1
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
2
|
You H, Chang F, Chen H, Wang Y, Han W. Exploring the role of CBLB in acute myocardial infarction: transcriptomic, microbiomic, and metabolomic analyses. J Transl Med 2024; 22:654. [PMID: 39004726 PMCID: PMC11247792 DOI: 10.1186/s12967-024-05425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Haichao Chen
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Yi Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China.
| |
Collapse
|
3
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Fang M, Liu X, Xu W, Wang X, Xu L, Zhao TJ, Li P, Yang H. Paxillin family proteins Hic-5 and LPXN promote lipid storage by regulating the ubiquitination degradation of CIDEC. J Biol Chem 2024; 300:105610. [PMID: 38159847 PMCID: PMC10850781 DOI: 10.1016/j.jbc.2023.105610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Many metabolic diseases are caused by disorders of lipid homeostasis. CIDEC, a lipid droplet (LD)-associated protein, plays a critical role in controlling LD fusion and lipid storage. However, regulators of CIDEC remain largely unknown. Here, we established a homogeneous time-resolved fluorescence (HTRF)-based high-throughput screening method and identified LPXN as a positive regulatory candidate for CIDEC. LPXN and Hic-5, the members of the Paxillin family, are focal adhesion adaptor proteins that contribute to the recruitment of specific kinases and phosphatases, cofactors, and structural proteins, participating in the transduction of extracellular signals into intracellular responses. Our data showed that Hic-5 and LPXN significantly increased the protein level of CIDEC and enhanced CIDEC stability not through triacylglycerol synthesis and FAK signaling pathways. Hic-5 and LPXN reduced the ubiquitination of CIDEC and inhibited its proteasome degradation pathway. Furthermore, Hic-5 and LPXN enlarged LDs and promoted lipid storage in adipocytes. Therefore, we identified Hic-5 and LPXN as novel regulators of CIDEC. Our current findings also suggest intervention with Hic-5 and LPXN might ameliorate ectopic fat storage by enhancing the lipid storage capacity of white adipose tissues.
Collapse
Affiliation(s)
- Mingyu Fang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xu Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Wenbo Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xing Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lin Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Shanghai Qi Zhi Institute, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Shanghai Qi Zhi Institute, Shanghai, China
| | - Hui Yang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Alsagaby SA, Vijayakumar R, Premanathan M, Mickymaray S, Alturaiki W, Al-Baradie RS, AlGhamdi S, Aziz MA, Alhumaydhi FA, Alzahrani FA, Alwashmi AS, Al Abdulmonem W, Alharbi NK, Pepper C. Transcriptomics-Based Characterization of the Toxicity of ZnO Nanoparticles Against Chronic Myeloid Leukemia Cells. Int J Nanomedicine 2020; 15:7901-7921. [PMID: 33116508 PMCID: PMC7568638 DOI: 10.2147/ijn.s261636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Zinc oxide nanoparticles (ZnO NPs) have recently attracted attention as potential anti-cancer agents. To the best of our knowledge, the toxicity of ZnO NPs against human chronic myeloid leukemia cells (K562 cell line) has not been studied using transcriptomics approach. OBJECTIVE The goals of this study were to evaluate the capability of ZnO NPs to induce apoptosis in human chronic myeloid leukemia cells (K562 cells) and to investigate the putative mechanisms of action. METHODS We used viability assay and flowcytometry coupled with Annexin V-FITC and propidium iodide to investigate the toxicity of ZnO NPs on K562 cells and normal peripheral blood mononuclear cells. Next we utilized a DNA microarray-based transcriptomics approach to characterize the ZnO NPs-induced changes in the transcriptome of K562 cells. RESULTS ZnO NPs exerted a selective toxicity (mainly by apoptosis) on the leukemic cells (p≤0.005) and altered their transcriptome; 429 differentially expressed genes (DEGs) with fold change (FC)≥4 and p≤0.008 with corrected p≤0.05 were identified in K562 cells post treatment with ZnO NPs. The over-expressed genes were implicated in "response to zinc", "response to toxic substance" and "negative regulation of growth" (corrected p≤0.05). In contrast, the repressed genes positively regulated "cell proliferation", "cell migration", "cell adhesion", "receptor signaling pathway via JAK-STAT" and "phosphatidylinositol 3-kinase signaling" (corrected p≤0.05). Lowering the FC to ≥1.5 with p≤0.05 and corrected p≤0.1 showed that ZnO NPs over-expressed the anti-oxidant defense system, drove K562 cells to undergo mitochondrial-dependent apoptosis, and targeted NF-κB pathway. CONCLUSION Taken together, our findings support the earlier studies that reported anti-cancer activity of ZnO NPs and revealed possible molecular mechanisms employed by ZnO NPs to induce apoptosis in K562 cells.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Raid S Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Saleh AlGhamdi
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
| | - Mohammad A Aziz
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Ameen S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Aibara D, Matsuo K, Yamano S, Matsusue K. Fat-specific protein 27b is regulated by hepatic peroxisome proliferator-activated receptor γ in hepatic steatosis. Endocr J 2020; 67:37-44. [PMID: 31564684 DOI: 10.1507/endocrj.ej19-0296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The fat-specific protein 27 gene (Fsp27) belongs to the cell death-inducing DNA fragmentation factor 45-like effector family. Fsp27 is highly expressed in adipose tissue and fatty liver. In adipocytes, FSP27 localizes to the membrane of lipid droplets and promotes lipid droplet hypertrophy. Recently, FSP27 was shown to consist of two isoforms, FSP27α and FSP27β. Previously, we demonstrated that Fsp27a is directly regulated by peroxisome proliferator-activated receptor γ (PPARγ) in fatty livers of genetically obese leptin deficient ob/ob mice and that Fsp27b may potentially be regulated by different factors transcriptionally as they both have a different promoter region. Thus, the aim of the present study was to elucidate whether Fsp27b is regulated by PPARγ in fatty liver. Fsp27a and Fsp27b were markedly induced in fatty liver of ob/ob mice compared with those in the normal liver. However, both Fsp27a/b were expressed at markedly lower levels in liver-specific PPARγ knockout mice with an ob/ob background. Further, the PPAR response element (PPRE) for the PPARγ-dependent promotion of Fsp27b promotor activity was revealed at position -1,163/-1,151 from the transcriptional start site (+1). Interestingly, the cis-element responsible for the PPARγ-dependent induction of Fsp27b was the same as that responsible for PPARγ-dependent induction of Fsp27a. These results suggest that PPARγ regulates not only Fsp27a but also Fsp27b in fatty liver of ob/ob mice through a common PPRE.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shigeru Yamano
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
10
|
Chen F, Yin Y, Chua BT, Li P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 2019; 21:94-105. [PMID: 31746121 DOI: 10.1111/tra.12717] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Feng‐Jung Chen
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Yesheng Yin
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Boon Tin Chua
