1
|
Shvartsburg AA, Sadowski P, Poad BLJ, Blanksby SJ. Metal Polycation Adduction to Lipids Enables Superior Ion Mobility Separations with Ultrafast Ozone-Induced Dissociation. Anal Chem 2024; 96:15960-15969. [PMID: 39334534 DOI: 10.1021/acs.analchem.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Specific lipid isomers are functionally critical, but their structural rigidity and usually minute geometry differences make separating them harder than other biomolecules. Such separations by ion mobility spectrometry (IMS) were recently enabled by new high-definition methods using dynamic electric fields, but major resolution gains are needed. Another problem of identifying many isomers with no unique fragments in ergodic collision-induced dissociation (CID) was partly addressed by the direct ozone-induced dissociation (OzID) that localizes the double bonds, but a low reaction efficiency has limited the sensitivity, dynamic range, throughput, and compatibility with other tools. Typically lipids are analyzed by MS as singly charged protonated, deprotonated, or ammoniated ions. Here, we explore the differential IMS (FAIMS) separations with OzID for exemplary lipids cationized by polyvalent metals. These multiply charged adducts have much greater FAIMS compensation voltages (UC) than the 1+ ions, with up to 10-fold resolution gain enabling baseline isomer separations even at a moderate resolving power of the SelexION stage. Concomitantly OzID speeds up by many orders of magnitude, producing a high yield of diagnostic fragments already in 1 ms. These capabilities can be ported to the superior high-definition FAIMS and high-pressure OzID systems to take lipidomic analyses to the next level.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pawel Sadowski
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Koomen D, May JC, Mansueto AJ, Graham TR, McLean JA. An Untargeted Lipidomics Workflow Incorporating High-Resolution Demultiplexing (HRdm) Drift Tube Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2448-2457. [PMID: 39276100 PMCID: PMC11450926 DOI: 10.1021/jasms.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Global discovery lipidomics can provide comprehensive chemical information toward understanding the intricacies of metabolic lipid disorders such as dyslipidemia; however, the isomeric complexity of lipid species remains an analytical challenge. Orthogonal separation strategies, such as ion mobility (IM), can be inserted into liquid chromatography-mass spectrometry (LC-MS) untargeted lipidomic workflows for additional isomer separation and high-confidence annotation, and the emergence of high-resolution ion mobility (HRIM) strategies provides marked improvements to the resolving power (Rp > 200) that can differentiate small structural differences characteristic of isomers. One such HRIM strategy, high-resolution demultiplexing (HRdm), utilizes multiplexed drift tube ion mobility spectrometry (DTIMS) with post-acquisition algorithmic deconvolution to access high IM resolutions while retaining the measurement precision inherent to the drift tube technique; however, HRdm has yet to be utilized in untargeted studies. In this manuscript, a proof-of-concept study using ATP10D dysfunctional murine models was investigated to demonstrate the utility of HRdm-incorporated untargeted lipidomic analysis pipelines. Total lipid features were found to increase by 2.5-fold with HRdm compared to demultiplexed DTIMS as a consequence of more isomeric lipids being resolved. An example lipid, PC 36:5, was found to be significantly higher in dysfunctional ATP10D mice with two resolved peaks observed by HRdm that were absent in both the functional ATP10D mice and the standard demultiplexed DTIMS acquisition mode. The benefits of utilizing HRdm for discerning isomeric lipids in untargeted workflows have the potential to enhance our analytical understanding of lipids related to disease complexity and biologically relevant studies.
Collapse
Affiliation(s)
- David
C. Koomen
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C. May
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Mansueto
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Todd R. Graham
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Xu S, Zhu Z, Delafield DG, Rigby MJ, Lu G, Braun M, Puglielli L, Li L. Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer's disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics. Nat Commun 2024; 15:6252. [PMID: 39048572 PMCID: PMC11269705 DOI: 10.1038/s41467-024-50299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Megan Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin- Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Li Y, Wang Y, Guo K, Tseng KF, Zhang X, Sun W. Aza-Prilezhaev Aziridination-Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped Mobility Analyzer-Mass Spectrometry. Anal Chem 2024; 96:7111-7119. [PMID: 38648270 DOI: 10.1021/acs.analchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuling Li
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yiming Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kang Guo
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kuo-Feng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
5
|
Li Y, Bai J, Tseng K, Zhang X, Zhang L, Zhang J, Sun W, Guo Y. Intramolecular Ring-Chain Equilibrium Elimination Strategy for Pinpointing C═C Positional and Geometric Isomers of N-Alkylpyridinium Unsaturated Fatty Acid Derivatives via Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:1977-1984. [PMID: 38258619 DOI: 10.1021/acs.analchem.3c04320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Free unsaturated fatty acids (UFA) are key intermediates of lipid metabolism and participate in many metabolic pathways with specific biological functions. Although various fragmentation-based methods for pinpointing C═C locations in UFA were developed, the current mass spectrometry methods are difficult to simultaneously differentiate geometric isomers and positional isomers in trace samples due to low ionization efficiency, low conversion, and low resolution. Herein, an intramolecular ring-chain equilibrium elimination strategy via 4-plex stable isotope labeling dual derivatization-assisted ion mobility-mass spectrometry was developed, thereby one-pot specifically labeling C═C and carboxyl groups among the trace and unstable UFA with high sensitivity, high efficiency, and good substrate generality. It achieved fast separation of both C═C positional and geometric isomers with high resolution, which benefited from eliminating the intramolecular ring-chain equilibrium by suppressing the formation of salt bridges between free carboxyl groups and pyridine cations. 4-plex stable isotope labeling reagents showed similar reactivity, enabling high-throughput quantitative analysis of omics. This method was successfully applied for accurate and rapid identification of the UFA composition in olive oil extract. These results suggest that the developed method provides new insight for rapid characterization of UFA C═C positional and geometric isomers in complex samples to explore disease biomarkers and food quality control indicators.
