1
|
Zhang Z, Yui M, Ohto U, Shimizu T. Architecture of the high-affinity immunoglobulin E receptor. Sci Signal 2024; 17:eadn1303. [PMID: 39656861 DOI: 10.1126/scisignal.adn1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The high-affinity immunoglobulin E (IgE) receptor (FcεRI) drives type I hypersensitivity in response to allergen-specific IgE. FcεRI is a multimeric complex typically composed of one α, one β, and two disulfide-linked γ subunits. The α subunit binds to the fragment crystallizable (Fc) region of IgE (Fcε), whereas the β and γ subunits mediate signaling through their intracellular immunoreceptor tyrosine-based activation motifs (ITAMs). Here, we report cryo-electron microscopy (cryo-EM) structures of the apo state of FcεRI and of FcεRI bound to Fcε. At the transmembrane domain (TMD), the α and γ subunits associate to form a tightly packed, three-helix bundle (αγ2 bundle) with pseudo-threefold symmetry through extensive hydrophobic and polar interactions. The αγ2 bundle further assembles with the β subunit to complete the TMD, from which multiple ITAMs might extend into the cytoplasm for downstream signaling. The apo mouse FcεRI essentially forms an identical structure to that of the Fcε-bound sensitized form, suggesting that the binding of Fcε to FcεRI does not alter the overall conformation of the receptor. Furthermore, the juxtamembrane interaction between the extracellular domains (ECDs) of mouse FcεRIα and FcεRIβ is not observed between their human counterparts, which implies potential species-specific differences in receptor stability and activation. Our findings provide a framework for understanding the general structural principles underlying Fc receptor assembly, the signaling mechanism underlying type I hypersensitivity, and the design of efficient antiallergic therapeutics.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Moeko Yui
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Zheng J, Bai Y, Xia L, Sun X, Pan J, Wang S, Qi C. Orally administered yeast-derived β-glucan alleviates mast cell-dependent airway hyperresponsiveness and inflammation in a murine model of asthma. Immun Inflamm Dis 2024; 12:e1333. [PMID: 38934407 PMCID: PMC11209540 DOI: 10.1002/iid3.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Particulate β-glucans (WGP) are natural compounds with regulatory roles in various biological processes, including tumorigenesis and inflammatory diseases such as allergic asthma. However, their impact on mast cells (MCs), contributors to airway hyperresponsiveness (AHR) and inflammation in asthma mice, remains unknown. METHODS C57BL/6 mice underwent repeated OVA sensitization without alum, followed by Ovalbumin (OVA) challenge. Mice received daily oral administration of WGP (OAW) at doses of 50 or 150 mg/kg before sensitization and challenge. We assessed airway function, lung histopathology, and pulmonary inflammatory cell composition in the airways, as well as proinflammatory cytokines and chemokines in the bronchoalveolar lavage fluid (BALF). RESULTS The 150 mg/kg OAW treatment mitigated OVA-induced AHR and airway inflammation, evidenced by reduced airway reactivity to aerosolized methacholine (Mch), diminished inflammatory cell infiltration, and goblet cell hyperplasia in lung tissues. Additionally, OAW hindered the recruitment of inflammatory cells, including MCs and eosinophils, in lung tissues and BALF. OAW treatment attenuated proinflammatory tumor necrosis factor (TNF)-α and IL-6 levels in BALF. Notably, OAW significantly downregulated the expression of chemokines CCL3, CCL5, CCL20, CCL22, CXCL9, and CXCL10 in BALF. CONCLUSION These results highlight OAW's robust anti-inflammatory properties, suggesting potential benefits in treating MC-dependent AHR and allergic inflammation by influencing inflammatory cell infiltration and regulating proinflammatory cytokines and chemokines in the airways.
