1
|
He W, Yang F, Chen K, Zeng Q. Targeted gold nanoparticles for ovarian cancer (Review). Oncol Lett 2024; 28:589. [PMID: 39417039 PMCID: PMC11481100 DOI: 10.3892/ol.2024.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Among all malignant gynecological tumors, ovarian cancer (OC) has the highest mortality rate. OC is often diagnosed at advanced and incurable stages; however, early diagnosis can enable the use of optimized and personalized treatments. Intensive research into the synthesis and characterization of gold nanoparticles (AuNPs) has been performed with the aim of developing innovative materials for use in biological and photothermal therapies for OC. AuNPs can be chemically modified and functionalized by binding to a variety of organic compounds and biomolecules, such as peptides, antibodies and therapeutic agents, via simple synthetic processes. They are particularly suitable for use as carriers for drug delivery. In the present review, the synthesis and characteristics of AuNPs are summarized, and their potential in OC therapy are discussed.
Collapse
Affiliation(s)
- Wenjuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei 434000, P.R. China
| | - Keming Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingsong Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Al-Harbi SA. Synthesis and characterization of nano crystallite carboxamide-based iron(III) complexes: SOD mimetic activity, antibacterial and anticancer activity and molecular docking study. J Biomol Struct Dyn 2024; 42:7986-8008. [PMID: 37552248 DOI: 10.1080/07391102.2023.2243341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Three carboxamide-based ligands and their iron(III) complexes were prepared and structurally characterized. Analytical, thermal and mass spectra measurements showed a 1:1 stoichiometric (M:L) of the synthesized iron(III) complexes. The distorted octahedral geometry of the present iron(III) complexes was assigned based on the results of spectroscopy and magnetometry. Processing of X-ray diffraction data for powder samples by the software Expo 2014 confirmed the octahedral geometry of the three iron(III) complexes. Electrochemical properties of the present iron(III) complexes were studied by cyclic voltammetric measurements. The present iron(III) complexes exhibit SOD like activity with IC50 values of 16.45, 15.24 and 9.70 μM. The drive forces (-λ or ΔG°) controlling these biocatalytic reactions were determined and correlated with catalytic activity. The proposed catalytic mechanistic implications for the conversion of O2•- to H2O2 and H2O were discussed. The antimicrobial activity has been studied in vitro against G(+) and G(-) pathogenic bacteria. The in vitro anticancer activity of the carboxamide-based ligands and their iron(III) complexes against human Hepatocellular carcinoma (HepG-2) cell lines was examined. The obtained results demonstrated the potent anticancer activity of iron(III) complexes with increased safety on normal cells compared to cisplatin. Molecular docking calculations confirmed the experimental findings of the antibacterial and anticancer activities of both free ligands and their iron(III) chelates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Chemistry Department, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Roufosse B, Serbu C, Marschner C, Prince S, Blom B. Homo and heteromultimetallic complexes containing a group 8 transition metal and μ-diphosphine bridging ligands involved in anticancer research: A review. Eur J Med Chem 2024; 274:116528. [PMID: 38805938 DOI: 10.1016/j.ejmech.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Herein, we present a comprehensive review focusing on synthetic strategies, detailed structural analysis, and anticancer activity investigations of complexes following the general formula [LnM(μ-diphosphine)M'Lm] where M = group 8 metal; M' = any transition metal; μ-diphosphine = bridging ligand; Ln and Lm = ligand spheres). Both homo- and heteromultimetallic complexes will be discussed in detail. We review in vitro, in vivo and in silico anticancer activity investigations, in an attempt to draw comparisons between the various complexes and derive structure-activity relationships (SAR). This review solely focuses on complexes falling under the general formula stated above that have been studied for their anticancer activities, other complexes falling into that scheme but which have not undergone anticancer testing are not included in this review. We compare the anticancer activities of these complexes to their mononuclear counterparts, and a positive control (cisplatin) when possible and present a summary of all existing data to date and attempt to draw some conclusions on the future development of these complexes.
Collapse
Affiliation(s)
- Basile Roufosse
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands
| | - Christi Serbu
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Sharon Prince
- Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Lv A, Li G, Zhang P, Tao R, Li X, Ren X, Li P, Liu X, Yuan XA, Liu Z. Design and anticancer behaviour of cationic/neutral half-sandwich iridium(III) imidazole-phenanthroline/phenanthrene complexes. J Inorg Biochem 2024; 257:112612. [PMID: 38761579 DOI: 10.1016/j.jinorgbio.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non‑platinum anticancer drugs.
Collapse
Affiliation(s)
- Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guangxiao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xueyan Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peixuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
5
|
De Franco M, Biancalana L, Zappelli C, Zacchini S, Gandin V, Marchetti F. 1,3,5-Triaza-7-phosphaadamantane and Cyclohexyl Groups Impart to Di-Iron(I) Complex Aqueous Solubility and Stability, and Prominent Anticancer Activity in Cellular and Animal Models. J Med Chem 2024; 67:11138-11151. [PMID: 38951717 DOI: 10.1021/acs.jmedchem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.
Collapse
Affiliation(s)
- Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Chiara Zappelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
6
|
Vechalapu SK, Kumar R, Chatterjee N, Gupta S, Khanna S, Thimmappa PY, Senthil S, Eerlapally R, Joshi MB, Misra SK, Draksharapu A, Allimuthu D. Redox modulator iron complexes trigger intrinsic apoptosis pathway in cancer cells. iScience 2024; 27:109899. [PMID: 38799569 PMCID: PMC11126827 DOI: 10.1016/j.isci.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of multidrug resistance in cancer cells necessitates the development of new therapeutic modalities. One way cancer cells orchestrate energy metabolism and redox homeostasis is through overloaded iron pools directed by iron regulatory proteins, including transferrin. Here, we demonstrate that targeting redox homeostasis using nitrogen-based heterocyclic iron chelators and their iron complexes efficiently prevents the proliferation of liver cancer cells (EC50: 340 nM for IITK4003) and liver cancer 3D spheroids. These iron complexes generate highly reactive Fe(IV)=O species and accumulate lipid peroxides to promote oxidative stress in cells that impair mitochondrial function. Subsequent leakage of mitochondrial cytochrome c activates the caspase cascade to trigger the intrinsic apoptosis pathway in cancer cells. This strategy could be applied to leverage the inherent iron overload in cancer cells to selectively promote intrinsic cellular apoptosis for the development of unique iron-complex-based anticancer therapeutics.
