control of breast cancer cell growth, a tumor type in which NOTCH receptors have been shown to play both opposite roles. We found that human DLK1 inhibits NOTCH signaling in MDA-MB-231 breast cancer cells. The proliferation rate and invasion capabilities of these cells depended on the level of NOTCH activation and signaling, as regulated by DLK1. High levels of DLK1 expression led to a significant decrease in NOTCH signaling, which was associated with a decrease in breast cancer cell proliferation and invasion. On the contrary, lower levels of NOTCH inhibition, caused by lower levels of DLK1 overexpression, led to enhanced in vitro MDA-MB-231 cell invasion, and to both in vitro and in vivo increased cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of breast cancer cell proliferation and invasion.-Nueda, M.-L., Naranjo, A.-I., Baladrón V., Laborda, J. Different expression levels of DLK1 inversely modulate the oncogenic potential of human MDA-MB-231 breast cancer cells through inhibition of NOTCH1 signaling.
Collapse
Affiliation(s)
- María-Luisa Nueda
- Biochemistry and Molecular Biology Branch-Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain .,School of Pharmacy, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Ana-Isabel Naranjo
- Biochemistry and Molecular Biology Branch-Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain.,School of Medicine, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain and.,Regional Center for Biomedical Research (CRIB)-Biomedicine Unit, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Victoriano Baladrón
- Biochemistry and Molecular Biology Branch-Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain.,School of Medicine, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain and.,Regional Center for Biomedical Research (CRIB)-Biomedicine Unit, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Jorge Laborda
- Biochemistry and Molecular Biology Branch-Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain .,School of Pharmacy, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| |
Collapse
|
25
|
Royer-Bertrand B, Torsello M, Rimoldi D, El Zaoui I, Cisarova K, Pescini-Gobert R, Raynaud F, Zografos L, Schalenbourg A, Speiser D, Nicolas M, Vallat L, Klein R, Leyvraz S, Ciriello G, Riggi N, Moulin AP, Rivolta C. Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. Am J Hum Genet 2016; 99:1190-1198. [PMID: 27745836 PMCID: PMC5097942 DOI: 10.1016/j.ajhg.2016.09.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential.
Collapse
Affiliation(s)
- Beryl Royer-Bertrand
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland; Center for Molecular Diseases, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Matteo Torsello
- Experimental Pathology, Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Donata Rimoldi
- Ludwig Cancer Research, Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ikram El Zaoui
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Katarina Cisarova
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Rosanna Pescini-Gobert
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Franck Raynaud
- Department of Computational Biology, Computational Systems Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Leonidas Zografos
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Ann Schalenbourg
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Daniel Speiser
- Ludwig Cancer Research, Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Michael Nicolas
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Laureen Vallat
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Robert Klein
- Formerly Complete Genomics, Mountain View, CA 94043, USA
| | - Serge Leyvraz
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, Computational Systems Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland.
| |
Collapse
|
26
|
Lee D, Yoon SH, Lee HJ, Jo KW, Park BC, Kim IS, Choi Y, Lim JC, Park YW. Human soluble delta-like 1 homolog exerts antitumor effects in vitro and in vivo. Biochem Biophys Res Commun 2016; 475:209-15. [PMID: 27191393 DOI: 10.1016/j.bbrc.2016.05.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 10/21/2022]
Abstract
Proteolysis of delta-like 1 homolog (DLK1), a cell-surface transmembrane protein, produces an active soluble form of DLK1 (sDLK1). Both membrane-bound DLK1 and sDLK1 modulate multiple developmental processes including adipogenesis, osteogenesis, chondrogenesis and myogenesis. However, cancer-related functions of DLK1 have not yet been established. We thus evaluated the roles of extracellular sDLK1, comprising six EGF-like domains and juxtamembrane regions, in human pancreatic cancer MIA PaCa-2 cells in vitro and in vivo. We observed that sDLK1 exerted antitumor effects not only in cancer cell migration and anchorage-independent cell growth but also in in vivo tumor growth.
Collapse
Affiliation(s)
- Donghee Lee
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sun Ha Yoon
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hyun Ju Lee
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ki Won Jo
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Bum-Chan Park
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, 34054, Republic of Korea
| | - Yunseon Choi
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, 34054, Republic of Korea
| | - Jung Chae Lim
- ANRT, Inc., PAI CHAI University Industry-Academic Cooperation Foundation Building, Daejeon, 34015, Republic of Korea.
