1
|
Zhao M, Yuan S, Li Z, Liu C, Zhang R. Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018-2023). Molecules 2024; 29:4719. [PMID: 39407647 PMCID: PMC11477967 DOI: 10.3390/molecules29194719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Tricholoma are significant medicinal and edible mushrooms within Basidiomycota. Known for their various medicinal properties such as anti-tumor, immune regulation, and antioxidant effects, they are regarded worldwide as health foods of the 21st century. Tricholoma species produce various types of secondary metabolites, which have been extensively studied by the scientific community. In 2018, Clericuzio et al. summarized the structures, biosynthesis, and biological activities of over one hundred different secondary metabolites isolated from the fruiting bodies of 25 Tricholoma species. Building on this, the present article reviews the research progress on Tricholoma secondary metabolites from 2018 to 2023, identifying a total of 101 compounds, 46 of which were newly discovered. These secondary metabolites include a wide range of chemical categories such as terpenoids, steroids, and alkaloids, demonstrating broad biological activities. This article aims to provide in-depth scientific insights and guidance for researchers in this field by summarizing the chemical and biological properties of these secondary metabolites, promoting further applications and development of Tricholoma fungi in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Meili Zhao
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (M.Z.); (S.Y.); (Z.L.)
| | - Shiqin Yuan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (M.Z.); (S.Y.); (Z.L.)
| | - Zhiming Li
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (M.Z.); (S.Y.); (Z.L.)
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (M.Z.); (S.Y.); (Z.L.)
| | - Ruiying Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Guo K, Feng L, Zhang H, Zhou TT, Chen YY, Tan CL, Liu YC, Liu Y, Li SH. Leucosceptrane sesterterpenoids from Tibetan Leucosceptrum canum and their immunosuppressive activity. Fitoterapia 2024; 178:106158. [PMID: 39106925 DOI: 10.1016/j.fitote.2024.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Phytochemical investigation on the leaves of Tibetan Leucosceptrum canum, a Chinese medicinal herb, led to the isolation of seven new leucosceptrane sesterterpenoids (1-7) and five known analogs (8-12). Comprehensive spectroscopic analysis (including 1D and 2D NMR, and HRMS), quantum chemistry computations, and single crystal X-ray crystallographic analysis were applied to elucidate their structures. Compounds 1-3 and 6 were the first examples of the leucosceptrane sesterterpenoids with rare C-2 oxidation. Compound 2 exhibited immunosuppressive activities via suppressing the secretion of cytokines IL-6 and TNF-α in LPS-induced macrophages RAW264.7 with IC50 values of 13.39 and 19.34 μM, respectively.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Ling Feng
- School of Forestry, Southwest Forestry University, Kunming 650224, PR China
| | - Han Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ting-Ting Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yu-Ying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yan-Chun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
3
|
Geng H, Fu R, Zhou TT, Li M, Liu YC, Li XN, Liu Y, Zheng Y, Li SH. Selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids. Chem Commun (Camb) 2024; 60:10512-10515. [PMID: 39225283 DOI: 10.1039/d4cc03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids was reported. Two types of leucosceptrane derivatives with different valence states of selenium atoms (Se2+ and Se4+) were obtained. The mechanisms of these two processes were proposed, and the selenium-containing derivates may serve as intermediates of Riley oxidation that could be trapped with appropriate substrates. Immunosuppressive activity screening revealed that 10 and 11 had obvious inhibitory effects on IFN-γ production, with IC50 values of 5.29 and 17.60 μM, respectively, which were more active than their precursor leucosceptroid A.
Collapse
Affiliation(s)
- Hao Geng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Ran Fu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting-Ting Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Man Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan-Chun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yu Zheng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
4
|
Xue Y, Hou SH, Zhang X, Zhang FM, Zhang XM, Tu YQ. Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy. J Am Chem Soc 2024; 146:25445-25450. [PMID: 39235150 DOI: 10.1021/jacs.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
Collapse
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zhou TT, Zhang MW, Liu YC, Li XN, Liu Y, Guo K, Li SH. Immunosuppressive leucosesterterpane and penta-nor-leucosesterterpane sesterterpenoids from Leucosceptrum canum. PHYTOCHEMISTRY 2024; 225:114185. [PMID: 38876164 DOI: 10.1016/j.phytochem.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Five undescribed leucosesterterpane sesterterpenoids, leucosceptrines A-E, two undescribed penta-nor-leucosesterterpane (C20) sesterterpenoids, nor-leucosceptrines A and B, and three known analogues, were obtained from the aerial parts of Leucosceptrum canum of Chinese origin. Leucosceptrines A-C are the first examples of leucosesterterpane-type sesterterpenoids with unclosed dihydropyran rings and reverse configurations at chiral centers C-4 and/or C-12. Nor-leucosceptrines A and B possesses an unusual penta-nor-leucosesterterpane skeleton. Their structures were unambiguously elucidated through comprehensive spectroscopic analyses and single-crystal X-ray diffraction. A plausible biogenetic pathway for these sesterterpenoids was proposed. The immunosuppressive effects of these isolates on the secretion of the cytokine IFN-γ by T cells stimulated with anti-CD3/CD28 monoclonal antibodies were observed with different potencies.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Man-Wen Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yan-Chun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
