1
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Rom JS, Hart MT, McIver KS. PRD-Containing Virulence Regulators (PCVRs) in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:772874. [PMID: 34737980 PMCID: PMC8560693 DOI: 10.3389/fcimb.2021.772874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.
Collapse
Affiliation(s)
- Joseph S Rom
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Meaghan T Hart
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Kevin S McIver
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
3
|
Streptococcus pyogenes ("Group A Streptococcus"), a Highly Adapted Human Pathogen-Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021; 10:pathogens10060776. [PMID: 34205500 PMCID: PMC8234341 DOI: 10.3390/pathogens10060776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci; GAS) is an exclusively human pathogen. It causes a variety of suppurative and non-suppurative diseases in people of all ages worldwide. Not all can be successfully treated with antibiotics. A licensed vaccine, in spite of its global importance, is not yet available. GAS express an arsenal of virulence factors responsible for pathological immune reactions. The transcription of all these virulence factors is under the control of three types of virulence-related regulators: (i) two-component systems (TCS), (ii) stand-alone regulators, and (iii) non-coding RNAs. This review summarizes major TCS and stand-alone transcriptional regulatory systems, which are directly associated with virulence control. It is suggested that this treasure of knowledge on the genetics of virulence regulation should be better harnessed for new therapies and prevention methods for GAS infections, thereby changing its global epidemiology for the better.
Collapse
|
4
|
Fibronectin and Its Role in Human Infective Diseases. Cells 2019; 8:cells8121516. [PMID: 31779172 PMCID: PMC6952806 DOI: 10.3390/cells8121516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Fibronectin is a multidomain glycoprotein ubiquitously detected in extracellular fluids and matrices of a variety of animal and human tissues where it functions as a key link between matrices and cells. Fibronectin has also emerged as the target for a large number of microorganisms, particularly bacteria. There are clear indications that the binding of microorganism’ receptors to fibronectin promotes attachment to and infection of host cells. Each bacterium may use different receptors which recognize specific fibronectin domains, mostly the N-terminal domain and the central cell-binding domain. In many cases, fibronectin receptors have actions over and above that of simple adhesion: In fact, adhesion is often the prerequisite for invasion and internalization of microorganisms in the cells of colonized tissues. This review updates the current understanding of fibronectin receptors of several microorganisms with emphasis on their biochemical and structural properties and the role they can play in the onset and progression of host infection diseases. Furthermore, we describe the antigenic profile and discuss the possibility of designing adhesion inhibitors based on the structure of the fibronectin-binding site in the receptor or the receptor-binding site in fibronectin.
Collapse
|
5
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
6
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6. [PMID: 30191802 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
7
|
The Streptococcus pyogenes fibronectin/tenascin-binding protein PrtF.2 contributes to virulence in an influenza superinfection. Sci Rep 2018; 8:12126. [PMID: 30108238 PMCID: PMC6092322 DOI: 10.1038/s41598-018-29714-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) and Streptococcus pyogenes (the group A Streptococcus; GAS) are important contributors to viral-bacterial superinfections, which result from incompletely defined mechanisms. We identified changes in gene expression following IAV infection of A549 cells. Changes included an increase in transcripts encoding proteins with fibronectin-type III (FnIII) domains, such as fibronectin (Fn), tenascin N (TNN), and tenascin C (TNC). We tested the idea that increased expression of TNC may affect the outcome of an IAV-GAS superinfection. To do so, we created a GAS strain that lacked the Fn-binding protein PrtF.2. We found that the wild-type GAS strain, but not the mutant, co-localized with TNC and bound to purified TNC. In addition, adherence of the wild-type strain to IAV-infected A549 cells was greater compared to the prtF.2 mutant. The wild-type strain was also more abundant in the lungs of mice 24 hours after superinfection compared to the mutant strain. Finally, all mice infected with IAV and the prtF.2 mutant strain survived superinfection compared to only 42% infected with IAV and the parental GAS strain, indicating that PrtF.2 contributes to virulence in a murine model of IAV-GAS superinfection.
Collapse
|
8
|
Opacification Domain of Serum Opacity Factor Inhibits Beta-Hemolysis and Contributes to Virulence of Streptococcus pyogenes. mSphere 2017; 2:mSphere00147-17. [PMID: 28435893 PMCID: PMC5397570 DOI: 10.1128/mspheredirect.00147-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/25/2022] Open
Abstract
Streptococcus pyogenes is a major human pathogen causing more than 700 million infections annually. As a successful pathogen, S. pyogenes produces many virulence factors that facilitate colonization, proliferation, dissemination, and tissue damage. Serum opacity factor (SOF), an extracellular protein, is one of the virulence factors made by S. pyogenes. The underlying mechanism of how SOF contributes to virulence is not fully understood. SOF has two major features: (i) it opacifies host serum by interacting with high-density lipoprotein, and (ii) it inhibits beta-hemolysis on blood agar. In this study, we demonstrate that the domain of SOF essential for opacifying serum is also essential for SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. Our results shed new light on the molecular mechanisms of SOF-host interaction. Serum opacity factor (SOF) is a cell surface virulence factor made by the human pathogen Streptococcus pyogenes. We found that S. pyogenes strains with naturally occurring truncation mutations in the sof gene have markedly enhanced beta-hemolysis. Moreover, deletion of the sof gene in a SOF-positive parental strain resulted in significantly increased beta-hemolysis. Together, these observations suggest that SOF is an inhibitor of beta-hemolysis. SOF has two major functional domains, including an opacification domain and a fibronectin-binding domain. Using a SOF-positive serotype M89 S. pyogenes parental strain and a panel of isogenic mutant derivative strains, we evaluated the relative contribution of each SOF functional domain to beta-hemolysis inhibition and bacterial virulence. We found that the opacification domain, rather than the fibronectin-binding domain, is essential for SOF-mediated beta-hemolysis inhibition. The opacification domain, but not the fibronectin-binding domain of SOF, also contributed significantly to virulence in mouse models of bacteremia and necrotizing myositis. Inasmuch as the opacification domain of SOF is known to interact avidly with host high-density lipoprotein (HDL), we speculate that SOF-HDL interaction is an important process underlying SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. IMPORTANCEStreptococcus pyogenes is a major human pathogen causing more than 700 million infections annually. As a successful pathogen, S. pyogenes produces many virulence factors that facilitate colonization, proliferation, dissemination, and tissue damage. Serum opacity factor (SOF), an extracellular protein, is one of the virulence factors made by S. pyogenes. The underlying mechanism of how SOF contributes to virulence is not fully understood. SOF has two major features: (i) it opacifies host serum by interacting with high-density lipoprotein, and (ii) it inhibits beta-hemolysis on blood agar. In this study, we demonstrate that the domain of SOF essential for opacifying serum is also essential for SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. Our results shed new light on the molecular mechanisms of SOF-host interaction.
