1
|
Zhou B, Gao Z, Yang Y, Hu Y. Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor. Org Biomol Chem 2024; 22:9058-9062. [PMID: 39436311 DOI: 10.1039/d4ob01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Werner L, Radius U. NHC aluminum chemistry on the rise. Dalton Trans 2024; 53:16436-16454. [PMID: 39225565 DOI: 10.1039/d4dt01660b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This perspective highlights recent developments of the use of N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (cAACs) in alane and aluminum organyl chemistry. Especially in the last few years this flourishing research field led to some remarkable discoveries including various substitution patterns at the central aluminum atom, different oxidation states, neutral and charged compounds with varying coordination numbers and unique reactivities. Thereby NHCs play a vital role in the stabilization of these otherwise highly reactive compounds, which would not be realizable without the use of this intriguing class of ligands. Nevertheless, main group hydrides and especially NHC ligated alanes also tend to undergo NHC decomposition reactions, which are part of ongoing research and provide important information for NHC research in general.
Collapse
Affiliation(s)
- Luis Werner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
3
|
Hollister KK, Molino A, Le VV, Jones N, Smith WJ, Müller P, Dickie DA, Wilson DJD, Gilliard RJ. Pentacyclic fused diborepinium ions with carbene- and carbone-mediated deep-blue to red emission. Chem Sci 2024:d4sc03835e. [PMID: 39156927 PMCID: PMC11325318 DOI: 10.1039/d4sc03835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Designing molecules that can undergo late-stage modifications resulting in specific optical properties is useful for developing structure-function trends in materials, which ultimately advance optoelectronic applications. Herein, we report a series of fused diborepinium ions stabilized by carbene and carbone ligands (diamino-N-heterocyclic carbenes, cyclic(alkyl)(amino) carbenes, carbodicarbenes, and carbodiphosphoranes), including a detailed bonding analysis. These are the first structurally confirmed examples of diborepin dications and we detail how distortions in the core of the pentacyclic fused system impact aromaticity, stability, and their light-emitting properties. Using the same fused diborepin scaffold, coordinating ligands were used to dramatically shift the emission profile, which exhibit colors ranging from blue to red (358-643 nm). Notably, these diborepinium ions access expanded regions of the visible spectrum compared to known examples of borepins, with quantum yields up to 60%. Carbones were determined to be superior stabilizing ligands, resulting in improved stability in the solution and solid states. Density functional theory was used to provide insight into the bonding as well as the specific transitions that result in the observed photophysical properties.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - VuongVy V Le
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Nula Jones
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Wyatt J Smith
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - David J D Wilson
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| |
Collapse
|
4
|
Bourne C, Dong H, McKain K, Mayer LC, McKay AP, Cordes DB, Slawin AMZ, Stasch A. Alkyl backbone variations in common β-diketiminate ligands and applications to N-heterocyclic silylene chemistry. Dalton Trans 2024; 53:9887-9895. [PMID: 38807511 DOI: 10.1039/d4dt01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We report the extension of the common β-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), β-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related β-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
Collapse
Affiliation(s)
- Connor Bourne
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Huanhuan Dong
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Katharine McKain
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Lena C Mayer
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Aidan P McKay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
5
|
Jin Z, Yang Y, He Z, Huang Z, Hu Y, Jin H, Zhou B. Nickel-Catalyzed Cross-Coupling Reaction of Aryl Bromides/Nitriles with Imidazolium Salts Involving Inert C-N Bond Cleavage. Org Lett 2024; 26:4520-4525. [PMID: 38752885 DOI: 10.1021/acs.orglett.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We herein present a nickel-catalyzed cross-coupling reaction of aryl halides and nitriles with imidazolium salts. A series of 2-arylated imidazoles could be obtained in moderate to good yields through inert C-N bond cleavage. The imidazolium salt in this reaction acts as both a coupling partner and N-heterocyclic carbene (NHC) ligand precursor. Mechanistic studies reveal that consecutive steps of migratory insertion of the NHC into the aryl C-Ni bond and β-C elimination might be involved in the proposed reaction mechanism.
Collapse
Affiliation(s)
- Zhou Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhichang He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Eco-industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, China
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Werner L, Radius U. How to Decarbonize N-Heterocyclic Carbenes (NHCs): The simple Alane Adducts (NHC) ⋅ AlR 3 (R=H, Me, Et). Angew Chem Int Ed Engl 2024; 63:e202403639. [PMID: 38446008 DOI: 10.1002/anie.202403639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The reaction of the amine-stabilized alane (NMe3) ⋅ AlH3 1 with the backbone-saturated N-heterocyclic carbene (NHC) SIDipp (SIDipp=1,3-bis-{2,6-di-iso-propyl-phenyl}-imidazolidin-2-ylidene) at 0 °C yielded the NHC alane adduct (SIDipp) ⋅ AlH3 2. Reaction at elevated temperatures or prolonged reaction at room temperature gave the product of a ring expansion reaction (RER) of the NHC, (NMe3) ⋅ AlH(RER-SIDippH2) 3 ⋅ (NMe3). Subsequent reaction of the latter with sterically less hindered NHCs (IMeMe {=1,3,4,5-tetramethyl-imidazolin-2-ylidene}, IiPrMe {=1,3-di-iso-propyl-4,5-dimethyl-imidazolin-2-ylidene}, and IiPr {=1,3-di-iso-propyl-imidazolin-2-ylidene}) afforded the NHC-stabilized RER-products (NHC) ⋅ AlH(RER-SIDippH2) 3 ⋅ (NHC) (NHC=IMeMe, IiPrMe, IiPr), while no reaction was observed with the sterically more demanding NHCs IDipp (=1,3-bis-{2,6-di-iso-propyl-phenyl}-imidazolin-2-ylidene), SIDipp and ItBu (=1,3-di-tert-butyl-imidazolin-2-ylidene). The compounds 3 ⋅ (NHC) were also obtained starting from (SIDipp) ⋅ AlH3 2 and NHC at room temperature. Heating solutions of (SIDipp) ⋅ AlH3 2 without additional base to 95 °C resulted in decarbonization of the NHC and substitution of the carbene carbon atom with aluminum hydride under loss of ethene. Subsequent dimerization afforded cis-[AlH{μ-N(Dipp)CH2CH2N(Dipp)}]2 4_dimer. Heating solutions of the NHC-ligated aluminum alkyls (SIDipp) ⋅ AlR3 2R (R=Me, Et) to 145 °C instead led to complete scission of the NHC backbone with evolution of ethene and isolation of the dialkylaluminium(III) amidinates {DippNC(R)NDipp}AlR2 5R (R=Me, Et).