| | - Young Woo Park
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
27
|
González MJ, Ruiz-García A, Monsalve EM, Sánchez-Prieto R, Laborda J, Díaz-Guerra MJM, Ruiz-Hidalgo MJ. DLK1 is a novel inflammatory inhibitor which interferes with NOTCH1 signaling in TLR-activated murine macrophages. Eur J Immunol 2015; 45:2615-27. [PMID: 26115479 DOI: 10.1002/eji.201545514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Delta-like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR-induced expression of key pro-inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1-deficient mice and Raw 264.7 cells overexpressing Dlk1. In the absence of Dlk1, NOTCH1 expression is increased and the activation of macrophages with TLR3 or TLR4 agonists leads to higher production of IFN-β and other pro-inflammatory cytokines, including TNF-α, IL-12, and IL-23. The expression of key proteins involved in IFN-β signaling, such as IRF3, IRF7, IRF1, or STAT1, as well as cRel, or RelB, which are responsible for the generation of IL-12 and IL-23, is enhanced in Dlk1 KO macrophages. Consistently, Dlk1 KO mice are more sensitive to LPS-induced endotoxic shock. These effects seem to be mediated through the modulation of NOTCH1 signaling. TLR4 activation reduces DLK1 expression, whereas increases NOTCH1 levels. In addition, DLK1 expression diminishes during differentiation of human U937 cells to macrophages. Overall, these results reveal a novel role for DLK1 as a regulator of NOTCH-mediated, pro-inflammatory macrophage activation, which could help to ensure a baseline level preventing constant tissue inflammation.
Collapse
Affiliation(s)
- María J González
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Almudena Ruiz-García
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Eva M Monsalve
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Jorge Laborda
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - María J M Díaz-Guerra
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - María J Ruiz-Hidalgo
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| |
Collapse
|
28
|
Liu C, Lin Q, Yun Z. Cellular and molecular mechanisms underlying oxygen-dependent radiosensitivity. Radiat Res 2015; 183:487-96. [PMID: 25938770 DOI: 10.1667/rr13959.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular oxygen has long been recognized as a powerful radiosensitizer that enhances the cell-killing efficiency of ionizing radiation. Radiosensitization by oxygen occurs at very low concentrations with the half-maximum radiosensitization at approximately 3 mmHg. However, robust hypoxia-induced signal transduction can be induced at <15 mmHg and can elicit a wide range of cellular responses that will affect therapy response as well as malignant progression. Great strides have been made, especially since the 1990s, toward identification and characterization of the oxygen-regulated molecular pathways that affect tumor response to ionizing radiation. In this review, we will discuss the current advances in our understanding of oxygen-dependent molecular modification and cellular signal transduction and their impact on tumor response to therapy. We will specifically address mechanistic distinctions between radiobiological hypoxia (0-3 mmHg) and pathological hypoxia (3-15 mmHg). We also propose a paradigm that hypoxia increases radioresistance by maintaining the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Chao Liu
- a Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520
| | | | | |
Collapse
|
29
|
Melo-Lima S, Lopes MC, Mollinedo F. ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacol Res 2015; 95-96:2-11. [PMID: 25749008 DOI: 10.1016/j.phrs.2015.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 02/03/2023]
Abstract
Glioblastoma is characterized by constitutive apoptosis resistance and survival signaling expression, but paradoxically is a necrosis-prone neoplasm. Incubation of human U118 glioblastoma cells with the antitumor alkylphospholipid analog edelfosine induced a potent necrotic cell death, whereas apoptosis was scarce. Preincubation of U118 cells with the selective MEK1/2 inhibitor U0126, which inhibits MEK1/2-mediated activation of ERK1/2, led to a switch from necrosis to caspase-dependent apoptosis following edelfosine treatment. Combined treatment of U0126 and edelfosine totally inhibited ERK1/2 phosphorylation, and led to RIPK1 and RelA/NF-κB degradation, together with a strong activation of caspase-3 and -8. This apoptotic response was accompanied by the activation of the intrinsic apoptotic pathway with mitochondrial transmembrane potential loss, Bcl-xL degradation and caspase-9 activation. Inhibition of ERK phosphorylation also led to a dramatic increase in edelfosine-induced apoptosis when the alkylphospholipid analog was used at a low micromolar range, suggesting that ERK phosphorylation acts as a potent regulator of apoptotic cell death in edelfosine-treated U118 cells. These data show that inhibition of MEK1/2-ERK1/2 signaling pathway highly potentiates edelfosine-induced apoptosis in glioblastoma U118 cells and switches the type of edelfosine-induced cell death from necrosis to apoptosis.