Collapse
Affiliation(s)
- Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Heuckeroth S, Behrens A, Wolf C, Fütterer A, Nordhorn ID, Kronenberg K, Brungs C, Korf A, Richter H, Jeibmann A, Karst U, Schmid R. On-tissue dataset-dependent MALDI-TIMS-MS 2 bioimaging. Nat Commun 2023; 14:7495. [PMID: 37980348 PMCID: PMC10657435 DOI: 10.1038/s41467-023-43298-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS2) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS2 spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion. Extendable data processing and evaluation workflows are implemented into the open source software MZmine. The workflow and annotation capabilities are demonstrated on rat brain tissue thin sections, measured by matrix-assisted laser desorption/ionisation (MALDI)-TIMS-MS, where SIMSEF enables on-tissue compound annotation through spectral library matching and rule-based lipid annotation within MZmine and maps the (un)known chemical space by molecular networking. The SIMSEF algorithm and data analysis pipelines are open source and modular to provide a community resource.
Collapse
Affiliation(s)
- Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | | | - Carina Wolf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | | | - Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ansgar Korf
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Henning Richter
- Clinic for Diagnostic Imaging, Diagnostic Imaging Research Unit (DIRU), University of Zurich, Zürich, Switzerland
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Robin Schmid
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Poad BLJ, Jekimovs LJ, Young RSE, Wongsomboon P, Marshall DL, Hansen FKM, Fulloon T, Pfrunder MC, Dodgen T, Ritchie M, Wong SCC, Blanksby SJ. Revolutions in Lipid Isomer Resolution: Application of Ultrahigh-Resolution Ion Mobility to Reveal Lipid Diversity. Anal Chem 2023; 95:15917-15923. [PMID: 37847864 DOI: 10.1021/acs.analchem.3c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Felicia K M Hansen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Therese Fulloon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | | | | | | | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
9
|
Kedia K, Harris R, Ekroos K, Moser KW, DeBord D, Tiberi P, Goracci L, Zhang NR, Wang W, Spellman DS, Bateman K. Investigating Performance of the SLIM-Based High Resolution Ion Mobility Platform for Separation of Isomeric Phosphatidylcholine Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2176-2186. [PMID: 37703523 DOI: 10.1021/jasms.3c00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different cis-double bond locations. Similarly, PC 18:1/18:1 (cis-9) can be resolved from the corresponding PC 18:1/18:1 (trans-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.
Collapse
Affiliation(s)
- Komal Kedia
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rachel Harris
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Kim Ekroos
- Lipidomics Consulting Ltd, Irisviksvägen 31D, 02230 Esbo, Finland
| | - Kelly W Moser
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Paolo Tiberi
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire WD6 3FG United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Kevin Bateman
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Kartowikromo KY, Olajide OE, Hamid AM. Collision cross section measurement and prediction methods in omics. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4973. [PMID: 37620034 PMCID: PMC10530098 DOI: 10.1002/jms.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Omics studies such as metabolomics, lipidomics, and proteomics have become important for understanding the mechanisms in living organisms. However, the compounds detected are structurally different and contain isomers, with each structure or isomer leading to a different result in terms of the role they play in the cell or tissue in the organism. Therefore, it is important to detect, characterize, and elucidate the structures of these compounds. Liquid chromatography and mass spectrometry have been utilized for decades in the structure elucidation of key compounds. While prediction models of parameters (such as retention time and fragmentation pattern) have also been developed for these separation techniques, they have some limitations. Moreover, ion mobility has become one of the most promising techniques to give a fingerprint to these compounds by determining their collision cross section (CCS) values, which reflect their shape and size. Obtaining accurate CCS enables its use as a filter for potential analyte structures. These CCS values can be measured experimentally using calibrant-independent and calibrant-dependent approaches. Identification of compounds based on experimental CCS values in untargeted analysis typically requires CCS references from standards, which are currently limited and, if available, would require a large amount of time for experimental measurements. Therefore, researchers use theoretical tools to predict CCS values for untargeted and targeted analysis. In this review, an overview of the different methods for the experimental and theoretical estimation of CCS values is given where theoretical prediction tools include computational and machine modeling type approaches. Moreover, the limitations of the current experimental and theoretical approaches and their potential mitigation methods were discussed.
Collapse
Affiliation(s)
| | - Orobola E Olajide
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
11
|
Gertner DS, Bishop DP, Padula MP. Optimization of chromatographic buffer conditions for the simultaneous analysis of phosphatidylinositol and phosphatidylinositol phosphate species in canola. J Sep Sci 2023; 46:e2300165. [PMID: 37329204 DOI: 10.1002/jssc.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
The phosphatidylinositols and phosphatidylinositol phosphates are a set of closely related lipids known to influence various cellular functions. Irregular distributions of these molecules have been correlated with the development and progression of multiple diseases, including Alzheimer's, bipolar disorder, and various cancers. As a result, there is continued interest regarding the speciation of these compounds, with specific consideration on how their distribution may differ between healthy and diseased tissue. The comprehensive analysis of these compounds is challenging due to their varied and unique chemical characteristics, and current generalized lipidomics methods have proven unsuitable for phosphatidylinositol analysis and remain incapable of phosphatidylinositol phosphate analysis. Here we improved upon current methods by enabling the sensitive and simultaneous analysis of phosphatidylinositol and phosphatidylinositol phosphate species, whilst enhancing their characterization through chromatographic resolution between isomeric species. A 1 mM ammonium bicarbonate and ammonia buffer was determined optimal for this goal, enabling the identification of 148 phosphatidylinositide species, including 23 lyso-phosphatidylinositols, 51 phosphatidylinositols, 59 oxidized-phosphatidylinositols, and 15 phosphatidylinositol phosphates. As a result of this analysis, four distinct canola cultivars were differentiated based exclusively on their unique phosphatidylinositide-lipidome, indicating analyses of this type may be of use when considering the development and progression of the disease through lipidomic profiles.