6
|
Li XD, Li XM, Wang BG, Li X. Antimicrobial sesterterpenoids with a unique 5/8/6/5 tetracyclic carbon-ring-system and diepoxide polyketides from a deep sea-sediment-sourced fungus Chaetomium globosum SD-347. Org Biomol Chem 2024; 22:3979-3985. [PMID: 38691112 DOI: 10.1039/d4ob00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Dong Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
7
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Li B, Tan C, Ma T, Jia Y. Bioinspired Total Synthesis of Bipolarolides A and B. Angew Chem Int Ed Engl 2024; 63:e202319306. [PMID: 38212293 DOI: 10.1002/anie.202319306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
We have achieved the first total synthesis of bipolarolides A and B, which possess an intriguing and complex 5/6/6/6/5 caged pentacyclic skeleton with seven contiguous stereocenters. The synthesis features a lithium-halogen exchange/intermolecular nucleophilic addition to link two enantioenriched fragments, two ring-closing metathesis reactions to assemble the five- and eight-membered rings, and a bioinspired Prins reaction/ether formation cascade cyclization to construct the 5/6/6/6/5 caged skeleton.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Chuanzhen Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Tianhao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| |
Collapse
|
10
|
Li T, Li H, Zhou TT, Zheng Y, Li SH. Syntheses of Linear Biosynthetic C 25-Precursors of Leucosceptroids. J Org Chem 2024; 89:3652-3656. [PMID: 38353480 DOI: 10.1021/acs.joc.3c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic approach was developed and applied to the syntheses of four linear biosynthetic C25-precursors of leucosceptroids. The synthesis features a Julia-Kocienski olefination and a late-stage bioinspired photo-oxidation as key steps. The immunosuppressive effects of all synthetic compounds on mouse T cells and macrophage RAW264.7 were determined.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| |
Collapse
|
11
|
Guo K, Zhou TT, Luo SH, Liu YC, Liu Y, Li SH. Leucosceptrane Sesterterpenoids as a New Type of Natural Immunosuppressive Agents in Treating Sepsis. J Med Chem 2024; 67:513-528. [PMID: 38150591 DOI: 10.1021/acs.jmedchem.3c01759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Intragastric administration of the total sesterterpenoid extract (TSE) of medicinal plant Leucosceptrum canum at 2.5 g/kg dose protected mice from LPS-induced sepsis. Phytochemical investigation led to the isolation and identification of 47 leucosceptrane sesterterpenoids (1-47) including 30 new compounds (1-30) with complicated oxygenation patterns. Biological screening indicated their immunosuppressive activity via inhibiting IFN-γ secretion and/or proliferation of T cells with different potencies. Mechanism study of compounds 9, 25, and 32 revealed that they inhibited the activations of AKT-mTOR, JNK, p38 MAPK or ERK pathway in T cells and macrophages. In addition, compounds 9 and 25 induced G0/G1 cell arrest of T cells. The major component, leucosceptroid N (32), significantly lowered the levels of IL-6 and TNF-α in peripheral blood serum, and ameliorated the multiorgan damages of LPS-induced sepsis mice at 25 mg/kg dose. These findings suggest that leucosceptrane sesterterpenoids are a new type of potential immunosuppressive agents for sepsis treatment.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
12
|
Zheng CY, Zhao JX, Yuan CH, Peng X, Geng M, Ai J, Fan YY, Yue JM. Unprecedented sesterterpenoids, orientanoids A-C: discovery, bioinspired total synthesis and antitumor immunity. Chem Sci 2023; 14:13410-13418. [PMID: 38033907 PMCID: PMC10685275 DOI: 10.1039/d3sc04238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Sesterterpenoids are a very rare class of important natural products. Three new skeletal spiro sesterterpenoids, named orientanoids A-C (1-3), were isolated from Hedyosmum orientale. Their structures were determined by a combination of spectroscopic data, X-ray crystallography, and total synthesis. To obtain adequate materials for biological research, the bioinspired total syntheses of 1-3 were effectively achieved in 7-8 steps in overall yields of 2.3-6.4% from the commercially available santonin without using any protecting groups. In addition, this work also revised the stereochemistry of hedyosumins B (6) and C (10) as 11R-configuration. Tumor-associated macrophages (TAMs) have emerged as important therapeutic targets in cancer therapy. The in-depth biological evaluation revealed that these sesterterpenoids antagonized the protumoral and immunosuppressive functional phenotype of macrophages in vitro. Among them, the most potent and major compound 1 inhibited protumoral M2-like macrophages and activated cytotoxic CD8+ T cells, and consequently inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chang-Hao Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
13
|
Jing SX, Fu R, Li CH, Hugelshofer CL, Shi YM, Luo SH, Liu YC, Liu Y, Li SH. Discovery of Unusual Sesterterpenoids from Colquhounia coccinea var. mollis and Their Metabolic Implications. JOURNAL OF NATURAL PRODUCTS 2023; 86:2468-2473. [PMID: 37939268 DOI: 10.1021/acs.jnatprod.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Three unusual sesterterpenoids featuring unprecedented rearranged colquhounane (C25) and tetranorcolquhounane (C21) frameworks, colquhounoids E (1) and F (3) and norcolquhounoid F (2), were isolated from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. Their structures were elucidated by spectroscopic analysis and quantum chemical calculations. A biomimetic inspired regioselective cyclopropane cleavage was achieved under acidic conditions. The immunosuppressive activities of these new sesterterpenoids were also evaluated.