Collapse
Affiliation(s)
- Sara Melo-Lima
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centre for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
| | - Maria C Lopes
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
30
|
Teodorczyk M, Schmidt MHH. Notching on Cancer's Door: Notch Signaling in Brain Tumors. Front Oncol 2015; 4:341. [PMID: 25601901 PMCID: PMC4283135 DOI: 10.3389/fonc.2014.00341] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022] Open
Abstract
Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| |
Collapse
|
31
|
The proteins DLK1 and DLK2 modulate NOTCH1-dependent proliferation and oncogenic potential of human SK-MEL-2 melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2674-84. [PMID: 25093684 DOI: 10.1016/j.bbamcr.2014.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
NOTCH receptors regulate cell proliferation and survival in several types of cancer cells. Depending on the cellular context, NOTCH1 can function as an oncogene or as a tumor suppressor gene. DLK1 is also involved in the regulation of cell growth and cancer, but nothing is known about the role of DLK2 in these processes. Recently, the proteins DLK1 and DLK2 have been reported to interact with NOTCH1 and to inhibit NOTCH1 activation and signaling in different cell lines. In this work, we focused on the role of DLK proteins in the control of melanoma cell growth, where NOTCH1 is known to exert an oncogenic effect. We found that human DLK proteins inhibit NOTCH signaling in SK-MEL-2 metastatic melanoma cells. Moreover, the proliferation rate of these cells was dependent upon the level of NOTCH activation and signaling as regulated by DLK proteins. In particular, high levels of NOTCH inhibition resulted in a decrease, whereas lower levels of NOTCH inhibition led to an increase in melanoma cell proliferation rates, both in vitro and in vivo. Finally, our data revealed additive NOTCH-mediated effects of DLK proteins and the γ-secretase inhibitor DAPT on cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of metastatic melanoma cell proliferation. Our results open the way to new research on the role of DLK proteins as potential therapeutic tools for the treatment of human melanoma.
Collapse
|
32
|
Β-carotene inhibits neuroblastoma tumorigenesis by regulating cell differentiation and cancer cell stemness. Biochem Biophys Res Commun 2014; 450:1475-80. [PMID: 25019987 DOI: 10.1016/j.bbrc.2014.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 02/02/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial solid cancer in young children and malignant NB cells have been shown to possess cancer stem cell (CSC) characteristics. Thus, the successful elimination of CSCs represents a strategy for developing an effective preventive and chemotherapeutic agent. CSCs are characterized by differentiation and tumorigenicity. β-Carotene (BC) has been associated with many anticancer mechanisms, although the efficacy of BC on CSCs remains unclear. In the present study, the effects of BC on tumor cell differentiation and tumorigenicity was investigated using a xenograft model. Mice were pretreated with BC for 21 days, then received a subcutaneous injection of SK-N-BE(2)C cells. Both tumor incidence and tumor growth were significantly inhibited for mice that received BC supplementation compared to the control group. Treatment with BC has also been shown to induce tumor cell differentiation by up-regulating differentiation markers, such as vimentin, peripherin, and neurofilament. Conversely, BC treatment has been shown to significantly suppress tumor stemness by down-regulating CSC markers such as Oct 3/4 and DLK1. BC treatment also significantly down-regulated HIF1-α expression and its downstream target, vascular endothelial growth factor (VEGF). Taken together, these results suggest that BC is a potential chemotherapeutic reagent for the treatment of NB, and mediates this effect by regulating the differentiation and stemness of CSCs, respectively.
Collapse
|
33
|
DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling. PLoS One 2014; 9:e91509. [PMID: 24621612 PMCID: PMC3951400 DOI: 10.1371/journal.pone.0091509] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/11/2014] [Indexed: 11/23/2022] Open
Abstract
The transmembrane and secreted protein delta-like 1 homolog (DLK1) belongs to the EGF-like family. It is widely accepted that DLK1 plays important roles in regulating cell differentiation, such as adipogenesis and osteogenesis. Aberrant expression of DLK1 has been found in various types of human cancers, including lung cancer. A previous study in this lab has revealed that DLK1 is associated with tumor invasion, although the mechanism is still unknown. To explore the potential effects that DLK1 might have on invasion, DLK1 was overexpressed or knocked down in the human lung cancer cell lines. The protein's influences on cell invasion were subsequently evaluated. A transwell assay showed that DLK1 overexpression significantly promoted cancer cell invasion. Western blotting and gelatin zymography analysis indicated that DLK1 could affect both matrix metalloproteinase-9 (MMP9) expression and its extracellular activity. An analysis of NOTCH1 and HES1 gene expression and Notch intracellular domain (NICD) nuclear translocation during DLK1 stimulation or depletion demonstrated that DLK1 could activate Notch signaling in lung cancer cells. Additionally, the elevated expression of MMP9 induced by DLK1 stimulation could be significantly decreased by inhibiting Notch signaling using γ-secretase inhibitor (GSI). The data presented in this study suggest that DLK1 can promote the invasion of lung cancer cells by upregulating MMP9 expression, which depends on Notch signaling.