Collapse
Affiliation(s)
- David S Gertner
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
12
|
Xia T, Zhou F, Zhang D, Jin X, Shi H, Yin H, Gong Y, Xia Y. Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry. Nat Commun 2023; 14:4263. [PMID: 37460558 DOI: 10.1038/s41467-023-40046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Feng Zhou
- Bytedance Technology Co., 201103, Shanghai, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, 100084, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 100084, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, 100034, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
13
|
Olajide OE, Yi Y, Zheng J, Hamid AM. Strain-Level Discrimination of Bacteria by Liquid Chromatography and Paper Spray Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1125-1135. [PMID: 37249401 PMCID: PMC10407911 DOI: 10.1021/jasms.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Determining bacterial identity at the strain level is critical for public health to enable proper medical treatments and reduce antibiotic resistance. Herein, we used liquid chromatography, ion mobility, and tandem MS (LC-IM-MS/MS) to distinguish Escherichia coli (E. coli) strains. Numerical multivariate statistics (principal component analysis, followed by linear discriminant analysis) showed the capability of this method to perform strain-level discrimination with prediction rates of 96.1% and 100% utilizing the negative and positive ion information, respectively. The tandem MS and LC separation proved effective in discriminating diagnostic lipid isomers in the negative mode, while IM separation was more effective in resolving lipid conformational biomarkers in the positive ion mode. Because of the clinical importance of early detection for rapid medical intervention, a faster technique, paper spray (PS)-IM-MS/MS, was used to discriminate the E. coli strains. The achieved prediction rates of the analysis of E. coli strains by PS-IM-MS/MS were 62.5% and 73.5% in the negative and positive ion modes, respectively. The strategy of numerical data fusion of negative and positive ion data increased the classification rates of PS-IM-MS/MS to 80.5%. Lipid isomers and conformers were detected, which served as strain-indicating biomarkers. The two complementary multidimensional techniques revealed biochemical differences between the E. coli strains confirming the results obtained from comparative genomic analysis. Moreover, the results suggest that PS-IM-MS/MS is a rapid, highly selective, and sensitive method for discriminating bacterial strains in environmental and food samples.
Collapse
Affiliation(s)
- Orobola E. Olajide
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| | - Yuyan Yi
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Ahmed M. Hamid
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| |
Collapse
|
14
|
Ross DH, Guo J, Bilbao A, Huan T, Smith RD, Zheng X. Evaluating Software Tools for Lipid Identification from Ion Mobility Spectrometry-Mass Spectrometry Lipidomics Data. Molecules 2023; 28:molecules28083483. [PMID: 37110719 PMCID: PMC10142755 DOI: 10.3390/molecules28083483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The unambiguous identification of lipids is a critical component of lipidomics studies and greatly impacts the interpretation and significance of analyses as well as the ultimate biological understandings derived from measurements. The level of structural detail that is available for lipid identifications is largely determined by the analytical platform being used. Mass spectrometry (MS) coupled with liquid chromatography (LC) is the predominant combination of analytical techniques used for lipidomics studies, and these methods can provide fairly detailed lipid identification. More recently, ion mobility spectrometry (IMS) has begun to see greater adoption in lipidomics studies thanks to the additional dimension of separation that it provides and the added structural information that can support lipid identification. At present, relatively few software tools are available for IMS-MS lipidomics data analysis, which reflects the still limited adoption of IMS as well as the limited software support. This fact is even more pronounced for isomer identifications, such as the determination of double bond positions or integration with MS-based imaging. In this review, we survey the landscape of software tools that are available for the analysis of IMS-MS-based lipidomics data and we evaluate lipid identifications produced by these tools using open-access data sourced from the peer-reviewed lipidomics literature.
Collapse
Affiliation(s)
- Dylan H Ross
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jian Guo
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
15
|
Zhou X, Wang Z, Fan J, Ouyang Z. High-resolution separation of bioisomers using ion cloud profiling. Nat Commun 2023; 14:1535. [PMID: 36941278 PMCID: PMC10027677 DOI: 10.1038/s41467-023-37281-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Elucidation of complex structures of biomolecules plays a key role in the field of chemistry and life sciences. In the past decade, ion mobility, by coupling with mass spectrometry, has become a unique tool for distinguishing isomers and isoforms of biomolecules. In this study, we develop a concept for performing ion mobility analysis using an ion trap, which enables isomer separation under ultra-high fields to achieve super high resolutions over 10,000. The potential of this technology has been demonstrated for analysis of isomers for biomolecules including disaccharides, phospholipids, and peptides with post-translational modifications.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhuofan Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
17
|
Fu D, Habtegabir SG, Wang H, Feng S, Han Y. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 2023:10.1007/s00216-023-04574-1. [PMID: 36737499 DOI: 10.1007/s00216-023-04574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure-activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
Collapse
Affiliation(s)
- Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Haodong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Shijie Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China.