Collapse
Affiliation(s)
- Jianzhou Zheng
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Yu Bai
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Lei Xia
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Xiao Sun
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Jie Pan
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Shizhong Wang
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Chunjian Qi
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| |
Collapse
|
3
|
Suk G, Kwon DH, Roers A, Abraham SN, Choi HW. Stabilization of activated mast cells by ORAI1 inhibitor suppresses peanut-induced anaphylaxis and acute diarrhea. Pharmacol Res 2023; 196:106887. [PMID: 37574155 DOI: 10.1016/j.phrs.2023.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Mast cell (MC) activation triggered by immunoglobulin E (IgE)-antigen crosslinking involves intracellular Ca2+ influx through the ORAI1 channel, which precedes granule exteriorization and de novo synthesis of mediators. Pharmacologically suppressing MCs via the inhibition of the ORAI1 Ca2+ channel may represent a potential strategy for preventing anaphylaxis. This study demonstrated that peanut-induced anaphylaxis in sensitized mice resulted in significant hypothermia and acute diarrhea. Utilizing the Mcpt5cre-DTA mouse model, we demonstrated that this anaphylactic response was mediated by IgE-antigen-induced MC activation. Prophylactic administration of MC suppressors was an effective means of preventing peanut-induced anaphylaxis. In addition, we observed the potent efficacy of an ORAI1 inhibitor in suppressing the FcεRI-mediated response of murine or human MCs, even when administered concurrently or post-allergen exposure. Mechanistically, the ORAI1 inhibitor was found to prevent the association of Synaptotagmin-2 with the SNARE complex. In an in vivo mouse model of peanut-induced anaphylaxis, the administration of the ORAI1 inhibitor after allergen challenge effectively suppressed allergic acute diarrhea and ameliorated anaphylaxis. Therefore, pharmacological intervention of ORAI1 channel inhibition in MCs represents a promising therapeutic avenue for the treatment of peanut-induced anaphylaxis and acute diarrhea in vivo.
Collapse
Affiliation(s)
- Gyeongseo Suk
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Do Hoon Kwon
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden 01069, Germany
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
4
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
5
|
Mohd Kasim VNK, Noble SM, Liew KY, Tan JW, Israf DA, Tham CL. Management of Atopic Dermatitis Via Oral and Topical Administration of Herbs in Murine Model: A Systematic Review. Front Pharmacol 2022; 13:785782. [PMID: 35685636 PMCID: PMC9171034 DOI: 10.3389/fphar.2022.785782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past few decades, complementary and alternative medicine (CAM) using herbs, or their active constituents have garnered substantial attention in the management of a chronic and relapsing inflammatory skin disorder called atopic dermatitis (AD), particularly in attenuating disease recurrence and maintaining long-term remission. In Eastern Asian countries including China, Korea and Taiwan, herbal medicine available in both topical and oral preparation plays a significant role in treating skin diseases like AD as they possibly confer high anti-inflammatory properties and immunomodulatory functions. Conventional murine models of AD have been employed in drug discovery to provide scientific evidence for conclusive and specific pharmacological effects elicited by the use of traditional herbs and their active constituents. Coupled with the goal to develop safe and effective novel therapeutic agents for AD, this systematic review consists of a summary of 103 articles on both orally and topically administered herbs and their active constituents in the murine model, whereby articles were screened and selected via a specialized framework known as PICO (Population, Intervention, Comparator and Outcome). The objectives of this review paper were to identify the efficacy of oral and topical administered herbs along with their active constituents in alleviating AD and the underlying mechanism of actions, as well as the animal models and choice of inducer agents used in these studies. The main outcome on the efficacy of the majority of the herbs and their active constituents illustrated suppression of Th2 response as well as improvements in the severity of AD lesions, suppression of Immunoglobulin E (IgE) concentration and mast cell infiltration. The majority of these studies used BALB/c mice followed by NC/Nga mice (commonly used gender-male; commonly used age group - 6-8 weeks). The most used agent in inducing AD was 2, 4-Dinitrochlorobenzene (DNCB), and the average induction period for both oral and topical administered herbs and their active constituents in AD experiments lasted between 3 and 4 weeks. In light of these findings, this review paper could potentially assist researchers in exploring the potential candidate herbs and their active constituents using murine model for the amelioration of AD.
Collapse
Affiliation(s)
- Vivi Nur Khalieda Mohd Kasim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Kong Yen Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Anti-Allergic Effect of 3,4-Dihydroxybenzaldehyde Isolated from Polysiphonia morrowii in IgE/BSA-Stimulated Mast Cells and a Passive Cutaneous Anaphylaxis Mouse Model. Mar Drugs 2022; 20:md20020133. [PMID: 35200662 PMCID: PMC8875385 DOI: 10.3390/md20020133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of β-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.