Collapse
|
34
|
Abstract
Spontaneous tumors often contain heterogeneous populations of tumor cells with different tumor-initiating potentials or cancer cell "stemness." Clonal heterogeneity can be traced to specific locations inside a tumor where clones with different metastatic capabilities are identified, suggesting that the tumor microenvironment can exert a significant effect on the evolution of different clonal populations. Hypoxia is a common feature of tumor microenvironments and has the potential to facilitate malignant progression. This chapter provides a synopsis of hypoxia-regulated pathways implicated in the maintenance of cancer stem cells.
Collapse
Affiliation(s)
- Zhong Yun
- Department of Therapeutic Radiology, Yale School of Medicine, 208040, New Haven, 06520-8040, CT, USA,
| | | |
Collapse
|
35
|
Begum A, Lin Q, Yu C, Kim Y, Yun Z. Interaction of delta-like 1 homolog (Drosophila) with prohibitins and its impact on tumor cell clonogenicity. Mol Cancer Res 2013; 12:155-64. [PMID: 24249679 DOI: 10.1158/1541-7786.mcr-13-0360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UNLABELLED Cancer stem cell characteristics, especially their self-renewal and clonogenic potentials, play an essential role in malignant progression and response to anticancer therapies. Currently, it remains largely unknown what pathways are involved in the regulation of cancer cell stemness and differentiation. Previously, we found that delta-like 1 homolog (Drosophila) or DLK1, a developmentally regulated gene, plays a critical role in the regulation of differentiation, self-renewal, and tumorigenic growth of neuroblastoma cells. Here, we show that DLK1 specifically interacts with the prohibitin 1 (PHB1) and PHB2, two closely related genes with pleiotropic functions, including regulation of mitochondrial function and gene transcription. DLK1 interacts with the PHB1-PHB2 complex via its cytoplasmic domain and regulates mitochondrial functions, including mitochondrial membrane potential and production of reactive oxygen species. We have further found that PHB1 and especially PHB2 regulate cancer cell self-renewal as well as their clonogenic potential. Hence, the DLK1-PHB interaction constitutes a new signaling pathway that maintains clonogenicity and self-renewal potential of cancer cells. IMPLICATIONS This study provides a new mechanistic insight into the regulation of the stem cell characteristics of cancer cells.
Collapse
Affiliation(s)
- Asma Begum
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040.
| | | | | | | | | |
Collapse
|
36
|
Lee HA, Park S, Kim Y. Effect of β-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells. Oncol Rep 2013; 30:1869-77. [PMID: 23900747 DOI: 10.3892/or.2013.2643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/01/2013] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is a solid tumor often diagnosed in childhood. While there have been intense efforts to develop a treatment for neuroblastoma, current therapies remain unsuccessful due to high rate of resistance and metastasis. Most cancers originate from a subset of self-renewing cells, primarily cancer stem cells (CSCs), which establish a tumor through continuous self-renewal and differentiation. The successful elimination of CSCs is an important goal in the development of effective strategies to achieve complete remission for cancers. Although β-carotene has been associated with several anticancer mechanisms, the efficacy of β-carotene against CSCs remains unclear. In the present study, β-carotene was shown to reduce cell growth and induce neuronal cell differentiation, concomitant with a marked increase in the phosphorylation of extracellular signal-regulated kinases (ERK) (p42/p44). More importantly, β-carotene inhibited self-renewal characteristics of CSCs and decreased expression of several stem cell markers. Levels of mRNA and protein of Drosophila delta-like 1 homolog (Drosophila) (DLK1) were downregulated following treatment with β-carotene. In addition, knockdown of DLK1 by siRNA enhanced the inhibitory effect of β-carotene on colony formation of neuroblastoma cells. β-carotene also potentiated the effect of cisplatin on the self-renewal characteristics of CSCs in neuroblastoma, revealing that β-carotene has the capacity to resensitize cells to cisplatin cytotoxicity by directly targeting CSCs. In conclusion, β-carotene was shown to strongly increase the anticancer efficacy against neuroblastoma cancer stem-like cells. Moreover, these results suggest that the targeting of CSCs is a novel mechanism of β-carotene. Thus, β-carotene is a potential chemotherapeutic reagent for this cancer.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | | | | |
Collapse
|
37
|
Yutsudo N, Kamada T, Kajitani K, Nomaru H, Katogi A, Ohnishi YH, Ohnishi YN, Takase KI, Sakumi K, Shigeto H, Nakabeppu Y. fosB-null mice display impaired adult hippocampal neurogenesis and spontaneous epilepsy with depressive behavior. Neuropsychopharmacology 2013; 38:895-906. [PMID: 23303048 PMCID: PMC3672000 DOI: 10.1038/npp.2012.260] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with epilepsy are at high risk for major depression relative to the general population, and both disorders are associated with changes in adult hippocampal neurogenesis, although the mechanisms underlying disease onset remain unknown. The expression of fosB, an immediate early gene encoding FosB and ΔFosB/Δ2ΔFosB by alternative splicing and translation initiation, is known to be induced in neural progenitor cells within the subventricular zone of the lateral ventricles and subgranular zone of the hippocampus, following transient forebrain ischemia in the rat brain. Moreover, adenovirus-mediated expression of fosB gene products can promote neural stem cell proliferation. We recently found that fosB-null mice show increased depressive behavior, suggesting impaired neurogenesis in fosB-null mice. In the current study, we analyzed neurogenesis in the hippocampal dentate gyrus of fosB-null and fosB(d/d) mice that express ΔFosB/Δ2ΔFosB but not FosB, in comparison with wild-type mice, alongside neuropathology, behaviors, and gene expression profiles. fosB-null but not fosB(d/d) mice displayed impaired neurogenesis in the adult hippocampus and spontaneous epilepsy. Microarray analysis revealed that genes related to neurogenesis, depression, and epilepsy were altered in the hippocampus of fosB-null mice. Thus, we conclude that the fosB-null mouse is the first animal model to provide a genetic and molecular basis for the comorbidity between depression and epilepsy with abnormal neurogenesis, all of which are caused by loss of a single gene, fosB.