Collapse
|
9
|
Structural Stability of Streptococcal Serum Opacity Factor. Protein J 2017; 36:196-201. [PMID: 28374173 DOI: 10.1007/s10930-017-9711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Streptococcal serum opacity factor (SOF) is a protein that clouds the plasma of multiple mammalian species by disrupting high density lipoprotein (HDL) structure. Intravenous infusion of low dose SOF (4 µg) into mice reduces their plasma cholesterol concentrations ~ 40% in 3 h. Here we investigated the effects of pH, ionic strength, temperature, and denaturation with guanidinium chloride (GdmCl) on SOF stability and its reaction vs HDL. SOF stability was tested by pre-incubation of SOF at various temperatures, pH's, and GdmCl concentrations and measuring the SOF reaction rate at pH 7.4 and 37 °C. SOF retained activity at temperatures up to 58 °C, at pH 4 to 10, and in 8.5 M GdmCl after being returned to standard buffer conditions. The effects of GdmCl, pH, and ionic strength on the SOF reaction rates were also measured. SOF was inactive at GdmCl ≥ 1 M; SOF was most active at pH 5, near its isoelectric point and at an ionic strength of 3 (in NaCl). These data reveal that SOF is a stable protein and suggest that its activity is determined, in part, by the effects of pH and ionic strength on its overall charge relative to that of its reaction target, HDL.
Collapse
|
10
|
Rodriguez PJ, Gillard BK, Barosh R, Gotto AM, Rosales C, Pownall HJ. Neo High-Density Lipoprotein Produced by the Streptococcal Serum Opacity Factor Activity against Human High-Density Lipoproteins Is Hepatically Removed via Dual Mechanisms. Biochemistry 2016; 55:5845-5853. [PMID: 27662183 DOI: 10.1021/acs.biochem.6b00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injection of streptococcal serum opacity factor (SOF) into mice reduces the plasma cholesterol level by ∼40%. In vitro, SOF converts high-density lipoproteins (HDLs) into multiple products, including a small HDL, neo HDL. In vitro, neo HDL accounts for ∼60% of the protein mass of the SOF reaction products; in vivo, the accumulated mass of neo HDL is <1% of that observed in vitro. To identify the underlying cause of this difference, we determined the fate of neo HDL in plasma in vitro and in vivo. Following incubation with HDL, neo HDL-PC rapidly transfers to HDL, giving a small remnant, which fuses with HDL. An increased level of SR-B1 expression in Huh7 hepatoma cells and a reduced level of LDLR expression in CHO cells had little effect on neo HDL-[3H]CE uptake. Thus, the dominant receptors for neo HDL uptake are not LDLR or SR-B1. The in vivo metabolic fates of neo HDL-[3H]CE and HDL-[3H]CE were different. Thirty minutes after the injection of neo HDL-[3H]CE and HDL-[3H]CE into mice, plasma [3H]CE counts were 40 and 53%, respectively, of injected counts, with 10 times more [3H]CE appearing in the livers of neo HDL-[3H]CE-injected than in those of HDL-[3H]CE-injected mice. These data support a model of neo HDL-[3H]CE clearance by two parallel pathways. At early post-neo HDL-[3H]CE injection times, some neo HDL is directly removed by the liver; the remainder transfers its PC to HDL, leaving a remnant that fuses with HDL, which is also hepatically removed more slowly. Given that SR-B1 and SOF both remove CE from HDL, this novel mechanism may also underlie the metabolism of remnants released by hepatocytes following selective SR-B1-mediated uptake of HDL-CE.
Collapse
Affiliation(s)
- Perla J Rodriguez
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States.,Baylor College of Medicine , One Baylor Plaza, Houston, Texas 77030, United States
| | - Baiba K Gillard
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Rachel Barosh
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Antonio M Gotto
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Corina Rosales
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Henry J Pownall
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Yang Y, Rosales C, Gillard BK, Gotto AM, Pownall HJ. Acylation of lysine residues in human plasma high density lipoprotein increases stability and plasma clearance in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1787-1795. [PMID: 27594697 DOI: 10.1016/j.bbalip.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.
Collapse
Affiliation(s)
- Yaliu Yang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| | - Corina Rosales
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Baiba K Gillard
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Antonio M Gotto
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Henry J Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
12
|
Diehl C, Wisniewska M, Frick IM, Streicher W, Björck L, Malmström J, Wikström M. Structure and Interactions of a Dimeric Variant of sHIP, a Novel Virulence Determinant of Streptococcus pyogenes. Front Microbiol 2016; 7:95. [PMID: 26903974 PMCID: PMC4742562 DOI: 10.3389/fmicb.2016.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pyogenes is one of the most significant bacterial pathogens in the human population mostly causing superficial and uncomplicated infections (pharyngitis and impetigo) but also invasive and life-threatening disease. We have previously identified a virulence determinant, protein sHIP, which is secreted at higher levels by an invasive compared to a non-invasive strain of S. pyogenes. The present work presents a further characterization of the structural and functional properties of this bacterial protein. Biophysical and structural studies have shown that protein sHIP forms stable tetramers both in the crystal and in solution. The tetramers are composed of four helix-loop-helix motifs with the loop regions connecting the helices displaying a high degree of flexibility. Owing to interactions at the tetramer interface, the observed tetramer can be described as a dimer of dimers. We identified three residues at the tetramer interface (Leu84, Leu88, Tyr95), which due to largely non-polar side-chains, could be important determinants for protein oligomerization. Based on these observations, we produced a sHIP variant in which these residues were mutated to alanines. Biophysical experiments clearly indicated that the sHIP mutant appear only as dimers in solution confirming the importance of the interfacial residues for protein oligomerisation. Furthermore, we could show that the sHIP mutant interacts with intact histidine-rich glycoprotein (HRG) and the histidine-rich repeats in HRG, and inhibits their antibacterial activity to the same or even higher extent as compared to the wild type protein sHIP. We determined the crystal structure of the sHIP mutant, which, as a result of the high quality of the data, allowed us to improve the existing structural model of the protein. Finally, by employing NMR spectroscopy in solution, we generated a model for the complex between the sHIP mutant and an HRG-derived heparin-binding peptide, providing further molecular details into the interactions involving protein sHIP.