Collapse
|
7
|
Tumor-Associated Mast Cells in Urothelial Bladder Cancer: Optimizing Immuno-Oncology. Biomedicines 2021; 9:biomedicines9111500. [PMID: 34829729 PMCID: PMC8614912 DOI: 10.3390/biomedicines9111500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
Urothelial bladder cancer (UBC) is one of the most prevalent and aggressive malignancies. Recent evidence indicates that the tumor microenvironment (TME), including a variety of immune cells, is a critical modulator of tumor initiation, progression, evolution, and treatment resistance. Mast cells (MCs) in UBC are possibly involved in tumor angiogenesis, tissue remodeling, and immunomodulation. Moreover, tumor-infiltration by MCs has been reported in early-stage UBC patients. This infiltration is linked with a favorable or unfavorable prognosis depending on the tumor type and location. Despite the discrepancy of MC function in tumor progression, MCs can modify the TME to regulate the immunity and infiltration of tumors by producing an array of mediators. Nonetheless, the precise role of MCs in UBC tumor progression and evolution remains unknown. Thus, this review discusses some critical roles of MCs in UBC. Patients with UBC are treated at both early and late stages by immunotherapeutic methods, including intravenous bacillus Calmette–Guérin instillation and immune checkpoint blockade. An understanding of the patient response and resistance mechanisms in UBC is required to unlock the complete potential of immunotherapy. Since MCs are pivotal to understand the underlying processes and predictors of therapeutic responses in UBC, our review also focuses on possible immunotherapeutic treatments that involve MCs.
Collapse
|
8
|
Tang M, Luo XS, Huang W, Pang Y, Hong Y, Chen J, Wu L, Pinkerton KE. Seasonal and areal variability in PM 2.5 poses differential degranulation and pro-inflammatory effects on RBL-2H3 cells. CHEMOSPHERE 2021; 279:130919. [PMID: 34134441 DOI: 10.1016/j.chemosphere.2021.130919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 pollution is a widespread environmental and health problem, particularly in China. Besides leading to well-known diseases in the respiratory system, PM2.5 can also alter immune function to induce or aggravate allergic diseases. To determine whether there are temporal and spatial differences in the allergic responses to PM2.5, monthly samples were collected from four regions (urban, industrial, suburban, and rural areas) through a whole year in Nanjing city, China. Inorganic chemical components (metals and water-soluble ions) of PM2.5 were analyzed, and the rat basophil cells (RBL-2H3) exposed to PM2.5 were assessed through quantitative measures of degranulation (β-hex and histamine) and pro-inflammation cytokine (IL-4 and TNF-α) expression. The highest levels of β-hex were measured in winter and spring PM2.5 from urban and industrial areas, or autumn PM2.5 from suburban and rural areas. With respect to histamine, autumn PM2.5 samples were most potent irrespective of the location. Autumn and winter PM2.5 induced higher levels of IL-4 than spring and summer samples. However, spring and autumn PM2.5 caused higher levels of TNF-α. The concentrations of water-soluble ions (NH4+, K+ and Cl-), as well as heavy metals (Pb and Cr), were directly and statistically correlated to the inflammation observed in vitro. In general, the differences between regional and seasonal PM2.5 in stimulating cell degranulation may depend on endotoxin and airborne allergen content of PM2.5. The heavy metals and water-soluble ions in PM2.5 were mostly anthropogenic, which increased the particles' mass-based cellular inflammatory potential, therefore, their health risks, e.g. from vehicular exhaust, coal, and biomass combustion, cannot be ignored.