Collapse
Affiliation(s)
- Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ran Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yi-Ming Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
14
|
Kumar S, Ali Shah B. Exploring the Divergent Reactivity of Vinyl Radicals Emanating from Alkynes and Thiols via Photoredox Catalysis. Chem Asian J 2023; 18:e202300693. [PMID: 37656003 DOI: 10.1002/asia.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Organic chemistry has seen a surge in visible-light-driven transformations, which offer unique reaction pathways and access to new synthetic possibilities. We aim to provide a comprehensive understanding of state-of-the-art photo-mediated alkyne functionalization, with a focus on the reactive behavior of vinyl radicals. This review outlines our contributions to the field, including developing new methods for forming carbon-carbon and carbon-heteroatom bonds.
Collapse
Affiliation(s)
- Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
15
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
Lu D, Luo XC, Liu J, Wu GL, Yu Y, Xu YN, Lin HW, Yang F. Phyllofolactones N-T, bioactive bishomoscalarane sesterterpenoids from the marine sponge Phyllospongia foliascens. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Kanwal A, Bilal M, Rasool N, Zubair M, Shah SAA, Zakaria ZA. Total Synthesis of Terpenes and Their Biological Significance: A Critical Review. Pharmaceuticals (Basel) 2022; 15:1392. [PMID: 36422521 PMCID: PMC9699253 DOI: 10.3390/ph15111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/10/2024] Open
Abstract
Terpenes are a group of natural products made up of molecules with the formula (C5H8)n that are typically found in plants. They are widely employed in the medicinal, flavor, and fragrance industries. The total synthesis of terpenes as well as their origin and biological potential are discussed in this review.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Sabah Universiti Malaysia, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
18
|
Jiang T, Dai X, Gao T, Wang L, Yang F, Zhang Y, Wang N, Huang G, Cao J. Ancepsone A, a New Cheilanthane Sesterterpene from Aleuritopteris anceps. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Guo K, Luo SH, Guo D, Li DS, Hua J, Liu YC, Liu Y, Li SH. A Monocarbocyclic Sesterterpenoid Biosynthetic Precursor of Leucosceptroids from Leucosceptrum canum and Its Metabolic Isomerization by a Specialist Insect. Org Chem Front 2022. [DOI: 10.1039/d2qo00138a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pre-leucosceptroid (1), a rare monocarbocyclic sesterterpenoid featuring a cyclopentane ring with a terminal furan moiety, was isolated from the leaves of Leucosceptrum canum. Discovery of 1 suggested a two-step cyclization...
Collapse
|
20
|
Heravi MM, Mohammadi L. Application of Pauson-Khand reaction in the total synthesis of terpenes. RSC Adv 2021; 11:38325-38373. [PMID: 35493249 PMCID: PMC9044263 DOI: 10.1039/d1ra05673e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is a formal [2 + 2 + 1] cycloaddition involving an alkyne, an alkene and carbon monoxide mediated by a hexacarbonyldicobaltalkyne complex to yield cyclopentenones in a single step. This versatile reaction has become a method of choice for the synthesis of cyclopentenone and its derivatives since its discovery in the early seventies. The aim of this review is to point out the applications of PKR in the total synthesis of terpenes.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Leila Mohammadi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
21
|
Morarescu O, Grinco M, Kulciţki V, Shova S, Ungur N. An Alternative Approach towards C-12 Functionalized Scalaranic Sesterterpenoids Synthesis of 17-Oxo-20-norscalaran-12α,19- O-lactone. Mar Drugs 2021; 19:md19110636. [PMID: 34822507 PMCID: PMC8625711 DOI: 10.3390/md19110636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Scalarane sesterterpenoids emerged as interesting bioactive natural products which were isolated extensively from marine sponges and shell-less mollusks. Some representatives were also reported recently from superior plants. Many scalarane sesterterpenoids displayed a wide spectrum of valuable properties, such as antifeedant, antimicrobial, antifungal, antitubercular, antitumor, anti-HIV properties, cytotoxicity and stimulation of nerve growth factor synthesis, as well as anti-inflammatory activity. Due to their important biological properties, many efforts have been undertaken towards the chemical synthesis of natural scalaranes. The main synthetic challenges are connected to their complex polycyclic framework, chiral centers and different functional groups, in particular the oxygenated functional groups at the C-12 position, which are prerequisites of the biological activity of many investigated scalaranes. The current work addresses this problem and the synthesis of 17-oxo-20-norscalaran-12α,19-O-lactone is described. It was performed via the 12α-hydroxy-ent-isocopal-13(14)-en-15-al obtained from (-)-sclareol as an accessible starting material. The tetracyclic lactone framework was built following an addition strategy, which includes the intramolecular Michael addition of a diterpenic acetoacetic ester and an intramolecular aldol condensation reaction as key synthetic steps. The structure and stereochemistry of the target compound have been proven by X-Ray diffraction method.