Collapse
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Werner L, Hagn J, Gerstner A, Radius U. NHC-ligated indenyl- and fluorenyl-substituted Alanes and Gallanes: synthons towards indenyl- and fluorenyl-bridged (AlC) n-heterocycles ( n = 2,3). Dalton Trans 2024; 53:5932-5946. [PMID: 38456748 DOI: 10.1039/d4dt00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Indenyl-(Ind) and fluorenyl-(Fl) substituted NHC-stabilized alanes and gallanes (NHC)·EH2R 1-12 (NHC = IiPrMe, IiPr, IMeMe; E = Al, Ga; R = Ind, Fl) were prepared via reaction of the corresponding NHC-iodoalanes and -gallanes with LiInd and LiFl, respectively. Analogously, the alane adducts with two Ind/Fl substituents (NHC)·AlHR213-18 (NHC = IiPrMe, IiPr, IMeMe; R = Ind, Fl) were obtained by using two equivalents of LiInd/LiFl. Elimination of indene and fluorene was induced thermally affording unusual dimeric and trimeric NHC-alane adducts {(NHC)·AlH2}2-μ-Fl 19-20 and {(NHC)·AlH-μ-R}n21-23 (R = Ind, Fl; n = 2, 3) with bridging indenyl and fluorenyl ligands.
Collapse
Affiliation(s)
- Luis Werner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julika Hagn
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander Gerstner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Zhang T, Khomane SB, Singh I, Crudden CM, McBreen PH. N-heterocyclic carbene adsorption states on Pt(111) and Ru(0001). Phys Chem Chem Phys 2024; 26:4083-4090. [PMID: 38226886 DOI: 10.1039/d3cp03539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
N-heterocyclic carbene ligands (NHCs) are increasingly used to tune the properties of metal surfaces. The generally greater chemical and thermal robustness of NHCs on gold, as compared to thiolate surface ligands, underscores their potential for a range of applications. While much is now known about the adsorption geometry, overlayer structure, dynamics, and stability of NHCs on coinage elements, especially gold and copper, much less is known about their interaction with the surfaces of Pt-group metals, despite the importance of such metals in catalysis and electrochemistry. In this study, reflection absorption infrared spectroscopy (RAIRS) is used to probe the structure of benzimidazolylidene NHC ligands on Pt(111) and Ru(0001). The experiments exploit the intense absorption peaks of a CF3 substituent on the phenyl ring of the NHC backbone to provide unprecedented insight into adsorption geometry and chemical stability. The results also permit comparison with literature data for NHC ligands on Au(111) and to DFT predictions for NHCs on Pt(111) and Ru(0001), thereby greatly extending the known surface chemistry of NHCs and providing much needed molecular information for the design of metal-organic hybrid materials involving strongly reactive metals.
Collapse
Affiliation(s)
- Tianchi Zhang
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Sonali B Khomane
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Ishwar Singh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Peter H McBreen
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| |
Collapse
|
9
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Ring-Opening of 1,3-Imidazole Based Mesoionic Carbenes (iMICs) and Ring-Closing Clicks: Facile Access to iMIC-Compounds. Chemistry 2024; 30:e202303652. [PMID: 37937442 DOI: 10.1002/chem.202303652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Herein, ring-opening of mesoionic carbenes (iMICs) (iMIC=[ArC{N(Dipp)}2 C(SiMe3 )C:) (Dipp=2,6-iPr2 C6 H3 , Ar=Ph, 4-Me2 NC6 H4 or 4-PhC6 H4 ) based on an 1,3-imidazole scaffold to yield N-ethynylformimidamide (eFIM) derivatives as crystalline solids (eFIM={(Dipp)N=C(Ar)N(Dipp)}C≡CSiMe3 ) is reported. eFIMs are thermally stable under inert gas atmosphere and show moderate air stability (t1/2= 3 h for Ar=Ph). eFIMs are excellent surrogates of iMICs, which generally have a limited shelf-life, and readily undergo ring-closing click reactions with a variety of main-group as well as transition metal Lewis acids to form hitherto challenging iMIC-compounds in good to excellent yields. In addition to the relevance of eFIMs in the synthesis of iMIC-compounds, quantification of the stereoelectronic properties of a representative iMIC (Ar=Ph) by experimental and theoretical methods suggests remarkably σ-donor property and steric profile of these new ligand sets.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
10
|
Werner L, Hagn J, Walpuski J, Radius U. Aluminum(III) Cations [(NHC) ⋅ AlMes 2 ] + : Synthesis, Characterization, and Application in FLP-Chemistry. Angew Chem Int Ed Engl 2023:e202312111. [PMID: 37877231 DOI: 10.1002/anie.202312111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
