1
|
David T, du Roure PD, Mallavialle A, Laurent-Matha V, Roger P, Guiu S, Chardès T, Liaudet-Coopman E. Cathepsins: Novel opportunities for antibody therapeutics in cancer. Br J Pharmacol 2025. [PMID: 39834229 DOI: 10.1111/bph.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025] Open
Abstract
Cathepsins, the most abundant lysosomal proteases, have key functions in cell maintenance and homeostasis. They are overexpressed and hypersecreted in cancer and associated with poor prognosis. Secreted cathepsins display pro-tumour activities in the tumour microenvironment and thus represent interesting molecular targets in oncology. Recently, several antibody-based cancer therapies have targeted the pro-tumour activity of the extracellular cathepsin pool, altering several cancer hallmarks, but not the intracellular cathepsin levels that are often crucial for cell homeostasis. In this mini-review, we describe advances in antibodies against extracellular cathepsins in cancer, and their effect on the proteolytic cascade, matrix remodelling, proliferation, and modulation of the anti-cancer immune response. We also discuss the add-on value of combination strategies (anti-cathepsin antibodies with chemotherapy and/or biologics) that make anti-cathepsin antibodies a new opportunity for disease management.
Collapse
Affiliation(s)
- Timothée David
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | - Aude Mallavialle
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | - Pascal Roger
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- Department of Pathology, CHU Nîmes, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Thierry Chardès
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- Centre National de la Recherche Scientifique, CNRS, Paris, France
| | | |
Collapse
|
2
|
Ajani TA, Magwebu ZE, Chauke CG, Obikeze K. Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development. PATHOPHYSIOLOGY 2024; 31:471-487. [PMID: 39311309 PMCID: PMC11417842 DOI: 10.3390/pathophysiology31030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult to develop inhibitors with specificity for either CatS, CatK, or CatL. The involvement of CatS in various disease pathophysiologies (autoimmune disorders, cardiovascular diseases, cancer, etc.) has made it a very important target in drug development. Efforts have been made since the early 1990s to develop a specific CatS inhibitor without any major success. Following many failed efforts to develop an inhibitor for CatS, it was discovered that interactions with the amino acid residues at the S2 and S3 pockets of CatS are critical for the identification of CatS-specific inhibitors. Amino acid residues at these pockets have been the target of recent research focused on developing a non-covalent, reversible, and specific CatS inhibitor. Methods applied in the identification of CatS inhibitors include molecular modeling, in-vitro screening, and in-vivo studies. The molecular modeling process has proven to be very successful in the identification of CatS-specific inhibitors, with R05459072 (Hoffmann-La Roche) and LY3000328 (Eli Lilly Company) which has completed phase 1 clinical trials. CatS inhibitors identified from 2011 to 2023 with promising prospects are discussed in this article.
Collapse
Affiliation(s)
- Temitope A. Ajani
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - Zandisiwe E. Magwebu
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Chesa G. Chauke
- South African Medical Research Council, Primate Unit and Delft Animal Centre (PUDAC), Cape Town 7100, South Africa; (Z.E.M.); (C.G.C.)
| | - Kenechukwu Obikeze
- School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
3
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
4
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
5
|
Yu PW, Kao G, Dai Z, Nasertorabi F, Zhang Y. Rational design of humanized antibody inhibitors for cathepsin S. Arch Biochem Biophys 2024; 751:109849. [PMID: 38061628 PMCID: PMC10872949 DOI: 10.1016/j.abb.2023.109849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Cathepsin S (CTSS) is involved in pathogenesis of many human diseases. Inhibitors blocking its protease activity hold therapeutic potential. In comparison to small-molecule inhibitors, monoclonal antibodies capable of inhibiting CTSS enzymatic activity may possess advantageous pharmacological properties. Here we designed and produced inhibitory antibodies targeting human CTSS by genetically fusing the propeptide of procathepsin S (proCTSS) with antibodies in clinic. The resulting antibody fusions in full-length or fragment antigen-binding format could be stably expressed and potently inhibit CTSS proteolytic activity in high specificity. These fusion antibodies not only demonstrate a new approach for facile synthesis of antibody inhibitors against CTSS, but also represent novel anti-CTSS therapeutic candidates.
Collapse
Affiliation(s)
- Po-Wen Yu
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guoyun Kao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Bahun M, Poklar Ulrih N. High selectivity of the hyperthermophilic subtilase propeptide domain toward inhibition of its cognate protease. Microbiol Spectr 2023; 11:e0148723. [PMID: 37655909 PMCID: PMC10580911 DOI: 10.1128/spectrum.01487-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023] Open
Abstract
Microbial extracellular subtilases are highly active proteolytic enzymes commonly used in commercial applications. These subtilases are synthesized in their inactive proform, which matures into the active protease under the control of the propeptide domain. In mesophilic bacterial prosubtilases, the propeptide functions as both an obligatory chaperone and an inhibitor of the subtilase catalytic domain. In contrast, the propeptides of hyperthermophilic archaeal prosubtilases act mainly as tight inhibitors and are not essential for subtilase folding. It is unclear whether this stronger inhibitory activity of hyperthermophilic propeptides results in their higher selectivity toward their cognate subtilases, in contrast to promiscuous mesophilic propeptides. Here, we showed that the propeptide of pernisine, a hyperthermostable archaeal subtilase, strongly interacts with and inhibits pernisine, but not the homologous subtilisin Carlsberg and proteinase K. Instead, the pernisine propeptide was readily degraded by subtilisin Carlsberg and proteinase K. In addition, the catalytic domain of unprocessed propernisine was also susceptible to degradation but became proteolytically stable after autoprocessing of propernisine into the inactive, noncovalent complex propeptide:pernisine. This allowed efficient transactivation of the autoprocessed complex propeptide:pernisine through degradation of pernisine propeptide by subtilisin Carlsberg and proteinase K at mesophilic temperature. Moreover, we demonstrated that active pernisine molecules are inhibited by the propeptide that is released after pernisine-catalyzed degradation of the unprocessed propernisine catalytic domain. This highlights the high inhibitory potency of the hyperthermophilic propeptide toward its cognate subtilase and its importance in regulating subtilase maturation, to prevent the degradation of the unprocessed subtilase precursors by the prematurely activated molecules. IMPORTANCE Many microorganisms secrete proteases into their environment to degrade protein substrates for their growth. The important group of these extracellular enzymes are subtilases, which are also widely used in practical applications. These subtilases are inhibited by their propeptide domain, which is degraded during the prosubtilase maturation process. Here, we showed that the propeptide of pernisine, a prion-degrading subtilase from the hyperthermophilic archaeon, strongly inhibits pernisine with extraordinarily high binding affinity. This interaction proved to be highly selective, as pernisine propeptide was rapidly degraded by mesophilic pernisine homologs. This in turn allowed rapid transactivation of propernisine by mesophilic subtilases at lower temperatures, which might simplify the procedures for preparation of active pernisine for commercial use. The results reported in this study suggest that the hyperthermophilic subtilase propeptide evolved to function as tight and selective regulator of maturation of the associated prosubtilase to prevent its premature activation under high temperatures.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| |
Collapse
|
8
|
S S, Camardo A, Dahal S, Ramamurthi A. Surface-Functionalized Stem Cell-Derived Extracellular Vesicles for Vascular Elastic Matrix Regenerative Repair. Mol Pharm 2023. [PMID: 37093652 DOI: 10.1021/acs.molpharmaceut.2c00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that carry cell-specific biomolecular information. Our previous studies showed that adult human bone marrow mesenchymal stem cell (BM-MSC)-derived EVs provide antiproteolytic and proregenerative effects in cultures of smooth muscle cells (SMCs) derived from an elastase-infused rat abdominal aortic aneurysm (AAA) model, and this is promising toward their use as a therapeutic platform for naturally irreversible elastic matrix aberrations in the aortic wall. Since systemically administered EVs poorly home into sites of tissue injury, disease strategies to improve their affinity toward target tissues are of great significance for EV-based treatment strategies. Toward this goal, in this work, we developed a postisolation surface modification strategy to target MSC-derived EVs to the AAA wall. The EVs were surface-conjugated with a short, synthetic, azide-modified peptide sequence for targeted binding to cathepsin K (CatK), a cysteine protease overexpressed in the AAA wall. Conjugation was performed using a copper-free click chemistry method. We determined that such conjugation improved EV uptake into cultured aneurysmal SMCs in culture and their binding to the wall of matrix injured vessels ex vivo. The proregenerative and antiproteolytic effects of MSC-EVs on cultured rat aneurysmal SMCs were also unaffected following peptide conjugation. From this study, it appears that modification with short synthetic peptide sequences seems to be an effective strategy for improving the cell-specific uptake of EVs and may be effective in facilitating AAA-targeted therapy.