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua‐Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life SciencesTsinghua University Beijing China
| |
Collapse
|
11
|
Guo F, Yuan D, Zhang J, Zhang H, Wang C, Zhu L, Zhang J, Pan Y, Shao C. Silencing of ARL14 Gene Induces Lung Adenocarcinoma Cells to a Dormant State. Front Cell Dev Biol 2019; 7:238. [PMID: 31750299 PMCID: PMC6843082 DOI: 10.3389/fcell.2019.00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, a growing number of ADP ribosylation factor (ARF) family members has been suggested to be critical in tumorigenesis. However, the effects of most ARF members on lung adenocarcinoma pathogenesis are still not well disclosed yet. In this study, ARF-like GTPase 14 (ARL14) was screened as an important prognostic factor of lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database and validated by our in vitro experiments. It was found that silencing of ARL14 gene inhibited cell proliferation and the abilities of cell migration and invasion, and it also attenuated radiation damage of lung adenocarcinoma cells but had no effect on the proliferation of normal lung cells. Notably, ARL14 siRNA blocked the extracellular signal-regulated kinase (ERK)/p38 signaling pathway and induced cell cycle arrest in G0 phase, ultimately leading to cell dormancy. Moreover, ARL14 siRNA enhanced the expression of cell death activator DFFA-like effector (CIDEC) that had opposite roles in cell proliferation and migration to ALR14. Collectively, our results suggest that ARL14 has an important role in the pathogenesis of lung adenocarcinoma through CIDEC/ERK/p38 signaling pathway, and thus it could be applied as a new candidate of prognosis indicator and/or therapeutic target of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Junling Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Hang Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chen Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Mineo C. A Novel Proangiogenic Function of Fsp27 in Endothelium: You Only Live Thrice? J Am Heart Assoc 2019; 8:e013042. [PMID: 31433705 PMCID: PMC6585346 DOI: 10.1161/jaha.119.013042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
See Article Karki et al.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of PediatricsCenter for Pulmonary and Vascular BiologyUniversity of Texas Southwestern Medical CenterDallasTX
| |
Collapse
|
13
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout. Front Genet 2019; 10:386. [PMID: 31130980 PMCID: PMC6509548 DOI: 10.3389/fgene.2019.00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Filet quality traits determine consumer satisfaction and affect profitability of the aquaculture industry. Soft flesh is a criterion for fish filet downgrades, resulting in loss of value. Filet firmness is influenced by many factors, including rate of protein turnover. A 50K transcribed gene SNP chip was used to genotype 789 rainbow trout, from two consecutive generations, produced in the USDA/NCCCWA selective breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform genome-wide association (GWA) analyses to identify quantitative trait loci affecting filet firmness and protein content. Applying genomic sliding windows of 50 adjacent SNPs, 212 and 225 SNPs were associated with genetic variation in filet shear force and protein content, respectively. Four common SNPs in the ryanodine receptor 3 gene (RYR3) affected the aforementioned filet traits; this association suggests common mechanisms underlying filet shear force and protein content. Genes harboring SNPs were mostly involved in calcium homeostasis, proteolytic activities, transcriptional regulation, chromatin remodeling, and apoptotic processes. RYR3 harbored the highest number of SNPs (n = 32) affecting genetic variation in shear force (2.29%) and protein content (4.97%). Additionally, based on single-marker analysis, a SNP in RYR3 ranked at the top of all SNPs associated with variation in shear force. Our data suggest a role for RYR3 in muscle firmness that may be considered for genomic- and marker-assisted selection in breeding programs of rainbow trout.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
14
|
Akheruzzaman M, Hegde V, Dhurandhar NV. Twenty-five years of research about adipogenic adenoviruses: A systematic review. Obes Rev 2019; 20:499-509. [PMID: 30562840 DOI: 10.1111/obr.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
Abstract
Infectious etiology is implicated in chronic diseases such as gastric ulcer or atherosclerosis. However, "infection" is a recent term in the field of obesity. Since the first report in 1982 of obesity due to infection, several microbes have been linked to obesity. Among the adipogenic microbes, avian adenovirus SMAM-1 and human adenovirus Ad36 have been studied most extensively for the past 25 years. Here, we present a systematic review of literature about SMAM-1 and Ad36. Reports from North America, Europe, and Asia reveal strong evidence that Ad36 causes obesity in animals and paradoxically improves glycemic control, and in vitro data provides mechanistic explanation. Considering that experimental Ad36 infection of humans is unlikely, its causative role in human obesity or glycemic control has not been demonstrated unequivocally. Nonetheless, most, but not all, observational studies in children and adults link Ad36 infection to obesity and improvement in glycemic control. The E4orf1 gene of Ad36 was identified as responsible for better glycemic control. Overall, 25 years have considerably advanced knowledge about the role of infection in obesity. Potential translational benefits include the development of vaccines to prevent Ad36-induced obesity and drug development based on the E4orf1 protein to improve glycemic control.
Collapse
Affiliation(s)
- Md Akheruzzaman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
15
|
Slayton M, Gupta A, Balakrishnan B, Puri V. CIDE Proteins in Human Health and Disease. Cells 2019; 8:cells8030238. [PMID: 30871156 PMCID: PMC6468517 DOI: 10.3390/cells8030238] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
Cell death-Inducing DNA Fragmentation Factor Alpha (DFFA)-like Effector (CIDE) proteins have emerged as lipid droplet-associated proteins that regulate fat metabolism. There are three members in the CIDE protein family—CIDEA, CIDEB, and CIDEC (also known as fat-specific protein 27 (FSP27)). CIDEA and FSP27 are primarily expressed in adipose tissue, while CIDEB is expressed in the liver. Originally, based upon their homology with DNA fragmentation factors, these proteins were identified as apoptotic proteins. However, recent studies have changed the perception of these proteins, redefining them as regulators of lipid droplet dynamics and fat metabolism, which contribute to a healthy metabolic phenotype in humans. Despite various studies in humans and gene-targeting studies in mice, the physiological roles of CIDE proteins remains elusive. This review will summarize the known physiological role and metabolic pathways regulated by the CIDE proteins in human health and disease.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| |
Collapse
|
16
|
Aibara D, Matsusue K, Takiguchi S, Gonzalez FJ, Yamano S. Fat-specific protein 27 is a novel target gene of liver X receptor α. Mol Cell Endocrinol 2018; 474:48-56. [PMID: 29454584 PMCID: PMC6594021 DOI: 10.1016/j.mce.2018.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
