1
|
Llansola M, Arenas YM, Sancho-Alonso M, Mincheva G, Palomares-Rodriguez A, Doverskog M, Izquierdo-Altarejos P, Felipo V. Neuroinflammation alters GABAergic neurotransmission in hyperammonemia and hepatic encephalopathy, leading to motor incoordination. Mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1358323. [PMID: 38560359 PMCID: PMC10978603 DOI: 10.3389/fphar.2024.1358323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Enhanced GABAergic neurotransmission contributes to impairment of motor coordination and gait and of cognitive function in different pathologies, including hyperammonemia and hepatic encephalopathy. Neuroinflammation is a main contributor to enhancement of GABAergic neurotransmission through increased activation of different pathways. For example, enhanced activation of the TNFα-TNFR1-NF-κB-glutaminase-GAT3 pathway and the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway in cerebellum of hyperammonemic rats enhances GABAergic neurotransmission. This is mediated by mechanisms affecting GABA synthesizing enzymes GAD67 and GAD65, total and extracellular GABA levels, membrane expression of GABAA receptor subunits, of GABA transporters GAT1 and GAT three and of chloride co-transporters. Reducing neuroinflammation reverses these changes, normalizes GABAergic neurotransmission and restores motor coordination. There is an interplay between GABAergic neurotransmission and neuroinflammation, which modulate each other and altogether modulate motor coordination and cognitive function. In this way, neuroinflammation may be also reduced by reducing GABAergic neurotransmission, which may also improve cognitive and motor function in pathologies associated to neuroinflammation and enhanced GABAergic neurotransmission such as hyperammonemia, hepatic encephalopathy or Parkinson's disease. This provides therapeutic targets that may be modulated to improve cognitive and motor function and other alterations such as fatigue in a wide range of pathologies. As a proof of concept it has been shown that antagonists of GABAA receptors such as bicuculline reduces neuroinflammation and improves cognitive and motor function impairment in rat models of hyperammonemia and hepatic encephalopathy. Antagonists of GABAA receptors are not ideal therapeutic tools because they can induce secondary effects. As a more effective treatment to reduce GABAergic neurotransmission new compounds modulating it by other mechanisms are being developed. Golexanolone reduces GABAergic neurotransmission by reducing the potentiation of GABAA receptor activation by neurosteroids such as allopregnanolone. Golexanolone reduces neuroinflammation and GABAergic neurotransmission in animal models of hyperammonemia, hepatic encephalopathy and cholestasis and this is associated with improvement of fatigue, cognitive impairment and motor incoordination. This type of compounds may be useful therapeutic tools to improve cognitive and motor function in different pathologies associated with neuroinflammation and increased GABAergic neurotransmission.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
2
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Pidoplichko VI, Figueiredo TH, Braga MFM, Pan H, Marini AM. Alpha-linolenic acid enhances the facilitation of GABAergic neurotransmission in the BLA and CA1. Exp Biol Med (Maywood) 2023; 248:596-604. [PMID: 37208920 PMCID: PMC10350796 DOI: 10.1177/15353702231165010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperexcitability is a major mechanism implicated in several neuropsychiatric disorders, such as organophosphate-induced status epilepticus (SE), primary epilepsy, stroke, spinal cord injury, traumatic brain injury, schizophrenia, and autism spectrum disorders. Underlying mechanisms are diverse, but a functional impairment and loss of GABAergic inhibitory neurons are common features in many of these disorders. While novel therapies abound to correct for the loss of GABAergic inhibitory neurons, it has been difficult at best to improve the activities of daily living for the majority of patients. Alpha-linolenic acid (ALA) is an essential omega-3 polyunsaturated fatty acid found in plants. ALA exerts pleiotropic effects in the brain that attenuate injury in chronic and acute brain disease models. However, the effect of ALA on GABAergic neurotransmission in hyperexcitable brain regions involved in neuropsychiatric disorders, such as the basolateral amygdala (BLA) and CA1 subfield of the hippocampus, is unknown. Administration of a single dose of ALA (1500 nmol/kg) subcutaneously increased the charge transfer of inhibitory postsynaptic potential currents mediated by GABAA receptors in pyramidal neurons by 52% in the BLA and by 92% in the CA1 compared to vehicle animals a day later. Similar results were obtained in pyramidal neurons from the BLA and CA1 when ALA was bath-applied in slices from naïve animals. Importantly, pretreatment with the high-affinity, selective TrkB inhibitor, k252, completely abolished the ALA-induced increase in GABAergic neurotransmission in the BLA and CA1, suggesting a brain-derived neurotrophic factor (BDNF)-mediated mechanism. Addition of mature BDNF (20 ng/mL) significantly increased GABAA receptor inhibitory activity in the BLA and CA1 pyramidal neurons similar to the results obtained with ALA. ALA may be an effective treatment for neuropsychiatric disorders where hyperexcitability is a major feature.
Collapse
Affiliation(s)
- Volodymir I Pidoplichko
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria FM Braga
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ann M Marini
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Ghanbarzehi A, Sepehrinezhad A, Hashemi N, Karimi M, Shahbazi A. Disclosing common biological signatures and predicting new therapeutic targets in schizophrenia and obsessive-compulsive disorder by integrated bioinformatics analysis. BMC Psychiatry 2023; 23:40. [PMID: 36641432 PMCID: PMC9840830 DOI: 10.1186/s12888-023-04543-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness mainly characterized by a number of psychiatric symptoms. Obsessive-compulsive disorder (OCD) is a long-lasting and devastating mental disorder. SCZ has high co-occurrence with OCD resulting in the emergence of a concept entitled "schizo-obsessive disorder" as a new specific clinical entity with more severe psychiatric symptoms. Many studies have been done on SCZ and OCD, but the common pathogenesis between them is not clear yet. Therefore, this study aimed to identify shared genetic basis, potential biomarkers and therapeutic targets between these two disorders. Gene sets were extracted from the Geneweaver and Harmonizome databases for each disorder. Interestingly, the combination of both sets revealed 89 common genes between SCZ and OCD, the most important of which were BDNF, SLC6A4, GAD1, HTR2A, GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4. Then, we conducted a comprehensive bioinformatics analysis of the common genes. Receptor activity as the molecular functions, neuron projection and synapse as the cellular components as well as serotonergic synapse, dopaminergic synapse and alcoholism as the pathways were the most significant commonalities in enrichment analyses. In addition, transcription factor (TFs) analysis predicted significant TFs such as HMGA1, MAPK14, HINFP and TEAD2. Hsa-miR-3121-3p and hsa-miR-495-3p were the most important microRNAs (miRNAs) associated with both disorders. Finally, our study predicted 19 existing drugs (importantly, Haloperidol, Fluoxetine and Melatonin) that may have a potential influence on this co-occurrence. To summarize, this study may help us to better understand and handle the co-occurrence of SCZ and OCD by identifying potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abdolhakim Ghanbarzehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Hashemi
- Department of Biotechnology, Bangalore University, Bangalore, Karnataka, India
| | - Minoo Karimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Piromalli Girado D, Miranda M, Giachero M, Weisstaub N, Bekinschtein P. Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Front Syst Neurosci 2023; 17:1043664. [PMID: 36911226 PMCID: PMC9995888 DOI: 10.3389/fnsys.2023.1043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.