Collapse
Affiliation(s)
- Sajeesh S
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Andrew Camardo
- Cleveland Clinic Foundation, 9620 Carnegie Ave. Cleveland, Ohio 44106, United States
| | - Shataakshi Dahal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| |
Collapse
|
9
|
Exploring the role of cathepsin in rheumatoid arthritis. Saudi J Biol Sci 2022; 29:402-410. [PMID: 35002435 PMCID: PMC8716961 DOI: 10.1016/j.sjbs.2021.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/17/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.
Collapse
|
10
|
Song R, Qiao W, He J, Huang J, Luo Y, Yang T. Proteases and Their Modulators in Cancer Therapy: Challenges and Opportunities. J Med Chem 2021; 64:2851-2877. [PMID: 33656892 DOI: 10.1021/acs.jmedchem.0c01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteostasis is the process of regulating intracellular proteins to maintain the balance of the cell proteome, which is crucial for cancer cell survival. Several proteases located in the cytoplasm, mitochondria, lysosome, and extracellular environment have been identified as potential antitumor targets because of their involvement in proteostasis. Although the discovery of small-molecule inhibitors targeting proteases faces particular challenges, rapid advances in chemical biology and structural biology, and the new technology of drug discovery have facilitated the development of promising protease modulators. In this review, the protein structure and function of important tumor-related proteases and their inhibitors are presented. We also provide a prospective on advances and the outlook of new drug strategies that target these proteases.
Collapse
Affiliation(s)
- Rao Song
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Pritsch IC, Tikhonova IG, Jewhurst HL, Drysdale O, Cwiklinski K, Molento MB, Dalton JP, Verissimo CDM. Regulation of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: a proposed 'clamp-like' mechanism of binding and inhibition. BMC Mol Cell Biol 2020; 21:90. [PMID: 33287692 PMCID: PMC7720491 DOI: 10.1186/s12860-020-00335-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The zoonotic worm parasite Fasciola hepatica secretes an abundance of cathepsin L peptidases that are associated with virulence, invasiveness, feeding and migration. The peptidases are produced as inactive zymogens that activate at low pH by autocatalytic removal of their N-terminal pro-domain or propeptide. Propeptides bind to their cognate enzyme with high specificity. Little is known, however, about the mechanism by which the propeptide of FhCL3, a cathepsin L peptidase secreted by the infective newly excysted juveniles (NEJs), regulates the inhibition and activation of the mature enzyme before it is secreted into host tissues. RESULTS Immunolocalisation/immunoblotting studies show that the FhCL3 zymogen is produced and secreted by gastrodermal cells of the NEJs gut. A recombinant propeptide of FhCL3 (ppFhCL3) was shown to be a highly potent and selective inhibitor of native and recombinant F. hepatica FhCL3 peptidase, and other members of the cathepsin L family; inhibition constant (Ki) values obtained for FhCL1, FhCL2 and FhCL3 were 0.04 nM, 0.004 nM and < 0.002 nM, respectively. These values are at least 1000-fold lower than those Ki obtained for human cathepsin L (HsCL) and human cathepsin K (HsCK) demonstrating the selectivity of the ppFhCL3 for parasite cathepsins L. By exploiting 3-D structural data we identified key molecular interactions in the specific binding between the ppFhCL3 and FhCL3 mature domain. Using recombinant variants of ppFhCL3 we demonstrated the critical importance of a pair of propeptide residues (Tyr46Lys47) for the interaction with the propeptide binding loop (PBL) of the mature enzyme and other residues (Leu66 and Glu68) that allow the propeptide to block the active site. CONCLUSIONS The FhCL3 peptidase involved in host invasion by F. hepatica is produced as a zymogen in the NEJs gut. Regulation of its activation involves specific binding sites within the propeptide that are interdependent and act as a "clamp-like" mechanism of inhibition. These interactions are disrupted by the low pH of the NEJs gut to initiate autocatalytic activation. Our enzyme kinetics data demonstrates high potency and selectivity of the ppFhCL3 for its cognate FhCL3 enzyme, information that could be utilised to design inhibitors of parasite cathepsin L peptidases.
Collapse
Affiliation(s)
- Izanara C Pritsch
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Heather L Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Marcelo B Molento
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,Department of Veterinary Medicine, Federal University of Parana, Curitiba, Paraná, Brazil
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Carolina De M Verissimo
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
13
|
Camardo A, Carney S, Ramamurthi A. Assessing the targeting and fate of cathepsin k antibody-modified nanoparticles in a rat abdominal aortic aneurysm model. Acta Biomater 2020; 112:225-233. [PMID: 32504690 PMCID: PMC10755341 DOI: 10.1016/j.actbio.2020.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysms (AAAs), a prototypic proteolytic cardiovascular disorder, are localized expansions of the aortal wall. Chronically upregulated and overexpressed proteases irreversibly degrade and disrupt the elastic matrix, which provides stretch and recoil properties to the aortal wall. Adult vascular smooth muscle cells are inherently unable to produce sufficient elastin to form new elastic fibers to naturally repair the aortal wall and the AAA continues to grow until fatal rupture. Surgical intervention is reserved for AAAs with a high risk of rupture, but there is currently no treatment for small, still growing AAAs. We have previously developed matrix regenerative PEG-PLGA nanoparticles (NPs) with pro-elastogenic and anti-proteolytic properties that act synergistically with a released therapeutic. However, strategies are required to effectively deliver these NPs to the disease site to avail of these benefits. We have identified cathepsin K, a protease overexpressed in AAA tissue, as a potential substrate for antibody based active targeting. We sought to assess the safety and biocompatibility of NPs with anti-cathepsin K antibodies conjugated to the NP surface (cat K Ab-NPs) and then assess their biodistribution and retention in both the targeted aorta and non-target organs in a rat AAA model. In this work, we show that cat K Ab-NPs can selectively target the aneurysmal aorta in a rat AAA model. However, there is unwanted NP uptake and retention in non-target organs that can be addressed in future work. Still, cathepsin K is a viable target for active delivery of NPs in an AAA model. STATEMENT OF SIGNIFICANCE: We have previously developed elastic matrix regenerative polymer nanoparticles (NPs), but require strategies to efficiently target the disease site. Antibodies against cathepsin K, an overexpressed protease in abdominal aortic aneurysms, have been conjugated to the NP surface to act as a targeting moiety. In this work, we assessed NP safety and in vivo biodistribution in an aneurysmal rat model and demonstrated positive targeting and retention for up to 2 weeks within the aortal wall.