Fat-specific protein 27 (FSP27) is highly expressed in the fatty liver of genetically obese ob/ob mice and promotes hepatic triglyceride (TG) accumulation. The nuclear hormone receptor liver X receptor α (LXRα) also plays a critical role in the control of TG levels in the liver. The present study demonstrated transcriptional regulation of Fsp27a and Fsp27b genes by LXRα. Treatment with the LXR ligand T0901317 markedly increased Fsp27a and Fsp27b mRNAs in wild-type C57BL/6J and ob/ob mouse livers. A reporter assay indicated that two LXR-responsive elements (LXREs) are necessary for LXRα-dependent induction of Fsp27a and Fsp27b promoter activities. Furthermore, the LXRα/retinoid X receptor α complex is capable of directly binding to the two LXREs both in vitro and in vivo. These results suggest that LXRα positively regulates Fsp27a and Fsp27b expression through two functional LXREs. Fsp27a/b are novel LXR target genes in the ob/ob fatty liver.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Soichi Takiguchi
- Institute for Clinical Research, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shigeru Yamano
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
17
|
Dietary fat-associated osteoarthritic chondrocytes gain resistance to lipotoxicity through PKCK2/STAMP2/FSP27. Bone Res 2018; 6:20. [PMID: 30002945 PMCID: PMC6033867 DOI: 10.1038/s41413-018-0020-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Free fatty acids (FFAs), which are elevated with metabolic syndrome, are considered the principal offender exerting lipotoxicity. Few previous studies have reported a causal relationship between FFAs and osteoarthritis pathogenesis. However, the molecular mechanism by which FFAs exert lipotoxicity and induce osteoarthritis remains largely unknown. We here observed that oleate at the usual clinical range does not exert lipotoxicity while oleate at high pathological ranges exerted lipotoxicity through apoptosis in articular chondrocytes. By investigating the differential effect of oleate at toxic and nontoxic concentrations, we revealed that lipid droplet (LD) accumulation confers articular chondrocytes, the resistance to lipotoxicity. Using high fat diet-induced osteoarthritis models and articular chondrocytes treated with oleate alone or oleate plus palmitate, we demonstrated that articular chondrocytes gain resistance to lipotoxicity through protein kinase casein kinase 2 (PKCK2)—six-transmembrane protein of prostate 2 (STAMP2)—and fat-specific protein 27 (FSP27)-mediated LD accumulation. We further observed that the exertion of FFAs-induced lipotoxicity was correlated with the increased concentration of cellular FFAs freed from LDs, whether FFAs are saturated or not. In conclusion, PKCK2/STAMP2/FSP27-mediated sequestration of FFAs in LD rescues osteoarthritic chondrocytes. PKCK2/STAMP2/FSP27 should be considered for interventions against metabolic OA. Cartilage tissue deals with the stress of exposure to free fatty acids by sequestering the toxic molecules into sub-cellular oil droplets. Young Hyun Yoo from Dong-A University College of Medicine in Busan, South Korea, and coworkers exposed rat cartilage cells to increasing levels of a fatty acid called oleate, a by-product of fat metabolism, and observed that the accumulation of oil droplets conferred resistance to oleate-induced toxicity. In these rat cells and in experiments involving mouse models of osteoarthritis fed a high-fat diet, the researchers then identified three of the protective proteins needed for cartilage tissue to properly quarantine fatty acids into oil droplets. Those proteins — and their connected regulatory networks — could now serve as drug targets for treating metabolic syndrome-associated osteoarthritis.
Collapse
|
18
|
Kim YA, Kim HY, Oh YJ, Kwon WY, Lee MH, Bae JY, Woo MS, Kim JM, Yoo YH. Polychlorinated biphenyl 138 exposure-mediated lipid droplet enlargement endows adipocytes with resistance to TNF-α-induced cell death. Toxicol Lett 2018; 292:55-62. [PMID: 29704545 DOI: 10.1016/j.toxlet.2018.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Although epidemiological reports have shown the association between polychlorinated biphenyls (PCBs) and obesity, the molecular mechanism of PCB-induced obesity is mostly unknown. The aim of the present study was to further dissect the significance of lipid droplet (LD) enlargement in PCB-induced obesity. For this aim, we hypothesized that PCB-induced LD enlargement endows adipocytes with resistance to cell death, inhibiting the natural loss of adipocytes. Four types of PCBs were screened, and the detailed molecular mechanism was investigated by using PCB-138. We observed that PCB-138-conferred cell death resistance to hypertrophic adipocytes with enlarged LDs. We further observed that PCB-138 prevents Tumour necrosis factor-α (TNF-α)-induced apoptosis and necroptosis in 3T3-L1 adipocytes and increases the expression of anti-apoptotic proteins, including survivin, in vitro and in vivo. In addition, we demonstrated that fat-specific protein 27 (Fsp27), perilipin, and survivin endow adipocytes with resistance to TNF-α-induced cell death through sustaining enlarged LDs. Thus, the present study suggests that PCB-138-induced LD enlargement endows adipocytes with resistance to TNF-α-induced cell death and that Fsp27, perilipin, and survivin, at least in part, help adipocytes to sustain enlarged LDs, contributing to the induction of obesity.
Collapse
Affiliation(s)
- Yeon A Kim
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Republic of Korea; Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hye Young Kim
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Yoo Jin Oh
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Woo Young Kwon
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Ju Yong Bae
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Min Seok Woo
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
19
|
Huang JZ, Huang LM, Zeng QJ, Huang EF, Liang HP, Wei Q, Xie XH, Ruan JM. Distribution and quantitative analysis of CIDEa and CIDEc in broiler chickens: accounting for differential fat deposition between strains. Br Poult Sci 2017; 59:173-179. [PMID: 29219006 DOI: 10.1080/00071668.2017.1415426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Differences in the expression of CIDEa and CIDEc in 20 different tissues were examined. Both CIDEa and CIDEc mRNA transcripts were predominantly but variably expressed in white adipose tissue (WAT) but were also expressed at moderate levels in the kidney and liver and at lower levels in the ovary. Interestingly, among WAT types, both CIDEa and CIDEc were expressed at the lowest levels in heart coronary WAT. 2. To better understand the roles of CIDEa and CIDEc in the fat deposition of broiler chickens, the differences in lipid droplet (LD) size and mRNA levels of CIDEa and CIDEc between lean-type and fat-type broiler chicken lines were studied. LD sizes were larger in fat-type broiler lines, and CIDEa and CIDEc mRNA levels in white adipose, kidney and liver tissues were significantly higher in fat-type broiler lines than in their lean counterparts. 3. Developmental expression patterns of CIDEa and CIDEc mRNA were analysed in different tissue types (WAT, liver and kidney) in Arbor Acres broiler chickens, and CIDEa and CIDEc mRNA expression levels increased during sequential developmental stages, achieving peak expression levels at week 6. 4. These observations suggest that the functions of CIDEa and CIDEc reflect inherent characteristics of lipid metabolism that contribute to the differences in fat deposition between strains. The results in this study contribute to a more robust understanding of the tissue distribution and expression patterns of CIDEa and CIDEc mRNA and facilitate further research concerning the molecular mechanism underlying fat deposition in broiler chickens.