| |
Collapse
|
18
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
19
|
Hustin J, Kune C, Far J, Eppe G, Debois D, Quinton L, De Pauw E. Differential Kendrick's Plots as an Innovative Tool for Lipidomics in Complex Samples: Comparison of Liquid Chromatography and Infusion-Based Methods to Sample Differential Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2273-2282. [PMID: 36378810 DOI: 10.1021/jasms.2c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipidomics has developed rapidly over the past decade. Nontargeted lipidomics from biological samples remains a challenge due to the high structural diversity, the concentration range of lipids, and the complexity of biological samples. We introduce here the use of differential Kendrick's plots as a rapid visualization tool for a qualitative nontargeted analysis of lipids categories and classes from data generated by either liquid chromatography-mass spectrometry (LC-MS) or direct infusion (nESI-MS). Each lipid class is easily identified by comparison with the theoretical Kendrick plot pattern constructed from exact mass measurements and by using MSKendrickFilter, an in-house Python software. The lipids are identified with the LIPID MAPS database. In addition, in LC-MS, the software based on the Kendrick plots returns the retention time from all the lipids belonging to the same series. Lipid extracts from a yeast (Saccharomyces cerevisiae) are used as a model. An on/off case comparing Kendrick plots from two cell lines (prostate cancer cell lines treated or not with a DGAT2 inhibition) clearly shows the effect of the inhibition. Our study demonstrates the good performance of direct infusion as a fast qualitative screening method as well as for the analysis of chromatograms. A fast screening semiquantitative approach is also possible, while the targeted mode remains the golden standard for precise quantitative analysis.
Collapse
Affiliation(s)
- Justine Hustin
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | | | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| |
Collapse
|
20
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Barrero-Rodríguez R, Rodriguez JM, Tarifa R, Vázquez J, Mastrangelo A, Ferrarini A. TurboPutative: A web server for data handling and metabolite classification in untargeted metabolomics. Front Mol Biosci 2022; 9:952149. [PMID: 36158581 PMCID: PMC9493301 DOI: 10.3389/fmolb.2022.952149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Untargeted metabolomics aims at measuring the entire set of metabolites in a wide range of biological samples. However, due to the high chemical diversity of metabolites that range from small to large and more complex molecules (i.e., amino acids/carbohydrates vs. phospholipids/gangliosides), the identification and characterization of the metabolome remain a major bottleneck. The first step of this process consists of searching the experimental monoisotopic mass against databases, thus resulting in a highly redundant/complex list of candidates. Despite the progress in this area, researchers are still forced to manually explore the resulting table in order to prioritize the most likely identifications for further biological interpretation or confirmation with standards. Here, we present TurboPutative (https://proteomics.cnic.es/TurboPutative/), a flexible and user-friendly web-based platform composed of four modules (Tagger, REname, RowMerger, and TPMetrics) that streamlines data handling, classification, and interpretability of untargeted LC-MS-based metabolomics data. Tagger classifies the different compounds and provides preliminary insights into the biological system studied. REname improves putative annotation handling and visualization, allowing the recognition of isomers and equivalent compounds and redundant data removal. RowMerger reduces the dataset size, facilitating the manual comparison among annotations. Finally, TPMetrics combines different datasets with feature intensity and relevant information for the researcher and calculates a score based on adduct probability and feature correlations, facilitating further identification, assessment, and interpretation of the results. The TurboPutative web application allows researchers in the metabolomics field that are dealing with massive datasets containing multiple putative annotations to reduce the number of these entries by 80%–90%, thus facilitating the extrapolation of biological knowledge and improving metabolite prioritization for subsequent pathway analysis. TurboPutative comprises a rapid, automated, and customizable workflow that can also be included in programmed bioinformatics pipelines through its RESTful API services. Users can explore the performance of each module through demo datasets supplied on the website. The platform will help the metabolomics community to speed up the arduous task of manual data curation that is required in the first steps of metabolite identification, improving the generation of biological knowledge.
Collapse
Affiliation(s)
- Rafael Barrero-Rodríguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Tarifa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- *Correspondence: Annalaura Mastrangelo, ; Alessia Ferrarini,
| | - Alessia Ferrarini
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- *Correspondence: Annalaura Mastrangelo, ; Alessia Ferrarini,
| |
Collapse
|
22
|
Kuo ST, Tang S, Russell DH, Yan X. Characterization of lipid carbon-carbon double-bond isomerism via ion mobility-mass spectrometry (IMS-MS) combined with cuprous ion-induced fragmentation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 479:116889. [PMID: 37577146 PMCID: PMC10421641 DOI: 10.1016/j.ijms.2022.116889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Characterization of phospholipid isomers is challenging due to their identical masses and similarities in structures. Here, we report that copper (I) ion complexed with phospholipids can be used to characterize both carbon-carbon double-bond (C=C bond) positional and geometric isomers. We investigate the distinct fragmentation patterns induced by the π-Cu+ interaction and developed strategies to rapidly characterize the isomerism of phospholipids. The multi-stage fragmentation of Cu+-adducted lipids by collision-induced dissociation can generate diagnostic ions to locate C=C bonds in unsaturated lipids. Furthermore, the collision cross sections of Cu+-adducted parent lipids and product ions can be used as molecular descriptors in distinguishing C=C bond geometric isomers. A bovine heart lipid extract containing Z-configuration lipids spiked with an E-configuration lipid was analyzed to demonstrate rapidness and effectiveness of the method in distinguishing lipid geometric isomers from a real sample.