Collapse
Affiliation(s)
- Andrew Camardo
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH
| | - Sarah Carney
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Anand Ramamurthi
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
14
|
Shi X, Zhang Y. A humanized antibody inhibitor for cathepsin L. Protein Sci 2020; 29:1924-1930. [PMID: 32683733 DOI: 10.1002/pro.3913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Cathepsin L (CTSL) is a cysteine protease involved in a variety of physiological and pathological processes. Potent inhibitors against CTSL have long been sought for drug development. Due to insufficient specificity and suboptimal pharmacological properties for current CTSL inhibitors, novel agents are still required for selectively blocking CTSL activity. Here we generated a humanized antibody inhibitor of CTSL by genetically fusing the inhibitory propeptide of procathepsin L to the N-terminus of the light chain of a humanized antibody. The resulting antibody fusion could be stably expressed and displays highly potent inhibition activity and specificity toward CTSL. This work demonstrates a new approach for the rapid generation of antibody inhibitors of CTSL. It can possibly be extended to create inhibitory antibodies targeting other cathepsin proteases, providing novel research and therapeutic tools.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,Research Center for Liver Diseases, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Nixon RA. The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140443. [PMID: 32416272 DOI: 10.1016/j.bbapap.2020.140443] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023]
Abstract
Lysosomes figure prominently in theories of aging as the proteolytic system most responsible for eliminating growing burdens of damaged proteins and organelles in aging neurons and other long lived cells. Newer evidence shows that diverse experimental measures known to extend lifespan in invertebrate aging models share the property of boosting lysosomal clearance of substrates through the autophagy pathway. Maintaining an optimal level of lysosome acidification is particularly crucial for these anti-aging effects. The exceptional dependence of neurons on fully functional lysosomes is reflected by the neurological phenotypes that develop in congenital lysosomal storage disorders, which commonly present as severe neurodevelopmental or neurodegenerative conditions even though the lysosomal deficit maybe systemic. Similar connections are now being appreciated between primary lysosomal deficit and the risk for late age-onset neurodegenerative disorders. In diseases such as Alzheimer's and Parkinson's, as in aging alone, primary lysosome dysfunction due to acidification impairment is emerging as a frequent theme, supported by the growing list of familial neurodegenerative disorders that involve primary vATPase dysfunction. The additional cellular roles played by intraluminal pH in sensing nutrient and stress and modulating cellular signaling have further expanded the possible ways that lysosomal pH dysregulation in aging and disease can disrupt neuronal function. Here, we consider the impact of cellular aging on lysosomes and how the changes during aging may create the tipping point for disease emergence in major late-age onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, 550 First Ave, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, 550 First Ave, New York, NY 10016, USA; Department of NYU Neuroscience Institute, New York University Langone Medical Center, 550 First Ave, New York, NY 10016, USA.
| |
Collapse
|
16
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Suzuki Y, Suzuki T, Awai K, Shioi Y. Isolation and characterization of a tandem-repeated cysteine protease from the symbiotic dinoflagellate Symbiodinium sp. KB8. PLoS One 2019; 14:e0211534. [PMID: 30703144 PMCID: PMC6355014 DOI: 10.1371/journal.pone.0211534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
A cysteine protease belonging to peptidase C1A superfamily from the eukaryotic, symbiotic dinoflagellate, Symbiodinium sp. strain KB8, was characterized. The protease was purified to near homogeneity (566-fold) by (NH4)2SO4 fractionation, ultrafiltration, and column chromatography using a fluorescent peptide, butyloxycarbonyl-Val-Leu-Lys-4-methylcoumaryl-7-amide (Boc-VLK-MCA), as a substrate for assay purposes. The enzyme was termed VLKP (VLK protease), and its activity was strongly inhibited by cysteine protease inhibitors and activated by reducing agents. Based on the results for the amino acid sequence determined by liquid chromatography-coupled tandem mass spectrometry, a cDNA encoding VLKP was synthesized. VLKP was classified into the peptidase C1A superfamily of cysteine proteases (C1AP). The predicted amino acid sequence of VLKP indicated a tandem array of highly conserved precursors of C1AP with a molecular mass of approximately 71 kDa. The results of gel-filtration chromatography and SDS-PAGE suggested that VLKP exists as a monomer of 31-32 kDa, indicating that the tandem array is likely divided into two mass-equivalent halves that undergo equivalent posttranslational modifications. The VLKP precursor contains an inhibitor prodomain that might become activated after acidic autoprocessing at approximately pH 4. Both purified and recombinant VLKPs had a similar substrate specificity and kinetic parameters for common C1AP substrates. Most C1APs reside in acidic organelles such as the vacuole and lysosomes, and indeed VLKP was most active at pH 4.5. Since VLKP exhibited maximum activity during the late logarithmic growth phase, these attributes suggest that, VLKP is involved in the metabolism of proteins in acidic organelles.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Koichiro Awai
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- PRESTO, JST, Kawaguchi, Japan
- * E-mail:
| | - Yuzo Shioi
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
18
|
Kwon CW, Yang H, Yeo S, Park KM, Jeong AJ, Lee KW, Ye SK, Chang PS. Molecular cloning and anti-invasive activity of cathepsin L propeptide-like protein from Calotropis procera R. Br. against cancer cells. J Enzyme Inhib Med Chem 2018; 33:657-664. [PMID: 29560748 PMCID: PMC6010012 DOI: 10.1080/14756366.2018.1444609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin L of cancer cells has been shown to play an important role in degradation of extracellular matrix for metastasis. In order to reduce cell invasion, cathepsin L propeptide-like proteins which are classified as the I29 family in the MEROPS peptidase database were characterized from Calotropis procera R. Br., rich in cysteine protease. Of 19 candidates, the cloned and expressed recombinant SnuCalCp03-propeptide (rSnuCalCp03-propeptide) showed a low nanomolar Ki value of 2.3 ± 0.2 nM against cathepsin L. A significant inhibition of tumor cell invasion was observed with H1975, HT29, MDA-BM-231, PANC1, and PC3 with a 76, 67, 67, 63, and 79% reduction, respectively, in invasion observed in the presence of 400 nM of the rSnuCalCp03-propeptide. In addition, thermal and pH study showed rSnuCalCp03-propeptide consisting of secondary structures was stable at a broad range of temperatures (30–70 °C) and pH (2–10, except for 5 which is close to the isoelectric point of 5.2).
Collapse
Affiliation(s)
- Chang Woo Kwon
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Hee Yang
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - SuBin Yeo
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Kyung-Min Park
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Ae Jin Jeong
- b Department of Pharmacology and Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Ki Won Lee
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Sang-Kyu Ye
- b Department of Pharmacology and Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Pahn-Shick Chang
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,c Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
19
|
Chevigné A, Campizi V, Szpakowska M, Bourry D, Dumez ME, Martins JC, Matagne A, Galleni M, Jacquet A. The Lys-Asp-Tyr Triad within the Mite Allergen Der p 1 Propeptide Is a Critical Structural Element for the pH-Dependent Initiation of the Protease Maturation. Int J Mol Sci 2017; 18:ijms18051087. [PMID: 28531096 PMCID: PMC5454996 DOI: 10.3390/ijms18051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.