Collapse
Affiliation(s)
- Olga Morarescu
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Marina Grinco
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Veaceslav Kulciţki
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Sergiu Shova
- CEEC Institute, Ningbo University of Technology, No. 201, Fenghua Road, Ningbo City 315211, China;
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Nicon Ungur
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
- Correspondence: ; Tel.: +373-22-739-775; Fax: +373-22-725-490
| |
Collapse
|
22
|
Chalotra N, Shah IH, Raheem S, Rizvi MA, Shah BA. Visible-Light-Promoted Oxidative Annulation of Naphthols and Alkynes: Synthesis of Functionalized Naphthofurans. J Org Chem 2021; 86:16770-16784. [PMID: 34726928 DOI: 10.1021/acs.joc.1c01992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A visible-light-mediated site-selective oxidative annulation of naphthols with alkynes for the synthesis of functionalized naphthofurans has been developed. The reaction relies on the in situ formation of an electron donor acceptor pair between phenylacetylene and thiophenol as the light-absorbing system to obviate the requirement of an added photocatalyst. The protocol facilitates the transformation of 1-naphthol and 2-naphthol as well as 1,4-naphthoquinone into a wide variety of highly functionalized naphthofurans.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Iftkhar Hussain Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
23
|
Wei M, Zhou P, Huang L, Yin J, Li Q, Dai C, Wang J, Gu L, Tong Q, Zhu H, Zhang Y. Spectanoids A-H: Eight undescribed sesterterpenoids from Aspergillus spectabilis. PHYTOCHEMISTRY 2021; 191:112910. [PMID: 34481345 DOI: 10.1016/j.phytochem.2021.112910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Ten sesterterpenoids, including eight undescribed ones named spectanoids A-H and two known analogs, were obtained from Aspergillus spectabilis. Their structures, including absolute configurations, were determined based on HRESIMS, NMR, ECD calculations and single-crystal X-ray diffraction analyses. Spectanoids A-G are tricyclic sesterterpenoids with an unusual 5/12/5 ring system, while spectanoid H possesses a 5/8/6/5 ring system. All of these compounds were evaluated for their cytotoxic activities against three human cancer cells, and spectanoid A, spectanoid C and spectanoid F exhibited moderate cytotoxic activities with IC50 values ranging from 12.1 to 26.1 μM.
Collapse
Affiliation(s)
- Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liping Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Liu X, Liu J, Wu J, Li CC. Enantioselective Total Synthesis of Cerorubenic Acid-III via Type II [5+2] Cycloaddition Reaction. J Org Chem 2021; 86:11125-11139. [PMID: 33887910 DOI: 10.1021/acs.joc.1c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first enantioselective total synthesis of cerorubenic acid-III is described in detail. Different strategies and attempts, based on a type II [5+2] cycloaddition reaction, leading to the bicyclo[4.4.1] ring system with a strained bridgehead double bond, are depicted. Furthermore, sodium naphthalenide was found to be efficient in the chemoselective reduction of 8-oxabicyclo[3.2.1]octene, with three transformations completed in one operation. An unusual SN1 transannular cyclization reaction was applied to construct the synthetically challenging vinylcyclopropane moiety. This strategy enabled the total synthesis of cerorubenic acid-III in 19 steps.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junyang Liu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianlei Wu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
26
|
Guo K, Liu YC, Liu Y, Zhang H, Li WY, Shi QM, Li XN, Zeng F, Li SH. Immunosuppressive gentianellane-type sesterterpenoids from the traditional Uighur medicine Gentianella turkestanorum. PHYTOCHEMISTRY 2021; 187:112780. [PMID: 33915419 DOI: 10.1016/j.phytochem.2021.112780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Whole plants of Gentianella turkestanorum are commonly used as a traditional Uighur medicine. A phytochemical investigation led to the isolation of eight undescribed gentianellane-type sesterterpenoids (18-epi-nitidasin, gentianelloids D-F, and 18-epi-gentianelloids C-F), one undescribed 11,12-seco-gentianellane (18-epi-alborosin), and three known analogs (nitidasin, gentianelloid C and alborosin) among which gentianelloid C was found for the first time from a natural source. The structures of these compounds were elucidated by extensive spectroscopic analyses (including 1D and 2D NMR, HRMS, IR, and specific rotation) and in the case of 18-epi-gentianelloid C by the single-crystal X-ray diffraction analysis. A putative biosynthetic route for these sesterterpenoids was proposed. The immunosuppressive activity of the isolated compounds was also evaluated by their ability to inhibit the proliferation of T cells and T cell cytokine IFN-γ production. Nitidasin suppressed IFN-γ production with an IC50 value of 16.50 μM, while gentianelloid F and alborosin inhibited the proliferation of and IFN-γ production in T cells with IC50 values of 12.40-14.66 μM.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Han Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Wen-Yuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Qiu-Mei Shi
- College of Tea and Food Technology, Wuyi University, Wuyishan, 354300, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Fang Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
27
|