Collapse
Affiliation(s)
- J Z Huang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - L M Huang
- b College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , P. R. China
| | - Q J Zeng
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - E F Huang
- c Department of Animal Science , Jiangxi Biotech Vocational College , Nanchang , P. R. China
| | - H P Liang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - Q Wei
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - X H Xie
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - J M Ruan
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| |
Collapse
|
20
|
Kim CM, Jeon SH, Choi JH, Lee JH, Park HH. Interaction mode of CIDE family proteins in fly: DREP1 and DREP3 acidic surfaces interact with DREP2 and DREP4 basic surfaces. PLoS One 2017; 12:e0189819. [PMID: 29240809 PMCID: PMC5730196 DOI: 10.1371/journal.pone.0189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
Cell death-inducing DNA fragmentation factor 45 (DFF45)-like effector (CIDE) domains were initially identified as protein interaction modules in apoptotic nucleases and are now known to form a highly conserved family with diverse functions that range from cell death to lipid homeostasis. In the fly, four CIDE domain-containing proteins (DFF-related protein [DREP]-1–4) and their functions, including interaction relationships, have been identified. In this study, we introduced and investigated acidic side-disrupted mutants of DREP1, DREP2, and DREP3. We discovered that the acidic surface patches of DREP1 and DREP3 are critical for the homo-dimerization. In addition, we found that the acidic surface sides of DREP1 and DREP3 interact with the basic surface sides of DREP2 and DREP4. Our current study provides clear evidence demonstrating the mechanism of the interactions between four DREP proteins in the fly.
Collapse
Affiliation(s)
- Chang Min Kim
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sun Hee Jeon
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jun-Hyuk Choi
- Department of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Inchon, Republic of Korea
| | - Hyun Ho Park
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Li Y, Kang H, Chu Y, Jin Y, Zhang L, Yang R, Zhang Z, Zhao S, Zhou L. Cidec differentially regulates lipid deposition and secretion through two tissue-specific isoforms. Gene 2017; 641:265-271. [PMID: 29080839 DOI: 10.1016/j.gene.2017.10.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Lipid metabolism has important roles in animal growth, development, and reproduction. As a regulator of lipid metabolism, CIDEc promotes unilocular development of lipid droplets and stimulates intracellular lipid deposition, and has two isoforms, CIDEc-l and CIDEc-s. CIDEc-l has ten more N-terminal amino acids than CIDEc-s. However, the functions of two isoforms are largely unknown. In this study, the expression profiles of two isoforms in Bama pigs differed, with cidec-l dominant in the liver and small intestine, and cidec-s dominant in muscle and adipose tissue. Fasting and consuming a high-fat diet resulted in changes in the expression of the two isoforms that were closely related to changes in blood and muscle triglyceride (TG) concentrations. Comparison of gene expression and TG concentration suggested that CIDEc-l accelerated lipid secretion and that CIDEc-s promoted lipid deposition, implying that the two isoforms had different functions. Study In vitro confirmed that CIDEc-s stimulated lipid deposition in C2C12 muscle cells and CIDEc-l promoted lipid secretion in HepG2 liver cells. The results showed that two tissue-specific CIDEc isoforms had different roles in lipid deposition and secretion. They may be potential targets for regulation of fat content.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Huifang Kang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yi Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yi Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ranran Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
22
|
Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L, Li P. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [DOI: 10.1016/j.bbalip.2017.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Matsuo K, Matsusue K, Aibara D, Takiguchi S, Gonzalez FJ, Yamano S. Insulin Represses Fasting-Induced Expression of Hepatic Fat-Specific Protein 27. Biol Pharm Bull 2017; 40:888-893. [PMID: 28566630 DOI: 10.1248/bpb.b17-00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The fat-specific protein 27 (Fsp27) gene belongs to the cell death-inducing DNA fragmentation factor 45-like effector family. Fsp27 is highly expressed in adipose tissue as well as the fatty liver of ob/ob mice. Fsp27 is directly regulated by the peroxisome proliferator-activated receptor γ (PPARγ) in livers of genetically obese leptin deficient ob/ob mice. In the present study, Fsp27 was markedly induced by 24 h fasting in genetically normal mouse livers and repressed by refeeding a high sucrose diet. In contrast with the liver, Fsp27 expression was decreased in adipose tissue by fasting and increased by refeeding. Interestingly, fasting-induced Fsp27 liver expression was independent of PPARγ. Moreover, Fsp27 expression was induced in the insulin-depleted livers of streptozotocin-treated mice. Finally, Fsp27 expression was repressed by direct injection of glucose or insulin in fasting mice. These results suggest that insulin represses Fsp27 expression in the fasting liver.
Collapse
Affiliation(s)
- Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University
| | | | | | | | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health
| | | |
Collapse
|
24
|
Loke SY, Wong PTH, Ong WY. Global gene expression changes in the prefrontal cortex of rabbits with hypercholesterolemia and/or hypertension. Neurochem Int 2016; 102:33-56. [PMID: 27890723 DOI: 10.1016/j.neuint.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
Although many studies have identified a link between hypercholesterolemia or hypertension and cognitive deficits, till date, comprehensive gene expression analyses of the brain under these conditions is still lacking. The present study was carried out to elucidate differential gene expression changes in the prefrontal cortex (PFC) of New Zealand white rabbits exposed to hypercholesterolemia and/or hypertension with a view of identifying gene networks at risk. Microarray analyses of the PFC of hypercholesterolemic rabbits showed 850 differentially expressed genes (DEGs) in the cortex of hypercholesterolemic rabbits compared to controls, but only 5 DEGs in hypertensive rabbits compared to controls. Up-regulated genes in the PFC of hypercholesterolemic rabbits included CIDEC, ODF2, RNASEL, FSHR, CES3 and MAB21L3, and down-regulated genes included FAM184B, CUL3, LOC100351029, TMEM109, LOC100357097 and PFDN5. Comparison with our previous study on the middle cerebral artery (MCA) of the same rabbits showed many differentially expressed genes in common between the PFC and MCA, during hypercholesterolemia. Moreover, these genes tended to fall into the same functional networks, as revealed by IPA analyses, with many identical node molecules. These include: proteasome, insulin, Akt, ERK1/2, histone, IL12, interferon alpha and NFκB. Of these, PSMB4, PSMD4, PSMG1 were chosen as representatives of genes related to the proteasome for verification by quantitative RT-PCR. Results indicate significant downregulation of all three proteasome associated genes in the PFC. Immunostaining showed significantly increased number of Aβ labelled cells in layers III and V of the cortex after hypercholesterolemia and hypertension, which may be due to decreased proteasome activity and/or increased β- or γ-secretase activity. Knowledge of altered gene networks during hypercholesterolemia and/or hypertension could inform our understanding of the link between these conditions and cognitive deficits in vascular dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Sau-Yeen Loke
- Department of Anatomy, National University of Singapore, 119260, Singapore
| | - Peter Tsun-Hon Wong
- Department of Pharmacology, National University of Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Program, Life Sciences Institute, National University of Singapore, 119260, Singapore.