Collapse
Affiliation(s)
- Dinka Piromalli Girado
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Giachero
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Noelia Weisstaub
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| |
Collapse
|
6
|
Converging Evidence Points to BDNF as Biomarker of Depressive Symptoms in Schizophrenia-Spectrum Disorders. Brain Sci 2022; 12:brainsci12121666. [PMID: 36552127 PMCID: PMC9775399 DOI: 10.3390/brainsci12121666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key modulator of neuroplasticity and has an important role in determining the susceptibility to severe psychiatric disorder with a significant neurodevelopmental component such as major psychoses. Indeed, a potential association between BDNF serum levels and schizophrenia (SCZ) and schizoaffective disorder (SAD) has been tested in diverse studies and a considerable amount of them found reduced BDNF levels in these disorders. Here, we aimed at testing the association of BDNF serum levels with several demographic, clinical, and psychometric measures in 105 patients with SCZ and SAD, assessing the moderating effect of genetic variants within the BDNF gene. We also verified whether peripheral BDNF levels differed between patients with SCZ and SAD. Our findings revealed that BDNF serum levels are significantly lower in patients affected by SCZ and SAD presenting more severe depressive symptomatology. This finding awaits replication in future independent studies and points to BDNF as a possible prognostic indicator in major psychoses.
Collapse
|
7
|
Tipton AE, Russek SJ. Regulation of Inhibitory Signaling at the Receptor and Cellular Level; Advances in Our Understanding of GABAergic Neurotransmission and the Mechanisms by Which It Is Disrupted in Epilepsy. Front Synaptic Neurosci 2022; 14:914374. [PMID: 35874848 PMCID: PMC9302637 DOI: 10.3389/fnsyn.2022.914374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory signaling in the brain organizes the neural circuits that orchestrate how living creatures interact with the world around them and how they build representations of objects and ideas. Without tight control at multiple points of cellular engagement, the brain’s inhibitory systems would run down and the ability to extract meaningful information from excitatory events would be lost leaving behind a system vulnerable to seizures and to cognitive decline. In this review, we will cover many of the salient features that have emerged regarding the dynamic regulation of inhibitory signaling seen through the lens of cell biology with an emphasis on the major building blocks, the ligand-gated ion channel receptors that are the first transduction point when the neurotransmitter GABA is released into the synapse. Epilepsy association will be used to indicate importance of key proteins and their pathways to brain function and to introduce novel areas for therapeutic intervention.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
| | - Shelley J. Russek
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
- *Correspondence: Shelley J. Russek,
| |
Collapse
|
8
|
Thirouin ZS, Figueiredo M, Hleihil M, Gill R, Bosshard G, McKinney RA, Tyagarajan SK. Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. J Biol Chem 2022; 298:101840. [PMID: 35307349 PMCID: PMC9019257 DOI: 10.1016/j.jbc.2022.101840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen–glucose deprivation as an in vitro model for ischemia, we show that BDNF–tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, Chang PKY, Wu PY, Shi R, Barker PA, Brown SA, Paolicelli RC, Klohs J, McKinney RA, Tyagarajan SK. Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. SCIENCE ADVANCES 2022; 8:eabj0112. [PMID: 35245123 PMCID: PMC8896802 DOI: 10.1126/sciadv.abj0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.
Collapse
Affiliation(s)
- Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Zahra S. Thirouin
- Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Markus Vaas
- Clinical Trials Center, University Hospital Zurich, Rämistrasse 100/MOU2, CH 8044 Zürich, Switzerland
| | - Suchita Sampath
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Fanny Martineau
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Tania J. J. Sudharshan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Philip K.-Y. Chang
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Roy Shi
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Philip A. Barker
- Department of Biology, University of British Columbia, 3187 University Way, ASC 413, Kelowna, BC V1V 1V7, Canada
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Rosa C. Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, CH 8093 Zürich, Switzerland
| | - Rebecca Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| |
Collapse
|
10
|
Zhou Y, Cheng Y, Li Y, Ma J, Wu Z, Chen Y, Mei J, Chen M. Soluble β-amyloid impaired the GABA inhibition by mediating KCC2 in early APP/PS1 mice. Biosci Trends 2021; 15:330-340. [PMID: 34526443 DOI: 10.5582/bst.2021.01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, which has become the leading cause of dementia cases globally. Synaptic failure is an early pathological feature of AD. However, the cause of synaptic failure in AD, especially the GABAergic synaptic activity remains unclear. Extensive evidence indicates that the presence of soluble amyloid-β is an early pathological feature in AD, which triggers synaptic dysfunction and cognitive decline. Our recent study explored the relation of GABAergic transmission and soluble Aβ in early APP/PS1 mice. Firstly, we found soluble Aβ42 levels were significantly increased in serum, hippocampus and prefrontal cortex in 3-4 months APP/PS1 mice, which was much earlier than Aβ plagues formation. In addition, we found TNF-α and BDNF expression levels were increased, while KCC2 and GABAAR expression were decreased in 3-4 months APP/PS1 hippocampus. When we treated 3-4 months APP/PS1 mice with a potent γ-secretase inhibitor, LY411575, which can reduce the soluble Aβ42 levels, the TNF-α and BDNF protein levels were decreased, while KCC2 and GABAAR levels were increased. In conclusion, our study suggested soluble Aβ may impaired the GABA inhibition by mediating KCC2 levels in early APP/PS1 mice. KCC2 may be served as a potential biomarker for AD.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yujie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiyao Ma
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Zhihan Wu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Yuenan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Kim HY, Suh PG, Kim JI. The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. Int J Mol Sci 2021; 22:ijms22063149. [PMID: 33808762 PMCID: PMC8003358 DOI: 10.3390/ijms22063149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Correspondence: ; Tel.: +82-52-217-2458
| |
Collapse
|
12
|
Adachi K, Kato D, Kahyo T, Konishi T, Sato T, Madokoro Y, Mizuno M, Akatsu H, Setou M, Matsukawa N. Possible correlated variation of GABA A receptor α3 expression with hippocampal cholinergic neurostimulating peptide precursor protein in the hippocampus. Biochem Biophys Res Commun 2021; 542:80-86. [PMID: 33503541 DOI: 10.1016/j.bbrc.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/23/2022]
Abstract
Cholinergic neural activation from the medial septal nucleus to hippocampus plays a crucial role in episodic memory as a regulating system for glutamatergic neural activation in the hippocampus. As a candidate regulating factor for acetylcholine synthesis in the medial septal nucleus, hippocampal cholinergic neurostimulating peptide (HCNP) was purified from the soluble fraction of young adult rat hippocampus. HCNP is released from its precursor protein (HCNP-pp), also referred to as phosphatidylethanolamine-binding protein 1. We recently reported that HCNP-pp conditional knockout (KO) mice, in which the HCNP-pp gene was knocked out at 3 months of age by tamoxifen injection, display no significant behavioral abnormalities, whereas HCNP-pp KO mice have a diminished cholinergic projection to CA1 and a decreased of theta activity in CA1. In this study, to address whether HCNP-pp reduction in early life is associated with behavioral changes, we evaluated the behavior of HCNP-pp KO mice in which HCNP-pp was downregulated from an early phase (postnatal days 14-28). As unexpected, HCNP-pp KO mice had no behavioral deficits. However, a significant positive correlation between HCNP-pp and gamma-aminobutyric acid A (GABAA) receptor α3 subunit mRNA expression was found in individuals. This finding suggests involvement of HCNP-pp in regulating GABAA receptor α3 gene expression.