Collapse
Affiliation(s)
- Noriko Yutsudo
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Kamada
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Kajitani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroko Nomaru
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsuhisa Katogi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoko H Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori N Ohnishi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kei-ichiro Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - Hiroshi Shigeto
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan,Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan, Tel: +81 92 642 6800, Fax: +81 92 642 6791, E-mail:
| |
Collapse
|
38
|
Mortensen SB, Jensen CH, Schneider M, Thomassen M, Kruse TA, Laborda J, Sheikh SP, Andersen DC. Membrane-tethered delta-like 1 homolog (DLK1) restricts adipose tissue size by inhibiting preadipocyte proliferation. Diabetes 2012; 61:2814-22. [PMID: 22891218 PMCID: PMC3478550 DOI: 10.2337/db12-0176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipocyte renewal from preadipocytes has been shown to occur throughout life and to contribute to obesity, yet very little is known about the molecular circuits that control preadipocyte expansion. The soluble form of the preadipocyte factor (also known as pref-1) delta-like 1 homolog (DLK1(S)) is known to inhibit adipogenic differentiation; however, the impact of DLK1 isoforms on preadipocyte proliferation remains to be determined. We generated preadipocytes with different levels of DLK1 and examined differentially affected gene pathways, which were functionally tested in vitro and confirmed in vivo. Here, we demonstrate for the first time that only membrane-bound DLK1 (DLK1(M)) exhibits a substantial repression effect on preadipocyte proliferation. Thus, by independently manipulating DLK1 isoform levels, we established that DLK1(M) inhibits G1-to-S-phase cell cycle progression and thereby strongly inhibits preadipocyte proliferation in vitro. Adult DLK1-null mice exhibit higher fat amounts than wild-type controls, and our in vivo analysis demonstrates that this may be explained by a marked increase in preadipocyte replication. Together, these data imply a major dual inhibitory function of DLK1 on adipogenesis, which places DLK1 as a master regulator of preadipocyte homeostasis, suggesting that DLK1 manipulation may open new avenues in obesity treatment.
Collapse
Affiliation(s)
- Sussi B. Mortensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte H. Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mikael Schneider
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Søren P. Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| | - Ditte C. Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| |
Collapse
|
39
|
Abstract
Emerging evidence proposes that most cancers originate from a rare subpopulation of cells, called cancer stem cells (CSCs), which possess characteristics including differentiation, self-renewal, and tumorigenicity. Currently, available therapeutic agents cannot effectively eliminate CSCs. Therefore, the development of a nontoxic, natural treatment that can either overcome chemoresistance or promote the elimination of CSCs is highly desirable. The current study examined whether mulberry leaf (ML) ethanolic extract can effectively eliminate neuroblastoma stem cell-like population. Our data demonstrated that 10-40 μg/ml of ML extract significantly enhanced differentiation by elongating neurites and reducing clonogenicity and sphere formation as shown by the decreased expression of stem cell markers and increased expression of differentiation markers. The knock-down of delta-like 1 homologue by siRNA enhanced the significant inhibitory effects of 40 μg/ml of ML extract on colony formation. Furthermore, phosphorylation of the extracellular signal-regulated kinase (ERK) was increased by 20 or 40 μg/ml of ML extract and the MEK/ERK inhibitors completely blocked differentiation induced by the extract. Taken together, these findings provide experimental evidence that ML may have chemopreventive effects on neuroblastoma cells by inhibiting CSCs characteristics as well as regulating CSCs pathways, which may provide a therapeutic option for controlling the growth of neuroblastoma cells.