The three-coordinate aluminum cations ligated by N-heterocyclic carbenes (NHCs) [(NHC) ⋅ AlMes2 ]+ [B(C6 F5 )4 ]- (NHC=IMeMe 4, IiPrMe 5, IiPr 6, Mes=2,4,6-trimethylphenyl) were prepared via hydride abstraction of the alanes (NHC) ⋅ AlHMes2 (NHC=IMeMe 1, IiPrMe 2, IiPr 3) using [Ph3 C]+ [B(C6 F5 )4 ]- in toluene as hydride acceptor. If this reaction was performed in diethyl ether, the corresponding four-coordinate aluminum etherate cations [(NHC) ⋅ AlMes2 (OEt2 )]+ [B(C6 F5 )4 ]- 7-9 (NHC=IMeMe 7, IiPrMe 8, IiPr 9) were isolated. According to a theoretical and experimental assessment of the Lewis-acidity of the [(IMeMe ) ⋅ AlMes2 ]+ cation is the acidity larger than that of B(C6 F5 )3 and of similar magnitude as reported for Al(C6 F5 )3 . The reaction of [(IMeMe ) ⋅ AlMes2 ]+ [B(C6 F5 )4 ]- 4 with the sterically less demanding, basic phosphine PMe3 afforded a mixed NHC/phosphine stabilized cation [(IMeMe ) ⋅ AlMes2 (PMe3 )]+ [B(C6 F5 )4 ]- 10. Equimolar mixtures of 4 and the sterically more demanding PCy3 gave a frustrated Lewis-pair (FLP), i.e., [(IMeMe ) ⋅ AlMes2 ]+ [B(C6 F5 )4 ]- /PCy3 FLP-11, which reacts with small molecules such as CO2 , ethene, and 2-butyne.
Collapse
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julika Hagn
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Janis Walpuski
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Horrer G, Luff MS, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene ligated half-sandwich complexes of chromium(II) and chromium(I). Dalton Trans 2023; 52:13244-13257. [PMID: 37667868 DOI: 10.1039/d3dt02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The synthesis and characterization of a series of Cr(II) N-Heterocyclic Carbene (NHC) complexes of the type [{Cr(NHC)Cl(μ-Cl)}2] and [(Cyp)Cr(NHC)X] (Cyp = η5-C5H5, cyclopentadienyl; η5-C5Me5, pentamethylcyclopentadienyl; X = Cl, η3-C3H5; NHC = IMeMe, IiPrMe, IMes, IDipp) as well as the cyclic (alkyl)(amino)carbene cAACMe ligated complexes [(η5-C5H5)Cr(cAACMe)X] (X = Cl, NPh2), [(η5-C9H7)Cr(cAACMe)Cl] (C9H7 = Ind, indenyl) and [(η5-C13H9)Cr(cAACMe)Cl] (C13H9 = Fl, fluorenyl) are reported. The reduction of [(η5-C5Me5)Cr(IMeMe)Cl] with KC8 in the presence of CO afforded the NHC ligated Cr(I) metallo-radical [(η5-C5Me5)Cr(IMeMe)(CO)2]. Quantum chemical calculations performed on [(η5-C5Me5)Cr(IMeMe)(CO)2] confirm for this complex a predominantly chromium centered radical.
Collapse
Affiliation(s)
- Günther Horrer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Martin S Luff
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Wang B, Chen W, Yang J, Lu L, Liu J, Shen L, Wu D. N-Heterocyclic imine-based bis-gallium(I) carbene analogs featuring a four-membered Ga 2N 2 ring. Dalton Trans 2023; 52:12454-12460. [PMID: 37594454 DOI: 10.1039/d3dt00782k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A combination of Ga(I) centers as important building blocks and scaffolds containing N-heterocyclic imines gives new insights into low-valent Ga chemistry. In this study, a mixture of LDipNLi (LDip = 1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene), tBuOK, and Cp*Ga (Cp* = pentamethylcyclopentadienyl) in toluene afforded [LDipN-Ga]2 (1) via salt metathesis. X-ray structure analysis of 1 revealed a four-membered Ga2N2 ring, and DFT studies indicated the presence of a lone pair at each Ga center. In addition, compound 1 demonstrated diverse reactivities towards methyl trifluoromethanesulfonate, diphenyl disulfide, 9,10-phenanthrenequinone, and ECl2 (E = Ge or Sn).
Collapse
Affiliation(s)
- Bing Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wenhao Chen
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jiangnan Yang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Linfang Lu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Liang Shen
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Di Wu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Hubei 432000, China
| |
Collapse
|
13
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
14
|
Xu J, Xu X, Li D, Xie BB, Jian J. Photoinduced boron atom insertion of benzocyclobutene forming an unprecedented fused boron heterocyclic radical. Chem Commun (Camb) 2023; 59:1529-1532. [PMID: 36661048 DOI: 10.1039/d2cc06566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two novel boron heterocyclic radicals, an addition bicyclo[4.2.1]octa-1,3,5-trien-1-yl-borane radical (A) and an insertion 7-1H-borolo[1,2-a]borinine radical (B), were synthesized, and characterized in the reaction of atomic boron with benzocyclobutene. Species B involving a fused boron heterocyclic was spectroscopically characterized for the first time. This work is a new approach for boron-mediated molecular editing and the synthesis of fused boron heterocyclic compounds.