Collapse
Affiliation(s)
- Carl Diehl
- Protein Function and Interactions Group, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of CopenhagenCopenhagen, Denmark; SARomics BiostructuresLund, Sweden
| | - Magdalena Wisniewska
- Protein Function and Interactions Group, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of CopenhagenCopenhagen, Denmark; Malopolska Centre of BiotechnologyKrakow, Poland
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Werner Streicher
- Protein Function and Interactions Group, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of CopenhagenCopenhagen, Denmark; Novozymes A/SBagsvaerd, Denmark
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Mats Wikström
- Protein Function and Interactions Group, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
13
|
Gillard BK, Rodriguez PJ, Fields DW, Raya JL, Lagor WR, Rosales C, Courtney HS, Gotto AM, Pownall HJ. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:196-204. [PMID: 26709142 DOI: 10.1016/j.bbalip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/16/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Collapse
Affiliation(s)
- Baiba K Gillard
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Perla J Rodriguez
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - David W Fields
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Joe L Raya
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Corina Rosales
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Harry S Courtney
- University of Tennessee Health Science Center, 956 Court Avenue Room H300A, Memphis, TN 38163 USA.
| | - Antonio M Gotto
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| | - Henry J Pownall
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| |
Collapse
|
14
|
Xu X, Steffensen B, Robichaud TK, Mikhailova M, Lai V, Montgomery R, Chu L. Fibronectin-binding protein TDE1579 affects cytotoxicity of Treponema denticola. Anaerobe 2015; 36:39-48. [PMID: 26456217 DOI: 10.1016/j.anaerobe.2015.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022]
Abstract
While FbpA, a family of bacterial fibronectin (FN) binding proteins has been studied in several gram-positive bacteria, the gram-negative Treponema denticola, an anaerobic periodontal pathogen, also has an overlooked fbp gene (tde1579). In this research, we confirm that recombinant Fbp protein (rFbp) of T. denticola binds human FN with a Kdapp of 1.5 × 10(-7) M and blocks the binding of T. denticola to FN in a concentration-dependent manner to a level of 42%. The fbp gene was expressed in T. denticola. To reveal the roles of fbp in T. denticola pathogenesis, an fbp isogenic mutant was constructed. The fbp mutant had 51% reduced binding ability to human gingival fibroblasts (hGF). When hGF were challenged with T. denticola, the fbp mutant caused less cell morphology change, had 50% reduced cytotoxicity to hGF, and had less influence on the growth of hGF cells.
Collapse
Affiliation(s)
- Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Bjorn Steffensen
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Periodontology, Tufts University School of Dental Medicine, Boston, MD, 02111, USA
| | - Trista K Robichaud
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Margarita Mikhailova
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Lai
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ryan Montgomery
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
15
|
Rosales C, Patel N, Gillard BK, Yelamanchili D, Yang Y, Courtney HS, Santos RD, Gotto AM, Pownall HJ. Apolipoprotein AI deficiency inhibits serum opacity factor activity against plasma high density lipoprotein via a stabilization mechanism. Biochemistry 2015; 54:2295-302. [PMID: 25790332 DOI: 10.1021/bi501486z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active versus both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ∼40% in 3 h while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ∼35% in 3 h. The reaction of SOF vs apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction versus apo AI-null mouse HDL were less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physicochemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion.
Collapse
Affiliation(s)
- Corina Rosales
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Niket Patel
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Baiba K Gillard
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Dedipya Yelamanchili
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Yaliu Yang
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Harry S Courtney
- ‡Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104, United States
| | - Raul D Santos
- §Heart Institute-INCOR, University of Sao Paulo, 05409-003 Sao Paulo, Brazil
| | - Antonio M Gotto
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| | - Henry J Pownall
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| |
Collapse
|
16
|
Durney BC, Bachert BA, Sloane HS, Lukomski S, Landers JP, Holland LA. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking. Anal Chim Acta 2015; 880:136-44. [PMID: 26092346 DOI: 10.1016/j.aca.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
Abstract
Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix of low viscosity. DNA sample stacking is facilitated with longer injection times without sacrificing separation efficiency.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, United States
| | - Hillary S Sloane
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, United States
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, United States; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22904, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
17
|
Wisniewska M, Happonen L, Kahn F, Varjosalo M, Malmström L, Rosenberger G, Karlsson C, Cazzamali G, Pozdnyakova I, Frick IM, Björck L, Streicher W, Malmström J, Wikström M. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes. J Biol Chem 2014; 289:18175-88. [PMID: 24825900 DOI: 10.1074/jbc.m114.565978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.
Collapse
Affiliation(s)
- Magdalena Wisniewska
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lotta Happonen
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Kahn
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Markku Varjosalo
- the Institute of Biotechnology, Viikinkaari 1, University of Helsinki, FI-00014 Helsinki, Finland, and
| | - Lars Malmström
- the Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Christofer Karlsson
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Giuseppe Cazzamali
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Irina Pozdnyakova
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Inga-Maria Frick
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Lars Björck
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Werner Streicher
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Johan Malmström
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Mats Wikström
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark,
| |
Collapse
|
18
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S. The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 2012; 87:672-89. [PMID: 23217101 DOI: 10.1111/mmi.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C' loop region recognized by the α(9)β(1) integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.
Collapse
Affiliation(s)
- Heaven Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Anand TD, Rajesh T, Rajendhran J, Gunasekaran P. Superantigen profiles of emm and emm-like typeable and nontypeable pharyngeal streptococcal isolates of South India. Ann Clin Microbiol Antimicrob 2012; 11:3. [PMID: 22296671 PMCID: PMC3296615 DOI: 10.1186/1476-0711-11-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major virulence factors determining the pathogenicity of streptococcal strains include M protein encoded by emm and emm-like (emmL) genes and superantigens. In this study, the distribution of emm, emmL and superantigen genes was analyzed among the streptococcal strains isolated from the patients of acute pharyngitis. METHODS The streptococcal strains were isolated from the throat swabs of 1040 patients of acute pharyngitis. The emm and emmL genes were PCR amplified from each strain and sequenced to determine the emm types. The dot-blot hybridization was performed to confirm the pathogens as true emm nontypeable strains. The presence of eleven currently known superantigens was determined in all the strains by multiplex PCR. RESULTS Totally, 124 beta-hemolytic streptococcal strains were isolated and they were classified as group A streptococcus (GAS) [15.3% (19/124)], group C streptococcus (GCS) [59.7% (74/124)] and group G streptococcus (GGS) [25.0% (31/124)]. Among 124 strains, only 35 strains were emm typeable and the remaining 89 strains were emm nontypeable. All GAS isolates were typeable, whereas most of the GCS and GGS strains were nontypeable. These nontypeable strains belong to S. anginosus [75.3% (67/89)] and S. dysgalactiae subsp. equisimilis [24.7% (22/89)]. The emm and emmL types identified in this study include emm12.0 (28.6%), stG643.0 (28.6%), stC46.0 (17.0%), emm30.11 (8.5%), emm3.0 (2.9%), emm48.0 (5.7%), st3343.0 (2.9%), emm107.0 (2.9%) and stS104.2 (2.9%). Various superantigen profiles were observed in typeable as well as nontypeable strains. CONCLUSIONS Multiplex PCR analysis revealed the presence of superantigens in all the typeable strains irrespective of their emm types. However, the presence of superantigen genes in emm and emmL nontypeable strains has not been previously reported. In this study, presence of at least one or a combination of superantigen coding genes was identified in all the emm and emmL nontypeable strains. Thus, the superantigens may inevitably play an important role in the pathogenesis of these nontypeable strains in the absence of the primary virulence factor, M protein.