Collapse
Affiliation(s)
- Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lichun Wu
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA
| |
Collapse
|
9
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
10
|
Waheed G, Ramadan G, Mohammed HA. Sodium R-lipoate and enzymatically-modified isoquercitrin suppressed IgE-independent anaphylactic reactions and stress-induced gastric ulceration in mice. Int Immunopharmacol 2021; 97:107735. [PMID: 33990023 DOI: 10.1016/j.intimp.2021.107735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Anaphylaxis is a life-threatening allergic reaction, for which the worldwide prevalence is rapidly increasing. The currently used synthetic antiallergic drugs have a high tendency to cause adverse effects, like gastric ulcers, in long-term use. Therefore, a great deal of attention has been given to develop new safer and more effective antiallergic agents from natural compounds that are chemically/enzymatically-modified. Here, we evaluated/compared the efficacy of two different doses (50 and 100 mg/kg body weight "b.w", given orally) of sodium R-lipoate (NaRLA) and enzymatically-modified isoquercitrin (EMIQ) in alleviating both local/systemic non-immunological anaphylactic reactions and stress-induced gastric ulceration in mice, in comparison with sulfasalazine (SSZ) as a reference drug. The results indicated that the pre-treatment of animals with NaRLA or EMIQ (especially at 100 mg/kg b.w) completely succeeded, as SSZ, in alleviating the hind paw edema induced by either histamine or compound 48/80 (Cpd 48/80). Furthermore, NaRLA and EMIQ prevented the mast cell degranulation and anaphylactic shock caused by Cpd 48/80 (in a dose-dependent manner) and reduced significantly (P < 0.001) the histamine release from the mouse peritoneal mast cells, like SSZ. Moreover, their use was associated with alleviating both gastric histopathological and biochemical alterations in the water-restraint stress (WRS) mice model towards the control values. They also decreased the percentage of degranulated mesenteric mast cells in the WRS mice model. In conclusion, our findings provide possibility that both NaRLA and EMIQ may serve as an effective therapeutic agents for mast cells-dependent anaphylactic reactions without risks of inducing gastric ulcers.
Collapse
Affiliation(s)
- Gehan Waheed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hend A Mohammed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
The Role of Biologics and Precision-Based Medicine in Treating Atopic Diseases in Children. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Inhibitory effects of orientin in mast cell-mediated allergic inflammation. Pharmacol Rep 2020; 72:1002-1010. [PMID: 32048267 DOI: 10.1007/s43440-019-00048-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mast cells are immune effector cells mediating allergic inflammation by the secretion of inflammatory mediators such as histamine and pro-inflammatory cytokines. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. The objective of this study was to rule out the effectiveness of orientin in mast cell-mediated allergic inflammation. METHODS In this study, in vitro effects of orientin were evaluated in RBL-2H3, mouse bone marrow-derived mast cells, rat peritoneal mast cells, and in vivo effects were evaluated by inducing passive cutaneous anaphylaxis (PCA) in Imprinting Control Region (ICR) mice. RESULTS Findings show that orientin suppressed the immunoglobulin E (IgE)-mediated mast cell degranulation by reducing intracellular calcium level in a concentration-dependent manner. Orientin suppressed the secretion of pro-inflammatory cytokines in mast cells. This inhibitory effects of orientin was through inhibition of FcεRI-mediated signaling proteins. In addition, oral administration of orientin suppressed the IgE-mediated PCA reactions in a dose-dependent manner, which was evidenced by reduced Evan's blue pigmentation and ear swelling. CONCLUSIONS Based on these findings, we suggest that orientin might have potential to alleviate allergic reaction and mast cell-mediated allergic disease.
Collapse
|
13
|
Abstract
In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen-antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen-antibody complex stability. Structural biology methods to study antigen-antibody complexes are extremely valuable tools to visualize antigen-antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen-antibody interactions including antigen-antibody interfaces-with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen-antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen-antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
14
|
Plaza J, Torres R, Urbano A, Picado C, de Mora F. In Vitro and In Vivo Validation of EP2-Receptor Agonism to Selectively Achieve Inhibition of Mast Cell Activity. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:712-728. [PMID: 32400135 PMCID: PMC7225001 DOI: 10.4168/aair.2020.12.4.712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/01/2023]
Abstract
Purpose Agonism of the prostaglandin E2 receptor, E-prostanoid receptor 2 (EP2), may represent an alternative protective mechanism in mast cell (MC)-mediated diseases. Previous studies have suggested that activation of the MC EP2 receptor prevents pathological changes in the murine models of allergic asthma. This work aimed to analytically validate the EP2 receptor on MCs as a therapeutic target. Methods Murine MC lines and primary cultures, and MCs bearing the human immunoglobulin E (IgE) receptor were subjected to IgE-mediated activation subsequent to incubation with selective EP2 agonists. Two molecularly unrelated agonists, butaprost and CP-533536, were tested either in vitro or in 2 in vivo models of allergy. Results The diverse range of MC populations was consistently inhibited through selective EP2 agonism in spite of exhibiting a heterogeneous phenotype. Such inhibition occurred in both mouse and human IgE (hIgE)-mediated activation. The use of molecularly unrelated selective EP2 agonists allowed for the confirmation of the specificity of this protective mechanism. This effect was further demonstrated in 2 in vivo murine models of allergy where MCs are a key to pathological changes: cutaneous anaphylaxis in a transgenic mouse model expressing the hIgE receptor and aeroallergen-induced murine model of asthma. Conclusions Selective EP2 agonism is a powerful pharmacological strategy to prevent MCs from being activated through IgE-mediated mechanisms and from causing deleterious effects. The MC EP2 receptor may be an effective pharmacological target in allergic and other MC-mediated conditions.