Collapse
Affiliation(s)
- Kenichi Adachi
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Toyohiro Sato
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuta Madokoro
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masayuki Mizuno
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
13
|
Electrophysiological correlates of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. Sci Rep 2020; 10:17915. [PMID: 33087740 PMCID: PMC7578797 DOI: 10.1038/s41598-020-74780-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) protein is essential for neuronal development. Val66Met (rs6265) is a functional polymorphism at codon 66 of the BDNF gene that affects neuroplasticity and has been associated with cognition, brain structure and function. The aim of this study was to clarify the relationship between BDNF Val66Met polymorphism and neuronal oscillatory activity, using the electroencephalogram (EEG), in a normative cohort. Neurotypical (N = 92) young adults were genotyped for the BDNF Val66Met polymorphism and had eyes open resting-state EEG recorded for four minutes. Focal increases in right fronto-parietal delta, and decreases in alpha-1 and right hemispheric alpha-2 amplitudes were observed for the Met/Met genotype group compared to Val/Val and Val/Met groups. Stronger frontal topographies were demonstrated for beta-1 and beta-2 in the Val/Met group versus the Val/Val group. Findings highlight BDNF Val66Met genotypic differences in EEG spectral amplitudes, with increased cortical excitability implications for Met allele carriers.
Collapse
|
14
|
Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, Zagrebelsky M. Fast Regulation of GABA AR Diffusion Dynamics by Nogo-A Signaling. Cell Rep 2020; 29:671-684.e6. [PMID: 31618635 DOI: 10.1016/j.celrep.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.
Collapse
Affiliation(s)
- Steffen Fricke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Kristin Metzdorf
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Melanie Ohm
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Stefan Haak
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Martin Heine
- Molecular Physiology Group, Leibniz Institute of Neurobiology, Magdeburg 39118, Germany; Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany; Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany.
| |
Collapse
|
15
|
Ohbuchi T, Saito T, Yokoyama T, Hashimoto H, Maruyama T, Suzuki H, Ueta Y. Osmotic perception of GABAergic synaptic transmission in the supraoptic nucleus of rats. IBRO Rep 2020; 9:58-64. [PMID: 32685762 PMCID: PMC7355382 DOI: 10.1016/j.ibror.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022] Open
Abstract
Extracellular osmolality plays a crucial role in controlling the activation of neurons. Hypertonic stimulation modulates glutamatergic inputs to the supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs) putative vasopressin (VP) neurons through capsaicin-insensitive transient receptor potential vanilloid (TRPV) 1 channels on the presynaptic terminals. However, it remains unclear whether osmotic stimulation modulates GABAergic inputs to VP-secreting neurons within punched-out slices containing only the SON and the perinuclear zone. To answer this question, we studied the effects of various osmotic conditions on the miniature GABAergic postsynaptic currents (mGPSCs) using the whole-cell patch-clamp technique on rat SON putative VP-secreting neurons in small slice preparations. We revealed that incubation in hypertonic solution for 2 h reduced both the frequency and amplitude of the mGPSCs to the SON putative VP neurons, whereas the mGPSCs were unaffected when the external osmolality was changed from isotonic to hypotonic. Of interest, we found that changing from a hypertonic to hypotonic environment increased the frequency of the mGPSCs. This effect was independent of TRPV4. We hypothesize that two coordinated mechanisms may play an important role in the regulation of a wide range of physiological functions of VP.: 1) the modulation of GABAA receptor properties by brain-derived neurotrophic factor (BDNF)-induced tyrosine kinase B receptor-mediated signaling under hypertonic conditions, and 2) cell swelling-induced activation of whole-cell anion currents under hypotonic conditions.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takeshi Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toru Yokoyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
16
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Al Shweiki MR, Oeckl P, Steinacker P, Barschke P, Pryce C, Dorner-Ciossek C, Schönfeldt-Lecuona C, Hengerer B, Otto M. S-ketamine induces acute changes in the proteome of the mouse amygdala. J Proteomics 2020; 216:103679. [PMID: 32032757 DOI: 10.1016/j.jprot.2020.103679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/28/2022]
Abstract
Current understanding of the molecular mechanisms underlying ketamine's antidepressant effect remains largely incomplete. Recent imaging studies provide evidence for ketamine effects on amygdalo-hippocampal. This study in mice aimed to investigate acute proteomic changes after ketamine administration in various brain regions including amygdala and hippocampus. One hour after administration of s-ketamine, the brain-region tissues of interest were dissected out and analyzed using label-free shotgun proteomics. The deep proteomic analysis of amygdala and hippocampus identified 89,526 peptides corresponding to 8000 proteins. The analysis revealed a pronounced proteomic signature of the acute ketamine effect in the amygdala. We anticipate that this proteomic dataset will improve understanding of the mechanism of action of ketamine and identification of new drug targets. SIGNIFICANCE: Major depressive disorder (MDD) is the leading cause of global disability and it presents a significant challenge to human health. S-ketamine has been proposed as a rapid acting antidepressant and, indeed, the FDA recently approved it for treatment of resistant MDD. However, the mechanism of action of s-ketamine as an antidepressant is still elusive. In this context, we investigated the short-term proteomic changes after ketamine administration in mouse brain regions previously related to ketamine effects such as amygdala and hippocampus. We anticipate that this proteomic dataset will provide highly useful information to improve our understanding of the mechanism of action of ketamine and identification of new drug targets.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Christopher Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Cornelia Dorner-Ciossek
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany.
| |
Collapse
|
18
|
Abstract
The brain-derived neurotrophic factor (BDNF) is a secretory growth factor that promotes neuronal proliferation and survival, synaptic plasticity and long-term potentiation in the central nervous system. Brain-derived neurotrophic factor biosynthesis and secretion are chrono-topically regulated processes at the cellular level, accounting for specific localizations and functions. Given its role in regulating brain development and activity, BDNF represents a potentially relevant gene for schizophrenia, and indeed BDNF and its non-synonymous functional variant, rs6265 (C → T, Val → Met) have been widely studied in psychiatric genetics. Human and animal studies have indicated that brain-derived neurotrophic factor is relevant for schizophrenia-related phenotypes, and that: (1) fine-tuned regulation of brain-derived neurotrophic factor secretion and activity is necessary to guarantee brain optimal development and functioning; (2) the Val → Met substitution is associated with impaired activity-dependent secretion of brain-derived neurotrophic factor; (3) disruption of brain-derived neurotrophic factor signaling is associated with altered synaptic plasticity and neurodevelopment. However, genome-wide association studies failed to associate the BDNF locus with schizophrenia, even though a sub-threshold association exists. Here, we will review studies focused on the relationship between the genetic variation of BDNF and schizophrenia, trying to fill the gap between genetic risk per se and insights from molecular biology. A deeper understanding of brain-derived neurotrophic factor biology and of the epigenetic regulation of brain-derived neurotrophic factor and its interactome during development may help clarifying the potential role of this gene in schizophrenia, thus informing development of brain-derived neurotrophic factor-based strategies of prevention and treatment of this disorder.