Jiang L, Zhu G, Han J, Hou C, Zhang X, Wang Z, Yuan W, Lv K, Cong Z, Wang X, Chen X, Karthik L, Yang H, Wang X, Tan G, Liu G, Zhao L, Xia X, Liu X, Gao S, Ma L, Liu M, Ren B, Dai H, Quinn RJ, Hsiang T, Zhang J, Zhang L, Liu X. Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Appl Microbiol Biotechnol 2021; 105:5407-5417. [PMID: 34155529 DOI: 10.1007/s00253-021-11192-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 μM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products. KEY POINTS: • Genome mining of the first BFTS BGC harboring a glycosyltransferase. • Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids. • Biosynthetic pathway of isolated sesterterpenoids was proposed.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianying Han
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Chengjian Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liya Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | | | - Shushan Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mei Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huanqin Dai
- The State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
28
|
Guo K, Liu Y, Li SH. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep 2021; 38:2293-2314. [PMID: 34114591 DOI: 10.1039/d1np00021g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1969 up to 2021Sesterterpenoids, biosynthetically derived from the precursor, namely geranylfarnesyl diphosphate (GFDP) are amongst the rarest of all isoprenoids with approximately 1300 compounds known. Most sesterterpenoids originate from marine organisms (especially sponges), while only about 15% of these compounds are isolated from several families of plants such as Lamiaceae, Gentianaceae, and Nartheciaceae. Many plant sesterterpenoids possess highly oxygenated and complex cyclic skeletons and exhibit remarkable biological activities involving cytotoxic, anti-inflammatory, antimicrobial, and antifeedant properties. Thus, due to their intrinsic chemical complexity and intriguing biological profiles, plant sesterterpenoids have attracted continuing interest from both chemists and biologists. However, the biosynthesis and distribution of sesterterpenoids in the plant kingdom still remain elusive, although substantial progress has been achieved in recent years. This review provides an overall coverage of sesterterpenoids originating from plant sources, followed by a classification of their chemical skeletons, which summarizes the distribution, chemistry, biological activities, biosynthesis and evolution of plant sesterterpenoids, aiming at strengthening the research efforts toward the untapped great potential of these unique natural product resources.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| |
Collapse
|
29
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
30
|
Jing SX, Fu R, Li CH, Zhou TT, Liu YC, Liu Y, Luo SH, Li XN, Zeng F, Li SH. Immunosuppresive Sesterterpenoids and Norsesterterpenoids from Colquhounia coccinea var. mollis. J Org Chem 2021; 86:11169-11176. [PMID: 33826334 DOI: 10.1021/acs.joc.1c00374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Ran Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Fang Zeng
- Acupuncture & Tuina School/The third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
31
|
Teng LL, Mu RF, Liu YC, Xiao CJ, Li DS, Gao JX, Guo K, Li XN, Liu Y, Zeng F, Li SH. Immunosuppressive and Adipogenesis Inhibitory Sesterterpenoids with a Macrocyclic Ether System from Eurysolen gracilis. Org Lett 2021; 23:2232-2237. [PMID: 33667109 DOI: 10.1021/acs.orglett.1c00369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lin-Lin Teng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong-Fang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Chao-Jiang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, P. R. China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Xiong Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Fang Zeng
- Acupuncture & Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
32
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
33
|
Marchbank DH, Ptycia-Lamky VC, Decken A, Haltli BA, Kerr RG. Guanahanolide A, a Meroterpenoid with a Sesterterpene Skeleton from Coral-Derived Streptomyces sp. Org Lett 2020; 22:6399-6403. [DOI: 10.1021/acs.orglett.0c02208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Douglas H. Marchbank
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Vernon C. Ptycia-Lamky
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, Canada E3B 5A3
| | - Bradley A. Haltli
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Russell G. Kerr
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|
34
|
Cytotoxic Scalarane Sesterterpenes from the Sponge Hyrtios erectus. Mar Drugs 2020; 18:md18050253. [PMID: 32414015 PMCID: PMC7281328 DOI: 10.3390/md18050253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Twelve new sesterterpenes along with eight known sesterterpenes were isolated from the marine sponge Hyrtios erectus collected off the coast of Chuuk Island, the Federated State of Micronesia. Based upon a combination of spectroscopic and computational analyses, these compounds were determined to be eight glycine-bearing scalaranes (1–8), a 3-keto scalarane (9), two oxidized-furan-bearing scalaranes (10 and 11), and a salmahyrtisane (12). Several of these compounds exhibited weak antiproliferation against diverse cancer cell lines as well as moderate anti-angiogenesis activities. The antiproliferative activity of new compound 4 was found to be associated with G0/G1 arrest in the cell cycle.