Collapse
Affiliation(s)
- Sai Kumari Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Shweta Khanna
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sathyapriya Senthil
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Raju Eerlapally
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Santosh K. Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Apparao Draksharapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Dharmaraja Allimuthu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Das S, Strachanowska M, Wadowski P, Juszczak M, Tokarz P, Kosińska A, Palusiak M, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Synthesis, anticancer activity, and molecular docking of half-sandwich iron(II) cyclopentadienyl complexes with maleimide and phosphine or phosphite ligands. Sci Rep 2024; 14:5634. [PMID: 38454122 PMCID: PMC10920834 DOI: 10.1038/s41598-024-56339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.
Collapse
Affiliation(s)
- Sujoy Das
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Marcelina Strachanowska
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Piotr Wadowski
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Kosińska
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Marcin Palusiak
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Agnieszka J Rybarczyk-Pirek
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Kinga Wzgarda-Raj
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
8
|
Kanyora AK, Omondi RO, Ongoma P, Omolo JO, Welsh A, Prince S, Gichumbi J, Mambanda A, Smith GS. Mononuclear η 6-arene ruthenium(II) complexes with pyrazolyl-pyridazine ligands: synthesis, CT-DNA binding, reactivity towards glutathione, and cytotoxicity. J Biol Inorg Chem 2024; 29:251-264. [PMID: 38494554 DOI: 10.1007/s00775-024-02043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
Organometallic η6-arene ruthenium(II) complexes with 3-chloro-6-(1H-pyrazol-1-yl)pyridazine (Ru1, Ru2, and Ru5) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (Ru3-4) N,N' heterocyclic and η6-arene (cymene (Ru1-4) or toluene (Ru 5)) have been synthesized. The ruthenium(II) complexes have common "three-legged piano-stool" pseudo-octahedral structures known for half-sandwich complexes. Evolution of their UV-Visible absorption spectra in PBS buffer or DMSO over 24 h confirmed their good solvolysis stability. Titrations of the complexes with the calf thymus DNA (CT-DNA) were monitored using UV-Visible absorption and fluorescence spectroscopies. The complexes interact moderately with CT-DNA and their binding constants are in the order of 104 M-1. Competitive binding of the complexes to a DNA-Hoechst 33,258 depicted competitive displacement of Hoechst from DNA's minor grooves. These complexes bind to glutathione forming GSH-adducts through S coordination by replacement of a halide, with the iodo-analogues having higher binding constants than the chloro-complexes. Cyclic voltammograms of the complexes exhibited one electron-transfer quasi-reversible process. Trends in the molecular docking data of Ru1-5/DNA were similar to those for DNA binding constants. Of the five, only Ru1, Ru3 and Ru5 showed some activity (moderate) against the MCF-7 breast cancer cells with IC50 values in the range of 59.2-39.9 for which Ru5 was the most active. However, the more difficult-to-treat cell line, MDA-MB 231 cell was recalcitrant to the treatment by these complexes.
Collapse
Affiliation(s)
- Amos K Kanyora
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya.
| | - Reinner O Omondi
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Peter Ongoma
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - Josiah O Omolo
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Science, Observatory, University of Cape Town, Cape Town, 7925, South Africa
| | - Joel Gichumbi
- Department of Physical Sciences, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
9
|
Abeydeera N, Mudarmah K, Pant BD, Krause JA, Zheng YR, Huang SD. Transferrin-inspired iron delivery across the cell membrane using [(L 2Fe) 2(μ-O)] (L = chlorquinaldol) to harness anticancer activity of ferroptosis. Dalton Trans 2024; 53:3206-3214. [PMID: 38247554 DOI: 10.1039/d3dt02517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although iron is a bio-essential metal, dysregulated iron acquisition and metabolism result in production of reactive oxygen species (ROS) due to the Fenton catalytic reaction, which activates ferroptotic cell death pathways. The lipophilic Fe(III)-chelator chlorquinaldol (L; i.e., 5,7-dichloro-8-hydroxy-2-methylquinoline) strongly favors the formation of a highly stable binuclear Fe(III) complex [(L2Fe)2(μ-O)] (1) that can mimic the function of the Fe(III)-transferrin complex in terms of the strong binding to Fe(III) and facile release of Fe(II) when the metal center is reduced. It should be noted that the cellular uptake of 1 is not transferrin receptor-mediated but enhanced by the high lipophilicity of chlorquinaldol. Once 1 is transported across the cell membrane, Fe(III) can be reduced by ferric reductase or other cellular antioxidants to be released as Fe(II), which triggers the Fenton catalytic reaction, thus harnessing the anticancer activity of iron. As the result, this transferrin-inspired iron-delivery strategy significantly reduces the cytotoxicity of 1 in normal human embryonic kidney cells (HEK 293) and the hemolytic activity of 1 in human red blood cells (hRBCs), giving rise to the unique tumor-specific anticancer activity of this Fe(III) complex.
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
- On leave from Department of Chemistry, Jazan University, Jazan, 45142, Saudi Arabia
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
| |
Collapse
|
10
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
11
|
Awaji AA, Rizk MA, Alsaiari RA, Alqahtani NF, Al-Qadri FA, Alkorbi AS, Hafez HS, Elshaarawy RFM. Chemotherapeutic Activity of Imidazolium-Supported Pd(II) o-Vanillylidene Diaminocyclohexane Complexes Immobilized in Nanolipid as Inhibitors for HER2/neu and FGFR2/FGF2 Axis Overexpression in Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 16:1711. [PMID: 38139837 PMCID: PMC10747766 DOI: 10.3390/ph16121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFβ1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.