Collapse
Affiliation(s)
- Andy Chevigné
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Vincenzo Campizi
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - David Bourry
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Marie-Eve Dumez
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - André Matagne
- Laboratoire d'Enzymologie, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Moreno Galleni
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Alain Jacquet
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 2016; 32:22-37. [PMID: 27125852 DOI: 10.1016/j.arr.2016.04.010] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes and lysosomal hydrolases, including the cathepsins, have been shown to change their properties with aging brain a long time ago, although their function was not really understood. The first biochemical and clinical studies were followed by a major expansion in the last 20 years with the development of animal disease models and new approaches leading to a major advancement of understanding of the role of physiological and degenerative processes in the brain at the molecular level. This includes the understanding of the major role of autophagy and the cathepsins in a number of diseases, including its critical role in the neuronal ceroid lipofuscinosis. Similarly, cathepsins and some other lysosomal proteases were shown to have important roles in processing and/or degradation of several important neuronal proteins, thereby having either neuroprotective or harmful roles. In this review, we discuss lysosomal cathepsins and their regulation with the focus on cysteine cathepsins and their endogenous inhibitors, as well as their role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia.
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Sl-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Sl-1000 Ljubljana, Slovenia.
| |
Collapse
|
21
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
22
|
Huq NL, Seers CA, Toh ECY, Dashper SG, Slakeski N, Zhang L, Ward BR, Meuric V, Chen D, Cross KJ, Reynolds EC. Propeptide-mediated inhibition of cognate gingipain proteinases. PLoS One 2013; 8:e65447. [PMID: 23762374 PMCID: PMC3677877 DOI: 10.1371/journal.pone.0065447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.
Collapse
Affiliation(s)
- N. Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Elena C. Y. Toh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Brent R. Ward
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Vincent Meuric
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Keith J. Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Cambra I, Hernández D, Diaz I, Martinez M. Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. PLoS One 2012; 7:e37234. [PMID: 22615948 PMCID: PMC3355106 DOI: 10.1371/journal.pone.0037234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/18/2012] [Indexed: 11/30/2022] Open
Abstract
C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed.
Collapse
Affiliation(s)
| | | | | | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Cysteine cathepsins: from structure, function and regulation to new frontiers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:68-88. [PMID: 22024571 PMCID: PMC7105208 DOI: 10.1016/j.bbapap.2011.10.002] [Citation(s) in RCA: 912] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
25
|
|
26
|
Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie 2010; 92:1681-8. [PMID: 20346385 DOI: 10.1016/j.biochi.2010.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/16/2010] [Indexed: 12/23/2022]
Abstract
Deregulated proteolytic activities frequently have causative or exacerbative functions in pathological conditions such as cancer and inflammatory disease. Many proteases therefore represent therapeutic targets, but the generation of successful small molecule drugs is often limited by the ability to achieve sufficient specificity of action. Consequently, several proteases have been deemed as unsuitable drug targets due to the inability to target them successfully. In an effort to circumvent these issues, much interest has recently focused on the development and application of biologic inhibitors. In this review, the latest research in the development of biologic protease inhibitors is examined. This includes a review of engineered kunitz and other inhibitory domains as well as the application of antibodies as therapeutically viable inhibitors.
Collapse
Affiliation(s)
- Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | | |
Collapse
|
27
|
Klaver DW, Wilce MCJ, Gasperini R, Freeman C, Juliano JP, Parish C, Foa L, Aguilar MI, Small DH. Glycosaminoglycan-induced activation of the β-secretase (BACE1) of Alzheimer’s disease. J Neurochem 2010; 112:1552-61. [DOI: 10.1111/j.1471-4159.2010.06571.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Deshapriya RMC, Yuhashi S, Usui M, Kageyama T, Yamamoto Y. Identification of essential residues of CTLA-2alpha for inhibitory potency. J Biochem 2009; 147:393-404. [PMID: 19910310 DOI: 10.1093/jb/mvp188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify functionally essential sequences and residues of CTLA-2alpha, in vitro mutagenesis was carried out. The coefficient of inhibition (K(i)) was determined towards rabbit cathepsin L using Z-Phe-Arg-MCA as the substrate. Recombinant CTLA-2alpha inhibited the enzyme potently (K(i) = 15 nM). A truncated mutant, lacking the N- and C-terminal Ala1-Asp9 and Leu80-Glu109 regions, was also a potent inhibitor (K(i) = 10 nM). Subsequent short deletions in the central region (Asn10-Ser79) showed three functionally essential distinct regions: Asn10-Phe19, His30-Ala44 and Ser55-Ser79. These regions cover sequences corresponding to three helices (alpha1, alpha2 and alpha3) and sequences that interact with the cognate enzyme. Alanine scanning showed that replacement of one of three conserved Trp residues increased the K(i) by 15-20-fold; whereas, replacement of two/three Trp residues at once caused complete loss of potency, as did replacing Cys75 with Ala or Ser. The proteins from wild-type (WT) CTLA-2alpha and mutant C75A were stable overnight when incubated with cathepsin L; whereas, proteins from mutants W12A, W15A and W35A were quickly digested. Incubation of cathepsin L/WT CTLA-2alpha formed a complex; whereas, C75S did not form a complex. Our overall results point to a critical role of W12, W15, W35 and Cys75 residues in CTLA-2alpha.
Collapse
Affiliation(s)
- R M C Deshapriya
- Department of Veterinary Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
29
|
Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1795-801. [PMID: 19715777 DOI: 10.1016/j.bbapap.2009.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
Abstract
Porcine pepsin A, a gastric aspartic peptidase, is initially produced as the zymogen pepsinogen that contains an N-terminal, 44 residue prosegment (PS) domain. In the absence of the PS, native pepsin (Np) is irreversibly denatured and when placed under refolding conditions, folds to a thermodynamically stable denatured state. This denatured, refolded pepsin (Rp) state can be converted to Np by the exogenous addition of the PS, which catalyzes the folding of Rp to Np. In order to thoroughly study the mechanism by which the PS catalyzes pepsin folding, a soluble protein expression system was developed to produce recombinant PS peptide in a highly pure form. Using this system, the wild-type and three-mutant PS forms, in which single residue substitutions were made (V4A, R8A and K36A), were expressed and purified. These PS peptides were characterized for their ability to inhibit Np enzymatic activity and to catalyze the folding of Rp to Np. The V4A, R8A and K36A mutant PS peptides were found to have nanomolar inhibition constants, Ki, of 82.4, 58.3 and 95.6 nM, respectively, approximately a two-fold increase from that of the wild-type PS (36.2 nM). All three-mutant PS peptides were found to catalyze Np folding with a rate constant of 0.06 min(-1), five-fold lower than that of the wild-type. The observation that the mutant PS peptides retained their inhibition and folding-catalyst functionality suggests a high level of resilience to mutations of the pepsin PS.