Collapse
Affiliation(s)
| | | | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
23
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
24
|
Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. MASS SPECTROMETRY REVIEWS 2022; 41:695-721. [PMID: 33492707 DOI: 10.1002/mas.21685] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| | - Estelle Rathahao-Paris
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France
| | - Sandra Alves
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| |
Collapse
|
25
|
Xia J, Xiao W, Lin X, Zhou Y, Qiu P, Si H, Wu X, Niu S, Luo Z, Yang X. Ion Mobility-Derived Collision Cross-Sections Add Extra Capability in Distinguishing Isomers and Compounds with Similar Retention Times: The Case of Aphidicolanes. Mar Drugs 2022; 20:md20090541. [PMID: 36135730 PMCID: PMC9503386 DOI: 10.3390/md20090541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
Abstract
The hyphenation of ion mobility spectrometry with high-resolution mass spectrometry has been widely used in the characterization of various metabolites. Nevertheless, such a powerful tool remains largely unexplored in natural products research, possibly mainly due to the lack of available compounds. To evaluate the ability of collision cross-sections (CCSs) in characterizing compounds, especially isomeric natural products, here we measured and compared the traveling-wave IMS-derived nitrogen CCS values for 75 marine-derived aphidicolanes. We established a CCS database for these compounds which contained 227 CCS values of different adducts. When comparing the CCS differences, 36 of 57 pairs (over 60%) of chromatographically neighboring compounds showed a ΔCCS over 2%. What is more, 64 of 104 isomeric pairs (over 60%) of aphidicolanes can be distinguished by their CCS values, and 13 of 18 pairs (over 70%) of chromatographically indistinguishable isomers can be differentiated from the mobility dimension. Our results strongly supported CCS as an important parameter with good orthogonality and complementarity with retention time. CCS is expected to play an important role in distinguishing complex and diverse marine natural products.
Collapse
Affiliation(s)
- Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xihuang Lin
- Analyzing and Testing Center, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yiduo Zhou
- Institute of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Peng Qiu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hongkun Si
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaorong Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Siwen Niu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xianwen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence:
| |
Collapse
|
26
|
Kirkwood KI, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc 2022; 17:2415-2430. [PMID: 35831612 DOI: 10.1038/s41596-022-00714-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
27
|
Moran-Garrido M, Camunas-Alberca SM, Gil-de-la Fuente A, Mariscal A, Gradillas A, Barbas C, Sáiz J. Recent developments in data acquisition, treatment and analysis with ion mobility-mass spectrometry for lipidomics. Proteomics 2022; 22:e2100328. [PMID: 35653360 DOI: 10.1002/pmic.202100328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Lipids are involved in many biological processes and their study is constantly increasing. To identify a lipid among thousand requires of reliable methods and techniques. Ion Mobility (IM) can be coupled with Mass Spectrometry (MS) to increase analytical selectivity in lipid analysis of lipids. IM-MS has experienced an enormous development in several aspects, including instrumentation, sensitivity, amount of information collected and lipid identification capabilities. This review summarizes the latest developments in IM-MS analyses for lipidomics and focusses on the current acquisition modes in IM-MS, the approaches for the pre-treatment of the acquired data and the subsequent data analysis. Methods and tools for the calculation of Collision Cross Section (CCS) values of analytes are also reviewed. CCS values are commonly studied to support the identification of lipids, providing a quasi-orthogonal property that increases the confidence level in the annotation of compounds and can be matched in CCS databases. The information contained in this review might be of help to new users of IM-MS to decide the adequate instrumentation and software to perform IM-MS experiments for lipid analyses, but also for other experienced researchers that can reconsider their routines and protocols. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Moran-Garrido
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Sandra M Camunas-Alberca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Alberto Gil-de-la Fuente
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Antonio Mariscal
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
28
|
Prandi B, Righetti L, Caligiani A, Tedeschi T, Cirlini M, Galaverna G, Sforza S. Assessing food authenticity through protein and metabolic markers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:233-274. [PMID: 36064294 DOI: 10.1016/bs.afnr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter aims to address an issue of ancient origins, but more and more topical in a globalized world in which consumers and stakeholders are increasingly aware: the authenticity of food. Foods are systems that can also be very complex, and verifying the correspondence between what is declared and the actual characteristics of the product is often a challenging issue. The complexity of the question we want to answer (is the food authentic?) means that the answer is equally articulated and makes use of many different analytical techniques. This chapter will consider the chemical analyses of foods aimed at guaranteeing their authenticity and will focus on frontier methods that have been developed in recent years to address the need to respond to ever-increasing guarantees of authenticity. Targeted and non-targeted approaches will be considered for verifying the authenticity of foods, through the study of different classes of constituents (proteins, metabolites, lipids, flavors). The numerous approaches available (proteomics, metabolomics, lipidomics) and the related analytical techniques (LC-MS, GC-MS, NMR) are first described from a more general point of view, after which their specific application for the purposes of authentication of food is addressed.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
29
|
Chen L, Chen F, Liu T, Feng F, Guo W, Zhang Y, Feng X, Lin JM, Zhang F. Lipidomics Profiling of HepG2 Cells and Interference by Mycotoxins Based on UPLC-TOF-IMS. Anal Chem 2022; 94:6719-6727. [PMID: 35475631 DOI: 10.1021/acs.analchem.1c05543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Discovering the fungus-infected or mycotoxin-contaminated biomarkers is significant for systems biology since the metabolites in biological samples have significant polarity differences in both stochastic gene expression and microenvironmental change. Here, we aim to establish a comprehensive method for a lipidome by ion mobility mass spectrometry (IMS) merged with chemometrics to accurately find out the more scientific markers of cell interference by mycotoxins and for pathogenesis exploration and drug development. The differences in the abundances of several small molecules found in these metabolites were explored through multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), to further screen biomarkers. Good applicability and predictability were demonstrated by R2(X) and Q2 (R2 = 0.959, Q2 = 0.999). Five compounds with m/z values of 512.502 8, 540.5343, 722.525 8, 787.667 5, and 813.683 0 were selected as markers, and four of them were further confirmed by chemical standards (i.e., MSMS of m/z 813.683 0 covering m/z 86.0978, 125.0008, 184.0745, and 185.0781). In summary, we demonstrated the integration of UPLC-TOF-IMS and the chemometrics approach to elucidate identified biomarkers, which also provides a new way of thinking for covering lipid biomarkers or prognostic indicators for mycotoxins.