Collapse
Affiliation(s)
- Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College in Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Moustafa A. Rizk
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Raiedhah A. Alsaiari
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Fatima A. Al-Qadri
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Ali S. Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Hani S. Hafez
- Zoology Department, Faculty of Science, Suez University, Suez 43533, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
12
|
Bresciani G, Cervinka J, Kostrhunova H, Biancalana L, Bortoluzzi M, Pampaloni G, Novohradsky V, Brabec V, Marchetti F, Kasparkova J. N-Indolyl diiron vinyliminium complexes exhibit antiproliferative effects in cancer cells associated with disruption of mitochondrial homeostasis, ROS scavenging, and antioxidant activity. Chem Biol Interact 2023; 385:110742. [PMID: 37802407 DOI: 10.1016/j.cbi.2023.110742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The indole scaffold has been established as a key organic moiety for developing new drugs; on the other hand, a range of diiron bis-cyclopentadienyl complexes have recently emerged for their promising anticancer potential. Here, we report the synthesis of novel diiron complexes with an indole-functionalized vinyliminium ligand (2-5) and an indole-lacking analogue for comparative purposes (6), which were characterized by analytical and spectroscopic techniques. Complexes 2-6 are substantially stable in DMSO‑d6 and DMEM-d solutions at 37 °C (8% average degradation after 48 h) and display a balanced hydrophilic/lipophilic behaviour (LogPow values in the range -0.32 to 0.47), associated with appreciable water solubility. The complexes display selective antiproliferative potency towards several cancer cells in monolayer cultures, mainly in the low micromolar range, with reduced toxicity towards noncancerous epithelial cells. Thus, the cytotoxicity of the complexes is comparable to or better than clinically used metallopharmaceutical cisplatin. Comparing the antiproliferative activity obtained for complexes containing different ligands, we confirmed the importance of the indolyl group in the mechanism of antiproliferative activity of these complexes. Cell-based mechanistic studies suggest that the investigated diiron vinyliminium complexes (DVCs) show cytostatic rather than cytotoxic effects and subsequently induce a population of cells to undergo apoptosis. Furthermore, the molecular mechanism of action involves interactions with mitochondrial DNA and proteins, the reactive oxygen species (ROS)-scavenging properties and antioxidant activity of these complexes in cancer cells. This study highlights the importance of DVCs to their cancer cell activity and reinforces their prospective therapeutic potential as anticancer agents.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Marco Bortoluzzi
- Ca' Foscari University of Venice, Department of Molecular Sciences and Nanosystems, Via Torino 155, I-30175, Mestre, Venezia, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Department of Biophysics, Palacky University, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy.
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
13
|
Abeydeera N, Stilgenbauer M, Pant BD, Mudarmah K, Dassanayake TM, Zheng YR, Huang SD. Lipophilic Fe(III)-Complex with Potent Broad-Spectrum Anticancer Activity and Ability to Overcome Pt Resistance in A2780cis Cancer Cells. Molecules 2023; 28:4917. [PMID: 37446578 DOI: 10.3390/molecules28134917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Although iron is essential for all forms of life, it is also potentially toxic to cells as the increased and unregulated iron uptake can catalyze the Fenton reaction to produce reactive oxygen species (ROS), leading to lipid peroxidation of membranes, oxidation of proteins, cleavage of DNA and even activation of apoptotic cell death pathways. We demonstrate that Fe(hinok)3 (hinok = 2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), a neutral Fe(III) complex with high lipophilicity is capable of bypassing the regulation of iron trafficking to disrupt cellular iron homeostasis; thus, harnessing remarkable anticancer activity against a panel of five different cell lines, including Pt-sensitive ovarian cancer cells (A2780; IC50 = 2.05 ± 0.90 μM or 1.20 μg/mL), Pt-resistant ovarian cancer cells (A2780cis; IC50 = 0.92 ± 0.73 μM or 0.50 μg/mL), ovarian cancer cells (SKOV-3; IC50 = 1.23 ± 0.01 μM or 0.67 μg/mL), breast cancer cells (MDA-MB-231; IC50 = 3.83 ± 0.12 μM or 2.0 μg/mL) and lung cancer cells (A549; IC50 = 1.50 ± 0.32 μM or 0.82 μg/mL). Of great significance is that Fe(hinok)3 exhibits unusual selectivity toward the normal HEK293 cells and the ability to overcome the Pt resistance in the Pt-resistant mutant ovarian cancer cells of A2780cis.
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Morgan Stilgenbauer
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
- Department of Chemistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Thiloka M Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
14
|
Sahoo S, Pathak S, Kumar A, Nandi D, Chakravarty AR. Lysosome directed red light photodynamic therapy using glycosylated iron-(III) conjugates of boron-dipyrromethene. J Inorg Biochem 2023; 244:112226. [PMID: 37105008 DOI: 10.1016/j.jinorgbio.2023.112226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
To overcome the drawbacks associated with chemotherapeutic and porphyrin-based photodynamic therapy (PDT) agents, the use of BODIPY (boron-dipyrromethene) scaffold has gained prominence in designing a new generation of photosensitizers-cum-cellular imaging agents. However, their poor cell permeability and limited solubility in aqueous medium inhibits the in-vitro application of their organic form. This necessitates the development of metal-BODIPY conjugates with improved physiological stability and enhanced therapeutic efficacy. We have designed two iron(III)-BODIPY conjugates, [Fe(L1/2)(L3)Cl] derived from benzyl-dipicolylamine and its glycosylated analogue along with a BODIPY-tagged catecholate. The complexes showed intense absorption bands (ε ∼ 55,000 M-1 cm-1) and demonstrated apoptotic PDT activity upon red-light irradiation (30 J/cm2, 600-720 nm). The complex with singlet oxygen quantum yield value of ∼0.34 gave sub-micromolar IC50 (half-maximal inhibitory concentration) value (∼0.08 μM) in both HeLa and H1299 cancer cells with a photocytotoxicity index value of >1200. Both the complexes were found to have significantly lower cytotoxic effects in non-cancerous HPL1D (human peripheral lung epithelial) cells. Singlet oxygen was determined to be the prime reactive oxygen species (ROS) responsible for cell damage from pUC19 DNA photo-cleavage studies, 1,3-diphenylisobenzofuran and SOSG (Singlet Oxygen Sensor Green) assays. Cellular imaging studies showed excellent fluorescence from complex 2 within 4 h, with localization in lysosomes. Significant drug accumulation into the core of 3D multicellular tumor spheroids was observed within 8 h from intense in-vitro emission. The complexes exemplify iron-based targeted PDT agents and show promising results as potential transition metal-based drugs for ROS mediated red light photocytotoxicity with low dosage requirement.