Collapse
Affiliation(s)
- Judith Plaza
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrián Urbano
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - César Picado
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Tai Chi Chuan Exercise Improves Lung Function and Asthma Control through Immune Regulation in Childhood Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9146827. [PMID: 31772603 PMCID: PMC6854913 DOI: 10.1155/2019/9146827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022]
Abstract
Background Tai Chi Chuan (TCC) is an exercise of low to moderate intensity with key features of mindfulness, structural alignment, and flexibility to relax the body and mind in adults. Our previous study showed that TCC could improve the quality of life (QoL), pulmonary function, and fractional exhaled nitric oxide in asthmatic children. We further investigated whether the benefits induced by TCC were associated with immune regulation. Method Six- to twelve-year-old children diagnosed with mild to severe persistent asthma for at least one year according to the Global Initiative for Asthma guidelines were enrolled from a tertiary pediatric allergy center in Taiwan. Asthmatic children were divided into two groups based on their choice: (1) the TCC group had a 60-minute TCC exercise session once weekly led by an instructor and (2) the control group kept their original activity levels. All other exercises were encouraged as usual. Pulmonary function tests, laboratory tests, standardized pediatric asthma QoL questionnaire (PAQLQ(S)), and childhood asthma control test (C-ACT) were performed before and after the TCC program (12 weeks). Data on medications and exacerbations were collected from medical records. Results There were no differences between the TCC (n = 25) and control (n = 15) groups at baseline, except that the C-ACT showed significantly lower results in the TCC group (p=0.045). After 12 weeks, the number of leukocytes (p=0.041) and eosinophils (p=0.022) decreased, while regulatory T cells increased significantly (p=0.008) only in the TCC group. Lung functions (FEV1 and PEFR) were significantly improved in both the TCC (p < 0.001) and control (p=0.045 and 0.019, respectively) groups, while the PAQLQ(S) and C-ACT (p < 0.001) showed improvement only in the TCC group. Moreover, compared to the control group, the exacerbations within 12 weeks after the study were significantly decreased in the TCC group (p=0.031). After multiple regression by a conditional forward method, the factors that were significantly associated with exacerbation within 12 weeks after study is the practice of TCC and exacerbation within 24 weeks before study (p=0.013 and 0.015, respectively) after adjusting for age, sex, asthma severity, PEF, FEV1, C-ACT, PAQLQ(S), and medication score at baseline. Conclusion TCC exercise may improve pulmonary functions, asthma control, and QoL and prevent exacerbations in asthmatic children through immune regulation. Further research on detailed mechanisms is mandated.
Collapse
|
16
|
Shim JK, Caron MA, Weatherly LM, Gerchman LB, Sangroula S, Hattab S, Baez AY, Briana TJ, Gosse JA. Antimicrobial agent triclosan suppresses mast cell signaling via phospholipase D inhibition. J Appl Toxicol 2019; 39:1672-1690. [PMID: 31429102 DOI: 10.1002/jat.3884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Humans are exposed to the antimicrobial agent triclosan (TCS) through use of TCS-containing products. Exposed tissues contain mast cells, which are involved in numerous biological functions and diseases by secreting various chemical mediators through a process termed degranulation. We previously demonstrated that TCS inhibits both Ca2+ influx into antigen-stimulated mast cells and subsequent degranulation. To determine the mechanism linking the TCS cytosolic Ca2+ depression to inhibited degranulation, we investigated the effects of TCS on crucial signaling enzymes activated downstream of the Ca2+ rise: protein kinase C (PKC; activated by Ca2+ and reactive oxygen species [ROS]) and phospholipase D (PLD). We found that TCS strongly inhibits PLD activity within 15 minutes post-antigen, a key mechanism of TCS mast cell inhibition. In addition, experiments using fluorescent constructs and confocal microscopy indicate that TCS delays antigen-induced translocations of PKCβII, PKCδ and PKC substrate myristoylated alanine-rich C-kinase. Surprisingly, TCS does not inhibit PKC activity or overall ability to translocate, and TCS actually increases PKC activity by 45 minutes post-antigen; these results are explained by the timing of both TCS inhibition of cytosolic Ca2+ (~15+ minutes post-antigen) and TCS stimulation of ROS (~45 minutes post-antigen). These findings demonstrate that it is incorrect to assume that all Ca2+ -dependent processes will be synchronously inhibited when cytosolic Ca2+ is inhibited by a toxicant or drug. The results offer molecular predictions of the effects of TCS on other mammalian cell types, which share these crucial signal transduction elements and provide biochemical information that may underlie recent epidemiological findings implicating TCS in human health problems.