Collapse
|
30
|
Geppert H, Humrich J, Stumpfe D, Gärtner T, Bajorath J. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J Chem Inf Model 2009; 49:767-79. [PMID: 19309114 DOI: 10.1021/ci900004a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Support vector machine (SVM) database search strategies are presented that aim at the identification of small molecule ligands for targets for which no ligand information is currently available. In pharmaceutical research and chemical biology, this situation is faced, for example, when studying orphan targets or newly identified members of protein families. To investigate methods for de novo ligand identification in the absence of known three-dimensional target structures or active molecules, we have focused on combining sequence and ligand information for closely and distantly related proteins. To provide a basis for these investigations, a set of 11 protease targets from different families was assembled together with more than 2000 inhibitors directed against individual proteases. We have compared SVM approaches that combine protein sequence and ligand information in different ways and utilize 2D fingerprints as ligand descriptors. These methodologies were applied to search for inhibitors of individual proteases not taken into account during learning. A target sequence-ligand kernel and, in particular, a linear combination of multiple target-directed SVMs consistently identified inhibitors with high accuracy including test cases where homology-based similarity searching using data fusion and conventional SVM ranking nearly or completely failed. The SVM linear combination and target-ligand kernel methods described herein are intuitive and straightforward to adopt for ligand prediction against other targets.
Collapse
Affiliation(s)
- Hanna Geppert
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universitat Bonn, Dahlmannstr. 2, D-53113 Bonn, Germany
| | | | | | | | | |
Collapse
|
31
|
Pandey KC, Barkan DT, Sali A, Rosenthal PJ. Regulatory elements within the prodomain of Falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS One 2009; 4:e5694. [PMID: 19479029 PMCID: PMC2682653 DOI: 10.1371/journal.pone.0005694] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain.
Collapse
Affiliation(s)
- Kailash C. Pandey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David T. Barkan
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Bioinformatics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Andrej Sali
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
The structure-function relationships of aspartic peptidases (APs) (EC 3.4.23.X) have been extensively investigated, yet much remains to be elucidated regarding the various molecular mechanisms of these enzymes. Over the past years, APs have received considerable interest for food applications (e.g. cheese, fermented foods) and as potential targets for pharmaceutical intervention in human diseases including hypertension, cancer, Alzheimer's disease, AIDS (acquired immune deficiency syndrome), and malaria. A deeper understanding of the structure and function of APs, therefore, will have a direct impact on the design of peptidase inhibitors developed to treat such diseases. Most APs are synthesized as zymogens which contain an N-terminal prosegment (PS) domain that is removed at acidic pH by proteolytic cleavage resulting in the active enzyme. While the nature of the AP PS function is not entirely understood, the PS can be important in processes such as the initiation of correct folding, protein stability, blockage of the active site, pH-dependence of activation, and intracellular sorting of the zymogen. This review summarizes the current knowledge of AP PS function (especially within the A1 family), with particular emphasis on protein folding, cellular sorting, and inhibition.
Collapse
|
33
|
Zhang J, Saint-Remy JM, Garrod DR, Robinson C. Comparative enzymology of native and recombinant house dust mite allergen Der p 1. Allergy 2009; 64:469-77. [PMID: 19175594 DOI: 10.1111/j.1398-9995.2008.01852.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The cysteine peptidase activity of group 1 house dust mite allergens is important for their allergenicity and may offer new therapeutic targets for allergy treatment. Hitherto, the design of specific inhibitors has been impeded because the availability of pure, fully active allergens has limited the implementation of drug screening campaigns. Similarly, investigation of the mechanisms by which peptidase allergens promote sensitization has also been restricted. Our aim was to compare the enzymology of recombinant and native forms of Der p 1 to establish if an easily expressed recombinant form of Der p 1 could be used as a drug discovery tool. METHODS Enzymatic activity of natural and recombinant Der p 1 was compared fluorimetrically using a novel specific substrate (ADZ 50,059) and a novel specific active site titrant (ADZ 50,000). The effect of recombinant Der p 1 prodomain on the catalytic activity of both Der p 1 preparations was also examined. RESULTS Although differing substantially in molecular weight, the enzymological properties of recombinant and native Der p 1 were indistinguishable. Our data show clearly by experiment that, in contrast to some suggestions, Der p 1 is not an enzyme of bifunctional mechanism. CONCLUSION The catalytic activity of Der p 1 is tolerant of glycosylation differences that occur at N150 when the protein is expressed in Pichia pastoris. This suggests that this recombinant protein may be suitable for drug design studies and in the elucidation of how peptidase activity promotes sensitization to peptidase and nonpeptidase bystander allergens.
Collapse
Affiliation(s)
- J Zhang
- Ion Channels and Cell Signalling Centre, Division of Basic Medical Sciences, St George's, University of London, London, UK
| | | | | | | |
Collapse
|
34
|
Cryptopain-1, a cysteine protease of Cryptosporidium parvum, does not require the pro-domain for folding. Parasitology 2008; 136:149-57. [PMID: 19091155 DOI: 10.1017/s0031182008005350] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARY Cryptosporidium parvum is an intracellular protozoan parasite that causes cryptosporidiosis in mammals including humans. In the current study, the gene encoding the cysteine protease of C. parvum (cryptopain-1) was identified and the biochemical properties of the recombinant enzyme were characterized. Cryptopain-1 shared common structural properties with cathepsin L-like papain family enzymes, but lacked a typical signal peptide sequence and contained a possible transmembrane domain near the amino terminus and a unique insert in the front of the mature domain. The recombinant cryptopain-1 expressed in Escherichia coli and refolded to the active form showed typical biochemical properties of cathepsin L-like enzymes. The folding determinant of cryptopain-1 was characterized through multiple constructs with or without different lengths of the pro-domain of the enzyme expressed in E. coli and assessment of their refolding abilities. All constructs, except one that did not contain the full-length mature domain, successfully refolded into the active enzymes, suggesting that cryptopain-1 did not require the pro-domain for folding. Western blot analysis showed that cryptopain-1 was expressed in the sporozoites and the enzyme preferentially degraded proteins, including collagen and fibronectin, but not globular proteins. This suggested a probable role for cryptopain-1 in host cell invasion and/or egression by the parasite.
Collapse
|
35
|
Burden RE, Snoddy P, Buick RJ, Johnston JA, Walker B, Scott CJ. Recombinant cathepsin S propeptide attenuates cell invasion by inhibition of cathepsin L-like proteases in tumor microenvironment. Mol Cancer Ther 2008; 7:538-47. [PMID: 18347141 DOI: 10.1158/1535-7163.mct-07-0528] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.
Collapse
Affiliation(s)
- Roberta E Burden
- School of Pharmacy, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
36
|
Zhang J, Hamilton JM, Garrod DR, Robinson C. Interactions between mature Der p 1 and its free prodomain indicate membership of a new family of C1 peptidases. Allergy 2007; 62:1302-9. [PMID: 17919146 DOI: 10.1111/j.1398-9995.2007.01492.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies in vivo have shown that the cysteine peptidase activity of group 1 house dust mite allergens contributes to their allergenicity. These allergens are synthesized initially as proenzymes and removal of the propiece is necessary to unmask their proteolytic activity. In related C1 family cysteine peptidases of enzyme clan CA, liberated propieces continue to inhibit the mature peptidase as tight binding inhibitors. As it is not known whether mite peptidase allergens behave similarly, our objective was to investigate the effect of the Der p 1 propiece on the catalytic activity of Der p 1 and Der f 1. METHODS Enzymatic activity of natural Der p 1 and Der f 1 was assessed using a specific substrate and the effect of the recombinant propiece on its enzyme kinetics defined. The integrity of the propiece during these interactions was studied functionally and by analysis of the reaction mixtures. RESULTS Der p 1 propiece was a potent competitive inhibitor of Der p 1 and Der f 1. In contrast to other cysteine peptidase prodomains, which are cognate tight binding inhibitors, the Der p 1 propiece behaves as a substrate and is fully degraded during this interaction. CONCLUSION Mature Der p 1-prodomain interactions differ from other C1 family cysteine peptidases, suggesting that group 1 mite allergens are a new subgroup among C1 family cysteine peptidases. The rapid inactivation of Der p 1 prodomain is a newly identified mechanism that may contribute to the potency of this allergen.