Collapse
Affiliation(s)
- Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
15
|
Dimiza F, Barmpa A, Chronakis A, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Iron(III) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure, Antioxidant and Anticholinergic Activity, and Interaction with Biomolecules. Int J Mol Sci 2023; 24:ijms24076391. [PMID: 37047364 PMCID: PMC10094617 DOI: 10.3390/ijms24076391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
One the main research goals of bioinorganic chemists is the synthesis of novel coordination compounds possessing biological potency. Within this context, three novel iron(III) complexes with the non-steroidal anti-inflammatory drugs diflunisal and diclofenac in the presence or absence of the nitrogen donors 1,10-phenanthroline or pyridine were isolated and characterized by diverse techniques. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, revealing their selective potency towards hydroxyl radicals. The in vitro inhibitory activity of the complexes towards the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated, and their potential to achieve neuroprotection appeared promising. The interaction of the complexes with calf-thymus DNA was examined in vitro, revealing their ability to intercalate in-between DNA nucleobases. The affinity of the complexes for serum albumins was evaluated in vitro and revealed their tight and reversible binding.
Collapse
|
16
|
Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 2023; 201:1026-1050. [PMID: 35467267 PMCID: PMC9898429 DOI: 10.1007/s12011-022-03226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
17
|
Taniya S, Khanra S, Bhowmik AD, Bandyopadhyay A, Chatterjee S, Chattopadhyay A, Das D. A New Fe(III) Complex Derived from Cyclohexane Based Imine Derivative: Studies on H
2
PO
4
−
Recognition and Anti‐Cancer Activity Against MCF7 and MDA‐MB‐231 Human Breast Cancer Cells. ChemistrySelect 2023. [DOI: 10.1002/slct.202203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seikh Taniya
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| | - Somnath Khanra
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
- Department of Chemistry A. B. N. Seal College Cooch Behar 736101 W.B. India
| | | | - Arindam Bandyopadhyay
- Department of Zoology Visva-Bharati Santiniketan 731235 W. B. India
- Department of Zoology University of Allahabad Prayagraj 211002 U. P. India
| | | | | | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| |
Collapse
|
18
|
Alkis ME, Buldurun K, Alan Y, Turan N, Altun A. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells. Chem Biodivers 2023; 20:e202200710. [PMID: 36601965 DOI: 10.1002/cbdv.202200710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Yusuf Alan
- Department of Molecular Biology, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Ayhan Altun
- Department of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey
| |
Collapse
|
19
|
Campanella B, Braccini S, Bresciani G, De Franco M, Gandin V, Chiellini F, Pratesi A, Pampaloni G, Biancalana L, Marchetti F. The choice of μ-vinyliminium ligand substituents is key to optimize the antiproliferative activity of related diiron complexes. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6901513. [PMID: 36515681 DOI: 10.1093/mtomcs/mfac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Diiron vinyliminium complexes constitute a large family of organometallics displaying a promising anticancer potential. The complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R3)C(R4)CN(R1)(R2)}]CF3SO3 (2a-c, 4a-d) were synthesized, assessed for their behavior in aqueous solutions (D2O solubility, Log Pow, stability in D2O/Me2SO-d6 mixture at 37°C over 48 h) and investigated for their antiproliferative activity against A2780 and A2780cisR ovarian cancer cell lines and the nontumoral one Balb/3T3 clone A31. Cytotoxicity data collected for 50 vinyliminium complexes were correlated with the structural properties (i.e. the different R1-R4 substituents) using the partial least squares methodology. A clear positive correlation emerged between the octanol-water partition coefficient and the relative antiproliferative activity on ovarian cancer cell lines, both of which appear as uncorrelated to the cancer cell selectivity. However, the different effects played by the R1-R4 substituents allow tracing guidelines for the development of novel, more effective compounds. Based on these results, three additional complexes (4p-r) were designed, synthesized and biologically investigated, revealing their ability to hamper thioredoxin reductase enzyme and to induce cancer cell production of reactive oxygen species.