Collapse
Affiliation(s)
- Lan Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng Feng
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
30
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
31
|
Enhanced ion mobility resolution of Abeta isomers from human brain using high-resolution demultiplexing software. Anal Bioanal Chem 2022; 414:5683-5693. [DOI: 10.1007/s00216-022-04055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023]
|
32
|
Sanders JD, Shields SW, Escobar EE, Lanzillotti MB, Butalewicz JP, James VK, Blevins MS, Sipe SN, Brodbelt JS. Enhanced Ion Mobility Separation and Characterization of Isomeric Phosphatidylcholines Using Absorption Mode Fourier Transform Multiplexing and Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:4252-4259. [PMID: 35239318 DOI: 10.1021/acs.analchem.1c04711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural diversity of phospholipids plays a critical role in cellular membrane dynamics, energy storage, and cellular signaling. Despite its importance, the extent of this diversity has only recently come into focus, largely owing to advances in separation science and mass spectrometry methodology and instrumentation. Characterization of glycerophospholipid (GP) isomers differing only in their acyl chain configurations and locations of carbon-carbon double bonds (C═C) remains challenging due to the need for both effective separation of isomers and advanced tandem mass spectrometry (MS/MS) technologies capable of double-bond localization. Drift tube ion mobility spectrometry (DTIMS) coupled with MS can provide both fast separation and accurate determination of collision cross section (CCS) of molecules but typically lacks the resolving power needed to separate phospholipid isomers. Ultraviolet photodissociation (UVPD) can provide unambiguous double-bond localization but is challenging to implement on the timescales of modern commercial drift tube time-of-flight mass spectrometers. Here, we present a novel method for coupling DTIMS with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing that affords simultaneous localization of double bonds and accurate CCS measurements even when isomers cannot be fully resolved in the mobility dimension. This method is demonstrated on two- and three-component mixtures and shown to provide CCS measurements that differ from those obtained by individual analysis of each component by less than 1%.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W Shields
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Demelenne A, Nys G, Nix C, Fjeldsted JC, Crommen J, Fillet M. Separation of phosphorothioated oligonucleotide diastereomers using multiplexed drift tube ion mobility mass spectrometry. Anal Chim Acta 2022; 1191:339297. [PMID: 35033277 DOI: 10.1016/j.aca.2021.339297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) coupled to drift tube ion mobility spectrometry (DTIMS) was used to separate diastereomers of five-unit oligonucleotides containing 0, 1, 2 or 3 phosphorothioate (PS) linkages. Multiplexed DTIMS (where ions are pulsed into the drift tube according to a pre-encoded sequence) and post-acquisition processing using an innovative demultiplexing tool were investigated. The electric field inside the drift tube was optimized to achieve the highest resolving power. The entrance voltage providing the best two-peak resolution was -1000V with 3-bit multiplexing. Under optimized conditions, the eight diastereomers of an oligonucleotide with three PS linkages (5'-TC∗G∗T∗G-3') could be separated unambiguously. Indeed, those diastereomers differed in their collision cross section (CCS) values. The minimal CCS values difference between two adjacent diastereomers was 0.9% with maximal RSD on CCS values of 0.3%. The use of multiplexed ion mobility and the novel high-resolution demultiplexing tool represents a real breakthrough for resolution enhancement of diastereomers in linear DTIMS.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | | | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium.