Collapse
Affiliation(s)
- J Zhang
- Ion Channels & Cell Signalling Centre, Division of Basic Medical Sciences, St George's, University of London, London, UK
| | | | | | | |
Collapse
|
37
|
Lecaille F, Brömme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2007; 90:208-26. [PMID: 17935853 DOI: 10.1016/j.biochi.2007.08.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/02/2023]
Abstract
Cysteine cathepsins (11 in humans) are mostly located in the acidic compartments of cells. They have been known for decades to be involved in intracellular protein degradation as housekeeping proteases. However, the discovery of new cathepsins, including cathepsins K, V and F, has provided strong evidence that they also participate in specific biological events. This review focuses on the current knowledge of cathepsin K, the major bone cysteine protease, which is a drug target of clinical interest. Nevertheless, we will not discuss recent developments in cathepsin K inhibitor design since they have been extensively detailed elsewhere. We will cover features of cathepsin K structure, cellular and tissue distribution, substrate specificity, and regulation (pH, propeptide, glycosaminoglycans, oxidants), and its putative roles in physiological or pathophysiological processes. Finally, we will review the kinetic data of its inhibition by natural endogenous inhibitors (stefin B, cystatin C, H- and L-kininogens).
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, U618, Protéases et Vectorisation Pulmonaires, Equipe Protéases et Pathologies Pulmonaires, Faculté de Médecine, Université François Rabelais, 10 Boulevard Tonnellé, F-37032 Tours Cedex, France.
| | | | | |
Collapse
|
38
|
Stumpfe D, Ahmed HEA, Vogt I, Bajorath J. Methods for Computer-aided Chemical Biology. Part 1: Design of a Benchmark System for the Evaluation of Compound Selectivity. Chem Biol Drug Des 2007; 70:182-94. [PMID: 17718713 DOI: 10.1111/j.1747-0285.2007.00554.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational drug design and discovery methods have traditionally put much emphasis on the identification of novel active compounds and the optimization of their potency. For chemical genetics and genomics applications, an important task is the identification of small molecules that are selective against target families, subfamilies, or individual targets and can be used as molecular probes for specific functions. In order to develop or tune computational methods for such applications, there is a need for molecular benchmark systems that focus on compound selectivity, rather than biological activity (in qualitative terms) or potency. We have constructed a selectivity-oriented test system that consists of 26 compound selectivity sets against 13 individual targets belonging to three distinct families and contains a total of 558 selective compounds. The targets were chosen because of pharmaceutical relevance and the availability of suitable ligands, privileged structural motifs and/or target structure information. Compound selectivity sets were characterized by structural diversity, chemical scaffold and selectivity range analysis. The test system is made freely available and should be useful for the development of computational approaches in chemical biology.
Collapse
Affiliation(s)
- Dagmar Stumpfe
- Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, D-53113 Bonn, Germany
| | | | | | | |
Collapse
|
39
|
Silva FB, Monteiro ACS, Del Sarto RP, Marra BM, Dias SC, Figueira ELZ, Oliveira GR, Rocha TL, Souza DSL, da Silva MCM, Franco OL, Grossi-de-Sa MF. Proregion of Acanthoscelides obtectus cysteine proteinase: a novel peptide with enhanced selectivity toward endogenous enzymes. Peptides 2007; 28:1292-8. [PMID: 17485144 DOI: 10.1016/j.peptides.2007.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 11/29/2022]
Abstract
Acanthoscelides obtectus is a devastating storage insect pest capable of causing severe bean crop losses. In order to maintain their own development, insect pest larvae feed continuously, synthesizing efficient digestive enzymes. Among them, cysteine proteinases (CPs) are commonly produced as inactive precursors (procysteines), requiring a cleavage of the peptide proregion to become active. The proregion fits tightly into the active site of procysteines, efficiently preventing their activity. In this report, a CP cDNA (cpao) was isolated from A. obtectus midgut larvae. In silico studies indicated that the complete CP sequence contains a hydrophobic signal peptide, a prodomain and a conserved catalytic region. Moreover, the encoding cDNA contains 963bp translating into a 321 residue protein, CPAo, which was expressed in E. coli, fused with thioredoxin. Enzymatic assays using the recombinant protein revealed that the enzyme was catalytically active, being able to cleave the synthetic substrate Z-Phe-Arg-7-AMC. Additionally, this report also focuses the cpao propeptide (PCPAo) subcloning and expression. The expressed propeptide efficiently inhibited CPAo, as well as digestive CP of other bean bruchids. Little or no activity was found against proteolytic enzymes of two other coleopterans: Rhyzopertha dominica and Anthonomus grandis. The data reported here indicate the possibility of endogenous propeptides as a novel strategy on bruchids control, which could be applicable to bean improvement programs.
Collapse
Affiliation(s)
- F B Silva
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF 70770-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reis FCG, Costa TFR, Sulea T, Mezzetti A, Scharfstein J, Brömme D, Ménard R, Lima APCA. The propeptide of cruzipain--a potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain, and of the human enzyme cathepsin F. FEBS J 2007; 274:1224-34. [PMID: 17298440 DOI: 10.1111/j.1742-4658.2007.05666.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Papain-like cysteine proteases of pathogenic protozoa play important roles in parasite growth, differentiation and host cell invasion. The main cysteine proteases of Trypanosoma cruzi (cruzipain) and of Trypanosoma brucei (brucipain) are validated targets for the development of new chemotherapies. These proteases are synthesized as precursors and activated upon removal of the N-terminal prodomain. Here we report potent and selective inhibition of cruzipain and brucipain by the recombinant full-length prodomain of cruzipain. The propeptide did not inhibit human cathepsins S, K or B or papain at the tested concentrations, and moderately inhibited human cathepsin V. Human cathepsin F was very efficiently inhibited (K(i) of 32 pm), an interesting finding indicating that cruzipain propeptide is able to discriminate cathepsin F from other cathepsin L-like enzymes. Comparative structural modeling and analysis identified the interaction between the beta1p-alpha3p loop of the propeptide and the propeptide-binding loop of mature enzymes as a plausible cause of the observed inhibitory selectivity.