Collapse
Affiliation(s)
- Beatrice Campanella
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Simona Braccini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Michele De Franco
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Valentina Gandin
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Federica Chiellini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
20
|
Castro J, Bravo M, Albertí M, Marsal A, Alonso-De Gennaro MJ, Martínez-Ferraté O, Claver C, van Leeuwen PWNM, Romero I, Benito A, Vilanova M. Dinuclear Iron Complexes of Iminopyridine-Based Ligands as Selective Cytotoxins for Tumor Cells and Inhibitors of Cancer Cell Migration. Pharmaceutics 2022; 14:2801. [PMID: 36559294 PMCID: PMC9781652 DOI: 10.3390/pharmaceutics14122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2-6 fold lower than that of cisplatin, and 30-90 fold lower than that of carboplatin for the tumor cell lines assayed. Comparing the IC50 values between tumor and non-tumor cell lines, the selectivity indexes range from 3.2 to 34, compound 10, [Fe2(4)2(CH3CN)4](BF4)4, showing the highest selectivity. Those compounds carrying substituents on the iminopyridine ring show the same cytotoxicity as those without substituents. However, the electronic effects of the substituents on position 6 may be important for the cytotoxicity of the complexes, and consequently for their selectivity. All compounds act over DNA, promoting cuts on both strands in the presence of reactive oxygen species. Since compound 10 presented the highest selectivity, its cytotoxic effect was further characterized. It induces apoptosis, affects cell cycle phase distribution in a cell-dependent manner, and its cytotoxic effect is linked to reactive oxygen species generation. In addition, it decreases tumor cell migration, showing potential antimetastatic effects. These properties make compound 10 a good lead antitumor agent among all compounds studied here.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| | - Marlon Bravo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Meritxell Albertí
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Anaís Marsal
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - María José Alonso-De Gennaro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Oriol Martínez-Ferraté
- Departament de Quimica Física e Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Institut Català d’Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Carmen Claver
- Departament de Quimica Física e Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| | - Piet W. N. M. van Leeuwen
- Institut Català d’Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| |
Collapse
|
21
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
22
|
Chlorido-(η6-p-cymene)-(bis(pyrazol-1-yl)methane-κ2N,N′)Osmium(II) Tetrafluoroborate, C17H22BClF4N4Os. MOLBANK 2022. [DOI: 10.3390/m1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The powder of the arene osmium(II) complex, [Os(II)(dpzm)(η6-p-cym)Cl]BF4 (dpzm = di(1H-pyrazol-1-yl)methane; η6-p-cym = para-cymene), with a formula of C17H22BClF4N4Os (referred to herein as 1) was isolated from the reaction of [(η6-p-cym)Os(μ-Cl)(Cl)]2 with dpzm dissolved in acetonitrile and under a flow of nitrogen gas. It was characterized by spectroscopic techniques (viz., FTIR, 1H NMR, UV-Visible absorption). Yellow crystal blocks of 1 were grown by the slow evaporation from the methanolic solution of its powder. The single-crystal X-ray structure of 1 was solved by diffraction analysis on a Bruker APEX Duo CCD area detector diffractometer using the Cu(Kα), λ = 1.54178 Å as the radiation source, and 1 crystallizes in the monoclinic crystal system and the C2/c (no. 15) space group.
Collapse
|
23
|
Basheer SM, Rasin P, Ashok Kumar SL, Saravana Kumar M, Sreekanth A. Investigation on DNA/Protein interaction of thiosemicarbazone based octahedral nickel(II) and iron(III) complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Matos CP, Albino M, Lopes J, Viana AS, Côrte-Real L, Mendes F, Pessoa JC, Tomaz AI, Reis CP, Gaspar MM, Correia I. New iron(III) anti-cancer aminobisphenolate/phenanthroline complexes: Enhancing their therapeutic potential using nanoliposomes. Int J Pharm 2022; 623:121925. [PMID: 35718249 DOI: 10.1016/j.ijpharm.2022.121925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022]
Abstract
Malignant melanoma is an aggressive and deadly form of skin cancer and novel and improved therapeutic options are needed. A promising strategy involves the use of metallodrugs combined with liposomes for targeted delivery to cancer cells. In this work, a family of iron(III) complexes was synthesized bearing a trianionic aminobisphenolate ligand (L) and phenanthroline-type co-ligands (NN). Four ternary iron complexes of general formula [Fe(L)(NN)] were obtained: [Fe(L)(amphen)] (1), [Fe(L)(phen)] (2), [Fe(L)(Clphen)] (3), and [Fe(L)(Mephen)] (4), as well as a fifth complex [Fe(L)(NEt3)(H2O)] (5) without the bidentate co-ligand. All complexes were characterized by analytic and spectroscopic techniques and demonstrated to be stable in aqueous environment. Complexes 1 and 2 were able to bind DNA and presented high cytotoxic activity towards human cancer cells. Complex 1 (IronC) was selected for incorporation into different liposomal formulations, which were fully characterized and screened against murine melanoma cells. The IronC liposomal formulation with the highest incorporation efficiency (∼95%) and a low IC50 value (7.1 ± 0.7 μM) was selected for in vivo evaluation. In a syngeneic murine melanoma model the liposomal formulation of IronC yielded the highest impairment on tumour progression when compared with the control, temozolomide, and with the iron complex in free form.
Collapse
Affiliation(s)
- Cristina P Matos
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Melissa Albino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Silveira Viana
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
25
|
Pereira SAP, Baptista L AC, Biancalana L, Marchetti F, Dyson PJ, Saraiva MLMFS. Automated approach for the evaluation of glutathione-S-transferase P1-1 inhibition by organometallic anticancer compounds. J Enzyme Inhib Med Chem 2022; 37:1527-1536. [PMID: 35635138 PMCID: PMC9176637 DOI: 10.1080/14756366.2022.2073443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Sarah A. P. Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A. Catarina Baptista L
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
27
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Wang Y, Pigeon P, Li W, Yan J, Dansette PM, Othman M, McGlinchey MJ, Jaouen G. Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. Eur J Med Chem 2022; 234:114202. [DOI: 10.1016/j.ejmech.2022.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
|
29
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN. Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): Synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Komarnicka UK, Niorettini A, Kozieł S, Pucelik B, Barzowska A, Wojtala D, Ziółkowska A, Lesiów M, Kyzioł A, Caramori S, Porchia M, Bieńko A. Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino Cu I, Ru II, Ir III Complexes. Pharmaceuticals (Basel) 2022; 15:169. [PMID: 35215281 PMCID: PMC8876511 DOI: 10.3390/ph15020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.