| |
Collapse
|
25
|
Kim HY, Kwon WY, Kim YA, Oh YJ, Yoo SH, Lee MH, Bae JY, Kim JM, Yoo YH. Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27. Arch Toxicol 2016; 91:2353-2363. [DOI: 10.1007/s00204-016-1889-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023]
|
26
|
Liangpunsakul S, Gao B. Alcohol and fat promote steatohepatitis: a critical role for fat-specific protein 27/CIDEC. J Investig Med 2016; 64:1078-81. [PMID: 27342423 DOI: 10.1136/jim-2016-000204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide and is the leading cause of end-stage liver disease. While the ultimate control of ALD will require the prevention of alcohol abuse, better understanding of the mechanisms of alcohol-induced liver injury may lead to treatments of fatty liver, alcoholic hepatitis, and prevention or delay of occurrence of cirrhosis. The elucidation and the discovery of several new concepts in ALD pathogenesis have raised our understanding on the complex mechanisms and the potential in developing the new strategies for therapeutic benefits. In this review, we provide the most up-to-date information on the basic molecular mechanisms focusing on the role of fat-specific protein 27/CIDEC in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute of Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
27
|
Miyata S, Kurachi M, Okano Y, Sakurai N, Kobayashi A, Harada K, Yamagata H, Matsuo K, Takahashi K, Narita K, Fukuda M, Ishizaki Y, Mikuni M. Blood Transcriptomic Markers in Patients with Late-Onset Major Depressive Disorder. PLoS One 2016; 11:e0150262. [PMID: 26926397 PMCID: PMC4771207 DOI: 10.1371/journal.pone.0150262] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023] Open
Abstract
We investigated transcriptomic markers of late-onset major depressive disorder (LOD; onset age of first depressive episode ≥ 50 years) from the genes expressed in blood cells and identified state-dependent transcriptomic markers in these patients. We assessed the genes expressed in blood cells by microarray and found that the expression levels of 3,066 probes were state-dependently changed in the blood cells of patients with LOD. To select potential candidates from those probes, we assessed the genes expressed in the blood of an animal model of depression, ovariectomized female mice exposed to chronic ultra-mild stress, by microarray and cross-matched the differentially expressed genes between the patients and the model mice. We identified 14 differentially expressed genes that were similarly changed in both patients and the model mice. By assessing statistical significance using real-time quantitative PCR (RT-qPCR), the following 4 genes were selected as candidates: cell death-inducing DFFA-like effector c (CIDEC), ribonuclease 1 (RNASE1), solute carrier family 36 member-1 (SLC36A1), and serine/threonine/tyrosine interacting-like 1 (STYXL1). The discriminating ability of these 4 candidate genes was evaluated in an independent cohort that was validated. Among them, CIDEC showed the greatest discriminant validity (sensitivity 91.3% and specificity 87.5%). Thus, these 4 biomarkers should be helpful for properly diagnosing LOD.
Collapse
Affiliation(s)
- Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshiko Okano
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Sakurai
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Keisuke Takahashi
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kosuke Narita
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
28
|
Hepatoprotective effect of herb formula KIOM2012H against nonalcoholic fatty liver disease. Nutrients 2015; 7:2440-55. [PMID: 25849950 PMCID: PMC4425153 DOI: 10.3390/nu7042440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic ailment with a rapidly increasing incidence due to dietary hypernutrition and subsequent obesity. Fatty liver disease can lead to steatohepatitis, fibrosis, cirrhosis, and even cancer, which is associated with various complications. Discovering effective natural materials and herbs can provide alternative and complementary medical treatments to current chemical pharmaceuticals. To develop an effective natural agent for NAFLD, we formulated a combination of four herb mixtures (KIOM2012H) and observed lipid-lowering efficacy. The inhibitory effects of KIOM2012H on free fatty acid-induced lipid accumulation, triglyceride contents, and gene expressions were analyzed in HepG2 cells. Using high fat diet-fed mice, body weight changes, gross liver appearances, hepatic triglyceride contents, and gene expressions were evaluated. KIOM2012H dose-dependently inhibited lipid accumulation and gene expressions involved in lipogenesis and related regulators. Experimental animals also showed a decrease in body weight changes and lipid-associated physiological parameters. This study shows that KIOM2012H has an alleviating effect on fatty acid and lipid accumulation, and therefore can be applied for development of new therapeutic pharmaceuticals for treatment of NAFLD using natural products and herbs.
Collapse
|
29
|
|
30
|
Abstract
Fat-specific protein 27 (FSP27) plays a pivotal role in controlling the formation of large lipid droplet and energy metabolism. The cellular levels of FSP27 are tightly regulated through the proteasomal ubiquitin-mediated degradation. However, the upstream signals that trigger FSP27 degradation and the underlying mechanism(s) have yet to be identified. Here we show that AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide) or phenformin induced the ubiquitination of FSP27 and promoted its degradation in 3T3-L1 adipocytes. The levels of FSP27 protein could be maintained by either knocking down AMPKα1 or blocking proteasomal pathway. Moreover, AICAR treatment induced multilocularization of LDs in 3T3-L1 adipocytes, reminiscent of the morphological changes in cells depleted of FSP27. Furthermore, mass spectrometry-based proteomic analysis identified heat shock cognate 70 (HSC70) as a novel binding protein of FSP27. The specific interaction was confirmed by co-immunoprecipitation of both ectopically expressed and endogenous proteins. Importantly, knockdown of HSC70 by small interference RNA resulted in increased half-life of FSP27 in cells treated with a protein synthesis inhibitor cycloheximide (CHX) or AICAR. However, silencing of the E3 ubiquitin ligase CHIP (COOH terminus of HSC70-interacting protein) failed to alter the stability of FSP27 protein under both conditions. Taken together, our data indicate that AMPK is a negative regulator of FSP27 stability through the proteasomal ubiquitin-dependent protein catabolic process. Promotion of FSP27 degradation may be an important factor responsible for the beneficial effect of AMPK activators on energy metabolism.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, HEAL Program, and
| | - Bradlee L Heckmann
- Department of Biochemistry and Molecular Biology, HEAL Program, and Mayo Graduate School, Rochester, Minnesota
| | - Xitao Xie
- Department of Biochemistry and Molecular Biology, HEAL Program, and
| | | | - Jun Liu
- Department of Biochemistry and Molecular Biology, HEAL Program, and Division of Endocrinology, Mayo Clinic in Arizona, Scottsdale, Arizona; and
| |
Collapse
|
31
|
Aibara D, Matsusue K, Matsuo K, Takiguchi S, Gonzalez FJ, Yamano S. Expression of hepatic fat-specific protein 27 depends on the specific etiology of fatty liver. Biol Pharm Bull 2014; 36:1766-72. [PMID: 24189421 DOI: 10.1248/bpb.b13-00351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fat-specific protein 27 gene (FSP27), isolated by screening for genes specifically expressed in fully differentiated mouse adipocytes, belongs to the cell death-inducing DNA fragmentation factor, alpha subunit-like effector family. FSP27 is induced in not only adipose tissue but also the liver of ob/ob mice, and it promotes the development of fatty liver. The FSP27 gene is expressed in a fatty liver-specific manner and is not detected in the normal mouse liver. FSP27 expression is directly regulated by the induction of the hepatic peroxisome proliferator-activated receptor γ (PPARγ) in ob/ob fatty liver. In the present study, expression of hepatic FSP27 mRNA was determined in non-genetic fatty liver models. The FSP27 gene was markedly induced in the high-fat- or methionine- and choline-deficient (MCD) diet-induced fatty liver, but it was not elevated in alcohol-induced fatty liver. Interestingly, the induction of FSP27 mRNA due to the MCD diet was independent of PPARγ levels and completely absent in the liver from PPARγ-null mice. These results suggest that FSP27 mRNA expression in the liver depends on the etiology of fatty liver.