Collapse
Affiliation(s)
- Seolhyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | | | | |
Collapse
|
40
|
Begum A, Kim Y, Lin Q, Yun Z. DLK1, delta-like 1 homolog (Drosophila), regulates tumor cell differentiation in vivo. Cancer Lett 2011; 318:26-33. [PMID: 22142700 DOI: 10.1016/j.canlet.2011.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 02/08/2023]
Abstract
The stem cell-like characteristics of tumor cells are not only essential for tumor development and malignant progression, but also significantly contribute to therapy resistance. However, it remains poorly understood how cancer cell differentiation or stemness is regulated in vivo. We investigated the role of the stem cell gene DLK1, or delta-like 1 homolog (Drosophila), in the regulation of cancer cell differentiation in vivo using neuroblastoma (NB) xenografts as a model. We found that loss-of-function mutants of DLK1 significantly enhanced NB cell differentiation in vivo likely by increasing the basal phosphorylation of MEK and ERK kinases, a mechanism that has been shown to facilitate neuronal differentiation. We also found that DLK1(+) cells are preferentially located in hypoxic regions. These results clearly demonstrate that DLK1 plays an important role in the maintenance of undifferentiated, stem cell-like phenotypes of NB cells in vivo.
Collapse
Affiliation(s)
- Asma Begum
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
41
|
Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2120-30. [PMID: 21871428 DOI: 10.1016/j.ajpath.2011.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 01/04/2023]
Abstract
DLK1-MEG3 is an imprinted locus consisting of multiple maternally expressed noncoding RNA genes and paternally expressed protein-coding genes. The expression of maternally expressed gene 3 (MEG3) is selectively lost in clinically nonfunctioning adenomas (NFAs) of gonadotroph origin; however, expression status of other genes at this locus in human pituitary adenomas has not previously been reported. Using quantitative real-time RT-PCR, we evaluated expression of 24 genes from the DLK1-MEG3 locus in 44 human pituitary adenomas (25 NFAs, 7 ACTH-secreting, 7 GH-secreting, and 5 PRL-secreting adenomas) and 10 normal pituitaries. The effects on cell proliferation of five miRNAs whose expression was lost in NFAs were investigated by flow cytometry analysis. We found that 18 genes, including 13 miRNAs at the DLK1-MEG3 locus, were significantly down-regulated in human NFAs. In ACTH-secreting and PRL-secreting adenomas, 12 and 7 genes were significantly down-regulated, respectively; no genes were significantly down-regulated in GH-secreting tumors. One of the five miRNAs tested induced cell cycle arrest at the G2/M phase in PDFS cells derived from a human NFA. Our data indicate that the DLK1-MEG3 locus is silenced in NFAs. The growth suppression by miRNAs in PDFS cells is consistent with the hypothesis that the DLK1-MEG3 locus plays a tumor suppressor role in human NFAs.
Collapse
|
42
|
Radford EJ, Ferrón SR, Ferguson-Smith AC. Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 2011; 585:2059-66. [PMID: 21672541 DOI: 10.1016/j.febslet.2011.05.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
Abstract
Developmental plasticity can be defined as the ability of one genotype to produce a range of phenotypes in response to environmental conditions. Such plasticity can be manifest at the level of individual cells, an organ, or a whole organism. Imprinted genes are a group of approximately 100 genes with functionally monoallelic, parental-origin specific expression. As imprinted genes are critical for prenatal growth and metabolic axis development and function, modulation of imprinted gene dosage has been proposed to play a key role in the plastic development of the unborn foetus in response to environmental conditions. Evidence is accumulating that imprinted dosage may also be involved in controlling the plastic potential of individual cells or stem cell populations. Imprinted gene dosage can be modulated through canonical, transcription factor mediated mechanisms, or through the relaxation of imprinting itself, reactivating the normally silent allele.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