Collapse
Affiliation(s)
- Flavia C G Reis
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saude, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Stack CM, Donnelly S, Lowther J, Xu W, Collins PR, Brinen LS, Dalton JP. The major secreted cathepsin L1 protease of the liver fluke, Fasciola hepatica: a Leu-12 to Pro-12 replacement in the nonconserved C-terminal region of the prosegment prevents complete enzyme autoactivation and allows definition of the molecular events in prosegment removal. J Biol Chem 2007; 282:16532-43. [PMID: 17403677 DOI: 10.1074/jbc.m611501200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protease secreted by the parasitic helminth Fasciola hepatica, a 37-kDa procathepsin L1 (FheproCL1), autocatalytically processes and activates to its mature enzyme (FheCL1) over a wide pH range of 7.3 to 4.0, although activation is more rapid at low pH. Maturation initiates with cleavages of a small proportion of molecules within the central region of the prosegment, possibly by intramolecular events. However, activation to fully mature enzymes is achieved by a precise intermolecular cleavage at a Leu-12-Ser-11 downward arrowHis-10 sequence within the nonconserved C-terminal region of the prosegment. The importance of this cleavage site in enzyme activation was demonstrated using an active site variant FheproCL1Gly26 (Cys26 to Gly26) and a double variant FheproCL1Pro-12/Gly26 (Leu-12 to Pro-12), and although both of these variants cannot autocatalytically process, the former is susceptible to trans-processing at a Leu-12-Ser-11 downward arrowHis-10 sequence by pre-activated FheCL1, but the latter is not. Another F. hepatica secreted protease FheCL2, which, unlike FheCL1, can readily accept proline in the S2 subsite of its active site, can trans-process the double variant FheproCL1Pro-12/Gly26 by cleavage at the Pro-12-Ser-11 downward arrowHis-10 sequence. Furthermore, the autoactivation of a variant enzyme with a single replacement, FheproCL1Pro-12, was very slow but was increased 40-fold in the presence of FheCL2. These studies provide a molecular insight into the regulation of FheproCL1 autocatalysis.
Collapse
Affiliation(s)
- Colin M Stack
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Building 4, Harris Street, Ultimo, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Burden RE, Snoddy P, Jefferies CA, Walker B, Scott CJ. Inhibition of cathepsin L-like proteases by cathepsin V propeptide. Biol Chem 2007; 388:541-5. [PMID: 17516850 DOI: 10.1515/bc.2007.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.
Collapse
|
43
|
Perez-Amodio S, Jansen DC, Schoenmaker T, Vogels IMC, Reinheckel T, Hayman AR, Cox TM, Saftig P, Beertsen W, Everts V. Calvarial osteoclasts express a higher level of tartrate-resistant acid phosphatase than long bone osteoclasts and activation does not depend on cathepsin K or L activity. Calcif Tissue Int 2006; 79:245-54. [PMID: 17033726 DOI: 10.1007/s00223-005-0289-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Bone resorption by osteoclasts depends on the activity of various proteolytic enzymes, in particular those belonging to the group of cysteine proteinases. Next to these enzymes, tartrate-resistant acid phosphatase (TRAP) is considered to participate in this process. TRAP is synthesized as an inactive proenzyme, and in vitro studies have shown its activation by cysteine proteinases. In the present study, the possible involvement of the latter enzyme class in the in vivo modulation of TRAP was investigated using mice deficient for cathepsin K and/or L and in bones that express a high (long bone) or low (calvaria) level of cysteine proteinase activity. The results demonstrated, in mice lacking cathepsin K but not in those deficient for cathepsin L, significantly higher levels of TRAP activity in long bone. This higher activity was due to a higher number of osteoclasts. Next, we found considerable differences in TRAP activity between calvarial and long bones. Calvarial bones contained a 25-fold higher level of activity than long bones. This difference was seen in all mice, irrespective of genotype. Osteoclasts isolated from the two types of bone revealed that calvarial osteoclasts expressed higher enzyme activity as well as a higher level of mRNA for the enzyme. Analysis of TRAP-deficient mice revealed higher levels of nondigested bone matrix components in and around calvarial osteoclasts than in long bone osteoclasts. Finally, inhibition of cysteine proteinase activity by specific inhibitors resulted in increased TRAP activity. Our data suggest that neither cathepsin K nor L is essential in activating TRAP. The findings also point to functional differences between osteoclasts from different bone sites in terms of participation of TRAP in degradation of bone matrix. We propose that the higher level of TRAP activity in calvarial osteoclasts compared to that in long bone cells may partially compensate for the lower cysteine proteinase activity found in calvarial osteoclasts and TRAP may contribute to the degradation of noncollagenous proteins during the digestion of this type of bone.
Collapse
Affiliation(s)
- S Perez-Amodio
- Experimental Periodontology, Academic Center for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Louwesweg 1, 1066 EA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Steinmeyer J, Konttinen YT. Oral treatment options for degenerative joint disease--presence and future. Adv Drug Deliv Rev 2006; 58:168-211. [PMID: 16616797 DOI: 10.1016/j.addr.2006.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
Alleviation of pain and inhibition of inflammation are the primary goals of pharmacotherapy of osteoarthritis (OA). These therapeutic goals can almost always be accomplished by the use of analgesics and nonsteroidal anti-inflammatory drugs (NSAID). One of the main problems of NSAIDs is their gastrointestinal toxicity, for which a prophylactic medication should be considered particularly amongst risk groups. Recent studies have shown that COX-2-selective and maybe also non-selective NSAIDs increase the cardiovascular risk so that their application is getting now drastically restricted. Pharmacological results published until now suggest that a clinically relevant minor analgesic and/or anti-inflammatory effect can be attained with the use of some of the SYmptomatic Slow Acting Drugs in OA (SYSADOAs). However, no clinical studies exist, which can positively confirm prevention, slowing down or reversal of any advanced joint cartilage destruction by any individual medication. Disease modifying therapy is still in its infancy; discovery and development of novel therapeutic targets and agents are an extremely difficult task, currently challenging many pharmaceutical companies and academic institutions.
Collapse
Affiliation(s)
- Jürgen Steinmeyer
- Clinic and Policlinic of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg GmbH, Paul-Meimberg-Strasse 3, D-35385 Giessen, Germany.
| | | |
Collapse
|
45
|
Dias SC, Franco OL, Magalhães CP, de Oliveira-Neto OB, Laumann RA, Figueira ELZ, Melo FR, Grossi-De-Sá MF. Molecular cloning and expression of an alpha-amylase inhibitor from rye with potential for controlling insect pests. Protein J 2005; 24:113-23. [PMID: 16003953 DOI: 10.1007/s10930-004-1518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alpha-amylase inhibitors have important roles in plant defense mechanisms, particularly against insects, and several of these inhibitors have been expressed in different crops to increase their resistance to particular insects. In this work, we report the cloning and expression of a gene encoding for a new alpha-amylase inhibitor (BIII) from rye (Secale cereale) seeds. The BIII gene contains 354 nucleotides that encode for 118 amino acids sequence. A 313 bp fragment of the gene was expressed in Escherichia coli and resulted in a functional inhibitor that reduced the activity of alpha-amylases of larvae of the coleopteran pests Acanthoscelides obtectus, Zabrotess subfasciatus and Anthonomus grandis. In contrast, the inhibitor did not inhibit the activity of porcine pancreatic alpha-amylase. Although the amino acid sequence of BIII showed high identity with those of bifunctional inhibitors, the recombinant protein was unable to inhibit trypsin-like serine proteinases. The effects of recombinant BIII were evaluated in vivo against A. grandis. When first instar larvae were reared on an artificial diet containing four different concentrations of BIII, a reduction in larval weight and a mortality of 83% were observed at the highest concentration.