Collapse
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| |
Collapse
|
31
|
The redox mechanism of ferrocene and its phytochemical and biochemical compounds in anticancer therapy: A mini review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
33
|
Soares Castro A, Henrique Pinke Rodrigues C, Manoel Teles de Menezes M, Beatriz Defendi da Silva A, Thais Bruni A, Firmino de Oliveira M. Fe(II), Ni(II), Cu(II), and Co(II) salen Schiff base complexes: Proposal for a voltammetric sensor to analyze cocaine hydrochloride and its interferents. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Braccini S, Rizzi G, Biancalana L, Pratesi A, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. Pharmaceutics 2021; 13:1158. [PMID: 34452119 PMCID: PMC8398472 DOI: 10.3390/pharmaceutics13081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Giorgia Rizzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| |
Collapse
|
35
|
Rigamonti L, Reginato F, Ferrari E, Pigani L, Gigli L, Demitri N, Kopel P, Tesarova B, Heger Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans 2021; 49:14626-14639. [PMID: 33057512 DOI: 10.1039/d0dt03038d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper(ii) complexes of general formula [Cu(GL)(Cl)] (1-3, G = OMe, H and NO2, respectively), bearing tridentate Schiff base ligands (GL-) and a chloride as a fourth labile one, are here reported. The Schiff bases derive from the monocondensation of ethylenediamine and substituted salicylaldehyde, where the electronic properties are modulated by the releasing or withdrawing power of the G group. The compounds were structurally characterized through single crystal Synchrotron X-ray diffraction experiments in the solid state, revealing that 1 (OMe) and 2 (H) adopt a dimeric assembly [Cu(μ-Cl)(GL)]2 through apical interaction of the chloride ions of two monomeric units, while 3 embraces a 1D polymeric chain structure [Cu(μ-Cl)(NO2L)]n with a similar bridging fashion, all supported by extended intramolecular or intrachain hydrogen bonds. The redox properties of the complexes were also studied by cyclic voltammetry with no marked effect of the substituent on the potential of the CuII/CuI redox system. UV/Vis spectroscopic studies in mimicked physiological conditions highlighted the intactness and stability of the coordinated NNO tridentate ligand in 1-3 and the lability of the coordinated chloride ion with the formation of the aquo-complexes [Cu(GL)(H2O)]+ in aqueous solution, as confirmed by conductance measurements with a 1 : 1 electrolyte molar conductivity. In vitro tests on cell viability were conducted on malignant cell lines typical for their poor prognosis and curability, revealing time-dependent and differential cytotoxicity given by the substituent G. All compounds were capable of formation of intracellular reactive oxygen species and DNA intercalation, acting as nuclease and producing double-strand DNA breaks. This is especially effective for 3 (NO2), which revealed the highest anticancer activity against malignant triple-negative breast cancer MDA-MB-231 cells, with a two-to-four-fold cytotoxicity enhancement with respect to 1 (OMe) and 2 (H), and, most important, substantial differentiation of cytotoxicity with respect to healthy endothelial HUVEC cell line.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Francesco Reginato
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Laura Pigani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Lara Gigli
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612-00 Brno, Czech Republic
| |
Collapse
|
36
|
Mariani D, Ghasemishahrestani Z, Freitas W, Pezzuto P, Costa-da-Silva AC, Tanuri A, Kanashiro MM, Fernandes C, Horn A, Pereira MD. Antitumoral synergism between a copper(II) complex and cisplatin improves in vitro and in vivo anticancer activity against melanoma, lung and breast cancer cells. Biochim Biophys Acta Gen Subj 2021; 1865:129963. [PMID: 34246719 DOI: 10.1016/j.bbagen.2021.129963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intrinsic resistance of cancer cells is a major concern for the success of chemotherapy, and this undesirable feature stimulates further research into the design of new compounds and/or alternative multiple drug chemotherapy protocols. METHODS In this study, we investigated the antitumoral potential of the coordination compounds [Cu(HPClNOL)Cl]Cl (1), [Fe(HPClNOL)Cl2]NO3(2) and [Mn(HPClNOL)Cl2] (3). Using the human, MCF-7 and A549, and the murine melanoma, B16-F10, cell lines, we determined the cytotoxicity, DCFH oxidation, disruption of mitochondrial membrane potential (ΔΨm), Sub-G1 and TUNEL positive cells, and caspase 8 and 9 activities. Fractional inhibitory concentration (FIC) and xenograft models were also assessed to evaluate the efficacy of antitumoral potential. RESULTS We observed that only complex 1 was cytotoxic. The treatment of cancer cells with complex 1 triggered ROS generation and promoted the disruption of ΔΨm. Complex 1 increased the number of Sub-G1 and TUNEL positive cells, and the measurement of caspase 8 and 9 activity confirmed that apoptosis was triggered by the intrinsic pathway. FIC demonstrated that the combination of complex 1 with cisplatin was additive for the A549 cells whilst it was synergic for MCF-7 and B16-F10. Treatment with complex 1, either alone or combined with cisplatin, reduced tumor growth on xenograft models. CONCLUSIONS The present study brings new clues regarding the mechanism of action of [Cu(HPClNOL)Cl]Cl, either alone or in combination with cisplatin. GENERAL SIGNIFICANCE These results indicate that complex 1, administered either singly or in combination with current drugs, has real potential for use in cancer therapy.