| |
Collapse
|
34
|
Dodds JN, Baker ES. Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2021; 93:17094-17102. [PMID: 34851605 PMCID: PMC8730783 DOI: 10.1021/acs.analchem.1c04267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and diagnosis of congenital disorders is the principal aim of newborn screening (NBS) programs worldwide. Mass spectrometry (MS) has become the preferred primary testing method for high-throughput NBS sampling because of its speed and selectivity. However, the ever-increasing list of NBS biomarkers included in expanding panels creates unique analytical challenges for multiplexed MS assays due to isobaric/isomeric overlap and chimeric fragmentation spectra. Since isobaric and isomeric systems limit the diagnostic power of current methods and require costly follow-up exams due to many false-positive results, here, we explore the utility of ion mobility spectrometry (IMS) to enhance the accuracy of MS assays for primary (tier 1) screening. Our results suggest that ∼400 IMS resolving power would be required to confidently assess most NBS biomarkers of interest in dried blood spots (DBSs) that currently require follow-up testing. While this level of selectivity is unobtainable with most commercially available platforms, the separations detailed here for a commercially available drift tube IMS (Agilent 6560 with high-resolution demultiplexing, HRdm) illustrate the unique capabilities of IMS to separate many diagnostic NBS biomarkers from interferences. Furthermore, to address the need for increased speed of NBS analyses, we utilized an automated solid-phase extraction (SPE) system for ∼10 s sampling of simulated NBS samples prior to IMS-MS. This proof-of-concept work demonstrates the unique capabilities of SPE-IMS-MS for high-throughput sample introduction and enhanced separation capacity conducive for increasing speed and accuracy for NBS.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
35
|
Berthias F, Poad BLJ, Thurman HA, Bowman AP, Blanksby SJ, Shvartsburg AA. Disentangling Lipid Isomers by High-Resolution Differential Ion Mobility Spectrometry/Ozone-Induced Dissociation of Metalated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2827-2836. [PMID: 34751570 DOI: 10.1021/jasms.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preponderance and functional importance of isomeric biomolecules have become topical in biochemistry. Therefore, one must distinguish and identify all such forms across compound classes, over a wide dynamic range as minor species often have critical activities. With all the power of modern mass spectrometry for compositional assignments by accurate mass, the identical precursor and often fragment ion masses render this task a steep challenge. This is recognized in proteomics and epigenetics, where proteoforms are disentangled and characterized employing novel separations and non-ergodic dissociation mechanisms. This issue is equally pertinent to lipidomics, where the lack of isomeric depth has thwarted the deciphering of functional networks. Here we introduce a new platform, where the isomeric lipids separated by high-resolution differential ion mobility spectrometry (FAIMS) are identified using ozone-induced dissociation (OzID). Cationization by metals (here K+, Ag+, and especially Cu+) broadly improves the FAIMS resolution of isomers with alternative C═C double bond (DB) positions or stereochemistry, presumably via metal attaching to the DB and reshaping the ion around it. However, the OzID yield diminishes for Ag+ and vanishes for Cu+ adducts. Argentination still strikes the best compromise between efficient separation and diagnostic fragmentation for optimal FAIMS/OzID performance.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Andrew P Bowman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
36
|
Unsihuay D, Yin R, Sanchez DM, Yang M, Li Y, Sun X, Dey SK, Laskin J. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Anal Chim Acta 2021; 1186:339085. [PMID: 34756271 DOI: 10.1016/j.aca.2021.339085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility (IM) spectrometer-mass spectrometer. We demonstrate imaging of drift time-separated ions with a high spatial resolution of better than ∼25 μm using uterine tissues on day 4 of pregnancy in mice. Collision cross-section measurements provide unique molecular descriptors of molecules observed in nano-DESI-IM-MSI necessary for their unambiguous identification by comparison with databases. Meanwhile, isomer-specific imaging reveals variations in the isomeric composition across the tissue. Furthermore, IM separation efficiently eliminates isobaric and isomeric interferences originating from solvent peaks, overlapping isotopic peaks of endogenous molecules extracted from the tissue, and products of in-source fragmentation, which is critical to obtaining accurate concentration gradients in the sample using MSI. The structural information provided by the IM separation substantially expands the molecular specificity of high-resolution MSI necessary for unraveling the complexity of biological systems.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yingju Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Štiffelová Z, Moravský L, Michalczuk B, Čižmárik J, Matejčík Š, Andriamainty F. Analysis of positional isomers of 2-3-4-alkoxyphenylcarbamic acid derivatives by a combination of TLC and IMS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122970. [PMID: 34655891 DOI: 10.1016/j.jchromb.2021.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
In this study, we have demonstrated a separation of positional isomers of some derivatives of alkoxyphenylcarbamic acid. These compounds belong to drugs with local anesthetics activity. The low volatility compounds were analysed by a Thin Layer Chromatography (TLC) and Ion Mobility Spectrometry (IMS) using diode laser desorption for sample introduction to IMS. This combined approach allowed the identification of compounds. Also, we have carried out IMS studies of all compounds and determined their ion mobilities The ion mobilities were increasing with the geometry change from position ortho to para of alkoxy chain, which is in agreement with their different collision cross section (CCS).
Collapse
Affiliation(s)
- Zuzana Štiffelová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Ladislav Moravský
- Department of Experimental Physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Bartosz Michalczuk
- Department of Experimental Physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia; Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Siedlce, Poland
| | - Jozef Čižmárik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Štefan Matejčík
- Department of Experimental Physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia.
| | - Fils Andriamainty
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|
38
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
39
|
Zhu G, Shao Y, Liu Y, Pei T, Li L, Zhang D, Guo G, Wang X. Single-cell metabolite analysis by electrospray ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Huang D, Bouza M, Gaul DA, Leach FE, Amster IJ, Schroeder FC, Edison AS, Fernández FM. Comparison of High-Resolution Fourier Transform Mass Spectrometry Platforms for Putative Metabolite Annotation. Anal Chem 2021; 93:12374-12382. [PMID: 34460220 PMCID: PMC8590398 DOI: 10.1021/acs.analchem.1c02224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps. When high resolution is combined with relative isotopic abundance (RIA) measurements, heuristic rules, and constraints during searches, the number of candidate elemental formula(s) can be significantly reduced. Here, we evaluate the performance of Orbitrap ID-X and 12T solariX FT-ICR mass spectrometers in terms of mass accuracy and RIA measurements and how these factors affect the assignment of the correct elemental formulas in the metabolite annotation pipeline. Quality of the mass measurements was evaluated under various experimental conditions (resolution: 120, 240, 500 K; automatic gain control: 5 × 104, 1 × 105, 5 × 105) for the Orbitrap MS platform. High average mass accuracy (<1 ppm for UPLC-Orbitrap MS and <0.2 ppm for direct infusion FT-ICR MS) was achieved and allowed the assignment of correct elemental formulas for over 90% (m/z 75-466) of the 104 investigated metabolites. 13C1 and 18O1 RIA measurements further improved annotation certainty by reducing the number of candidates. Overall, our study provides a systematic evaluation for two leading Fourier transform (FT)-based MS platforms utilized in metabolite annotation and provides the basis for applying these, individually or in combination, to metabolomics studies of biological systems.