Collapse
Affiliation(s)
- Thangarajan Durai Anand
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | | | | | |
Collapse
|
22
|
Bogema DR, Scott NE, Padula MP, Tacchi JL, Raymond BBA, Jenkins C, Cordwell SJ, Minion FC, Walker MJ, Djordjevic SP. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:41217-41229. [PMID: 21969369 DOI: 10.1074/jbc.m111.226084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.
Collapse
Affiliation(s)
- Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Nichollas E Scott
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Matthew P Padula
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Jessica L Tacchi
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia
| | - Stuart J Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - F Chris Minion
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia; School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Steven P Djordjevic
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia.
| |
Collapse
|
23
|
Nishiki I, Horikiri Y, Itami T, Yoshida T. Cloning and expression of serum opacity factor in fish pathogenic Streptococcus dysgalactiae and its application to discriminate between fish and mammalian isolates. FEMS Microbiol Lett 2011; 323:68-74. [PMID: 22092681 DOI: 10.1111/j.1574-6968.2011.02360.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022] Open
Abstract
Lancefield group C Streptococcus dysgalactiae (GCSD) is known as a causative agent of bovine mastitis and cardiopulmonary diseases in humans. Recently, GCSD has been isolated from diseased fish in Japan. Almost all culture supernatants and sodium dodecyl sulfate extracts obtained from GCSD isolated from farmed fish possessed serum opacity activity. Serum opacity factor (SOF) is a bifunctional cell-associated protein that causes serum opacification. In this study, a gene coding SOF, which was named sof-FD, was identified from GCSD isolated from fish. The amino acid sequence of sof-FD showed 40.1-46.5% identity to those of other SOFs from mammalian strains of S. dysgalactiae and Streptococcus pyogenes. Repetitive fibronectin binding domains were also observed in sof-FD, the structures of which were similar to those of other SOFs, as previously reported. The amino acid sequence of SOF was identical among fish isolates. A primer set targeting the sof-FD gene was designed and applied to a PCR assay for discriminating fish isolates from mammalian isolates.
Collapse
Affiliation(s)
- Issei Nishiki
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | |
Collapse
|
24
|
Rosales C, Tang D, Gillard BK, Courtney HS, Pownall HJ. Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo. Arterioscler Thromb Vasc Biol 2011; 31:1834-41. [PMID: 21597008 DOI: 10.1161/atvbaha.111.224360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester-rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). METHODS AND RESULTS rSOF (4 μg) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (-43%, t(1/2)=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE(-/-) and LDLR(-/-) mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 μg of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. CONCLUSIONS rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.
Collapse
Affiliation(s)
- Corina Rosales
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
25
|
Takamatsu D. [Diversity and virulence factors of Streptococcus suis ]. Nihon Saikingaku Zasshi 2011; 66:7-21. [PMID: 21498962 DOI: 10.3412/jsb.66.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| |
Collapse
|
26
|
Barketi-Klai A, Hoys S, Lambert-Bordes S, Collignon A, Kansau I. Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization. J Med Microbiol 2011; 60:1155-1161. [PMID: 21349990 DOI: 10.1099/jmm.0.029553-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium difficile is a frequent cause of severe, recurrent, post-antibiotic diarrhoea and pseudomembranous colitis. Its pathogenicity is mediated mainly by two toxins, TcdA and TcdB. However, different adhesins have also been described as important colonization factors which are implicated in the first step of the intestinal infection. In this study, we focused our interest on one of these adhesins, fibronectin-binding protein A (FbpA), and on its role in the intestinal colonization process. A mutant of FbpA (CDΔFbpA) was constructed in C. difficile strain 630Δerm by using ClosTron technology. This mutant was characterized in vitro and in vivo and compared to the isogenic wild-type strain. Adhesion of the CDΔFbpA mutant to the human colonic epithelial cell line Caco-2 and to mucus-secreting HT29-MTX cells was examined. Surprisingly, the CDΔFbpA mutant adhered more than the wild-type parental strain. The CDΔFbpA mutant was also analysed in three different mouse models by following the intestinal implantation kinetics (faecal shedding) and caecal colonization (7 days post-challenge). We showed that in monoxenic mice, CDΔFbpA shed C. difficile in faeces at the same rate as that of the isogenic wild-type strain but its colonization of the caecal wall was significantly reduced. In dixenic mice, the shedding rate was slower for the CDΔFbpA mutant than for the isogenic wild-type strain during the first days of infection, but no significant difference was observed in caecal colonization. Similar rates of intestinal implantation and caecal colonization were observed for both strains in assays performed in human microbiota-associated mice. Taken together, our data suggest that FbpA plays a role in intestinal colonization by C. difficile.
Collapse
Affiliation(s)
- Amira Barketi-Klai
- EA 4043, USC INRA 'Ecosystème microbien digestif et santé', Faculté de Pharmacie, Université Paris-Sud 11, Châtenay-Malabry, France
| | - Sandra Hoys
- EA 4043, USC INRA 'Ecosystème microbien digestif et santé', Faculté de Pharmacie, Université Paris-Sud 11, Châtenay-Malabry, France
| | - Sylvie Lambert-Bordes
- EA 4043, USC INRA 'Ecosystème microbien digestif et santé', Faculté de Pharmacie, Université Paris-Sud 11, Châtenay-Malabry, France
| | - Anne Collignon
- EA 4043, USC INRA 'Ecosystème microbien digestif et santé', Faculté de Pharmacie, Université Paris-Sud 11, Châtenay-Malabry, France
| | - Imad Kansau
- EA 4043, USC INRA 'Ecosystème microbien digestif et santé', Faculté de Pharmacie, Université Paris-Sud 11, Châtenay-Malabry, France
| |
Collapse
|
27
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Gillard BK, Rosales C, Pillai BK, Lin HY, Courtney HS, Pownall HJ. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol. Biochemistry 2010; 49:9866-73. [PMID: 20879789 PMCID: PMC2982792 DOI: 10.1021/bi101412m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.