43
|
Sánchez-Solana B, Nueda ML, Ruvira MD, Ruiz-Hidalgo MJ, Monsalve EM, Rivero S, García-Ramírez JJ, Díaz-Guerra MJM, Baladrón V, Laborda J. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1153-64. [DOI: 10.1016/j.bbamcr.2011.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/19/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
|
44
|
Liu Y, Tan J, Li L, Li S, Zou S, Zhang Y, Zhang X, Ling B, Han N, Guo S, Gao Y. [Study on the molecular mechanisms of dlk1 stimulated lung cancer cell proliferation]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 13:923-7. [PMID: 20959062 PMCID: PMC6000581 DOI: 10.3779/j.issn.1009-3419.2010.10.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
背景与目的 印记基因dlk1因在多种肿瘤组织中出现异常表达而受到研究者越来越多的关注,但dlk1基因与肺癌的关系尚无报道。本研究首先在肺癌组织中检测了dlk1基因的表达,并进一步利用肺癌细胞系H520对dlk1基因促进细胞增殖的分子机制进行了初步研究。 方法 首先,采用RT-PCR在30对非小细胞肺癌肿瘤及其配对癌旁组织中检测dlk1基因的表达。然后,克隆人源dlk1基因,转染并筛选出稳定表达dlk1基因的肺癌细胞。最后,利用CCK8法研究dlk1基因对细胞增殖能力的影响,并用Western blot技术分析细胞周期蛋白CyclinB1的表达。 结果 RTPCR结果显示,dlk1基因在36.7%的非小细胞肺癌肿瘤组织中表达水平高于癌旁肺组织。在成功获得了稳定表达外源性dlk1基因的肺癌细胞H520-dlk1的基础上,CCK8实验及平板集落实验显示,稳定转染dlk1可以明显促进肺鳞癌细胞H520的增殖能力(P < 0.05)。同时,稳定表达DLK1蛋白可以上调细胞周期蛋白CyclinB1的表达水平(P < 0.05)。 结论 dlk1在非小细胞肺癌中存在异常高表达,它可以通过上调细胞周期蛋白CyclinB1的表达,促进肺鳞癌细胞H520的增殖。提示dlk1基因的异常表达可能在肺癌的发生演进中发挥作用。
Collapse
Affiliation(s)
- Yu Liu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim Y. The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma. Nutr Res Pract 2010; 4:455-61. [PMID: 21286402 PMCID: PMC3029785 DOI: 10.4162/nrp.2010.4.6.455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/01/2010] [Accepted: 10/05/2010] [Indexed: 11/06/2022] Open
Abstract
The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1% O2) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
46
|
Abstract
Genomic imprinting represents a form of epigenetic control of gene expression in which one allele of a gene is preferentially expressed according to the parent-of-origin of the allele. Genomic imprinting plays an important role in normal growth and development. Disruption of imprinting can result in a number of human imprinting syndromes and predispose to cancer. In this chapter, we describe a number of human imprinting syndromes to illustrate the concepts of genomic imprinting and how loss of imprinting of imprinted genes their relationship to human neoplasia.
Collapse
Affiliation(s)
- Derek Hock Kiat Lim
- Department of Medical & Molecular Genetics, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | | |
Collapse
|
47
|
Zhang X, Zhou Y, Klibanski A. Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 2010; 326:40-7. [PMID: 20211686 PMCID: PMC2904873 DOI: 10.1016/j.mce.2010.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 12/24/2022]
Abstract
Recently, progress has been made in understanding human pituitary tumor pathogenesis by the investigation of differences in gene expression between normal pituitary tissue and pituitary tumors. A number of approaches, including differential display (DD), representational difference analysis (RDA), and microarray analysis have been used and several molecular targets potentially associated with pituitary tumor development and invasion have been identified. We have used RDA to compare gene expression patterns between normal human pituitary and clinically non-functioning pituitary adenomas, and identified genes with growth suppression function which are expressed in the normal pituitary but not in pituitary tumors. In particular, we have focused on an imprinted gene, Maternally Expressed Gene 3 (MEG3), which is specifically associated with clinically non-functioning pituitary adenomas of a gonadotroph lineage. MEG3 functions to suppress tumor cell growth, increase protein expression of the tumor suppressor p53, and selectively activate p53 target genes. Interestingly, MEG3 does not encode a protein but a non-coding RNA. Therefore, these studies have revealed novel mechanisms for the function of a non-coding RNA in pituitary physiology and tumorigenesis.