Collapse
Affiliation(s)
- D Mariani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Z Ghasemishahrestani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - W Freitas
- Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil
| | - P Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - A C Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, United States
| | - A Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - M M Kanashiro
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - C Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - A Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Sánchez García JJ, Joo-Cisneros RS, García-Bassoco D, Flores-Alamo M, Stivalet JMM, García-Valdés J, Klimova EI. Synthesis, characterization, and oxidation electrochemistry of some novel 1,2-dithiol-3-ones and 1,2-dithiol-3-thiones containing aryl and metallocenyl fragments. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
39
|
Curcumin loaded iron functionalized biopolymeric nanofibre reinforced edible nanocoatings for improved shelf life of cut pineapples. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Moccia F, Rigamonti L, Messori A, Zanotti V, Mazzoni R. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization. Molecules 2021; 26:2728. [PMID: 34066456 PMCID: PMC8124704 DOI: 10.3390/molecules26092728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal catalysts currently dominate the landscape of chemical synthesis, but cheaper and less toxic derivatives are recently emerging as more sustainable solutions. Iron is among the possible alternative metals due to its biocompatibility and exceptional versatility. Nowadays, iron catalysts work essentially in homogeneous conditions, while heterogeneous catalysts would be better performing and more desirable systems for a broad industrial application. In this review, approaches for heterogenization of iron catalysts reported in the literature within the last two decades are summarized, and utility and critical points are discussed. The immobilization on silica of bis(arylimine)pyridyl iron complexes, good catalysts in the polymerization of olefins, is the first useful heterogeneous strategy described. Microporous molecular sieves also proved to be good iron catalyst carriers, able to provide confined geometries where olefin polymerization can occur. Same immobilizing supports (e.g., MCM-41 and MCM-48) are suitable for anchoring iron-based catalysts for styrene, cyclohexene and cyclohexane oxidation. Another excellent example is the anchoring to a Merrifield resin of an FeII-anthranilic acid complex, active in the catalytic reaction of urea with alcohols and amines for the synthesis of carbamates and N-substituted ureas, respectively. A SILP (Supported Ionic Liquid Phase) catalytic system has been successfully employed for the heterogenization of a chemoselective iron catalyst active in aldehyde hydrogenation. Finally, FeIII ions supported on polyvinylpyridine grafted chitosan made a useful heterogeneous catalytic system for C-H bond activation.
Collapse
Affiliation(s)
- Fabio Moccia
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
| | - Alessandro Messori
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| |
Collapse
|
41
|
Rashid F, Zaib S, Ibrar A, Ejaz SA, Saeed A, Iqbal J, Khan I. New Hybrid Scaffolds Based on Carbazole-Chalcones as Potent Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1082-1091. [PMID: 32698741 DOI: 10.2174/1871520620666200721110732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite various technological advances for the treatment of cancer, the identification of new chemical entities with potent anticancer effects remain an indispensable requirement of the time due to multi-drug resistance exhibited by previously developed anticancer drugs. Particularly, the hybrid drugs incorporating two individual bioactive pharmacophores present medicinally important structural leads, thus improving the pharmacodynamic profile of the drug molecules. The antiproliferative and pro-apoptotic activity of the carbazole-chalcone hybrids on human breast and cervical cancer cells will be examined. MATERIALS AND METHODS To overcome such complications, in the current study, we evaluated the cytotoxic effects of carbazole-chalcone hybrids on human breast adenocarcinoma (MCF-7), cervical adenocarcinoma (HeLa) cells and normal cells, i.e., Baby Hamster Kidney cells (BHK-21) using MTT (dimethyl-2-thiazolyl-2,5- diphenyl-2H-tetrazolium bromide) assay. The mechanistic studies were performed on potent compound 4g by fluorescent microscopic studies, release of Lactate Dehydrogenase (LDH) and mitochondrial membrane potential, activation of caspase-9 and -3 and flow cytometric analysis. RESULTS As revealed by MTT assay, compound 4g was identified as the most potent derivative among the tested series with IC50 values of 5.64 and 29.15μM against HeLa and MCF-7 cells, respectively. The results were compared with cisplatin. Fluorescent microscopic studies using 4',6-diamidino-2-phenylindole (DAPI) and Propidium Iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active compound 4g. Moreover, compound 4g also triggered the release of Lactate Dehydrogenase (LDH) in treated HeLa and MCF-7 cells while a fluorescence assay displayed a remarkable increase in the activity of caspase-9 and -3. Moreover, flow cytometric results revealed that compound 4g caused G0/G1 arrest in the treated HeLa cells. CONCLUSION Our results demonstrated that the compound 4g possesses chemotherapeutic properties against breast cancer and cervical adenocarcinoma cells, thus warranting further research to test the anticancer potential of this compound at preclinical and clinical level.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Science, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Syeda A Ejaz
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
42
|
Devi J, Yadav J, Lal K, Kumar N, Paul AK, Kumar D, Dutta PP, Jindal DK. Design, synthesis, crystal structure, molecular docking studies of some diorganotin(IV) complexes derived from the piperonylic hydrazide Schiff base ligands as cytotoxic agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Terra WDS, Bull ÉS, Morcelli SR, Moreira RR, Maciel LLF, Almeida JCDA, Kanashiro MM, Fernandes C, Horn A. Antitumor activity via apoptotic cell death pathway of water soluble copper(II) complexes: effect of the diamino unit on selectivity against lung cancer NCI-H460 cell line. Biometals 2021; 34:661-674. [PMID: 33813688 DOI: 10.1007/s10534-021-00302-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
The cytotoxicity against five human tumor cell lines (THP-1, U937, Molt-4, Colo-205 and NCI-H460) of three water soluble copper(II) coordination compounds containing the ligands 3,3'-(ethane-1,2-diylbis(azanediyl))dipropanamide (BCEN), 3,3'-(piperazine-1,4-diyl)dipropanamide (BPAP) or 3,3'-and (1,4-diazepane-1,4-diyl)dipropanamide (BPAH) are reported in this work. The ligands contain different diamine units (ethylenediamine, piperazine or homopiperazine) and two propanamide units attached to the diamine centers, resulting in N2O2 donor sets. The complex containing homopiperazine unit presented the best antiproliferative effect and selectivity against lung cancer cell line NCI-H460, showing inhibitory concentration (IC50) of 58 μmol dm-3 and Selectivity Index (SI) > 3.4. The mechanism of cell death promoted by the complex was investigated by Sub-G1 cell population analysis and annexin V and propidium iodide (PI) labeling techniques, suggesting that the complex promotes death by apoptosis. Transmission electron microscopy investigations are in agreement with the results presented by mitochondrial membrane potential analysis and also show the impairment of other organelles, including endoplasmic reticulum.