Collapse
|
32
|
Lee SM, Park HH. Crystallization and preliminary X-ray crystallographic studies of the CIDE-N domain of CIDE-3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1260-3. [PMID: 24192364 DOI: 10.1107/s1744309113026444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022]
Abstract
The CIDE-3 protein plays a critical role in lipid metabolism by its involvement in lipid droplet formation. CIDE-3 contains two conserved cell-death-inducing DFF45-like effector (CIDE) domains (CIDE-N at the N-terminus and CIDE-C at the C-terminus) of ∼90 amino-acid residues that are involved in protein-protein interaction. In this study, the CIDE-N domain of CIDE-3 was purified and crystallized by the hanging-drop vapour-diffusion method and X-ray diffraction data were collected from the crystals to a resolution of 2.0 Å. The crystals were found to belong to space group P3(2), with unit-cell parameters a = b = 63.35, c = 37.60 Å, γ = 120°.
Collapse
Affiliation(s)
- Seung Mi Lee
- School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
33
|
Lee SM, Jang TH, Park HH. Molecular basis for homo-dimerization of the CIDE domain revealed by the crystal structure of the CIDE-N domain of FSP27. Biochem Biophys Res Commun 2013; 439:564-9. [PMID: 24025675 DOI: 10.1016/j.bbrc.2013.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/12/2022]
Abstract
FSP27 (CIDE-3 in humans) plays critical roles in lipid metabolism and apoptosis and is known to be involved in regulation of lipid droplet (LD) size and lipid storage and apoptotic DNA fragmentation. Given that CIDE-containing proteins including FSP27 are associated with many human diseases including cancer, aging, diabetes, and obesity, studies of FSP27 and other CIDE-containing proteins are of great biological importance. As a first step toward elucidating the molecular mechanisms of FSP27-mediated lipid droplet growth and apoptosis, we report the crystal structure of the CIDE-N domain of FSP27 at a resolution of 2.0 Å. The structure revealed a possible biologically important homo-dimeric interface similar to that formed by the hetero-dimeric complex, CAD/ICAD. Comparison with other structural homologues revealed that the PB1 domain of BEM1P, ubiquitin-like domain of BAG6 and ubiquitin are structurally similar proteins. Our homo-dimeric structure of the CIDE-N domain of FSP27 will provide important information that will enable better understanding of the function of FSP27.
Collapse
Affiliation(s)
- Seung Mi Lee
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan, South Korea
| | | | | |
Collapse
|
34
|
Liu G, Li X, Wang T, Zhou Z, Song J. The Relationship Between the Expression of CIDE-B and the Neuronal Apoptosis Following Cerebral Ischemia Reperfusion in Rats. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.379.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Guth LM, Ludlow AT, Witkowski S, Marshall MR, Lima LCJ, Venezia AC, Xiao T, Ting Lee ML, Spangenburg EE, Roth SM. Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mouse offspring. Exp Physiol 2013; 98:1469-84. [PMID: 23771910 DOI: 10.1113/expphysiol.2012.070300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early life and preconception environmental stimuli can affect adult health-related phenotypes. Exercise training is an environmental stimulus affecting many systems throughout the body and appears to alter offspring phenotypes. The aim of this study was to examine the influence of parental exercise training, or 'exercise ancestry', on morphological and metabolic phenotypes in two generations of mouse offspring. The F0 C57BL/6 mice were exposed to voluntary exercise (EX) or sedentary lifestyle (SED) and bred with like-exposed mates to produce an F1 generation. The F1 mice of both ancestries were sedentary and killed at 8 weeks or bred with littermates to produce an F2 generation, which was also sedentary and killed at 8 weeks. Small but broad generation- and sex-specific effects of exercise ancestry were observed for body mass, fat and muscle mass, serum insulin, glucose tolerance and muscle gene expression. The F1 EX females were lighter than F1 SED females and had lower absolute tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females compared with F1 SED females. The F2 EX females had impaired glucose tolerance compared with F2 SED females. Analysis of skeletal muscle mRNA levels revealed several generation- and sex-specific differences in mRNA levels for multiple genes, especially those related to metabolic genes (e.g. F1 EX males had lower mRNA levels of Hk2, Ppard, Ppargc1a, Adipoq and Scd1 than F1 SED males). These results provide preliminary evidence that parental exercise training can influence health-related phenotypes in mouse offspring.
Collapse
Affiliation(s)
- Lisa M Guth
- S. M. Roth: Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Song Y, Ahn J, Suh Y, Davis ME, Lee K. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model. PLoS One 2013; 8:e64483. [PMID: 23741331 PMCID: PMC3669334 DOI: 10.1371/journal.pone.0064483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael E. Davis
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Giaretti W, Pentenero M, Gandolfo S, Castagnola P. Chromosomal instability, aneuploidy and routine high-resolution DNA content analysis in oral cancer risk evaluation. Future Oncol 2013; 8:1257-71. [PMID: 23130927 DOI: 10.2217/fon.12.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carcinogen exposure of the oral cavity is thought to create an extensive 'field cancerization'. According to this model, a very early precursor of oral cancer is a patch of normal-appearing mucosa in which stem cells share genetic/genomic aberrations. These precancerous fields then become clinically visible as white and red lesions (leuko- and erythro-plakias), which represent the vast majority of the oral potentially malignant disorders. This review focuses on aneuploidy (where it is from) and on biomarkers associated with DNA aneuploidy in oral mucosa and oral potentially malignant disorders, as detected by DNA image and flow cytometry. Data from the literature strongly support the association of DNA ploidy with dysplasia. However, work is still needed to prove the clinical value of DNA ploidy in large-scale prospective studies. Using high-resolution DNA flow cytometry with fresh/frozen material and the degree of DNA aneuploidy (DNA Index) might improve the prediction of risk of oral cancer development.
Collapse
Affiliation(s)
- Walter Giaretti
- Department of Diagnostic Oncology, Biophysics & Cytometry Section, IRCCS A.O.U. San Martino-IST, Largo Rosanna Benzi n.10, 16132, Genoa, Italy.
| | | | | | | |
Collapse
|
38
|
Teles M, Boltaña S, Reyes-López F, Santos MA, Mackenzie S, Tort L. Effects of chronic cortisol administration on global expression of GR and the liver transcriptome in Sparus aurata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:104-114. [PMID: 22777624 DOI: 10.1007/s10126-012-9467-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
The present work was designed to assess the effects of artificially increased high plasma cortisol levels induced by slow-release cortisol implants on the mRNA abundance of the glucocorticoid receptor (GR) in different organs of Sparus aurata (Gilthead sea bream), as well as to evaluate global transcriptional changes in the liver, using the Aquagenomics S. aurata oligo-nucleotide microarray technology. For that purpose, groups of fish were intraperitoneally injected with implants containing two different concentrations of cortisol (50 or 200 μg/g body weight). Blood and organs were sampled after 7 and 14 days of cortisol implantation. Only fish with 200 μg/g implants exhibited a significant rise in plasma cortisol. Thus, we evaluated the expression of the GR in different organs in these fish 7 and 14 days post-implantation. GR mRNA abundance was upregulated in head kidney and heart of fish at both sampling times. In liver and muscle, GR mRNA abundance was upregulated after 14 days, whereas in gills, the GR mRNA transcript was upregulated earlier, at day 7. These results suggest that increased plasma cortisol induced by a slow-release implant of cortisol mimics the overall effects of stress and affects the expression of GR mRNA in a time- and organ-specific manner. Data obtained with the Aquagenomics S. aurata oligo-nucleotide microarray allowed the identification of a total of 491 cortisol-responsive transcripts and highlight the strong intensity of transcriptional modulation in liver of fish implanted with cortisol after 7 days, in contrast to that observed at day 14. Transcriptional remodeling highlighted a significant activity in carbohydrate metabolism mainly in the gluconeogenic pathway linked to downregulation of inflammatory and immune response processes in implanted fish.