Collapse
Affiliation(s)
- Juyoung K Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Molly A Caron
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Logan B Gerchman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Siham Hattab
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Alan Y Baez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Talya J Briana
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
17
|
Lee YJ, Lee JC, Eun YG, Lee GJ. Development of an effective sample transfer device for biomarker detection in nasal secretions. Anal Biochem 2019; 585:113404. [PMID: 31445002 DOI: 10.1016/j.ab.2019.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 11/27/2022]
Abstract
Nasal secretions (NS) reflect inflammatory activity of the nasal mucosa and thus can be utilized for disease diagnosis and determining treatment effects in Allergic rhinitis (AR). However, non-standardized collection of samples can affect the measured concentration of inflammatory biomarker in NS. In this study, we aimed to develop and evaluate new devices capable of standardizing the collection, storage, and preprocessing methods of NS samples. First, we chose the best swab as polyester (PE) and selected a stimulation method, twirling for 10 s at 1 Hz, to efficiently release AR biomarkers from a PE swab. Storage of sample solutions at -20 °C was optimal for the stability of biomarkers for the detection of AR. The new swab sample transfer device showed excellent concentration recovery efficiency (90-100%) for tryptase (Trp) and eosinophil cationic protein (ECP) without crosstalk between the two biomarkers. Finally, we compared the concentration of Trp in human NS samples of AR patients (n = 6) pre-processed by the new device with that by centrifuge as a standard method. As a result, the concentrations of Trp in NS were very similar in both groups. Therefore, this device can be utilized as an effective sample transfer and pre-processing device for point-of-care testing of AR.
Collapse
Affiliation(s)
- Young Ju Lee
- Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jae-Chul Lee
- Human Convergence Technology Group, Korea Institute of Industrial Technology, Ansan, 15588, South Korea
| | - Young Gyu Eun
- Dept. of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| | - Gi-Ja Lee
- Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
18
|
González Roldán N, Engel R, Düpow S, Jakob K, Koops F, Orinska Z, Vigor C, Oger C, Galano JM, Durand T, Jappe U, Duda KA. Lipid Mediators From Timothy Grass Pollen Contribute to the Effector Phase of Allergy and Prime Dendritic Cells for Glycolipid Presentation. Front Immunol 2019; 10:974. [PMID: 31134071 PMCID: PMC6514527 DOI: 10.3389/fimmu.2019.00974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
Plant pollen are an important source of antigens that evoke allergic responses. Protein antigens have been the focus of studies aiming to elucidate the mechanisms responsible for allergic reactions to pollen. However, proteins are not the sole active agent present in pollen. It is known that pollen grains contain lipids essential for its reproduction and bioactive lipid mediators. These small molecular compounds are co-delivered with the allergens and hence have the potential to modulate the immune response of subjects by activating their innate immune cells. Previous reports showed that pollen associated lipid mediators exhibited neutrophil- and eosinophil-chemotactic activity and induced polarization of dendritic cells (DCs) toward a Th2-inducing phenotype. In our study we performed chemical analyses of the pollen associated lipids, that are rapidly released upon hydration. As main components we have identified different types of phytoprostanes (PhytoPs), and for the first time phytofurans (PhytoFs), with predominating 16-F1t-PhytoPs (PPF1-I), 9-F1t-PhytoPs (PPF1-II), 16-E1t-PhytoPs (PPE1-I) and 9-D1t-PhytoPs (PPE1-II), and 16(RS)-9-epi-ST-Δ14-10-PhytoFs. Interestingly 16-E1t-PhytoP and 9-D1t-PhytoPs were found to be bound to glycerol. Lipid-containing samples (aqueous pollen extract, APE) induced murine mast cell chemotaxis and IL-6 release, and enhanced their IgE-dependent degranulation, demonstrating a role for these lipids in the immediate effector phase of allergic inflammation. Noteworthy, mast cell degranulation seems to be dependent on glycerol-bound, but not free phytoprostanes. On murine dendritic cells, APE selectively induced the upregulation of CD1d, likely preparing lipid-antigen presentation to iNKT cells. Our report contributes to the understanding of the activity of lipid mediators in the immediate effector phase of allergic reactions but identifies a yet undescribed pathway for the recognition of pollen-derived glycolipids by iNKT cells.