Collapse
Affiliation(s)
- Baiba K. Gillard
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Corina Rosales
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Biju K. Pillai
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Hu Yu Lin
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Harry S. Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104
| | - Henry J. Pownall
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
29
|
Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol 2010; 2010:956071. [PMID: 20671930 PMCID: PMC2910554 DOI: 10.1155/2010/956071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/04/2022] Open
Abstract
Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a multifunctional protein and in addition to its opacification activity, it binds to a number of host proteins that mediate adhesion of streptococci to host cells, and it plays a role in resistance to phagocytosis in human blood. This article will provide an overview of the structure and function of SOF, its role in the pathogenesis of streptococcal infections, its vaccine potential, its prevalence and distribution in bacteria, and the molecular mechanism whereby SOF opacifies serum and how an understanding of this mechanism may lead to therapies for reducing high-cholesterol concentrations in blood, a major risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | |
Collapse
|
30
|
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen that is highly prevalent throughout the world. The vast majority of GAS infections lead to a mild disease involving the epithelial surfaces of either the throat or skin. The concept of distinct sets of 'throat' and 'skin' strains of GAS has long been conceived. From an ecological standpoint, the epithelium of the throat and skin are important because it is where the organism is most successful in reproducing and transmitting to new hosts. This article examines key features of the epidemiology, population biology and molecular pathogenesis that underlie the tissue site preferences for infection exhibited by GAS, with an emphasis on work from our laboratory on skin tropisms. Recombinational replacement with orthologous gene forms, following interspecies transfer, appears to be an important genetic step leading up to the exploitation of new niches by GAS.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10573, USA, Tel.: +1 914 594 4193, Fax: +1 914 594 4176
| | | |
Collapse
|
31
|
Caswell CC, Oliver-Kozup H, Han R, Lukomska E, Lukomski S. Scl1, the multifunctional adhesin of group A Streptococcus, selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells. FEMS Microbiol Lett 2009; 303:61-8. [PMID: 20002194 DOI: 10.1111/j.1574-6968.2009.01864.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The streptococcal collagen-like protein-1, Scl1, is widely expressed by the well-recognized human pathogen group A Streptococcus (GAS). Screening of human ligands for binding to recombinant Scl1 identified cellular fibronectin and laminin as binding partners. Both ligands interacted with the globular domain of Scl1, which is also able to bind the low-density lipoprotein. Native Scl1 mediated GAS adherence to ligand-coated glass cover slips and promoted GAS internalization into HEp-2 cells. This work identifies new ligands of the Scl1 protein that are known to be important in GAS pathogenesis and suggests a novel ligand-switching mechanism between blood and tissue environments, thereby facilitating host colonization and GAS dissemination.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
32
|
Rosales C, Gillard BK, Courtney HS, Blanco-Vaca F, Pownall HJ. Apolipoprotein modulation of streptococcal serum opacity factor activity against human plasma high-density lipoproteins. Biochemistry 2009; 48:8070-6. [PMID: 19618959 DOI: 10.1021/bi901087z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma HDL are the target of streptococcal serum opacity factor (SOF), a virulence factor that clouds human plasma. Recombinant (r) SOF transfers cholesteryl esters (CE) from approximately 400,000 HDL particles to a CE-rich microemulsion (CERM), forms a cholesterol-poor HDL-like particle (neo HDL), and releases lipid-free (LF) apo A-I. Whereas the rSOF reaction requires labile apo A-I, the modulation effects of other apos are not known. We compared the products and rates of the rSOF reaction against human HDL and HDL from mice overexpressing apos A-I and A-II. Kinetic studies showed that the reactivity of various HDL species is apo-specific. LpA-I reacts faster than LpA-I/A-II. Adding apos A-I and A-II inhibited the SOF reaction, an effect that was more profound for apo A-II. The rate of SOF-mediated CERM formation was slower against HDL from mice expressing human apos A-I and A-II than against WT mice HDL and slowest against HDL from apo A-II overexpressing mice. The lower reactivity of SOF against HDL containing human apos is due to the higher hydropathy of human apo A-I, particularly its C-terminus relative to mouse apo A-I, and the higher lipophilicity of human apo A-II. The SOF-catalyzed reaction is the first to target HDL rather than its transporters and receptors in a way that enhances reverse cholesterol transport (RCT). Thus, effects of apos on the SOF reaction are highly relevant. Our studies show that the "humanized" apo A-I-expressing mouse is a good animal model for studies of rSOF effects on RCT in vivo.
Collapse
Affiliation(s)
- Corina Rosales
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
33
|
Surface-associated and secreted factors ofStreptococcus suisin epidemiology, pathogenesis and vaccine development. Anim Health Res Rev 2009; 10:65-83. [DOI: 10.1017/s146625230999003x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractStreptococcus suisis an invasive porcine pathogen associated with meningitis, arthritis, bronchopneumonia and other diseases. The pathogen constitutes a major health problem in the swine industry worldwide. Furthermore,S. suisis an important zoonotic agent causing meningitis and other diseases in humans exposed to pigs or pork. Current knowledge on pathogenesis is limited, despite the enormous amount of data generated by ‘omics’ research. Accordingly, immunprophylaxis (in pigs) is hampered by lack of a cross-protective vaccine against virulent strains of this diverse species. This review focuses on bacterial factors, both surface-associated and secreted ones, which are considered to contribute toS. suisinteraction(s) with host factors and cells. Factors are presented with respect to (i) their identification and features, (ii) their distribution amongS. suisand (iii) their significance for virulence, immune response and vaccination. This review also shows the enormous progress made in research onS. suisover the last few years, and it emphasizes the numerous challenging questions remaining to be answered in the future.
Collapse
|
34
|
Margarit I, Bonacci S, Pietrocola G, Rindi S, Ghezzo C, Bombaci M, Nardi-Dei V, Grifantini R, Speziale P, Grandi G. Capturing host-pathogen interactions by protein microarrays: identification of novel streptococcal proteins binding to human fibronectin, fibrinogen, and C4BP. FASEB J 2009; 23:3100-12. [PMID: 19417080 DOI: 10.1096/fj.09-131458] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbial pathogen entry and survival in the host is mediated by a network of molecular interactions between the two partners, which has been the subject of many research efforts. A complex picture is emerging in which host-pathogen crosstalk involves a high number of proteins, often with redundant functions. In the present study, we investigated the potential of protein microarrays to simultaneously scan interactions between surface proteins from two main human streptococcal pathogens, Streptococcus pyogenes and Streptococcus agalactiae, and three human ligands, fibronectin, fibrinogen, and C4 binding protein, known to play an important role in streptococcal pathogenesis. By using this technology, we confirmed interactions described in the literature and detected a novel set of streptococcal proteins with binding capacities for the human ligands. The observations were validated by Western blot and ELISA techniques. Three of the newly identified proteins were isoforms of a group B streptococcus-secreted component named Fib and displayed differential binding capacities for fibronectin, fibrinogen, and C4BP. The protein regions involved in the interaction with each ligand were identified by constructing fragments of one of the Fib variants. The approach proved valuable for the acquisition of novel insights into the complex network of protein-protein interactions occurring during microbial infection.