Collapse
Affiliation(s)
- Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Danyang Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| |
Collapse
|
15
|
Weiser J, Cui J, Dewhurst RD, Braunschweig H, Engels B, Fantuzzi F. Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand. J Comput Chem 2023; 44:456-467. [PMID: 36054757 DOI: 10.1002/jcc.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
Collapse
Affiliation(s)
- Jonas Weiser
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jingjing Cui
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,School of Chemistry and Forensic Science, University of Kent, Canterbury, UK
| |
Collapse
|
16
|
Philipp MSM, Bertermann R, Radius U. Activation of Ge-H and Sn-H Bonds with N-Heterocyclic Carbenes and a Cyclic (Alkyl)(amino)carbene. Chemistry 2023; 29:e202202493. [PMID: 36177710 PMCID: PMC10100474 DOI: 10.1002/chem.202202493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/14/2023]
Abstract
A study of the reactivity of several N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene (cAACMe ) with the group 14 hydrides GeH2 Mes2 and SnH2 Me2 (Me=CH3 , Mes=1,3,5-(CH3 )3 C6 H2 ) is presented. The reaction of GeH2 Mes2 with cAACMe led to the insertion of cAACMe into one Ge-H bond to give cAACMe H-GeHMes2 (1). If 1,3,4,5-tetramethyl-imidazolin-2-ylidene (Me2 ImMe ) was used as the carbene, NHC-mediated dehydrogenative coupling occurred, which led to the NHC-stabilized germylene Me2 ImMe ⋅GeMes2 (2). The reaction of SnH2 Me2 with cAACMe also afforded the insertion product cAACMe H-SnHMe2 (3), and reaction of two equivalents Me2 ImMe with SnH2 Me2 gave the NHC-stabilized stannylene Me2 ImMe ⋅SnMe2 (4). If the sterically more demanding NHCs Me2 ImMe , 1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene (iPr2 ImMe ) and 1,3-bis-(2,6-di-isopropylphenyl)-imidazolin-2-ylidene (Dipp2 Im) were employed, selective formation of cyclic oligomers (SnMe2 )n (5; n=5-8) in high yield was observed. These cyclic oligomers were also obtained from the controlled decomposition of cAACMe H-SnHMe2 (3).
Collapse
Affiliation(s)
- Michael S. M. Philipp
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
17
|
Arsenyeva KV, Piskunov AV. HETEROCYCLIC HEAVY ANALOGUES OF CARBENES: STRUCTURE AND CHEMICAL PROPERTIES. REVIEW. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Ghosh B, Phukan AK. Unravelling the Potential of Ylides in Stabilizing Low-Valent Group 13 Compounds: Theoretical Predictions of Stable, Five-Membered Group 13 (Aluminum and Gallium) Carbenoids Capable of Small-Molecule Activation. Inorg Chem 2022; 61:14606-14615. [PMID: 36059112 DOI: 10.1021/acs.inorgchem.2c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational investigations provide evidence toward the remarkable ability of strongly electron-donating ylidic functionalities in stabilizing singlet group 13 carbenoids with promising ligand properties. All of the proposed carbenoids are found to be considerably nucleophilic and possess significant singlet-triplet energy separation values. The calculated activation barriers and reaction free energies obtained for the cleavage of different enthalpically strong bonds by these carbenoids are found to be either comparable to or lower than those of the experimentally evaluated aluminum and gallium carbenoids, thereby indicating their potential in small-molecule activation.
Collapse
Affiliation(s)
- Bijoy Ghosh
- Department of Chemical Sciences, Tezpur University, Napam 784028, Assam, India
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napam 784028, Assam, India
| |
Collapse
|
20
|
Philipp MSM, Bertermann R, Radius U. N-heterocyclic carbene and cyclic (alkyl)(amino)carbene adducts of plumbanes and plumbylenes. Dalton Trans 2022; 51:13488-13498. [PMID: 35997066 DOI: 10.1039/d2dt02462d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis-acid/base adducts of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAACMe (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with selected lead(II) and lead(IV) compounds are presented. The reaction of the NHCs Me2ImMe (1,3,4,5-tetramethyl-imidazolin-2-ylidene), iPr2ImMe (1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene), Dipp2Im (1,3-bis-(2,6-di-isopropylphenyl)-imidazolin-2-ylidene) and cAACMe (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with PbI2 yielded the NHC-containing plumbylenes NHC·PbI2 (NHC = Me2ImMe (1), iPr2ImMe (2), Dipp2Im (3) and cAACMe·PbI2 (4)). Using the Pb(IV) compound PbCl2Ph2, the plumbane adducts NHC·PbCl2Ph2 (NHC = Me2ImMe (5), iPr2ImMe (6), Dipp2Im (7)) and cAACMe·PbCl2Ph2 (8)) were isolated in high yields. Reduction of the lead(IV) adducts 5 and 6 with excess KC8 afforded the diaryl substituted plumbylenes Me2ImMe·PbPh2 (9) and iPr2ImMe·PbPh2 (10), which are stable in the solid state but decompose in solution.