Collapse
Affiliation(s)
- Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
48
|
Kim Y. Effect of retinoic acid and delta-like 1 homologue (DLK1) on differentiation in neuroblastoma. Nutr Res Pract 2010; 4:276-82. [PMID: 20827342 PMCID: PMC2933444 DOI: 10.4162/nrp.2010.4.4.276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/05/2010] [Indexed: 01/06/2023] Open
Abstract
The principal objective of this study was to evaluate the chemopreventive and therapeutic effects of a combination of all-trans-retinoic acid (RA) and knockdown of delta-like 1 homologue (Drosophila) (DLK1) on neuroblastoma, the most common malignant disease in children. As unfavorable neuroblastoma is poorly differentiated, neuroblastoma cell was induced differentiation by RA or DLK1 knockdown. Neuroblastoma cells showed elongated neurite growth, a hallmark of neuronal differentiation at various doses of RA, as well as by DLK1 knockdown. In order to determine whether or not a combination of RA and DLK1 knockdown exerts a greater chemotherapeutic effect on neuroblastoma, cells were incubated at 10 nM RA after being transfected with SiRNA-DLK1. Neuronal differentiation was increased more by a combination of RA and DLK1 knockdown than by single treatment. Additionally, in order to assess the signal pathway of neuroblastoma differentiation induced by RA and DLK1 knockdown, treatment with the specific MEK/ERK inhibitors, U0126 and PD 98059, was applied to differentiated neuroblastoma cells. Differentiation induced by RA and DLK1 knockdown increased ERK phosphorylation. The MEK/ERK inhibitor U0126 completely inhibited neuronal differentiation induced by both RA and DLK1 knockdown, whereas PD98059 partially blocked neuronal differentiation. After the withdrawal of inhibitors, cellular differentiation was fully recovered. This study is, to the best of our knowledge, the first to demonstrate that the specific inhibitors of the MEK/ERK pathway, U0126 and PD98059, exert differential effects on the ERK phosphorylation induced by RA or DLK1 knockdown. Based on the observations of this study, it can be concluded that a combination of RA and DLK1 knockdown increases neuronal differentiation for the control of the malignant growth of human neuroblastomas, and also that both MEK1 and MEK2 are required for the differentiation induced by RA and DLK1 knockdown.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
49
|
Lin Q, Yun Z. Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 2010; 9:949-56. [PMID: 20581454 DOI: 10.4161/cbt.9.12.12347] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Solid tumors often contain regions with insufficient oxygen delivery, a condition called hypoxia. Tumor hypoxia is an independent prognostic factor significantly correlated with advanced stages of malignancy, increased resistance to conventional therapy, and reduced disease-free survival. Hypoxic tumor cells exhibit poorly differentiated phenotypes resembling stem or progenitor cells. Studies have shown that hypoxia can inhibit tumor cell differentiation and promote maintenance of cancer stem cells. In addition, hypoxia also blocks the differentiation of mesenchymal stem/progenitor cells, a potential source of tumor-associated stromal cells. Therefore, hypoxia may play a critical role during the evolution of the tumor stromal microenvironment and formation of the putative cancer stem cell niches. Conceptually, hypoxia may help create a microenvironment enriched both in poorly differentiated tumor cells and in undifferentiated stromal cells. Such an undifferentiated hypoxic microenvironment may provide essential cellular interactions and environmental signals for the preferential maintenance of cancer stem cells. This review will discuss the hypoxia-regulated stem cell pathways and their roles in the maintenance of cancer stem cell functions.
Collapse
Affiliation(s)
- Qun Lin
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
50
|
Yu F, Hao X, Zhao H, Ge C, Yao M, Yang S, Li J. Delta-like 1 contributes to cell growth by increasing the interferon-inducible protein 16 expression in hepatocellular carcinoma. Liver Int 2010; 30:703-14. [PMID: 20214740 DOI: 10.1111/j.1478-3231.2010.02214.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Delta-like 1 (DLK1), a fetal liver stem cell marker, is strongly expressed in human and rodent fetal liver, but not in adult liver. Notably, dysregulation of DLK1 was found in some human hepatocellular carcinomas (HCC). However, the effect of DLK1 on HCC cell growth and its underlying mechanism are still largely unknown. AIMS To (i) assess the expression of DLK1 in human HCC and adjacent liver tissues and human HCC cell lines; (ii) evaluate the effect of DLK1 on SMMC-7721, Huh7 HCC cell growth in vitro and in vivo; and (iii) explore the potential mechanism of DLK1 that regulates HCC cell growth. METHODS The expression of DLK1 mRNA and protein were detected using reverse transcriptase-polymerase chain reaction and immunohistochemistry respectively. The effect of DLK1 on the proliferation of SMMC-7721 and Huh7 cells was evaluated by colony formation and tumour xenograft assay. The differential expression profiles of DLK1-overexpressing SMMC-7721 cells and control cells were compared using HG-U133 Plus 2 Genechip. The cell cycle distribution of DLK1 forced expressing cells was comparatively analysed. RESULTS Upregulation of DLK1 was observed in 41 of 57 (71.9%) human HCC samples. Ectopic expression of DLK1 promoted cell proliferation, colony formation and tumorigenicity in SMMC-7721 and Huh7 cells. DLK1 upregulated the expression of interferon-inducible protein 16 (IFI16) and its promoter transcriptional activity, decreased p21waf1/cip1 and induced cell cycle acceleration. However, silencing of IFI16 using small interfering RNA abrogated DLK1-induced proliferation in these cells. CONCLUSIONS IFI16 may be an essential downstream target of DLK1 in HCC cells and required for DLK1-induced cell proliferation.
Collapse
Affiliation(s)
- Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | |
Collapse
|