Collapse
|
35
|
Han M, Gillard BK, Courtney HS, Ward K, Rosales C, Khant H, Ludtke SJ, Pownall HJ. Disruption of human plasma high-density lipoproteins by streptococcal serum opacity factor requires labile apolipoprotein A-I. Biochemistry 2009; 48:1481-7. [PMID: 19191587 DOI: 10.1021/bi802287q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human plasma high-density lipoproteins (HDL), the primary vehicle for reverse cholesterol transport, are the target of serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes that turns serum opaque. HDL comprise a core of neutral lipidscholesteryl esters and some triglyceridesurrounded by a surface monolayer of cholesterol, phospholipids, and specialized proteins [apolipoproteins (apos) A-I and A-II]. A HDL is an unstable particle residing in a kinetic trap from which it can escape via chaotropic, detergent, or thermal perturbation. Recombinant (r) SOF catalyzes the transfer of nearly all neutral lipids of approximately 100,000 HDL particles (D approximately 8.5 nm) into a single, large cholesteryl ester-rich microemulsion (CERM; D > 100 nm), leaving a new HDL-like particle [neo HDL (D approximately 5.8 nm)] while releasing lipid-free (LF) apo A-I. CERM formation and apo A-I release have similar kinetics, suggesting parallel or rapid consecutive steps. By using complementary physicochemical methods, we have refined the mechanistic model for HDL opacification. According to size exclusion chromatography, a HDL containing nonlabile apo A-I resists rSOF-mediated opacification. On the basis of kinetic cryo-electron microscopy, rSOF (10 nM) catalyzes the conversion of HDL (4 microM) to neo HDL via a stepwise mechanism in which intermediate-sized particles are seen. Kinetic turbidimetry revealed opacification as a rising exponential reaction with a rate constant k of (4.400 +/- 0.004) x 10(-2) min(-1). Analysis of the kinetic data using transition state theory gave an enthalpy (DeltaH()), entropy (DeltaS(++)), and free energy (DeltaG()) of activation of 73.9 kJ/mol, -66.87 J/K, and 94.6 kJ/mol, respectively. The free energy of activation for opacification is nearly identical to that for the displacement of apo A-I from HDL by guanidine hydrochloride. We conclude that apo A-I lability is required for HDL opacification, LF apo A-I desorption is the rate-limiting step, and nearly all HDL particles contain at least one labile copy of apo A-I.
Collapse
Affiliation(s)
- Mikyung Han
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Courtney HS, Li Y, Twal WO, Argraves WS. Serum opacity factor is a streptococcal receptor for the extracellular matrix protein fibulin-1. J Biol Chem 2009; 284:12966-71. [PMID: 19276078 DOI: 10.1074/jbc.m901143200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesion of bacteria to host tissues is often mediated by interactions with extracellular matrices. Herein, we report on the interactions of the group A streptococcus, Streptococcus pyogenes, with the extracellular matrix protein fibulin-1. S. pyogenes bound purified fibulin-1 in a dose-dependent manner. Genetic ablation of serum opacity factor (SOF), a virulence determinant of S. pyogenes, reduced binding by approximately 50%, and a recombinant peptide of SOF inhibited binding of fibulin-1 to streptococci by approximately 45%. Fibulin-1 bound to purified SOF2 in a dose-dependent manner with high affinity (K(d) = 1.6 nm). The fibulin-1-binding domain was localized to amino acid residues 457-806 of SOF2, whereas the fibronectin-binding domain is contained within residues 807-931 of SOF2, indicating that these two domains are separate and distinct. Fibulin-1 bound to recombinant SOF from M types 2, 4, 28, and 75 of S. pyogenes, indicating that the fibulin-1-binding domain is likely conserved among SOF from different serotypes. Mixed binding experiments suggested that gelatin, fibronectin, fibulin-1, and SOF form a quaternary molecular complex that enhanced the binding of fibulin-1. These data indicate that S. pyogenes can interact with fibulin-1 and that SOF is a major streptococcal receptor for fibulin-1 but not the only receptor. Such interactions with fibulin-1 may be involved in the adhesion of S. pyogenes to extracellular matrices of the host.
Collapse
|
37
|
McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 2008; 190:7773-85. [PMID: 18820018 PMCID: PMC2583620 DOI: 10.1128/jb.00672-08] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022] Open
Abstract
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, P.O. Box 26901, CPB307, Oklahoma City, OK, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pownall HJ, Courtney HS, Gillard BK, Massey JB. Properties of the products formed by the activity of serum opacity factor against human plasma high-density lipoproteins. Chem Phys Lipids 2008; 156:45-51. [PMID: 18838065 DOI: 10.1016/j.chemphyslip.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/25/2022]
Abstract
Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of approximately 100,000 plasma high-density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver.