Collapse
|
35
|
Leucosceptroid B from glandular trichomes of Leucosceptrum canum reduces fat accumulation in Caenorhabditis elegans through suppressing unsaturated fatty acid biosynthesis. Chin J Nat Med 2020; 17:892-899. [PMID: 31882042 DOI: 10.1016/s1875-5364(19)30109-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Obesity that is highly associated with numerous metabolic diseases has become a global health issue nowdays. Plant sesterterpenoids are an important group of natural products with great potential; thus, their bioactivities deserve extensive exploration. RNA-seq analysis indicated that leucosceptroid B, a sesterterpenoid previously discovered from the glandular trichomes of Leucosceptrum canum, significantly regulated the expression of 10 genes involved in lipid metabolism in Caenorhabditis elegans. Furthermore, leucosceptroid B was found to reduce fat storage, and downregulate the expression of two stearoyl-CoA desaturase (SCD) genes fat-6 and fat-7, and a fatty acid elongase gene elo-2 in wild-type C. elegans. In addition, leucosceptroid B significantly decreased fat accumulation in both fat-6 and fat-7 mutant worms but did not affect the fat storage of fat-6; fat-7 double mutant. These findings indicated that leucosceptroid B reduced fat storage depending on the downregulated expression of fat-6, fat-7 and elo-2 and thereby inhibiting the biosynthesis of the corresponding unsaturated fatty acid. These findings provide new insights into the development and utilization of plant sesterterpenoids as potential antilipemic agents.
Collapse
|
36
|
Guo K, Liu X, Zhou TT, Liu YC, Liu Y, Shi QM, Li XN, Li SH. Gentianelloids A and B: Immunosuppressive 10,11-seco-Gentianellane Sesterterpenoids from the Traditional Uighur Medicine Gentianella turkestanorum. J Org Chem 2020; 85:5511-5515. [PMID: 32202107 DOI: 10.1021/acs.joc.0c00272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ting-Ting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Qiu-Mei Shi
- College of Tea and Food Technology, Wuyi University, Wuyishan 354300, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
37
|
Wang JP, Shu Y, Hu JT, Liu R, Cai XY, Sun CT, Gan D, Zhou DJ, Mei RF, Ding H, Zhang XR, Cai L, Ding ZT. Roquefornine A, a sesterterpenoid with a 5/6/5/5/6-fused ring system from the fungus Penicillium roqueforti YJ-14. Org Chem Front 2020. [DOI: 10.1039/d0qo00301h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Roquefornine A, a sesterterpenoid with an unprecedented 5/6/5/5/6-membered pentacyclic system, was characterized from Penicillium roqueforti YJ-14.
Collapse
|
38
|
Abstract
Sesterterpenoids are known as a relatively small group of natural products. However, they represent a variety of simple to more complex structural types. This contribution focuses on the chemical structures of sesterterpenoids and how their structures are constructed in Nature.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019; 58:12091-12095. [DOI: 10.1002/anie.201905966] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
40
|
Cai R, Jiang H, Mo Y, Guo H, Li C, Long Y, Zang Z, She Z. Ophiobolin-Type Sesterterpenoids from the Mangrove Endophytic Fungus Aspergillus sp. ZJ-68. JOURNAL OF NATURAL PRODUCTS 2019; 82:2268-2278. [PMID: 31365251 DOI: 10.1021/acs.jnatprod.9b00462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eleven new ophiobolin-type sesterterpenoids, asperophiobolins A-K (1-11), along with 12 known analogues (12-23) were isolated from the cultures of the mangrove endophytic fungus Aspergillus sp. ZJ-68. The structures of the new compounds were elucidated through spectroscopic analyses, and their absolute configurations were assigned by a combination of Mo2(AcO)4-induced electronic circular dichroism spectra and quantum chemical calculations. Asperophiobolins A-D (1-4) represent the first examples possessing a five-membered lactam unit between C-5 and C-21 in ophiobolin derivatives. In the bioactivity assays, compounds 8-10 and 14-17 exhibited inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells with IC50 values ranging from 9.6 to 25 μM, and compound 8 was found to show comparable inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase B with an IC50 value of 19 μM.
Collapse
Affiliation(s)
- Runlin Cai
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Hongming Jiang
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Yaling Mo
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Huixian Guo
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Chunyuan Li
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Yuhua Long
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Zhenming Zang
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Zhigang She
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
41
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
42
|
Shirley HJ, Jamieson ML, Brimble MA, Bray CD. A new family of sesterterpenoids isolated around the Pacific Rim. Nat Prod Rep 2019; 35:210-219. [PMID: 29547216 DOI: 10.1039/c7np00049a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: 2009 up to the end of 2017 There has been a recent eruption in the number of known marine sesterterpenoids which have been isolated from Pacific Rim marine organisms. These compounds have novel and unusual structures that exhibit incredibly potent and varied bioactivities. This review details the isolation, biological testing and prospects for this exciting new family with discussion of their potential biogenetic origins.