Collapse
|
19
|
Zou RX, Gu X, Ding JJ, Wang T, Bi N, Niu K, Ge M, Chen XT, Wang HL. Pb exposure induces an imbalance of excitatory and inhibitory synaptic transmission in cultured rat hippocampal neurons. Toxicol In Vitro 2019; 63:104742. [PMID: 31785328 DOI: 10.1016/j.tiv.2019.104742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022]
Abstract
An appropriate balance of excitatory and inhibitory synapse maintains the network stability of the central nervous system. Our recent work showed lead (Pb) exposure can inhibit synaptic transmission in cultured hippocampal neurons. However, it is not clear whether Pb exposure disrupt the balance of excitatory and inhibitory synaptic transmission. Here, primary cultured hippocampal neurons from Sprague-Dawley (SD) rats were exposed to Pb (0.2 μM, 1 μM, 5 μM, respectively) from Days in Vitro (DIV) 7 to DIV 12 for 5 days and the excitatory and inhibitory synaptic transmission was examined. Patch clamp recording results showed that distinct from exposures of 0.2 μM and 5 μM, 1 μM Pb exposure significantly increased the mIPSC frequency and decreased the mEPSC frequency, leading to a uniform inhibitory outcome. Further, the number of inhibitory presynaptic puncta was significantly increased after 1 μM Pb exposure, while the number of excitatory presynaptic terminals was decreased. In addition 1 μM Pb increased the glutamic acid decarboxylase (GAD65) expression and the surface GABAA receptor (GABAAR) clusters. This shift might potentiate the synthesis of GABA and enhance the surface distribution of postsynaptic GABAAR clusters in hippocampus neurons. Together, these data showed that Pb exposure disrupted the balance of excitatory and inhibitory synaptic transmission via abnormal GABAergic neurotransmission.
Collapse
Affiliation(s)
- Rong-Xin Zou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jin-Jun Ding
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Tiandong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Nanxi Bi
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kang Niu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Mengmeng Ge
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
20
|
Yamazaki Y, Sato D, Yamashiro K, Nakano S, Onishi H, Maruyama A. Acute Low-Intensity Aerobic Exercise Modulates Intracortical Inhibitory and Excitatory Circuits in an Exercised and a Non-exercised Muscle in the Primary Motor Cortex. Front Physiol 2019; 10:1361. [PMID: 31787901 PMCID: PMC6853900 DOI: 10.3389/fphys.2019.01361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Recent studies have reported that acute aerobic exercise modulates intracortical excitability in the primary motor cortex (M1). However, whether acute low-intensity aerobic exercise can also modulate M1 intracortical excitability, particularly intracortical excitatory circuits, remains unclear. In addition, no previous studies have investigated the effect of acute aerobic exercise on short-latency afferent inhibition (SAI). The aim of this study was to investigate whether acute low-intensity aerobic exercise modulates intracortical circuits in the M1 hand and leg areas. Intracortical excitability of M1 (Experiments 1, 2) and spinal excitability (Experiment 3) were measured before and after acute low-intensity aerobic exercise. In Experiment 3, skin temperature was also measured throughout the experiment. Transcranial magnetic stimulation was applied over the M1 non-exercised hand and exercised leg areas in Experiments 1, 2, respectively. Participants performed 30 min of low-intensity pedaling exercise or rested while sitting on the ergometer. Short- and long-interval intracortical inhibition (SICI and LICI), and SAI were measured to assess M1 inhibitory circuits. Intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were measured to assess M1 excitatory circuits. We found that acute low-intensity aerobic exercise decreased SICI and SAI in the M1 hand and leg areas. After exercise, ICF in the M1 hand area was lower than in the control experiment, but was not significantly different to baseline. The single motor-evoked potential, resting motor threshold, LICI, SICF, and spinal excitability did not change following exercise. In conclusion, acute low-intensity pedaling modulates M1 intracortical circuits of both exercised and non-exercised areas, without affecting corticospinal and spinal excitability.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Major in Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Saki Nakano
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Field of Health and Sports, Major in Health and Science, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuo Maruyama
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
21
|
Meis S, Endres T, Munsch T, Lessmann V. Impact of Chronic BDNF Depletion on GABAergic Synaptic Transmission in the Lateral Amygdala. Int J Mol Sci 2019; 20:ijms20174310. [PMID: 31484392 PMCID: PMC6747405 DOI: 10.3390/ijms20174310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/14/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/−). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/− mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/− mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/− mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| |
Collapse
|
22
|
The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience 2019; 410:29-40. [DOI: 10.1016/j.neuroscience.2019.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
|
23
|
Iqbal MUN, Yaqoob T, Ali SA, Khan TA. A Functional Polymorphism (rs6265, G>A) of Brain-Derived Neurotrophic Factor Gene and Breast Cancer: An Association Study. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419844977. [PMID: 31105428 PMCID: PMC6501468 DOI: 10.1177/1178223419844977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
Purpose: The objective of this study was to evaluate the relationship between brain-derived neurotrophic factor (BDNF) gene (Val66Met, rs6265, G>A) polymorphism and breast cancer (BC) among females of Southern Pakistan. Methods: This case-control study consisted of 300 females (BC cases [n = 100] and controls [n = 200]) with age range of 18 to 45 years. All participants were recruited during January to December 2014 and were screened for depression using Zung depression scale. Isolation of genomic DNA (gDNA) followed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was done. All statistical analysis was carried out on IBM-SPSS version 22 at P-value <.05. Hardy-Weinberg equilibrium (HWE), Pearson chi-square, and odds ratios (ORs) with 95% confidence interval (95% CI) were calculated. Results: Genotype distribution of BDNF gene polymorphism lies in the goodness-of-fit model among controls. The statistical analyses reveal a significant association between genotype frequencies (χ2 = 12.709, P-value = .002) of BDNF and BC among cases and controls. The AA genotype (OR = 5.2, 95%CI = 0.632-42.804) increases the risk of having BC. Conclusions: Our results suggest that BDNF gene polymorphism may have an association with BC risk among Pakistani females. However, the present finding needs to be replicated with greater sample size with BC risk.
Collapse
Affiliation(s)
| | - Tahniyat Yaqoob
- Department of Physiology, University of Karachi, Karachi, Pakistan
| | - Syed Adnan Ali
- Government Degree Science and Commerce College, Karachi, Pakistan
| | | |
Collapse
|
24
|
Tchekalarova J, Atanasova D, Kortenska L, Lazarov N, Shishmanova-Doseva M, Galchev T, Marinov P. Agomelatine alleviates neuronal loss through BDNF signaling in the post-status epilepticus model induced by kainic acid in rat. Brain Res Bull 2019; 147:22-35. [PMID: 30738136 DOI: 10.1016/j.brainresbull.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, we have reported that while agomelatine (Ago) is unable to prevent development of epilepsy it exerts a strong neuroprotective and anti-inflammatory response in the KA post-status epilepticus (SE) rat model. In the present study, we aimed to explore whether the brain-derived neurotrophic factor (BDNF) in the hippocampus is involved in the neuroprotective effect of Ago against the KA-induced SE and epileptiform activity four months later in rats. Lacosamide (LCM) was used as a positive control. The EEG-recorded seizure activity was also evaluated in two treatment protocols. In Experiment#1, Ago given repeatedly at a dose of 40 mg/kg during the course of SE was unable neither to modify EEG-recorded epileptiform activity nor the video- and EEG-recorded spontaneous seizures four months later compared to LCM (50 mg/kg). However, both Ago and LCM inhibited the expression of BDNF in the mossy fibers and also prevented neuronal loss in the dorsal hippocampal and the piriform cortex after SE. In Experiment#2, acute injection of Ago and LCM on epileptic rats, characterized by high seizure rates, did not prevent EEG-recorded paroxysmal events while only LCM decreased either absolute or relative powers of gamma (28-60 Hz) and high (HI) (60-120 Hz) frequency bands to baseline in the frontal and parietal cortex, respectively. Our results suggest that the protection against neuronal loss in specific limbic regions and overexpressed BDNF in the mossy fibers resulting from the repeated treatment with Ago and LCM, respectively, during SE is not a prerequisite for alleviation of epileptogenesis and development of epilepsy. In addition, a reduction of gamma and HI bands in the frontal and parietal cortex is not associated with EEG-recorded paroxysmal events after acute injection of LCM.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| | | | | | - Pencho Marinov
- Institute of Information and Communication Technologies, BAS, Sofia, Bulgaria
| |
Collapse
|
25
|
Selvam R, Yeh ML, Levine ES. Endogenous cannabinoids mediate the effect of BDNF at CA1 inhibitory synapses in the hippocampus. Synapse 2018; 73:e22075. [PMID: 30334291 PMCID: PMC6470051 DOI: 10.1002/syn.22075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), traditionally known for promoting neuronal growth and development, is also a modulator of synaptic transmission. In addition to the well-characterized effects at excitatory synapses, BDNF has been shown to acutely suppress inhibitory neurotransmission; however, the underlying mechanisms are unclear. We have previously shown that at inhibitory synapses in layer 2/3 of the somatosensory cortex, BDNF induces the mobilization of endogenous cannabinoids (eCBs) that act retrogradely to suppress GABA release. Here, we hypothesized that in the hippocampus, BDNF acts similarly via eCB signaling to suppress GABAergic transmission. We found that the acute application of BDNF reduced the spontaneous inhibitory postsynaptic currents (sIPSCs) via postsynaptic TrkB receptor activation. The suppressive effects of BDNF required eCB signaling, as this effect on sIPSCs was prevented by a CB1 receptor antagonist. Further, blocking the postsynaptic eCB release prevented the effect of BDNF, whereas eCB reuptake inhibition enhanced the effect of BDNF. These results suggest that BDNF triggers the postsynaptic release of eCBs. To identify the specific eCB release by BDNF, we tested the effects of disrupting the synthesis or degradation of 2-arachidonoylcglycerol (2-AG). Blocking 2-AG synthesis prevented the effect of BDNF and blocking 2-AG degradation enhanced the effect of BDNF. However, there was no change in the effect of BDNF when anandamide degradation was blocked. Collectively, these results suggest that in the hippocampus, BDNF-TrkB signaling induces the postsynaptic release of the endogenous cannabinoid 2-AG, which acts retrogradely on the presynaptic CB1 receptors to suppress GABA release.