Collapse
Affiliation(s)
- Henry J Pownall
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, MS A601, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
39
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Takamatsu D, Osaki M, Tharavichitkul P, Takai S, Sekizaki T. Allelic variation and prevalence of serum opacity factor among the Streptococcus suis population. J Med Microbiol 2008; 57:488-494. [DOI: 10.1099/jmm.0.47755-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum opacity factor of Streptococcus suis (OFS) has recently been identified as a virulence determinant of an S. suis strain. In this study, we investigated the prevalence and variations of the ofs gene among 108 S. suis isolates from diseased and healthy pigs, and human patients. PCR screening and sequencing analysis showed that besides the ofs gene reported already (designated type 1), there were three allelic variants of ofs (designated types 2 to 4). Type-1 and type-2 ofs genes were expected to encode functional OFS, and SDS extracts of the isolates with type-1 ofs and type-2 ofs opacified horse serum. Culture supernatants of the isolates with type-2 ofs also showed strong serum opacification activity. In contrast, type-3 ofs was interrupted by a point mutation and type-4 ofs was disrupted by either insertion of an IS element or genetic rearrangement, and therefore the SDS extracts and culture supernatants of the isolates with type-3 ofs and type-4 ofs did not show serum opacification activity. Regardless of their origins, approximately 30 % of the isolates possessed functional OFSs, although type-2 ofs was found only in three isolates from healthy pigs. Multilocus sequence typing analysis showed that most of the isolates with type-1 ofs belonged to the sequence type (ST)1 complex, and most of the isolates with type-3 ofs and type-4 ofs belonged to the ST27 complex. The isolates with type-2 ofs were not assigned to a major ST complex. These results suggest that type-1 OFS contributes to the virulence of a limited number of S. suis isolates, i.e. those of the ST1 complex type, whereas other S. suis may not possess this category of virulence factor; the importance of type-2 OFS is obscure.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Osaki
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | | | - Shinji Takai
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Sekizaki
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
41
|
Gillen CM, Courtney HS, Schulze K, Rohde M, Wilson MR, Timmer AM, Guzman CA, Nizet V, Chhatwal G, Walker MJ. Opacity Factor Activity and Epithelial Cell Binding by the Serum Opacity Factor Protein of Streptococcus pyogenes Are Functionally Discrete. J Biol Chem 2008; 283:6359-66. [DOI: 10.1074/jbc.m706739200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Possible Mechanisms Related to Development of Severe Streptococcus pyogenes Infection. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
|
44
|
Gillard BK, Courtney HS, Massey JB, Pownall HJ. Serum opacity factor unmasks human plasma high-density lipoprotein instability via selective delipidation and apolipoprotein A-I desorption. Biochemistry 2007; 46:12968-78. [PMID: 17941651 DOI: 10.1021/bi701525w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human plasma high-density lipoproteins (HDL) are important vehicles in reverse cholesterol transport, the cardioprotective mechanism by which peripheral tissue-cholesterol is transported to the liver for disposal. HDL is the target of serum opacity factor (SOF), a substance produced by Streptococcus pyogenes that turns mammalian serum cloudy. Using a recombinant (r) SOF, we studied opacification and its mechanism. rSOF catalyzes the partial disproportionation of HDL into a cholesteryl ester-rich microemulsion (CERM) and a new HDL-like particle, neo HDL, with the concomitant release of lipid-free (LF)-apo A-I. Opacification is unique; rSOF transfers apo E and nearly all neutral lipids of approximately 100,000 HDL particles into a single large CERM whose size increases with HDL-CE content (r approximately 100-250 nm) leaving a neo HDL that is enriched in PL (41%) and protein (48%), especially apo A-II. rSOF is potent; within 30 min at 37 degrees C, 10 nM rSOF opacifies 4 microM HDL. At respective low and high physiological HDL concentrations, LF-apo A-I is monomeric and tetrameric. CERM formation and apo A-I release have similar kinetics suggesting parallel or rapid sequential steps. According to the reaction products and kinetics, rSOF is a heterodivalent fusogenic protein that uses a docking site to displace apo A-I and bind to exposed CE surfaces on HDL; the resulting rSOF-HDL complex recruits additional HDL with its binding-delipidation site and through multiple fusion steps forms a CERM. rSOF may be a clinically useful and novel modality for improving reverse cholesterol transport. With apo E and a high CE content, CERM could transfer large amounts of cholesterol to the liver for disposal via the LDL receptor; neo HDL is likely a better acceptor of cellular cholesterol than HDL; LF-apo A-I could enhance efflux via the ATP-binding casette transporter ABCA1.
Collapse
Affiliation(s)
- Baiba K Gillard
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Caswell CC, Lukomska E, Seo NS, Höök M, Lukomski S. Scl1-dependent internalization of group A Streptococcus via direct interactions with the alpha2beta(1) integrin enhances pathogen survival and re-emergence. Mol Microbiol 2007; 64:1319-31. [PMID: 17542923 DOI: 10.1111/j.1365-2958.2007.05741.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular pathogenesis of infections caused by group A Streptococcus (GAS) is not fully understood. We recently reported that a recombinant protein derived from the collagen-like surface protein, Scl1, bound to the human collagen receptor, integrin alpha(2)beta(1). Here, we investigate whether the same Scl1 variant expressed by GAS cells interacts with the integrin alpha2beta(1) and affects the biological outcome of host-pathogen interactions. We demonstrate that GAS adherence and internalization involve direct interactions between surface expressed Scl1 and the alpha2beta(1) integrin, because (i) both adherence and internalization of the scl1-inactivated mutant were significantly decreased, and were restored by in-trans complementation of Scl1 expression, (ii) GAS internalization was reduced by pre-treatment of HEp-2 cells with anti-alpha2 integrin-subunit antibody and type I collagen, (iii) recombinant alpha2-I domain bound the wild-type GAS cells and (iv) internalization of wild-type cells was significantly increased in C2C12 cells expressing the alpha2beta(1) integrin as the only collagen-binding integrin. Next, we determined that internalized GAS re-emerges from epithelial cells into the extracellular environment. Taken together, our data describe a new molecular mechanism used by GAS involving the direct interaction between Scl1 and integrins, which increases the overall capability of the pathogen to survive and re-emerge.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
46
|
Wertz JE, McGregor KF, Bessen DE. Detecting key structural features within highly recombined genes. PLoS Comput Biol 2007; 3:e14. [PMID: 17257051 PMCID: PMC1782043 DOI: 10.1371/journal.pcbi.0030014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022] Open
Abstract
Many microorganisms exhibit high levels of intragenic recombination following horizontal gene transfer events. Furthermore, many microbial genes are subject to strong diversifying selection as part of the pathogenic process. A multiple sequence alignment is an essential starting point for many of the tools that provide fundamental insights on gene structure and evolution, such as phylogenetics; however, an accurate alignment is not always possible to attain. In this study, a new analytic approach was developed in order to better quantify the genetic organization of highly diversified genes whose alleles do not align. This BLAST-based method, denoted BLAST Miner, employs an iterative process that places short segments of highly similar sequence into discrete datasets that are designated “modules.” The relative positions of modules along the length of the genes, and their frequency of occurrence, are used to identify sequence duplications, insertions, and rearrangements. Partial alleles of sof from Streptococcus pyogenes, encoding a surface protein under host immune selection, were analyzed for module content. High-frequency Modules 6 and 13 were identified and examined in depth. Nucleotide sequences corresponding to both modules contain numerous duplications and inverted repeats, whereby many codons form palindromic pairs. Combined with evidence for a strong codon usage bias, data suggest that Module 6 and 13 sequences are under selection to preserve their nucleic acid secondary structure. The concentration of overlapping tandem and inverted repeats within a small region of DNA is highly suggestive of a mechanistic role for Module 6 and 13 sequences in promoting aberrant recombination. Analysis of pbp2X alleles from Streptococcus pneumoniae, encoding cell wall enzymes that confer antibiotic resistance, supports the broad applicability of this tool in deciphering the genetic organization of highly recombined genes. BLAST Miner shares with phylogenetics the important predictive quality that leads to the generation of testable hypotheses based on sequence data. Microbial genes that accumulate large amounts of nucleotide sequence diversity through lateral exchanges with other microorganisms are often central to understanding key interactions between the microbe and an ever-changing host or environment. Proper sequence alignment of multiple gene alleles is an essential starting point for many of the tools that provide fundamental insights on gene structure and evolution, and allow scientists to develop hypotheses on biological processes. However, for some of the most interesting genes, a good quality alignment can be impossible to attain. We introduce a new software program, BLAST Miner, for analyzing genes that cannot be well-aligned. It relies on identifying small gene segments having high levels of sequence homology, irrespective of their relative positions within the different genes. Genes encoding a drug-resistance determinant and a target of host immunity are used as examples to demonstrate the application of BLAST Miner, and a potentially novel mechanism for generating genetic change is uncovered. This new bioinformatics tool provides an avenue for studying genes that are intractable by most other analytic approaches.