Collapse
Affiliation(s)
- Harry J Shirley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Megan L Jamieson
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand.
| | - Christopher D Bray
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
43
|
Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol 2019; 103:5501-5516. [PMID: 31129740 PMCID: PMC6597603 DOI: 10.1007/s00253-019-09892-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
More than 70,000 different terpenoid structures are known so far; many of them offer highly interesting applications as pharmaceuticals, flavors and fragrances, or biofuels. Extraction of these compounds from their natural sources or chemical synthesis is-in many cases-technically challenging with low or moderate yields while wasting valuable resources. Microbial production of terpenoids offers a sustainable and environment-friendly alternative starting from simple carbon sources and, frequently, safeguards high product specificity. Here, we provide an overview on employing recombinant bacteria and yeasts for heterologous de novo production of terpenoids. Currently, Escherichia coli and Saccharomyces cerevisiae are the two best-established production hosts for terpenoids. An increasing number of studies have been successful in engineering alternative microorganisms for terpenoid biosynthesis, which we intend to highlight in this review. Moreover, we discuss the specific engineering challenges as well as recent advances for microbial production of different classes of terpenoids. Rationalizing the current stages of development for different terpenoid production hosts as well as future prospects shall provide a valuable decision basis for the selection and engineering of the cell factory(ies) for industrial production of terpenoid target molecules.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria.
| |
Collapse
|
44
|
Unusual and Highly Bioactive Sesterterpenes Synthesized by Pleurotus ostreatus during Coculture with Trametes robiniophila Murr. Appl Environ Microbiol 2019; 85:AEM.00293-19. [PMID: 31053589 DOI: 10.1128/aem.00293-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans and Cryptococcus neoformans, human-pathogenic fungi found worldwide, are receiving increasing attention due to high morbidity and mortality in immunocompromised patients. In the present work, 110 fungus pairs were constructed by coculturing 16 wood-decaying basidiomycetes, among which coculture of Trametes robiniophila Murr and Pleurotus ostreatus was found to strongly inhibit pathogenic fungi through bioactivity-guided assays. A combination of metabolomics and molecular network analysis revealed that 44 features were either newly synthesized or produced at high levels in this coculture system and that 6 of the features that belonged to a family of novel and unusual linear sesterterpenes contributed to high activity with MICs of 1 to 32 μg/ml against pathogenic fungi. Furthermore, dynamic 13C-labeling analysis revealed an association between induced features and the corresponding fungi. Unusual sesterterpenes were 13C labeled only in P. ostreatus in a time course after stimulation by the coculture, suggesting that these sesterterpenes were synthesized by P. ostreatus instead of T. robiniophila Murr. Sesterterpene compounds 1 to 3 were renamed postrediene A to C. Real-time reverse transcription-quantitative PCR (RT-qPCR) analysis revealed that transcriptional levels of three genes encoding terpene synthase, farnesyl-diphosphate farnesyltransferase, and oxidase were found to be 8.2-fold, 88.7-fold, and 21.6-fold higher, respectively, in the coculture than in the monoculture, indicating that biosynthetic gene cluster 10 was most likely responsible for the synthesis of these sesterterpenes. A putative biosynthetic pathway of postrediene A to postrediene C was then proposed based on structures of sesterterpenes and molecular network analysis.IMPORTANCE A number of gene clusters involved in biosynthesis of secondary metabolites are presumably silent or expressed at low levels under conditions of standard laboratory cultivation, resulting in a large gap between the pool of discovered metabolites and genome capability. This work mimicked naturally occurring competition by construction of an artificial coculture of basidiomycete fungi for the identification of secondary metabolites with novel scaffolds and excellent bioactivity. Unusual linear sesterterpenes of postrediene A to C synthesized by P. ostreatus not only were promising lead drugs against human-pathogenic fungi but also highlighted a distinct pathway for sesterterpene biosynthesis in basidiomycetes. The current work provides an important basis for uncovering novel gene functions involved in sesterterpene synthesis and for gaining insights into the mechanism of silent gene activation in fungal defense.
Collapse
|
45
|
Li YL, Gao Y, Liu CY, Sun CJ, Zhao ZT, Lou HX. Asperunguisins A-F, Cytotoxic Asperane Sesterterpenoids from the Endolichenic Fungus Aspergillus unguis. JOURNAL OF NATURAL PRODUCTS 2019; 82:1527-1534. [PMID: 31117521 DOI: 10.1021/acs.jnatprod.8b01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Six new asperane-type sesterterpenoids, asperunguisins A-F (1-6), were isolated from the endolichenic fungus Aspergillus unguis, together with a known analogue, aspergilloxide (7); these are rare asperane-type sesterterpenoids, characterized by a unique hydroxylated 7/6/6/5 tetracyclic system. The structures of asperunguisins A-F (1-6) were elucidated on the basis of spectroscopic methods (NMR and HRESIMS), X-ray single-crystal diffraction analysis, ECD calculations, and biogenetic considerations. Asperunguisin C (3) showed cytotoxicity against the human cancer cell line A549 with an IC50 value of 6.2 μM. Further investigation revealed that the observed cell death was a result of G0/G1 cell cycle arrest via DNA damage followed by cellular apoptosis.