Collapse
Affiliation(s)
- Mariana Teles
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Wang X, Zhang B, Xu D, Gao J, Wang L, Wang Z, Shan Y, Yu X. Purification, crystallization and preliminary X-ray crystallographic analysis of the CIDE-N domain of Fsp27. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012. [PMID: 23192040 DOI: 10.1107/s1744309112043989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fsp27, a member of the CIDE protein family which is selectively expressed in adipocytes, has emerged as a novel regulator for unilocular lipid droplet (LD) formation, lipid metabolism, differentiation of adipocytes and insulin sensitivity. An LD is a subcellular compartment that is used by adipocytes for the efficient storage of fats. The CIDE-N domain of Fsp27 functions as a recruitment platform that induces the correct configuration of the Fsp27 CIDE-C domain to facilitate LD fusion. This study reports the high-yield expression of the mouse Fsp27 CIDE-N domain in Escherichia coli; a two-step purification protocol with high efficiency was established and crystallographic analysis was performed. The purity of the recombinant Fsp27 was >95% as assessed by SDS-PAGE. Crystals were obtained at 291 K using 28% polyethylene glycol 4000 as a precipitant. Diffraction data were collected to 1.92 Å resolution and the crystal belonged to space group P6(5), with unit-cell parameters a=b=63.3, c=37.4 Å, α=β=90, γ=120°. The components of the crystal were identified by ion-trap LC/MS/MS spectrometric analysis. The structure has been solved by molecular replacement and refinement is in progress.
Collapse
Affiliation(s)
- Xiaodan Wang
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Matsusue K. A Novel Mechanism for Hepatic Lipid Accumulation: A Physiological Role for Hepatic PPARγ-fsp27 Signal. YAKUGAKU ZASSHI 2012; 132:823-9. [DOI: 10.1248/yakushi.132.823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Timmerhaus G, Krasnov A, Takle H, Afanasyev S, Nilsen P, Rode M, Jørgensen SM. Comparison of Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS). BMC Genomics 2012; 13:205. [PMID: 22646522 PMCID: PMC3443006 DOI: 10.1186/1471-2164-13-205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiomyopathy syndrome (CMS) is a severe disease of Atlantic salmon (Salmo salar L.) associated with significant economic losses in the aquaculture industry. CMS is diagnosed with a severe inflammation and degradation of myocardial tissue caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV), with structural similarities to the Totiviridae family. In the present study we characterized individual host responses and genomic determinants of different disease outcomes. RESULTS From time course studies of experimentally infected Atlantic salmon post-smolts, fish exhibited different outcomes of infection and disease. High responder (HR) fish were characterized with sustained and increased viral load and pathology in heart tissue. Low responder (LR) fish showed declining viral load from 6-10 weeks post infection (wpi) and absence of pathology. Global gene expression (SIQ2.0 oligonucleotide microarray) in HR and LR hearts during infection was compared, in order to characterize differences in the host response and to identify genes with expression patterns that could explain or predict the different outcomes of disease. Virus-responsive genes involved in early antiviral and innate immune responses were upregulated equally in LR and HR at the first stage (2-4 wpi), reflecting the initial increase in virus replication. Repression of heart muscle development was identified by gene ontology enrichment analyses, indicating the early onset of pathology. By six weeks both responder groups had comparable viral load, while increased pathology was observed in HR fish. This was reflected by induced expression of genes implicated in apoptosis and cell death mechanisms, presumably related to lymphocyte regulation and survival. In contrast, LR fish showed earlier activation of NK cell-mediated cytotoxicity and NOD-like receptor signaling pathways. At the late stage of infection, increased pathology and viral load in HR was accompanied by a broad activation of genes involved in adaptive immunity and particularly T cell responses, probably reflecting the increased infiltration and homing of virus-specific T cells to the infected heart. This was in sharp contrast to LR fish, where recovery and reduced viral load was associated with a significantly reduced transcription of adaptive immunity genes and activation of genes involved in energy metabolism. CONCLUSIONS In contrast to LR, a stronger and sustained expression of genes involved in adaptive immune responses in heart tissue of HR at the late stage of disease probably reflected the increased lymphocyte infiltration and pathological outcome. In addition to controlled adaptive immunity and activation of genes involved in cardiac energy metabolism in LR at the late stage, recovery of this group could also be related to an earlier activation of NOD-like receptor signaling and NK cell-mediated cytotoxicity pathways.
Collapse
|
42
|
Xia Y, Tang L, Yao L, Wan B, Yang X, Yu L. Literature and patent analysis of the cloning and identification of human functional genes in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:268-282. [PMID: 22527523 DOI: 10.1007/s11427-012-4299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Collapse
Affiliation(s)
- Yan Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
43
|
Li H, Song Y, Zhang LJ, Li FF, Gu Y, Zhang J, Dong WP, Xue L, Zhang LY, Liu F, Wang J, Jiang LN, Ye J, Li Q. Cell death-inducing DFF45-like effector b (Cideb) is present in pancreatic beta-cells and involved in palmitate induced beta-cell apoptosis. Diabetes Metab Res Rev 2012; 28:145-55. [PMID: 21948526 DOI: 10.1002/dmrr.1295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Excessive accumulation of long-chain fatty acids in the pancreatic islets is associated with beta cell dysfunction and ultimately contributes to the pathogenesis of type 2 diabetes. It has been well proved that the cell death-inducing DFF45-like effector b (Cideb) is involved in cell apoptosis and lipid metabolism. However, the expression and function of Cideb in endocrine pancreas remain to be investigated. METHODS By using reverse transcript polymerase chain reaction, immunohistochemistry and Western blot, we observed the expression of Cideb in pancreas tissues and clonal beta-cell lines. The physiological role of Cideb was examined under the free fatty acid (FFA) administration and Cideb ribonucleic acid interference, and further analysis on apoptosis was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling assay and caspase-3 activity. Nile red staining and quantitative evaluation of triglyceride were used to detect the lipid accumulation. The changes in esterification of FFA were traced by radiolabelled palmitate. RESULTS Cideb was abundantly expressed in pancreas and mainly localized in beta cells. FFAs, especially palmitate, induced an obvious increase of Cideb expression in beta cell lines. Adenoviral-mediated overexpression of Cideb increased the apoptosis, whereas ribonucleic acid interference-based Cideb depletion in beta-TC3 cells had no effect on apoptosis in normal condition. Palmitate supplementation led to beta cell lipoapoptosis, and Cideb silencing exacerbated the apoptosis induced by palmitate, reduced intracellular triglyceride content and aggravated FFA overload in beta cells. CONCLUSIONS The present results suggest that increased Cideb expression upon palmitate exposure may be involved in beta cell lipoapoptosis through its influence on conversion of FFAs to lipid esters in lipid droplets.