Collapse
Affiliation(s)
- Michael S M Philipp
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Philipp MSM, Bertermann R, Radius U. N‐Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) Chlorides and Organyl Chlorides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael S. M. Philipp
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Rüdiger Bertermann
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Udo Radius
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
22
|
Zapf L, Peters S, Bertermann R, Radius U, Finze M. Tricyanoborane-Functionalized Anionic N-Heterocyclic Carbenes: Adjustment of Charge and Stereo-Electronic Properties. Chemistry 2022; 28:e202200275. [PMID: 35535791 PMCID: PMC9401011 DOI: 10.1002/chem.202200275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/19/2022]
Abstract
The 1-methyl-3-(tricyanoborane)imidazolin-2-ylidenate anion (2) was obtained in high yield by deprotonation of the B(CN)3 -methylimidazole adduct 1. Regarding charge and stereo-electronic properties, anion 2 closes the gap between well-known neutral NHCs and the ditopic dianionic NHC, the 1,3-bis(tricyanoborane)imidazolin-2-ylidenate dianion (IIb). The influence of the number of N-bonded tricyanoborane moieties on the σ-donating and π-accepting properties of NHCs was assessed by quantum chemical calculations and verified by experimental data on 2, IIb, and 1,3-dimethylimidazolin-2-ylidene (IMe, IIa). Therefore NHC 2, which acts as a ditopic ligand via the carbene center and the cyano groups, was reacted with alkyl iodides, selenium, and [Ni(CO)4 ] yielding alkylated imidazoles 3 and 4, the anionic selenium adduct 5, and the anionic nickel tricarbonyl complex 8, respectively. The results of this study prove that charge, number of coordination sites, buried volume (%Vbur ) and σ-donor and π-acceptor abilities of NHCs can be effectively fine-tuned via the number of tricyanoborane substituents.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sven Peters
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
23
|
Güven Z, Denker L, Dolati H, Wullschläger D, Trzaskowski B, Frank R. Reactions of a Four‐Membered Borete with Carbon, Silicon, and Gallium Donor Ligands: Fused and Spiro‐Type Boracycles. Chemistry 2022; 28:e202200673. [PMID: 35362629 PMCID: PMC9322404 DOI: 10.1002/chem.202200673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Donor‐acceptor cyclopropanes or cyclobutanes are dipolar reagents, which are widely used in the synthesis of complex organic (hetero)cycles in ring expansion reactions. Applying this concept to boron containing heterocycles, the four‐membered borete cyclo‐iPr2N‐BC10H6 reacted with the carbon donor ligands 2,6‐xylylisonitrile and the carbene IMes :C(NMesCH)2 with ring expansion and ring fusion, respectively. In particular, the tetracyclic structure formed with IMes displays zwitterionic character and absorption in the visible region. In contrast to the carbene IMes, the heavier carbenoids :Si(NDippCH)2 and :Ga(AmIm) with a two‐coordinate donor atom afford spiro‐type bicyclic compounds, which display four‐coordinate geometry at silicon or gallium. (TD‐)DFT calculations provide deeper insight into the mechanism of formation and the absorption properties of these new compounds.
Collapse
Affiliation(s)
- Zeynep Güven
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Hadi Dolati
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Daniela Wullschläger
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Bartosz Trzaskowski
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warszawa Poland
| | - René Frank
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
24
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
25
|
Bawari D, Volodarsky S, Ginzburg Y, Jaiswal K, Joshi P, Dobrovetsky R. Intramolecular C–N bond activation by a geometrically constrained P III-centre. Chem Commun (Camb) 2022; 58:12176-12179. [DOI: 10.1039/d2cc04359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First examples of the insertion of a geometrically constrained PIII ambiphilic center into C–N bonds.
Collapse
Affiliation(s)
- Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Ginzburg
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kuldeep Jaiswal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pooja Joshi
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
26
|
Kuehn L, Zapf L, Werner L, Stang M, Würtemberger-Pietsch S, Krummenacher I, Braunschweig H, Lacôte E, Marder TB, Radius U. NHC induced radical formation via homolytic cleavage of B–B bonds and its role in organic reactions. Chem Sci 2022; 13:8321-8333. [PMID: 35919710 PMCID: PMC9297536 DOI: 10.1039/d2sc02096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
New borylation methodologies have been reported recently, wherein diboron(4) compounds apparently participate in free radical couplings via the homolytic cleavage of the B–B bond. We report herein that bis-NHC adducts of the type (NHC)2·B2(OR)4, which are thermally unstable and undergo intramolecular ring expansion reactions (RER), are sources of boryl radicals of the type NHC–BR2˙, exemplified by Me2ImMe·Bneop˙ 1a (Me2ImMe = 1,3,4,5-tetramethyl-imidazolin-2-ylidene, neop = neopentylglycolato), which are formed by homolytic B–B bond cleavage. Attempts to apply the boryl moiety 1a in a metal-free borylation reaction by suppressing the RER failed. However, based on these findings, a protocol was developed using Me2ImMe·B2pin23 for the transition metal- and additive-free boryl transfer to substituted aryl iodides and bromides giving aryl boronate esters in good yields. Analysis of the side products and further studies concerning the reaction mechanism revealed that radicals are likely involved. An aryl radical was trapped by TEMPO, an EPR resonance, which was suggestive of a boron-based radical, was detected in situ, and running the reaction in styrene led to the formation of polystyrene. The isolation of a boronium cation side product, [(Me2ImMe)2·Bpin]+I−7, demonstrated the fate of the second boryl moiety of B2pin2. Interestingly, Me2ImMe NHC reacts with aryl iodides and bromides generating radicals. A mechanism for the boryl radical transfer from Me2ImMe·B2pin23 to aryl iodides and bromides is proposed based on these experimental observations. Bis-NHC adducts of the type (NHC)2·B2(OR)4 are sources of boryl radicals of the type NHC–BR2˙, which are formed by homolytic B–B bond cleavage.![]()
Collapse
Affiliation(s)
- Laura Kuehn
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ludwig Zapf
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luis Werner
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Stang
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sabrina Würtemberger-Pietsch
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emmanuel Lacôte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Huang Z, Wang R, Sheng T, Zhong X, Wang S, Zhu X, Yuan Q, Wei Y, Zhou S. Transformation of the sp 2 Carbanion to Carbene with Subsequent 1,1-Migratory Insertion and Nucleophilic Substitution in Rare-Earth Metal Chemistry. Inorg Chem 2021; 60:18843-18853. [PMID: 34846129 DOI: 10.1021/acs.inorgchem.1c02589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of Fischer-type electrophilic carbene chemistry with early transition metals has been a great challenge due to the fact that such metals in their high oxidation states lack the d electrons to stabilize the electrophilic carbene. Herein, we disclose the first experimental and theoretical findings of in situ transformation of an sp2 carbanion to a Fischer-type electrophilic carbene with rare-earth metals in their high oxidation state with a d0 electron via electron transfer. The carbene may undergo 1,1-migratory insertion into an adjacent RE-C(sp3) bond, and an unprecedented ring opening of the indole ring of the ligand occurs when the carbenes undergo nucleophilic substitution with a special organolithium reagent o-Me2NC6H4CH2Li. The key to success is the uniquely tailored novel ligand systems featuring a suitable conjugate building block (-C═C-C═N) bearing an sp2 carbanion connected to the rare-earth metal center.