Collapse
Affiliation(s)
- Simoni C Dias
- EMBRAPA-Recursor Genéticos e Biotechnologia, Brasília-DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lima AR, Juliano L, Juliano MA. Cyclic, linear, cycloretro-isomer, and cycloretro-inverso peptides derived from the C-terminal sequence of bradykinin as substrates or inhibitors of serine and cysteine proteases. Protein J 2005; 23:287-94. [PMID: 15214499 DOI: 10.1023/b:jopc.0000027853.93513.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated the inhibition of trypsin, human tissue (hK1) and human plasma kallikrein (HuPK), papain, and cathepsin L, B, and X by synthetic cyclic, cycloretro-isomer, cycloretro-inverso, and linear peptides derived from the C-terminal sequence of bradykinin. c(FSPFRG) and Ac-FSPFRG-NH2 were taken as the references for cyclic and linear peptides, respectively. Longer and more flexible analogs of them with addition of 2, 3, or 4 Gly and cycloretro-isomer and cycloretro-inverso analogs of c(FSPFRG) and c(GGGFSPFRG) were obtained and assayed. The susceptibility to hydrolysis of the peptides to all proteases was also examined. The highest affinities were found for c(FSPFRG) with hK1, Ac-GGFSPFRG-NH2 with HuPK, and psi (NHCO) c(fspfrG) with cathepsin L. The Ki values for cathepsin B and X with cyclic peptides were lower than those of linear peptides. The serine proteases hydrolyzed all linear and cyclic peptides, except c(FSPFRG) and c(GFSPFRG). The cysteine proteases hydrolyzed only the linear peptides, which were poor substrates. Although the Ki values obtained in the current work were in the microM range, the cyclic and cycloretro-inverso peptides seem to be a promising approach to develop efficient and resistant to hydrolysis inhibitors for the kallikreins and lysosomal cysteine proteases.
Collapse
Affiliation(s)
- Aurelio Resende Lima
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-20 São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Filipek R, Szczepanowski R, Sabat A, Potempa J, Bochtler M. Prostaphopain B structure: a comparison of proregion-mediated and staphostatin-mediated protease inhibition. Biochemistry 2005; 43:14306-15. [PMID: 15518582 DOI: 10.1021/bi048661m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaphopain B is the precursor of staphopain B, a papain-type secreted cysteine protease from the pathogen Staphylococcus aureus. Here, we describe the 2.5 A crystal structure of the proenzyme. Its 21 kDa proregion is organized around a central half-barrel or barrel-sandwich hybrid and occludes primed, but not nonprimed, sites in the active site cleft of the protease. The structure of the mature part of the protease is similar to previously reported staphopain structures, and no distortion of the catalytic residues is apparent at 2.5 A resolution. A comparison of prostaphopain B with the staphopain B-staphostatin B complex shows that the proregion and the inhibitor interact with largely nonoverlapping parts of the protease surface. In a modeled complex of prostaphopain B with staphostatin B, clashes occur both inside and outside the active site cleft, but involve mostly poorly ordered regions of the protein that may be mobile.
Collapse
Affiliation(s)
- Renata Filipek
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
48
|
Kubota K, Nishii W, Kojima M, Takahashi K. Specific Inhibition and Stabilization of Aspergilloglutamic Peptidase by the Propeptide. J Biol Chem 2005; 280:999-1006. [PMID: 15516690 DOI: 10.1074/jbc.m410852200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspergilloglutamic peptidase (formerly called aspergillopepsin II) is an acid endopeptidase produced by Aspergillus niger var. macrosporus, with a novel catalytic dyad of a glutamic acid and a glutamine residue, thus belonging to a novel peptidase family G1. The mature enzyme is generated from its precursor by removal of the putative 41-residue propeptide and an 11-residue intervening peptide through autocatalytic activation. In the present study, the propeptide (Ala1-Asn41) and a series of its truncated peptides were chemically synthesized, and their effects on the enzyme activity and thermal stability were examined to identify the sequences and residues in the propeptide most critical to the inhibition and thermal stabilization. The synthetic propeptide was shown to be a potent competitive inhibitor of the enzyme (Ki = 27 nM at pH 4.0). Various shorter propeptide fragments derived from the central region of the propeptide had significant inhibitory effect, whereas their Ala scan-substituted peptides, especially R19A and H20A, showed only weak inhibition. Substitution of the Pro23-Pro24 sequence near His20 with an Ala-Ala sequence changed the peptide Lys18-Tyr25 to a substrate with His20 as the P1 residue. Furthermore, the propeptide was shown to be able to significantly protect the enzyme from thermal denaturation (DeltaTm = approximately 19 degrees C at pH 5.6). The protective potencies of the propeptide as well as truncated propeptides and their Ala scan-substituted peptides are parallel with their inhibitory potencies. These results indicate that the central part, and especially Arg19 and His20 therein, of the propeptide is most critical to the inhibition and thermal stabilization and that His20 interacts with the enzyme at or near the S1 site in a nonproductive fashion.
Collapse
Affiliation(s)
- Keiko Kubota
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
49
|
Singh N, Jabeen T, Sharma S, Roy I, Gupta MN, Bilgrami S, Somvanshi RK, Dey S, Perbandt M, Betzel C, Srinivasan A, Singh TP. Detection of native peptides as potent inhibitors of enzymes. FEBS J 2004; 272:562-72. [PMID: 15654893 DOI: 10.1111/j.1742-4658.2004.04499.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.
Collapse
Affiliation(s)
- Nagendra Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shorey S, Heersche JNM, Manolson MF. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone 2004; 35:909-17. [PMID: 15454098 DOI: 10.1016/j.bone.2004.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2003] [Revised: 05/07/2004] [Accepted: 06/03/2004] [Indexed: 11/24/2022]
Abstract
It has been suggested that functional heterogeneity exists between osteoclasts from different bone sites. This could be exploited to design therapeutics that would selectively inhibit bone resorption only at compromised sites. To further investigate the existence of functional differences between osteoclasts from different bone sites we assessed whether osteoclasts isolated from intramembranous bone differ from osteoclasts isolated from endochondral bone in the extent that they utilize cysteine proteinases and matrix metalloproteinases to degrade the organic matrix of bone. The differential involvement of the two classes of proteases was assessed by analyzing dose-dependent effects of the matrix metalloproteinase inhibitor, CT-1746, and of the cathepsin inhibitor, E64, on bone resorption. Osteoclasts isolated from the scapula (intramembranous) and long bones (endochondral) of newborn New Zealand white rabbits were seeded on cortical bovine bone slices in the presence or absence of inhibitors. Resorptive activity was evaluated by measuring the number and area of resorption pits and by measuring the release of collagen degradation products in the culture medium. In the absence of inhibitors, scapular osteoclasts and long bone osteoclasts had similar activity based on these criteria. The resorptive activity of scapular osteoclasts was inhibited to a greater extent by the MMP inhibitor CT-1746 than by the cysteine proteinase inhibitor E64. Conversely, resorption by osteoclasts derived from long bones was inhibited to a greater degree by the cysteine proteinase inhibitor. These results strongly suggest that there are functional differences between dispersed osteoclasts derived from the scapula and long bones, with scapular osteoclasts utilizing matrix metalloproteinases to a greater extent than cysteine proteinases and long bone osteoclasts using cysteine proteinases to a greater extent than matrix metalloproteinases.
Collapse
Affiliation(s)
- S Shorey
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
| | | | | |
Collapse
|