Collapse
Affiliation(s)
- John E Wertz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America.
| | | | | |
Collapse
|
47
|
Baums CG, Kaim U, Fulde M, Ramachandran G, Goethe R, Valentin-Weigand P. Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infect Immun 2006; 74:6154-62. [PMID: 17057090 PMCID: PMC1695488 DOI: 10.1128/iai.00359-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Streptococcus suis serotype 2 is a porcine and human pathogen with adhesive and invasive properties. In other streptococci, large surface-associated proteins (>100 kDa) of the MSCRAMM family (microbial surface components recognizing adhesive matrix molecules) are key players in interactions with host tissue. In this study, we identified a novel opacity factor of S. suis (OFS) with structural homology to members of the MSCRAMM family. The N-terminal region of OFS is homologous to the respective regions of fibronectin-binding protein A (FnBA) of Streptococcus dysgalactiae and the serum opacity factor (SOF) of Streptococcus pyogenes. Similar to these two proteins, the N-terminal domain of OFS opacified horse serum. Serum opacification activity was detectable in sodium dodecyl sulfate extracts of wild-type S. suis but not in extracts of isogenic ofs knockout mutants. Heterologous expression of OFS in Lactococcus lactis demonstrated that a high level of expression of OFS is sufficient to provide surface-associated serum opacification activity. Furthermore, serum opacification could be inhibited by an antiserum against recombinant OFS. The C-terminal repetitive sequence elements of OFS differed significantly from the respective repeat regions of FnBA and SOF as well as from the consensus sequence of the fibronectin-binding repeats of MSCRAMMs. Accordingly, fibronectin binding was not detectable in recombinant OFS. To investigate the putative function of OFS in the pathogenesis of invasive S. suis diseases, piglets were experimentally infected with an isogenic mutant strain in which the ofs gene had been knocked out by an in-frame deletion. The mutant was severely attenuated in virulence but not in colonization, demonstrating that OFS represents a novel virulence determinant of S. suis.
Collapse
Affiliation(s)
- Christoph G Baums
- Institut fuer Mikrobiologie, Zentrum fuer Infektionsmedizin, Stiftung Tieraerztliche Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, Beall B, Nizet V. Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. Mol Microbiol 2006; 62:15-25. [PMID: 16942605 DOI: 10.1111/j.1365-2958.2006.05337.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.
Collapse
Affiliation(s)
- Anjuli M Timmer
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sakota V, Fry AM, Lietman TM, Facklam RR, Li Z, Beall B. Genetically diverse group A streptococci from children in far-western Nepal share high genetic relatedness with isolates from other countries. J Clin Microbiol 2006; 44:2160-6. [PMID: 16757615 PMCID: PMC1489425 DOI: 10.1128/jcm.02456-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of group A streptococci (GAS) throughout much of the world has not been adequately explored. To assess genetic variation among GAS in western Nepal, 120 noninvasive GAS, collected from eight different villages, were genetically characterized using emm typing, sof sequencing, and multilocus sequence typing (MLST). A high level of genetic diversity was observed among these isolates, with 51 genotypes based upon 51 multilocus sequence types (STs), 45 emm sequence types, and 28 sof sequence types. On the basis of shared ST-emm and sof-emm associations, 40 of the 51 genotypes were identical or highly related to genotypes characterized from locations outside of Nepal, even though most of the emm sequence and clonal types are rare among GAS within the United States. When analyzing all known STs highly related to Nepal STs, only one example of similar STs shared between a sof PCR-positive strain and a sof PCR-negative strain was observed. Since previous data indicate free exchange of MLST loci between sof-positive and sof-negative strains, there is possibly selection against the expansion of subclones resulting from horizontal transfers of sof or emm genes between sof-positive and sof-negative strains. All 45 emm types encountered in Nepal have also been documented from other countries. These data, together with data encompassing the past decade of emm type surveillance, support the possibility that most existing GAS emm types have been discovered. Similarly, since most (40/51) strain types were highly related to strains found elsewhere, it is likely that a major fraction of the existing GAS clonal complexes have been discovered.
Collapse
Affiliation(s)
- Varja Sakota
- Division of Bacterial and Myotic Diseases, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nobbs AH, Shearer BH, Drobni M, Jepson MA, Jenkinson HF. Adherence and internalization of Streptococcus gordonii by epithelial cells involves beta1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol 2006; 9:65-83. [PMID: 16879454 DOI: 10.1111/j.1462-5822.2006.00768.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus gordonii is a commensal bacterium that colonizes the hard and soft tissues present in the human mouth and nasopharynx. The cell wall-anchored polypeptides SspA and SspB expressed by S. gordonii mediate a wide range of interactions with host proteins and other bacteria. In this article we have determined the role of SspA and SspB proteins, which are members of the streptococcal antigen I/II (AgI/II) adhesin family, in S. gordonii adherence and internalization by epithelial cells. Wild-type S. gordonii DL1 expressing AgI/II polypeptides attached to and was internalized by HEp-2 cells, whereas an isogenic AgI/II- mutant was reduced in adherence and was not internalized. Association of S. gordonii DL1 with HEp-2 cells triggered protein tyrosine phosphorylation but no significant actin rearrangement. By contrast, Streptococcus pyogenes A40 showed 50-fold higher levels of internalization and this was associated with actin polymerization and interleukin-8 upregulation. Adherence and internalization of S. gordonii by HEp-2 cells involved beta1 integrin recognition but was not fibronectin-dependent. Recombinant SspA and SspB polypeptides bound to purified human alpha5beta1 integrin through sequences present within the NAV (N-terminal) region of AgI/II polypeptide. AgI/II polypeptides blocked interactions of S. gordonii and S. pyogenes with HEp-2 cells, and S. gordonii DL1 cells expressing AgI/II proteins inhibited adherence and internalization of S. pyogenes by HEp-2 cells. Conversely, S. gordonii AgI/II- mutant cells did not inhibit internalization of S. pyogenes. The results suggest that AgI/II proteins not only promote integrin-mediated internalization of oral commensal streptococci by host cells, but also potentially influence susceptibility of host tissues to more pathogenic bacteria.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | | | | | | | | |
Collapse
|