Collapse
Affiliation(s)
- Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Ruru Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Xiangyang Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.,Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
28
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
29
|
|
30
|
Ming W, Soor HS, Liu X, Trofimova A, Yudin AK, Marder TB. α-Aminoboronates: recent advances in their preparation and synthetic applications. Chem Soc Rev 2021; 50:12151-12188. [PMID: 34585200 DOI: 10.1039/d1cs00423a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Aminoboronic acids and their derivatives are useful as bioactive agents. Thus far, three compounds containing an α-aminoboronate motif have been approved by the Food and Drug Administration (FDA) as protease inhibitors, and more are currently undergoing clinical trials. In addition, α-aminoboronic acids and their derivatives have found applications in organic synthesis, e.g. as α-aminomethylation reagents for the synthesis of chiral nitrogen-containing molecules, as nucleophiles for preparing valuable vicinal amino alcohols, and as bis-nucleophiles in the construction of valuable small molecule scaffolds. This review summarizes new methodology for the preparation of α-aminoboronates, including highlights of asymmetric synthetic methods and mechanistic explanations of reactivity. Applications of α-aminoboronates as versatile synthetic building blocks are also discussed.
Collapse
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Harjeet S Soor
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
31
|
Philipp MSM, Krahfuss MJ, Radacki K, Radius U. N‐Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael S. M. Philipp
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
32
|
Zapf L, Radius U, Finze M. 1,3-Bis(tricyanoborane)imidazoline-2-ylidenate Anion-A Ditopic Dianionic N-Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021; 60:17974-17980. [PMID: 33961330 PMCID: PMC8453866 DOI: 10.1002/anie.202105529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 01/14/2023]
Abstract
The 1,3-bis(tricyanoborane)imidazolate anion 1 was obtained in high yield from lithium imidazolate and B(CN)3 -pyridine adduct. Anion 1 is chemically very robust and thus allowed the isolation of the corresponding H5 O2 + salt. Furthermore, monoanion 1 served as starting species for the novel dianionic N-heterocyclic carbene (NHC), 1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion 3 that acts as ditopic ligand via the carbene center and the cyano groups at boron. First reactions of this new NHC 3 with methyl iodide, elemental selenium, and [Ni(CO)4 ] led to the methylated imidazolate ion 4, the dianionic selenium adduct 5, and the dianionic nickel tricarbonyl complex 6. These NHC derivatives provide a first insight into the electronic and steric properties of the dianionic NHC 3. Especially the combination of properties, such as double negative charge, different coordination sites, large buried volume and good σ-donor and π-acceptor ability, make NHC 3 a unique and promising ligand and building block.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
33
|
Zapf L, Radius U, Finze M. Das 1,3‐Bis(tricyanoboran)imidazolin‐2‐ylidenat‐Anion – Ein ditopischer dianionischer N‐heterocyclischer Carben‐Ligand. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ludwig Zapf
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Udo Radius
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Maik Finze
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
34
|
Föhrenbacher SA, Zeh V, Krahfuss MJ, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane and
N
‐Heterocyclic Carbenes: Adduct Formation and Frustrated
Lewis
Pair Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vivien Zeh
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Consultant Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | - Maik Finze
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
35
|
|
36
|
Beerhues J, Neubrand M, Sobottka S, Neuman NI, Aberhan H, Chandra S, Sarkar B. Directed Design of a Au I Complex with a Reduced Mesoionic Carbene Radical Ligand: Insights from 1,2,3-Triazolylidene Selenium Adducts and Extensive Electrochemical Investigations. Chemistry 2021; 27:6557-6568. [PMID: 33502818 PMCID: PMC8252451 DOI: 10.1002/chem.202100105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/07/2022]
Abstract
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.