Collapse
Affiliation(s)
- H Li
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Omae N, Ito M, Hase S, Nagasawa M, Ishiyama J, Ide T, Murakami K. Suppression of FoxO1/cell death-inducing DNA fragmentation factor α-like effector A (Cidea) axis protects mouse β-cells against palmitic acid-induced apoptosis. Mol Cell Endocrinol 2012; 348:297-304. [PMID: 21945815 DOI: 10.1016/j.mce.2011.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 12/18/2022]
Abstract
Chronic exposure to free fatty acid (FFA) induces pancreatic β-cell apoptosis, which may contribute to the development of type 2 diabetes. The cell death-inducing DNA fragmentation factor α-like effector (CIDE) family is involved in type 2 diabetes with obesity. In the present study, we found that only apoptosis-inducing FFA upregulated Cidea, and both apoptosis and Cidea were upregulated most strongly by palmitic acid, suggesting that the expression of Cidea is positively correlated with apoptosis. In contrast, there were weak correlations between Cideb and Cidec expression, and apoptosis. Furthermore, suppression of Cidea inhibited palmitic acid-induced apoptosis. Finally, suppression of FoxO1 inhibited palmitic acid-induced Cidea upregulation and apoptosis. These results indicate that Cidea is a critical regulator of FFA-induced apoptosis as a novel downstream target for FoxO1 in β-cells, suggesting that suppression of Cidea is a potentially useful therapeutic approach for protecting against β-cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Naoki Omae
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1 Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Swist E, Chen Q, Qiao C, Caldwell D, Gruber H, Scoggan KA. Excess dietary iodine differentially affects thyroid gene expression in diabetes, thyroiditis-prone versus -resistant BioBreeding (BB) rats. Mol Nutr Food Res 2011; 55:1875-86. [PMID: 22058052 DOI: 10.1002/mnfr.201100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 12/11/2022]
Abstract
SCOPE To identify genes involved in the susceptibility to iodine-induced autoimmune thyroiditis. METHODS AND RESULTS Diabetes, thyroiditis-prone (BBdp) and -resistant (BBc) rats were fed either a control or a high-iodine diet for 9 wk. Excess iodine intake increased the incidence of insulitis and thyroiditis in BBdp rats. BBdp rats fed the high-iodine diet that did not develop thyroiditis had higher mRNA levels of Fabp4, Cidec, perilipin, Pparγ and Slc36a2 than BBdp rats fed the control diet and BBc rats fed either the control or the high-iodine diet. BBdp rats fed the high-iodine diet that did develop thyroiditis had higher mRNA levels of Cidec, Icam1, Ifitm1, and Slpi than BBdp rats fed the control diet and BBc rats fed either the control or the high-iodine diet. BBdp rats that did develop thyroiditis had lower mRNA levels of Fabp4, perilipin and Slc36a2 but higher mRNA levels of Icam1, Ifitm1 and Slpi than BBdp that did not develop thyroiditis. Excess dietary iodine also increased the protein levels of Fabp4, Cidec and perilipin in BBdp rats. CONCLUSION Differential expression of thyroid genes in BBdp versus BBc rats caused by excess dietary iodine may be implicated in autoimmune thyroiditis and insulitis pathogenesis.
Collapse
Affiliation(s)
- Eleonora Swist
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Karbowska J, Kochan Z. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue. Nutrition 2011; 28:294-9. [PMID: 21996045 DOI: 10.1016/j.nut.2011.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/08/2011] [Accepted: 06/28/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. METHODS The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. RESULTS Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. CONCLUSION Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27.
Collapse
Affiliation(s)
- Joanna Karbowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| | | |
Collapse
|
47
|
Tang X, Xing Z, Tang H, Liang L, Zhao M. Human cell-death-inducing DFF45-like effector C induces apoptosis via caspase-8. Acta Biochim Biophys Sin (Shanghai) 2011; 43:779-86. [PMID: 21865223 DOI: 10.1093/abbs/gmr073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector C (CIDEC) is a potent apoptotic inducer. Previous studies have indicated that the Fat-specific protein 27 (Fsp27), a mouse homolog of CIDEC, induces apoptosis via caspase-3, -7, and -9 and triggers the release of cytochrome c from mitochondria, which implies that the mitochondrial pathway is involved in Fsp27-induced apoptosis. In the current study, we found that CIDEC-induced apoptosis was mediated by caspase-8. The caspase inhibitor assay showed that CIDEC-induced apoptosis was dramatically reduced in the presence of the general caspase inhibitor, the caspase-3 inhibitor, and the caspase-8 inhibitor, whereas the caspase-9 inhibitor only weakly inhibited CIDEC-induced apoptosis. These results confirmed that the activation of caspase-3 and caspase-8 were involved in CIDEC-induced apoptosis. Moreover, in caspase-3- or caspase-8-deficient cells, CIDEC-induced apoptosis were dramatically decreased, which demonstrated that CIDEC-induced apoptosis might require the activation of caspase-3 and caspase-8. Because caspase-8 in general is a key effecter of death-receptor pathway and activated by Fas-Associated protein with Death Domain (FADD), we examined whether FADD was involved in CIDEC-induced apoptosis. Our results demonstrated that CIDEC-induced apoptosis was independent of FADD, suggesting that CIDEC-induced apoptosis might be in a death-receptor-independent, caspase-8-dependent manner. It was also found that the region of amino acid 168-200 in carboxyl domain of CIDEC was critical for its crucial pro-apoptotic function.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
48
|
Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6:e25125. [PMID: 21966433 PMCID: PMC3180376 DOI: 10.1371/journal.pone.0025125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
Collapse
|
49
|
Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 2011; 67:629-36. [DOI: 10.1007/s13105-011-0110-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/31/2011] [Indexed: 12/28/2022]
|
50
|
Ito M, Nagasawa M, Omae N, Ide T, Akasaka Y, Murakami K. Differential regulation of CIDEA and CIDEC expression by insulin via Akt1/2- and JNK2-dependent pathways in human adipocytes. J Lipid Res 2011; 52:1450-60. [PMID: 21636835 DOI: 10.1194/jlr.m012427] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.
Collapse
Affiliation(s)
- Minoru Ito
- Discovery Research Laboratories, Kyorin Pharmaceutical Co. Ltd., Tochigi 329-0114, Japan
| | | | | | | | | | | |
Collapse
|