Collapse
Affiliation(s)
- Rajamani Selvam
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Mason L Yeh
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
26
|
Transgenic overexpression of furin increases epileptic susceptibility. Cell Death Dis 2018; 9:1058. [PMID: 30333479 PMCID: PMC6193048 DOI: 10.1038/s41419-018-1076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 11/28/2022]
Abstract
The proprotein convertase Furin plays crucial roles in the pathology of many diseases. However, the specific role of furin in epilepsy remains unclear. In our study, furin protein was increased in the temporal neocortex of epileptic patients and in the hippocampus and cortex of epileptic mice. The furin transgenic (TG) mice showed increased susceptibility to epilepsy and heightened epileptic activity compared with wild-type (WT) mice. Conversely, lentivirus-mediated knockdown of furin restrained epileptic activity. Using whole-cell patch clamp, furin knockdown and overexpression influenced neuronal inhibitory by regulating postsynaptic gamma-aminobutyric acid A receptor (GABAAR)-mediated synaptic transmission. Importantly, furin influenced the expression of GABAAR β2/3 membrane and total protein in epileptic mice by changing transcription level of GABAAR β2/3, not the protein degradation. These results reveal that furin may regulate GABAAR-mediated inhibitory synaptic transmission by altering the transcription of GABAAR β2/3 subunits in epilepsy; this finding could provide new insight into epilepsy prevention and treatment.
Collapse
|
27
|
Maynard KR, Hobbs JW, Phan BN, Gupta A, Rajpurohit S, Williams C, Rajpurohit A, Shin JH, Jaffe AE, Martinowich K. BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife 2018; 7:33676. [PMID: 30192229 PMCID: PMC6135608 DOI: 10.7554/elife.33676] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) transcription is controlled by several promoters, which drive expression of multiple transcripts encoding an identical protein. We previously reported that BDNF derived from promoters I and II is highly expressed in hypothalamus and is critical for regulating aggression in male mice. Here we report that BDNF loss from these promoters causes reduced sexual receptivity and impaired maternal care in female mice, which is concomitant with decreased oxytocin (Oxt) expression during development. We identify a novel link between BDNF signaling, oxytocin, and maternal behavior by demonstrating that ablation of TrkB selectively in OXT neurons partially recapitulates maternal care impairments observed in BDNF-deficient females. Using translating ribosome affinity purification and RNA-sequencing we define a molecular profile for OXT neurons and delineate how BDNF signaling impacts gene pathways critical for structural and functional plasticity. Our findings highlight BDNF as a modulator of sexually-dimorphic hypothalamic circuits that govern female-typical behaviors.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - John W Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - BaDoi N Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Amolika Gupta
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Mental Health, Johns Hopkins University, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
28
|
Porcher C, Medina I, Gaiarsa JL. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front Cell Neurosci 2018; 12:273. [PMID: 30210299 PMCID: PMC6121065 DOI: 10.3389/fncel.2018.00273] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
In the mature healthy mammalian neuronal networks, γ-aminobutyric acid (GABA) mediates synaptic inhibition by acting on GABAA and GABAB receptors (GABAAR, GABABR). In immature networks and during numerous pathological conditions the strength of GABAergic synaptic inhibition is much less pronounced. In these neurons the activation of GABAAR produces paradoxical depolarizing action that favors neuronal network excitation. The depolarizing action of GABAAR is a consequence of deregulated chloride ion homeostasis. In addition to depolarizing action of GABAAR, the GABABR mediated inhibition is also less efficient. One of the key molecules regulating the GABAergic synaptic transmission is the brain derived neurotrophic factor (BDNF). BDNF and its precursor proBDNF, can be released in an activity-dependent manner. Mature BDNF operates via its cognate receptors tropomyosin related kinase B (TrkB) whereas proBDNF binds the p75 neurotrophin receptor (p75NTR). In this review article, we discuss recent finding illuminating how mBDNF-TrkB and proBDNF-p75NTR signaling pathways regulate GABA related neurotransmission under physiological conditions and during epilepsy.
Collapse
Affiliation(s)
- Christophe Porcher
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Igor Medina
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| |
Collapse
|
29
|
El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 2018; 25:65-85. [PMID: 29683026 DOI: 10.1177/1073858418771538] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aerobic exercise improves cognitive and motor function by inducing neural changes detected using molecular, cellular, and systems level neuroscience techniques. This review unifies the knowledge gained across various neuroscience techniques to provide a comprehensive profile of the neural mechanisms that mediate exercise-induced neuroplasticity. Using a model of exercise-induced neuroplasticity, this review emphasizes the sequence of neural events that accompany exercise, and ultimately promote changes in human performance. This is achieved by differentiating between neuroplasticity induced by acute versus chronic aerobic exercise. Furthermore, this review emphasizes experimental considerations that influence the opportunity to observe exercise-induced neuroplasticity in humans. These include modifiable factors associated with the exercise intervention and nonmodifiable factors such as biological sex, ovarian hormones, genetic variations, and fitness level. To maximize the beneficial effects of exercise in health, disease, and following injury, future research should continue to explore the mechanisms that mediate exercise-induced neuroplasticity. This review identifies some fundamental gaps in knowledge that may serve to guide future research in this area.