Collapse
Affiliation(s)
- Yue-Lan Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Yu Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Jing Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Zun-Tian Zhao
- College of Life Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| |
Collapse
|
46
|
Sesterterpene MHO7 suppresses breast cancer cells as a novel estrogen receptor degrader. Pharmacol Res 2019; 146:104294. [PMID: 31175940 DOI: 10.1016/j.phrs.2019.104294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023]
Abstract
Breast cancer, the most prevalent cancer in women, remains the second in the list of cancer mortality, the majority of these fatalities resulted from estrogen receptor alpha (ERα) positive disease. ERα is well known for its function on breast cancer initiation and development and has become the most successful biomarker in breast cancers. Ophiobolins are sesterterpene compounds with a distinct tricyclic 5-8-5 ring and have presented anti-cancer activities. MHO7(6-epi-ophiobolin G)was isolated from products of a mangrove fungus in our previous research and demonstrated robust activity against breast cancer cells (BCCs). The investigation on the precise mechanism of MHO7 shows that MHO7 acts as a novel ERα down regulator different from the known molecules in ER + breast cancer cells. A whole-genome transcriptomic analysis on MCF-7 cells treated with MHO7 revealed the estrogen signaling pathway was the most affected pathway, and further evidence showed the de novo synthesis of ESR1 mRNA was inhibited. In addition, MHO7 down-regulated ERα at the protein level through multiple approaches. It not only bound to ERα, pushing helix 11 away in the agonist conformation but also increased the ERα degradation through the ubiquitin-proteasome system. These effects consequently caused decreasing of the transcriptional activity of ER modulation which was confirmed by the decreasing of estrogen receptor element (ERE) activity as well as downstream genes expressions like GREB1, BRCA1, MUC1 and CCND1. Combination of tamoxifen and MHO7 yield a synergistic effect on the inhibition of MCF-7 cells when treated around the IC50 values. Our results suggest that MHO7 is a very promising drug candidate and provides a novel drug version on ERα down-regulation to fighting with breast cancer.
Collapse
|
47
|
Li Q, Chen C, Wei M, Dai C, Cheng L, Tao J, Li XN, Wang J, Sun W, Zhu H, Zhang Y. Niduterpenoids A and B: Two Sesterterpenoids with a Highly Congested Hexacyclic 5/5/5/5/3/5 Ring System from the Fungus Aspergillus nidulans. Org Lett 2019; 21:2290-2293. [DOI: 10.1021/acs.orglett.9b00581] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Li Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, People’s Republic of China
| | - Jiafeng Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People’s Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| |
Collapse
|
48
|
Liu X, Liu J, Wu J, Huang G, Liang R, Chung LW, Li CC. Asymmetric Total Synthesis of Cerorubenic Acid-III. J Am Chem Soc 2019; 141:2872-2877. [PMID: 30721058 DOI: 10.1021/jacs.8b12647] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first asymmetric total synthesis of the highly strained compound cerorubenic acid-III is reported. A type II intramolecular [5 + 2] cycloaddition allowed efficient and diastereoselective construction of the synthetically challenging bicyclo[4.4.1] ring system with a strained bridgehead (anti-Bredt) double bond in the final product. A unique transannular cyclization installed the vinylcyclopropane moiety with retention of the desired stereochemistry.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China.,Institute of Chinese Medical Sciences , University of Macau , Macau , China
| | - Junyang Liu
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China.,Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology (SUSTech) , Shenzhen 518055 , China
| | - Jianlei Wu
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Guocheng Huang
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Rong Liang
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| |
Collapse
|
49
|
Kim SH, Lu W, Ahmadi MK, Montiel D, Ternei MA, Brady SF. Atolypenes, Tricyclic Bacterial Sesterterpenes Discovered Using a Multiplexed In Vitro Cas9-TAR Gene Cluster Refactoring Approach. ACS Synth Biol 2019; 8:109-118. [PMID: 30575381 DOI: 10.1021/acssynbio.8b00361] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most natural product biosynthetic gene clusters identified in bacterial genomic and metagenomic sequencing efforts are silent under laboratory growth conditions. Here, we describe a scalable biosynthetic gene cluster activation method wherein the gene clusters are disassembled at interoperonic regions in vitro using CRISPR/Cas9 and then reassembled with PCR-amplified, short DNAs, carrying synthetic promoters, using transformation assisted recombination (TAR) in yeast. This simple, cost-effective, and scalable method allows for the simultaneous generation of combinatorial libraries of refactored gene clusters, eliminating the need to understand the transcriptional hierarchy of the silent genes. In two test cases, this in vitro disassembly-TAR reassembly method was used to create collections of promoter-replaced gene clusters that were tested in parallel to identify versions that enabled secondary metabolite production. Activation of the atolypene ( ato) gene cluster led to the characterization of two unprecedented bacterial cyclic sesterterpenes, atolypene A (1) and B (2), which are moderately cytotoxic to human cancer cell lines. This streamlined in vitro disassembly- in vivo reassembly method offers a simplified approach for silent gene cluster refactoring that should facilitate the discovery of natural products from silent gene clusters cloned from either metagenomes or cultured bacteria.
Collapse
Affiliation(s)
- Seong-Hwan Kim
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Wanli Lu
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Mahmoud Kamal Ahmadi
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Daniel Montiel
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Melinda A. Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
50
|
Huang JH, Lv JM, Wang QZ, Zou J, Lu YJ, Wang QL, Chen DN, Yao XS, Gao H, Hu D. Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A. Org Biomol Chem 2019; 17:248-251. [DOI: 10.1039/c8ob02832j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosynthesis of a potent MptpB inhibitor asperterpenoid A by a sesterterpene cyclase AstC and a multifunctional P450 enzyme AstB.
Collapse
|