Collapse
Affiliation(s)
- Julia Beerhues
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Maren Neubrand
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sebastian Sobottka
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Nicolás I. Neuman
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Hannes Aberhan
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| |
Collapse
|
37
|
Yuvaraj K, Carpentier A, Smith CD, Maron L, Jones C. C-N and C-H Activation of an N-Heterocyclic Carbene by Magnesium(II) Hydride and Magnesium(I) Complexes. Inorg Chem 2021; 60:6065-6072. [PMID: 33793217 DOI: 10.1021/acs.inorgchem.1c00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reactions of the hindered N-heterocyclic carbene, :C{(MesNCH)2} (IMes; Mes = mesityl), with a series of β-diketiminatomagnesium(II) hydride and dimagnesium(I) complexes were carried out at 80 °C. The reactions involving the magnesium hydrides, [{(ArNacnac)Mg(μ-H)}2] [ArNacnac = [(ArNCMe)2CH]-, where Ar = 2,6-diethylphenyl (Dep) or 2,6-diisopropylphenyl (Dip)], proceeded via activation of an exocyclic C-N bond of IMes, giving magnesium imidazolyl compounds [(ArNacnac)Mg(μ-H)(μ-Imid)Mg(ArNacnac)] (Imid = [NC2H2N(Mes)C]-) and mesitylene. A low-yield IMes methyl C-H activation product, [(DepNacnac)Mg(IMes-H)], was also obtained, via H2 elimination, from the reaction between IMes and [{(DepNacnac)Mg(μ-H)}2]. Reactions between IMes and dimagnesium(I) compounds [{(ArNacnac)Mg}2] [Ar = 2,6-dimethylphenyl (Xyl) or Mes] afforded isostructural C-H activation products [(ArNacnac)Mg(IMes-H)] but in higher yields. Density functional theory calculations suggest that the reactions do not progress via stable adduct complex intermediates, which are sterically inaccessible.
Collapse
Affiliation(s)
- K Yuvaraj
- School of Chemistry, Monash University, P.O. Box 23, Melbourne, Victoria 3800, Australia
| | - Ambre Carpentier
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Cory D Smith
- School of Chemistry, Monash University, P.O. Box 23, Melbourne, Victoria 3800, Australia
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Cameron Jones
- School of Chemistry, Monash University, P.O. Box 23, Melbourne, Victoria 3800, Australia
| |
Collapse
|
38
|
Borthakur B, Ghosh B, Phukan AK. The flourishing chemistry of carbene stabilized compounds of group 13 and 14 elements. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Werner L, Horrer G, Philipp M, Lubitz K, Kuntze‐Fechner MW, Radius U. A General Synthetic Route to NHC‐Phosphinidenes: NHC‐mediated Dehydrogenation of Primary Phosphines. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Günther Horrer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Philipp
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Katharina Lubitz
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Udo Radius
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
40
|
Merschel A, Glodde T, Neumann B, Stammler H, Ghadwal RS. Nickel-Catalyzed Intramolecular 1,2-Aryl Migration of Mesoionic Carbenes (iMICs). Angew Chem Int Ed Engl 2021; 60:2969-2973. [PMID: 33155756 PMCID: PMC7898293 DOI: 10.1002/anie.202014328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Intramolecular 1,2-Dipp migration of seven mesoionic carbenes (iMICAr ) 2 a-g (iMICAr =ArC{N(Dipp)}2 CHC; Ar=aryl; Dipp=2,6-iPr2 C6 H3 ) under nickel catalysis to give 1,3-imidazoles (IMDAr ) 3 a-g (IMDAr =ArC{N(Dipp)CHC(Dipp)N}) has been reported. The formation of 3 indicates the cleavage of an N-CDipp bond and the subsequent formation of a C-CDipp bond in 2, which is unprecedented in NHC chemistry. The use of 3 in accessing super-iMICs (5) (S-iMIC=ArC{N(Dipp)N(Me)C(Dipp)}C) has been shown with selenium (6), gold (7), and palladium (8) compounds. The quantification of the stereoelectronic properties reveals the superior σ-donor strength of 5 compared to that of classical NHCs. Remarkably, the percentage buried volume of 5 (%Vbur =45) is the largest known amongst thus far reported iMICs. Catalytic studies show a remarkable activity of 5, which is consistent with their auspicious stereoelectronic features.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
41
|
Rojisha VC, Purushothaman I, De S, Parameswaran P. Nature of C N bond in N-heterocyclic carbene. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Nicholls TP, Williams JR, Willans CE. Reactivities of N-heterocyclic carbenes at metal centers. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Verma PK, Meher NK, Geetharani K. Homolytic cleavage of diboron(4) compounds using diazabutadiene derivatives. Chem Commun (Camb) 2021; 57:7886-7889. [PMID: 34302163 DOI: 10.1039/d1cc02881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazabutadiene derivatives have been identified as a distinct class of reagents, capable of cleaving B-B bonds of diboron(4). The cleavage is accompanied by the formation of a new C[double bond, length as m-dash]C bond and the product geometry is highly dependent on the substituents on the DAB units. Preliminary mechanistic investigations suggest a concerted mechanism and the absence of any radical intermediates.
Collapse
Affiliation(s)
- Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| | - Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
44
|
Kroll A, Steinert H, Jörges M, Steinke T, Mallick B, Gessner VH. Cationic Phosphorus Compounds Based on a Bis(1-piperidinyl)-Substituted Carbodiphosphorane: Syntheses, Structures, and C sp3–H Activation. Organometallics 2020; 39:4312-4319. [PMID: 33551536 PMCID: PMC7861138 DOI: 10.1021/acs.organomet.0c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
The use of the bis(1-piperidinyl)-substituted carbodiphosphorane
(Ph2(Pip)P)2C (1) as an NCN ligand for the
stabilization of phosphorus cations was studied. A simple ligand for halide exchange
allowed the synthesis and isolation of a series of phosphorus monocations of the type
[1-PR2]+ (with R = Cl, Br, I, CyCl, Ph). These
cations exhibit characteristic NMR and structural properties which nicely correlate with
the charge at the central phosphorus atom and the interaction between the ligand and the
PR2 moiety. Halide abstraction from the monocations does not result in
isolable dicationic compounds but in an unexpected intramolecular
Csp3–H activation in the piperidinyl group. DFT studies
show that the selective activation of the CH2 group next to the nitrogen atom
instead of a CH group at the phenyl substituents proceeds via an iminium intermediate
formed by hydride transfer from the carbon atom to the cationic phosphorus center. This
observation clearly demonstrates the pronounced π acidity of the dicationic
phosphorus species in comparison to compounds with a further π-donor
substituent.