Collapse
Affiliation(s)
- Jenin El-Sayes
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Diana Harasym
- 2 School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mitchell B Locke
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
31
|
Depolarizing, inhibitory GABA type A receptor activity regulates GABAergic synapse plasticity via ERK and BDNF signaling. Neuropharmacology 2017; 128:324-339. [PMID: 29074304 DOI: 10.1016/j.neuropharm.2017.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 10/02/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022]
Abstract
γ-aminobutyric acid (GABA) begins as the key excitatory neurotransmitter in newly forming circuits, with chloride efflux from GABA type A receptors (GABAARs) producing membrane depolarization, which promotes calcium entry, dendritic outgrowth and synaptogenesis. As development proceeds, GABAergic signaling switches to inhibitory hyperpolarizing neurotransmission. Despite the evidence of impaired GABAergic neurotransmission in neurodevelopmental disorders, little is understood on how agonist-dependent GABAAR activation controls the formation and plasticity of GABAergic synapses. We have identified a weakly depolarizing and inhibitory GABAAR response in cortical neurons that occurs during the transition period from GABAAR depolarizing excitation to hyperpolarizing inhibitory activity. We show here that treatment with the GABAAR agonist muscimol mediates structural changes that diminish GABAergic synapse strength through postsynaptic and presynaptic plasticity via intracellular Ca2+ stores, ERK and BDNF/TrkB signaling. Muscimol decreases synaptic localization of surface γ2 GABAARs and gephyrin postsynaptic scaffold while β2/3 non-γ2 GABAARs accumulate in the synapse. Concurrent with this structural plasticity, muscimol treatment decreases synaptic currents while enhancing the γ2 containing benzodiazepine sensitive GABAAR tonic current in an ERK dependent manner. We further demonstrate that GABAAR activation leads to a decrease in presynaptic GAD65 levels via BDNF/TrkB signaling. Together these data reveal a novel mechanism for agonist induced GABAergic synapse plasticity that can occur on the timescale of minutes, contributing to rapid modification of synaptic and circuit function.
Collapse
|
32
|
Hao R, Qi Y, Hou DN, Ji YY, Zheng CY, Li CY, Yung WH, Lu B, Huang Y. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors. Front Cell Neurosci 2017; 11:306. [PMID: 29075179 PMCID: PMC5643500 DOI: 10.3389/fncel.2017.00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP) in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD) induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.
Collapse
Affiliation(s)
- Rui Hao
- Laboratory of Neuronal Circuit & Neuroplasticity, Department of Neurology, Tongji Hospital, Shanghai, China.,Department of Physiology and Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Qi
- Laboratory of Neuronal Circuit & Neuroplasticity, Department of Neurology, Tongji Hospital, Shanghai, China.,Department of Physiology and Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Ni Hou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan-Yuan Ji
- Neurodegeneration Discovery Performance Unit, GlaxoSmithKline (China) R&D, Shanghai, China
| | - Chun-Yan Zheng
- Neurodegeneration Discovery Performance Unit, GlaxoSmithKline (China) R&D, Shanghai, China
| | - Chu-Yu Li
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Laboratory of Neuronal Circuit & Neuroplasticity, Department of Neurology, Tongji Hospital, Shanghai, China.,Department of Physiology and Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
McIsaac W, Ferguson AV. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28258626 DOI: 10.1111/jne.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 11/30/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L-1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABAa antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L-1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L-1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABAA independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- W McIsaac
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| |
Collapse
|
34
|
Cheng Q, Song SH, Augustine GJ. Calcium-Dependent and Synapsin-Dependent Pathways for the Presynaptic Actions of BDNF. Front Cell Neurosci 2017; 11:75. [PMID: 28392759 PMCID: PMC5364187 DOI: 10.3389/fncel.2017.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
We used cultured hippocampal neurons to determine the signaling pathways mediating brain-derived neurotrophic factor (BDNF) regulation of spontaneous glutamate and GABA release. BDNF treatment elevated calcium concentration in presynaptic terminals; this calcium signal reached a peak within 1 min and declined in the sustained presence of BDNF. This BDNF-induced transient rise in presynaptic calcium was reduced by SKF96365, indicating that BDNF causes presynaptic calcium influx via TRPC channels. BDNF treatment increased the frequency of miniature excitatory postsynaptic currents (mEPSCs). This response consisted of two components: a transient component that peaked within 1 min of initiating BDNF application and a second component that was sustained, at a lower mEPSC frequency, for the duration of BDNF application. The initial transient component was greatly reduced by removing external calcium or by treatment with SKF96365, as well as by Pyr3, a selective blocker of TRPC3 channels. In contrast, the sustained component was unaffected in these conditions but was eliminated by U0126, an inhibitor of the MAP kinase (MAPK) pathway, as well as by genetic deletion of synapsins in neurons from a synapsin triple knock-out (TKO) mouse. Thus, two pathways mediate the ability of BDNF to enhance spontaneous glutamate release: the transient component arises from calcium influx through TRPC3 channels, while the sustained component is mediated by MAPK phosphorylation of synapsins. We also examined the ability of these two BDNF-dependent pathways to regulate spontaneous release of the inhibitory neurotransmitter, GABA. BDNF had no effect on the frequency of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in neurons from wild-type (WT) mice, but surprisingly did increase mIPSC frequency in synapsin TKO mice. This covert BDNF response was blocked by removal of external calcium or by treatment with SKF96365 or Pyr3, indicating that it results from calcium influx mediated by TRPC3 channels. Thus, the BDNF-activated calcium signaling pathway can also enhance spontaneous GABA release, though this effect is suppressed by synapsins under normal physiological conditions.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA
| | - Sang-Ho Song
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeoul, South Korea; Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore; Institute of Molecular and Cell BiologySingapore, Singapore
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeoul, South Korea; Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore; Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
35
|
Physical activity levels determine exercise-induced changes in brain excitability. PLoS One 2017; 12:e0173672. [PMID: 28278300 PMCID: PMC5344515 DOI: 10.1371/journal.pone.0173672] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/25/2017] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that regular physical activity can impact cortical function and facilitate plasticity. In the present study, we examined how physical activity levels influence corticospinal excitability and intracortical circuitry in motor cortex following a single session of moderate intensity aerobic exercise. We aimed to determine whether exercise-induced short-term plasticity differed between high versus low physically active individuals. Participants included twenty-eight young, healthy adults divided into two equal groups based on physical activity level determined by the International Physical Activity Questionnaire: low-to-moderate (LOW) and high (HIGH) physical activity. Transcranial magnetic stimulation was used to assess motor cortex excitability via motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) muscle at rest (MEPREST) and during tonic contraction (MEPACTIVE), short-interval intracortical inhibition (SICI) and facilitation (SICF), and intracortical facilitation (ICF). All dependent measures were obtained in the resting FDI muscle, with the exception of AMT and MEPACTIVE recruitment curves that were obtained during tonic FDI contraction. Dependent measures were acquired before and following moderate intensity aerobic exercise (20 mins, ~60% of the age-predicted maximal heart rate) performed on a recumbent cycle ergometer. Results indicate that MEPREST recruitment curve amplitudes and area under the recruitment curve (AURC) were increased following exercise in the HIGH group only (p = 0.002 and p = 0.044, respectively). SICI and ICF were reduced following exercise irrespective of physical activity level (p = 0.007 and p = 0.04, respectively). MEPACTIVE recruitment curves and SICF were unaltered by exercise. These findings indicate that the propensity for exercise-induced plasticity is different in high versus low physically active individuals. Additionally, these data highlight that a single session of aerobic exercise can transiently reduce inhibition in the motor cortex regardless of physical activity level, potentially priming the system for plasticity induction.