Collapse
Affiliation(s)
- Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Franklin E Leach
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department to Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Arthur S Edison
- Departments of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Andrzejewski R, Entwistle A, Giles R, Shvartsburg AA. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td. Anal Chem 2021; 93:12049-12058. [PMID: 34423987 DOI: 10.1021/acs.analchem.1c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception in 1980s, differential or field asymmetric waveform ion mobility spectrometry (FAIMS) has been implemented at or near ambient gas pressure. We recently developed FAIMS at 15-30 Torr with mass spectrometry and utilized it to analyze amino acids, isomeric peptides, and protein conformers. The separations broadly mirrored those at atmospheric pressure, save for larger proteins that (as predicted) exhibited dipole alignment at ambient but not low pressure. Here we reduce the pressure down to 4.7 Torr, allowing normalized electric fields up to 543 Td-double the maximum in prior FAIMS or IMS studies of polyatomic ions. Despite the collisional heating to ∼1000 °C at the waveform peaks, the proteins of size from ubiquitin to albumin survived intact. The dissociation of macromolecules in FAIMS appears governed by the average ion temperature over the waveform cycle, unlike the isomerization controlled by the peak temperature. The global separation trends in this "superhot" regime extend those at moderately low pressures, with distinct conformers and no alignment as theorized. Although the scaling of the compensation voltage with the field fell below cubic at lower fields, the resolving power increased and the resolution of different proteins or charge states substantially improved.
Collapse
Affiliation(s)
- Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
42
|
de Kok NAW, Exterkate M, Andringa RLH, Minnaard AJ, Driessen AJM. A versatile method to separate complex lipid mixtures using 1-butanol as eluent in a reverse-phase UHPLC-ESI-MS system. Chem Phys Lipids 2021; 240:105125. [PMID: 34453926 DOI: 10.1016/j.chemphyslip.2021.105125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Simple, robust and versatile LC-MS based methods add to the rapid assessment of the lipidome of biological cells. Here we present a versatile RP-UHPLC-MS method using 1-butanol as the eluent, specifically designed to separate different highly hydrophobic lipids. This method is capable of separating different lipid classes of glycerophospholipid standards, in addition to phospholipids of the same class with a different acyl chain composition. The versatility of this method was demonstrated through analysis of lipid extracts of the bacterium Escherichia coli and the archaeon Sulfolobus acidocaldarius. In contrast to 2-propanol-based methods, the 1-butanol-based mobile phase is capable of eluting highly hydrophobic analytes such as cardiolipins, tetraether lipids and mycolic acids during the gradient instead of the isocratic purge phase, resulting in an enhanced separation of cardiolipins and extending the analytical range for RPLC.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Marten Exterkate
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Ruben L H Andringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
43
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Data processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
46
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
47
|
Rose BS, Leaptrot KL, Harris RA, Sherrod SD, May JC, McLean JA. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol Biol 2021; 2306:11-37. [PMID: 33954937 PMCID: PMC10127451 DOI: 10.1007/978-1-0716-1410-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility (IM) is a gas phase separation strategy that can either supplement or serve as a high-throughput alternative to liquid chromatography (LC) in shotgun lipidomics. Incorporating the IM dimension in untargeted lipidomics workflows can help resolve isomeric lipids, and the collision cross section (CCS) values obtained from the IM measurements can provide an additional molecular descriptor to increase lipid identification confidence. This chapter provides a broad overview of an untargeted ion mobility-mass spectrometry (IM-MS) workflow using a commercial drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOF) for high confidence lipidomics.
Collapse
Affiliation(s)
- Bailey S Rose
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Harris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
48
|
Addepalli RV, Mullangi R. A concise review on lipidomics analysis in biological samples. ADMET AND DMPK 2020; 9:1-22. [PMID: 35299875 PMCID: PMC8923307 DOI: 10.5599/admet.913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid classes, including their molecular species. The analysis of the biological tissues and fluids are challenging due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This review documents the overview of lipidomics workflow, beginning from the approaches of sample preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility spectroscopy technologies to deal with the vast number of structural isomers, different imaging techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after reviewing the power of each technique with examples..
Collapse
Affiliation(s)
| | - Ramesh Mullangi
- Laxai Life Sciences Pvt Ltd, MN Park, Genome Valley, Shamirpet, Hyderabad-500 078, India
| |
Collapse
|
49
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
50
|
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4614. [PMID: 32955134 PMCID: PMC8211109 DOI: 10.1002/jms.4614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage, and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars in these samples. This challenge is traditionally addressed using orthogonal liquid chromatography (LC)-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to IMS and highlight their importance to the field.
Collapse
Key Words
- IMS
- desorption electrospray ionization, DESI
- drift tube ion mobility spectrometry, DTIMS
- high-field asymmetric waveform ion mobility, FAIMS
- imaging mass spectrometry
- infrared matrix-assisted laser desorption electrospray ionization, IR-MALDESI
- ion mobility
- laser ablation electrospray ionization, LAESI
- lipids
- liquid extraction surface analysis, LESA
- liquid microjunction, (LMJ)
- matrix-assisted laser desorption electrospray ionization, MALDI
- metabolites
- proteins
- tissue analysis
- trapped ion mobility spectrometry, TIMS
- travelling wave ion mobility spectrometry, TWIMS
Collapse
Affiliation(s)
- Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|