Collapse
Affiliation(s)
- Wagner da S Terra
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Instituto Federal Fluminense, Campos dos Goytacazes, RJ, 28030-130, Brazil
| | - Érika S Bull
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Instituto Federal Fluminense, Campos dos Goytacazes, RJ, 28030-130, Brazil
| | - Samila R Morcelli
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Secretaria de Educação do Espírito Santo, Mimoso Do Sul, ES, 29400-000, Brazil
| | - Rafaela R Moreira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Centro Federal de Educação Tecnológica, Nova Friburgo, RJ, 28635-080, Brazil
| | - Leide Laura F Maciel
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - João Carlos de A Almeida
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Milton M Kanashiro
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
44
|
Reina M, Hernández-Ayala LF, Bravo-Gómez ME, Gómez V, Ruiz-Azuara L. Second generation of Casiopeinas®: A joint experimental and theoretical study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Li Y, Qian C, Li Y, Yang Y, Lin D, Liu X, Chen C. Syntheses, crystal structures of two Fe(III) Schiff base complexes with chelating o-vanillin aroylhydrazone and exploration of their bio-relevant activities. J Inorg Biochem 2021; 218:111405. [PMID: 33689963 DOI: 10.1016/j.jinorgbio.2021.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Two novel Fe(III) complexes, Fe(HL1)2Cl·1.25H2O (1) and Fe(HL2)2·Et3NH·H2O (2) (H2L1 = o-vanillin benzoylhydrazone, H3L2 = o-vanillin salicylhydrazone) are prepared. X-ray single crystal diffraction confirms that the hydrazone ligands can be chelated to iron centre resulting in a six-coordinate octahedral configuration. Both complexes show major intercalation effect to the herring sperm deoxyribonucleic acid (HS-DNA) with high binding constants of 2.01 × 104 M-1 and 2.24 × 104 M-1, respectively. Molecular docking studies reveal both complexes can intercalate at the gap of DC5-DG2 and DG6-DC1 base pairs of DNA hexamer (1Z3F). The interaction of the complex 1 with plasmid pBR322 DNA induces distinguishable alterations of the DNA morphology. Further, the structure of plasmid pBR322 DNA treated with complex 1 in the presence of ascorbic acid has been damaged probably due to the reactive oxygen species (ROS) generation. What's more, both complexes show high affinity with bovine serum albumin (BSA), the binding constants measured by fluorescence techniques are 5.75 × 106 M-1 and 4.39 × 107 M-1, respectively. Molecular docking demonstrates that the complexes prefer the binding pocket of site III (subdomain IIB) of BSA (PDB ID: 4F5S). Similarly, dynamic light scattering (DLS) reveals that the complexes not only bind to BSA but also induce bigger size aggregates as the concentration increases.
Collapse
Affiliation(s)
- Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Changhao Qian
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dong Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaohui Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chen Chen
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
46
|
Sohrabi M, Saeedi M, Larijani B, Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur J Med Chem 2021; 216:113308. [PMID: 33713976 DOI: 10.1016/j.ejmech.2021.113308] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Unique structure, characteristic reactivity, and facile synthesis of metal complexes have made them efficient ligands in drug development research. Among them, rhodium complexes have a limited history and there are a few discussions about their biological activities documented in the literature. However, investigation of kinetically inert rhodium complexes has recently attracted lots of attention and especially there are various evidences on their anti-cancer activity. It seems that they can be investigated as a versatile surrogates or candidates for the existing drugs which do not affect selectively or suffer from various side effects. In recent years, there has been an increasing interest in the use of mononuclear rhodium (III) organometallo drugs due to its versatile structurally important aspects to inhibit various enzymes. It has been demonstrated that organometallic Rh complexes profiting from both organic and inorganic aspects have shown more potent biological activities than classical inorganic compartments. In this respect, smart design, use of the appropriate organic ligands, and efficient and user-friendly synthesis of organometallic Rh complexes have played crucial roles in the inducing desirable biological activities. In this review, we focused on the recent advances published on the bioactivity of Rh (III/II/I) complexes especially inhibitory activity, from 2013 till now. Accordingly, considering the structure-activity relationship (SAR), the effect of oxidation state (+1, +2, and +3) and geometry (dimer or monomer complexes with coordination number of 4 and 6) of Rh complexes as well as various ligands on in vitro and in vivo studies was comprehensively discussed.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Bera P, Aher A, Brandao P, Manna SK, Bhattacharyya I, Mondal G, Jana A, Santra A, Bera P. Anticancer activity, DNA binding and docking study of M( ii)-complexes (M = Zn, Cu and Ni) derived from a new pyrazine–thiazole ligand: synthesis, structure and DFT. NEW J CHEM 2021. [DOI: 10.1039/d0nj05883a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of structurally related Zn(ii), Cu(ii) and Ni(ii) complexes of 4-(2-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)-thiazol-4-yl)-benzonitrile (PyztbH) have been synthesized and characterized by spectroscopy, single crystal X-ray crystallography and density functional theory (DFT).
Collapse
Affiliation(s)
- Pradip Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Graduate Studies
- Regional Centre for Biotechnology
| | - Paula Brandao
- Department of Chemistry
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Adjunct Faculty
- Regional Centre for Biotechnology
| | - Indranil Bhattacharyya
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Gopinath Mondal
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhimanyu Jana
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Ananyakumari Santra
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| |
Collapse
|
48
|
Coordination of the natural ligand lapachol to iron(II): synthesis, theoretical study and antiproliferative activity. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
50
|
Das D, Raza MK, Goswami TK. Evaluation of photochemotherapeutic potential of a few oxo-bridged dimeric Fe(III) compounds having Salen-type ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|