Collapse
|
36
|
Kim J, Lee S, Kang S, Kim SH, Kim JC, Yang M, Moon C. Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration. Neural Regen Res 2017; 12:1733-1741. [PMID: 29171440 PMCID: PMC5696856 DOI: 10.4103/1673-5374.217353] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotoxicity induced by stress, radiation, chemicals, or metabolic diseases, is commonly associated with excitotoxicity, oxidative stress, and neuroinflammation. The pathological process of neurotoxicity induces neuronal death, interrupts synaptic plasticity in the brain, and is similar to that of diverse neurodegenerative diseases. Animal models of neurotoxicity have revealed that clinical symptoms and brain lesions can recover over time via neuroregenerative processes. Specifically, brain-derived neurotropic factor (BDNF) and gamma-aminobutyric acid (GABA)-ergic transmission are related to both neurodegeneration and neuroregeneration. This review summarizes the accumulating evidences that suggest a pathogenic role of BDNF and GABAergic transmission, their underlying mechanisms, and the relationship between BDNF and GABA in neurodegeneration and neuroregeneration. This review will provide a comprehensive overview of the underlying mechanisms of neuroregeneration that may help in developing potential strategies for pharmacotherapeutic approaches to treat neurotoxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
37
|
Boschen KE, Klintsova AY. Neurotrophins in the Brain: Interaction With Alcohol Exposure During Development. VITAMINS AND HORMONES 2016; 104:197-242. [PMID: 28215296 PMCID: PMC5997461 DOI: 10.1016/bs.vh.2016.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a result of the teratogenic effects of alcohol on the developing fetus. Decades of research examining both individuals with FASDs and animal models of developmental alcohol exposure have revealed the devastating effects of alcohol on brain structure, function, behavior, and cognition. Neurotrophic factors have an important role in guiding normal brain development and cellular plasticity in the adult brain. This chapter reviews the current literature showing that alcohol exposure during the developmental period impacts neurotrophin production and proposes avenues through which alcohol exposure and neurotrophin action might interact. These areas of overlap include formation of long-term potentiation, oxidative stress processes, neuroinflammation, apoptosis and cell loss, hippocampal adult neurogenesis, dendritic morphology and spine density, vasculogenesis and angiogenesis, and behaviors related to spatial memory, anxiety, and depression. Finally, we discuss how neurotrophins have the potential to act in a compensatory manner as neuroprotective molecules that can combat the deleterious effects of in utero alcohol exposure.
Collapse
Affiliation(s)
- K E Boschen
- University of Delaware, Newark, DE, United States
| | | |
Collapse
|
38
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
39
|
Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications. J Neurosci 2016; 36:3430-40. [PMID: 27013673 DOI: 10.1523/jneurosci.1787-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity. SIGNIFICANCE STATEMENT While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.
Collapse
|
40
|
Gao XP, Zhang H, Wong-Riley M. Role of brain-derived neurotrophic factor in the excitatory-inhibitory imbalance during the critical period of postnatal respiratory development in the rat. Physiol Rep 2015; 3:3/11/e12631. [PMID: 26603459 PMCID: PMC4673652 DOI: 10.14814/phy2.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
The critical period of respiratory development in rats is a narrow window toward the end of the second postnatal week (P12–13), when abrupt neurochemical, electrophysiological, and ventilatory changes occur, when inhibition dominates over excitation, and when the animals’ response to hypoxia is the weakest. The goal of this study was to further test our hypothesis that a major mechanism underlying the synaptic imbalance during the critical period is a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors. Our aims were to determine (1) that the inhibitory dominance observed in hypoglossal motoneurons during the critical period was also demonstrable in a key respiratory chemosensor, NTSVL; (2) if in vivo application of a TrkB agonist, 7,8-DHF, would prevent, but a TrkB antagonist, ANA-12, would accentuate the synaptic imbalance; and (3) if hypoxia would also heighten the imbalance. Our results indicate that (1) the synaptic imbalance was evident in the NTSVL during the critical period; (2) intraperitoneal injections of 7,8-DHF prevented the synaptic imbalance during the critical period, whereas ANA-12 in vivo accentuated such an imbalance; and (3) acute hypoxia induced the weakest response in both the amplitude and frequency of sEPSCs during the critical period, but it increased the frequency of sIPSCs during the critical period. Thus, our findings are consistent with and strengthen our hypothesis that BDNF and TrkB play a significant role in inducing a synaptic imbalance during the critical period of respiratory development in the rat.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hanmeng Zhang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Zhu X, Dubey D, Bermudez C, Porter BE. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 2015; 56:1870-8. [PMID: 26419901 DOI: 10.1111/epi.13211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current epilepsy therapies directed at altering the function of neurotransmitter receptors or ion channels, or release of synaptic vesicles fail to prevent seizures in approximately 30% of patients. A better understanding of the molecular mechanism underlying epilepsy is needed to provide new therapeutic targets. The activity of cyclic AMP (cAMP) response element-binding protein (CREB), a major transcription factor promoting CRE-mediated transcription, increases following a prolonged seizure called status epilepticus. It is also increased in the seizure focus of patients with medically intractable focal epilepsy. Herein we explored the effect of acute suppression of CREB activity on status epilepticus and spontaneous seizures in a chronic epilepsy model. METHODS Pilocarpine chemoconvulsant was used to induce status epilepticus. To suppress CREB activity, a transgenic mouse line expressing an inducible dominant negative mutant of CREB (CREB(IR) ) with a serine to alanine 133 substitution was used. Status epilepticus and spontaneous seizures of transgenic and wild-type mice were analyzed using video-electroencephalography (EEG) to assess the effect of CREB suppression on seizures. RESULTS Our findings indicate that activation of CREB(IR) shortens the duration of status epilepticus. The frequency of spontaneous seizures decreased in mice with chronic epilepsy during CREB(IR) induction; however, the duration of the spontaneous seizures was unchanged. Of interest, we found significantly reduced levels of phospho-CREB Ser133 upon activation of CREB(IR) , supporting prior work suggesting that binding to the CRE site is important for CREB phosphorylation. SIGNIFICANCE Our results suggest that CRE transcription supports seizure activity both during status epilepticus and in spontaneous seizures. Thus, blocking of CRE transcription is a novel target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Deepti Dubey
- The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A
| | - Camilo Bermudez
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Brenda E Porter
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A.,The Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
42
|
Boschen KE, Criss KJ, Palamarchouk V, Roth TL, Klintsova AY. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats. Int J Dev Neurosci 2015; 43:16-24. [PMID: 25805052 PMCID: PMC4442714 DOI: 10.1016/j.ijdevneu.2015.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/16/2022] Open
Abstract
Third trimester-equivalent alcohol exposure causes significant deficits in hippocampal and cortical neuroplasticity, resulting in alterations to dendritic arborization, hippocampal adult neurogenesis, and performance on learning tasks. The current study investigated the impact of neonatal alcohol exposure (postnatal days 4-9, 5.25 g/kg/day) on expression of brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor in the hippocampal and frontal cortex of infant Long-Evans rats. Levels of BDNF protein were increased in the hippocampus, but not frontal cortex, of alcohol-exposed rats 24h after the last dose, when compared with undisturbed (but not sham-intubated) control animals. BDNF protein levels showed a trend toward increase in hippocampus of sham-intubated animals as well, suggesting an effect of the intubation procedure. TrkB protein was increased in the hippocampus of alcohol-exposed animals compared to sham-intubated pups, indicating an alcohol-specific effect on receptor expression. In addition, expression of bdnf total mRNA in alcohol-exposed and sham-intubated pups was enhanced in the hippocampus; however, there was a differential effect of alcohol and intubation stress on exon I- and IV-specific mRNA transcripts. Further, plasma corticosterone was found to be increased in both alcohol-exposed and sham-intubated pups compared to undisturbed animals. Upregulation of BDNF could potentially represent a neuroprotective mechanism activated following alcohol exposure or stress. The results suggest that alcohol exposure and stress have both overlapping and unique effects on BDNF, and highlight the need for the stress of intubation to be taken into consideration in studies that implement this route of drug delivery.