Collapse
Affiliation(s)
- Alexander Kroll
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Henning Steinert
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Mike Jörges
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Tim Steinke
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Bert Mallick
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
45
|
Merschel A, Glodde T, Neumann B, Stammler H, Ghadwal RS. Nickel‐katalysierte intramolekulare 1,2‐Aryl‐Wanderung von mesoionischen Carbenen (iMICs). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arne Merschel
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Timo Glodde
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
46
|
Guddorf BJ, Feldt M, Hepp A, Daniliuc CG, Lips F. Reactivity of an NHC-Coordinated Trisilacyclopropylidene with Transition Metal Carbonyl Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benedikt J. Guddorf
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, D-48149 Münster, Deutschland
| | - Milica Feldt
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, D-48149 Münster, Deutschland
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, D-48149 Münster, Deutschland
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, D-48149 Münster, Deutschland
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, D-48149 Münster, Deutschland
| |
Collapse
|
47
|
Chen C, Li J, Daniliuc CG, Mück‐Lichtenfeld C, Kehr G, Erker G. The [(NHC)B(H)C
6
F
5
]
+
Cations and Their [B](H)−CO Borane Carbonyls. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Jun Li
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
48
|
Chen C, Li J, Daniliuc CG, Mück-Lichtenfeld C, Kehr G, Erker G. The [(NHC)B(H)C 6 F 5 ] + Cations and Their [B](H)-CO Borane Carbonyls. Angew Chem Int Ed Engl 2020; 59:21460-21464. [PMID: 32705756 DOI: 10.1002/anie.202009353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 11/11/2022]
Abstract
Hydride abstraction from the heterocyclic carbene borane adducts (NHC)BH2 C6 F5 (NHC: IMes or IMe4 ) gave the B-H containing [(NHC)B(H)C6 F5 ]+ borenium cations. They added carbon monoxide to give the respective [(NHC)B(H)(C6 F5 )CO]+ boron carbonyl cations. Carbon nucleophiles add to the boron carbonyl to give [B](H) acyls. Hydride reduced the [B]CO cation to hydroxymethylborane derivatives.
Collapse
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
49
|
Trose M, Cordes DB, Slawin AMZ, Stasch A. A Facile Synthesis of Robinson's NHC‐Stabilised Diborane(4). Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Michael Trose
- EaStCHEM School of Chemistry University of St Andrews North Haugh KY16 9ST St Andrews UK
| | - David B. Cordes
- EaStCHEM School of Chemistry University of St Andrews North Haugh KY16 9ST St Andrews UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh KY16 9ST St Andrews UK
| | - Andreas Stasch
- EaStCHEM School of Chemistry University of St Andrews North Haugh KY16 9ST St Andrews UK
| |
Collapse
|
50
|
Krahfuß MJ, Nitsch J, Bickelhaupt FM, Marder TB, Radius U. N-Heterocyclic Silylenes as Ligands in Transition Metal Carbonyl Chemistry: Nature of Their Bonding and Supposed Innocence. Chemistry 2020; 26:11276-11292. [PMID: 32233000 PMCID: PMC7497151 DOI: 10.1002/chem.202001062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Indexed: 11/07/2022]
Abstract
A study on the reactivity of the N-heterocyclic silylene Dipp2 NHSi (1,3-bis(diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-yliden) with the transition metal complexes [Ni(CO)4 ], [M(CO)6 ] (M=Cr, Mo, W), [Mn(CO)5 (Br)] and [(η5 -C5 H5 )Fe(CO)2 (I)] is reported. We demonstrate that N-heterocyclic silylenes, the higher homologues of the now ubiquitous NHC ligands, show a remarkably different behavior in coordination chemistry compared to NHC ligands. Calculations on the electronic features of these ligands revealed significant differences in the frontier orbital region which lead to some peculiarities of the coordination chemistry of silylenes, as demonstrated by the synthesis of the dinuclear, NHSi-bridged complex [{Ni(CO)2 (μ-Dipp2 NHSi)}2 ] (2), complexes [M(CO)5 (Dipp2 NHSi)] (M=Cr 3, Mo 4, W 5), [Mn(CO)3 (Dipp2 NHSi)2 (Br)] (9) and [(η5 -C5 H5 )Fe(CO)2 (Dipp2 NHSi-I)] (10). DFT calculations on several model systems [Ni(L)], [Ni(CO)3 (L)], and [W(CO)5 (L)] (L=NHC, NHSi) reveal that carbenes are typically the much better donor ligands with a larger intrinsic strength of the metal-ligand bond. The decrease going from the carbene to the silylene ligand is mainly caused by favorable electrostatic contributions for the NHC ligand to the total bond strength, whereas the orbital interactions were often found to be higher for the silylene complexes. Furthermore, we have demonstrated that the contribution of σ- and π-interaction depends significantly on the system under investigation. The σ-interaction is often much weaker for the NHSi ligand compared to NHC but, interestingly, the π-interaction prevails for many NHSi complexes. For the carbonyl complexes, the NHSi ligand is the better σ-donor ligand, and contributions of π-symmetry play only a minor role for the NHC and NHSi co-ligands.
Collapse
Affiliation(s)
- Mirjam J. Krahfuß
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jörn Nitsch
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Todd B. Marder
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|