Collapse
Affiliation(s)
- K E Boschen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - K J Criss
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - V Palamarchouk
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
43
|
Gao W, Yu LG, Liu YL, Wang YZ, Huang XL. Mechanism of GABA receptors involved in spasticity inhibition induced by transcranial magnetic stimulation following spinal cord injury. ACTA ACUST UNITED AC 2015; 35:241-247. [PMID: 25877359 DOI: 10.1007/s11596-015-1418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/26/2015] [Indexed: 01/01/2023]
Abstract
The effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on spasticity following spinal cord injury (SCI) and the action mechanism were investigated. SCI models were established in Sprague-Dawley rats. Five groups were set up: normal control group, SCI-7 day (7D) model group, SCI-14D model group, SCI-7D rTMS group and SCI-14D rTMS group (n=10 each). The rats in SCI rTMS groups were treated with 10 Hz rTMS at 8th day and 15th day after SCI respectively. Motor recovery and spasticity alleviation were evaluated by BBB scale once a week till the end of treatment. Finally, different parts of tissues were dissected out for detection of GABA receptors using Western blotting and polymerase chain reaction (PCR) technique. The results showed that the BBB scores after treatment were significantly higher in SCI-7D rTMS group than in SCI-14D rTMS group (P<0.05). The GABA receptors were down-regulated more significantly in SCI-14D model group than in SCI-7D model group (P<0.05). At different time points, rTMS treatment could affect the up-regulation of GABA receptors: The up-regulation of GABA receptors was more obvious in SCI-7D rTMS group than in SCI-14D rTMS treatment group (P<0.05). It was concluded that 10-Hz rTMS could alleviate spasticity following SCI and promote the motor recovery in rats, which might be attributed to the up-regulation of GABA receptors. It was also suggested that early high-frequency rTMS treatment after SCI may achieve more satisfactory curative effectiveness.
Collapse
Affiliation(s)
- Wei Gao
- Department of Traumatic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Guo Yu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Li Liu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi-Zhao Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
44
|
A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev 2015; 51:15-30. [DOI: 10.1016/j.neubiorev.2014.12.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/14/2014] [Accepted: 12/27/2014] [Indexed: 12/31/2022]
|
45
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
46
|
Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J Biol Chem 2014; 5:409-428. [PMID: 25426265 PMCID: PMC4243146 DOI: 10.4331/wjbc.v5.i4.409] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/10/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.
Collapse
|
47
|
Shinoda Y, Ahmed S, Ramachandran B, Bharat V, Brockelt D, Altas B, Dean C. BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons. Front Synaptic Neurosci 2014; 6:27. [PMID: 25426063 PMCID: PMC4226143 DOI: 10.3389/fnsyn.2014.00027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/21/2014] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is widely reported to enhance synaptic vesicle (SV) exocytosis and neurotransmitter release. But it is still unclear whether BDNF enhances SV recycling at excitatory terminals only, or at both excitatory and inhibitory terminals. In the present study, in a direct comparison using cultured rat hippocampal neurons, we demonstrate that BDNF enhances both spontaneous and activity-dependent neurotransmitter release from excitatory terminals, but not from inhibitory terminals. BDNF treatment for 5 min or 48 h increased both spontaneous and activity-induced anti-synaptotagmin1 (SYT1) antibody uptake at excitatory terminals marked with vGluT1. Conversely, BDNF treatment did not enhance spontaneous or activity-induced uptake of anti-SYT1 antibodies in inhibitory terminals marked with vGAT. Time-lapse imaging of FM1-43 dye destaining in excitatory and inhibitory terminals visualized by post-hoc immunostaining of vGluT1 and vGAT also showed the same result: The rate of spontaneous and activity-induced destaining was increased by BDNF at excitatory synapses, but not at inhibitory synapses. These data demonstrate that BDNF enhances SV exocytosis in excitatory but not inhibitory terminals. Moreover, BDNF enhanced evoked SV exocytosis, even if vesicles were loaded under spontaneous vesicle recycling conditions. Thus, BDNF enhances both spontaneous and activity-dependent neurotransmitter release on both short and long time-scales, by the same mechanism.
Collapse
Affiliation(s)
- Yo Shinoda
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany ; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science Chiba, Japan
| | - Saheeb Ahmed
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Binu Ramachandran
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Vinita Bharat
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - David Brockelt
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Bekir Altas
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Camin Dean
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| |
Collapse
|
48
|
Abstract
Rapid activation of postsynaptic GABAA receptors (GABAARs) is crucial in many neuronal functions, including the synchronization of neuronal ensembles and controlling the precise timing of action potentials. Although the γ2 subunit is believed to be essential for the postsynaptic clustering of GABAARs, synaptic currents have been detected in neurons obtained from γ2(-/-) mice. To determine the role of the γ2 subunit in synaptic GABAAR enrichment, we performed a spatially and temporally controlled γ2 subunit deletion by injecting Cre-expressing viral vectors into the neocortex of GABAARγ2(77I)lox mice. Whole-cell recordings revealed the presence of miniature IPSCs in Cre(+) layer 2/3 pyramidal cells (PCs) with unchanged amplitudes and rise times, but significantly prolonged decays. Such slowly decaying currents could be evoked in PCs by action potentials in presynaptic fast-spiking interneurons. Freeze-fracture replica immunogold labeling revealed the presence of the α1 and β3 subunits in perisomatic synapses of cells that lack the γ2 subunit. Miniature IPSCs in Cre(+) PCs were insensitive to low concentrations of flurazepam, providing a pharmacological confirmation of the lack of the γ2 subunit. Receptors assembled from only αβ subunits were unlikely because Zn(2+) did not block the synaptic currents. Pharmacological experiments indicated that the αβγ3 receptor, rather than the αβδ, αβε, or αβγ1 receptors, was responsible for the slowly decaying IPSCs. Our data demonstrate the presence of IPSCs and the synaptic enrichment of the α1 and β3 subunits and suggest that the γ3 subunit is the most likely candidate for clustering GABAARs at synapses in the absence of the γ2 subunit.
Collapse
|
49
|
Activation of extrasynaptic GABA(A) receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neurosci Bull 2014; 30:866-76. [PMID: 25260800 DOI: 10.1007/s12264-014-1466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.
Collapse
|
50
|
Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M. GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 2014; 26:34-41. [PMID: 24650502 DOI: 10.1016/j.conb.2013.11.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022]
Abstract
Concepts of epilepsy, based on a simple change in neuronal excitation/inhibition balance, have subsided in face of recent insights into the large diversity and context-dependence of signaling mechanisms at the molecular, cellular and neuronal network level. GABAergic transmission exerts both seizure-suppressing and seizure-promoting actions. These two roles are prone to short-term and long-term alterations, evident both during epileptogenesis and during individual epileptiform events. The driving force of GABAergic currents is controlled by ion-regulatory molecules such as the neuronal K-Cl cotransporter KCC2 and cytosolic carbonic anhydrases. Accumulating evidence suggests that neuronal ion regulation is highly plastic, thereby contributing to the multiple roles ascribed to GABAergic signaling during epileptogenesis and epilepsy.
Collapse
Affiliation(s)
- Kai Kaila
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Eva Ruusuvuori
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patricia Seja
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Martin Puskarjov
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|