Collapse
Affiliation(s)
- Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Regina Engel
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Sylvia Düpow
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Katharina Jakob
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Frauke Koops
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Katarzyna A Duda
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
19
|
Dhakal H, Yang EJ, Lee S, Kim MJ, Baek MC, Lee B, Park PH, Kwon TK, Khang D, Song KS, Kim SH. Avenanthramide C from germinated oats exhibits anti-allergic inflammatory effects in mast cells. Sci Rep 2019; 9:6884. [PMID: 31053741 PMCID: PMC6499795 DOI: 10.1038/s41598-019-43412-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells play a crucial role in allergic diseases via the release of inflammatory mediators, particularly histamine and pro-inflammatory cytokines. Avenanthramide (Avn) C, a polyphenol found mainly in oats, is known to exhibit various biological properties. In this study, we aimed to evaluate the effectiveness of Avn C from germinated oats against mast cell-mediated allergic inflammation. For the in vitro study, RBL-2H3, mouse bone marrow-derived mast cells and rat peritoneal mast cells were used. Avn C (1–100 nM) inhibited the immunoglobulin (Ig)E-stimulated mast cells degranulation by suppressing phosphorylation of phosphoinositide 3-kinase and phospholipase Cγ1 and decreasing intracellular calcium levels. It inhibited IgE-stimulated secretion of inflammatory cytokines via suppression of FcεRI-mediated signaling proteins Lyn, Syk, Akt, and nuclear factor-κB. To verify the effects of Avn C in vivo, ovalbumin-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. Oral administration of Avn C dose-dependently attenuated the ASA reactions, as evidenced by the inhibition of hypothermia and reduction of elevated serum histamine, IgE, and interleukin-4 levels. Avn C also inhibited the PCA reactions, such as ear swelling and plasma extravasation. Our results suggested that Avn C from germinated oats might be a possible therapeutic candidate for mast cell-mediated allergic inflammation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon, Republic of Korea.
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea. .,GHAM BioPharm Co. Ltd., College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Derakhshani A, Vahidian F, Alihasanzadeh M, Mokhtarzadeh A, Lotfi Nezhad P, Baradaran B. Mast cells: A double-edged sword in cancer. Immunol Lett 2019; 209:28-35. [PMID: 30905824 DOI: 10.1016/j.imlet.2019.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs), a type of innate immune cells, are derived from myeloid stem cells, sometimes known as mastocytes or labrocytes, and contain many granules rich in histamine and heparin. The mentioned cells are able to release various mediators such as cytokines, leukotrienes, and a large number of proteases into the environment. Many studies and experiments have established the infiltration of MCs into the tumor site. However, the findings are highly controversial to determine whether these immune cells contribute to the growth and development of the tumor or cause anti-tumor immune responses. Various studies have revealed that MCs have a pro-tumorigenic or anti-tumorigenic role depending on the type of cancer, the degree of tumor progression, and the location of these immune cells in the tumor bulk. Although these types of immune cells cause angiogenesis and tumor progression in some cancers, they have a significant anti-tumor role in some other types of cancers. In general, although a number of studies have specified the protective role of MCs in cancers, the increased number of MCs in the blood and microenvironment of tumors, as well as the increased level of angiogenesis and tumor progression, has been indicated in another array of studies. The function of MCs against or in favor of the cancers still requires further investigations to more accurately and specifically determine the role of MCs in the cancers. The function of MCs in tumors and their various roles in case of exposure to the cancer cells have been addressed in the present review. The concluding section of the present study recommends a number of methods for modification of MCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alihasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfi Nezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Shuang-Huang-Lian Attenuates Airway Hyperresponsiveness and Inflammation in a Shrimp Protein-Induced Murine Asthma Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4827342. [PMID: 30713573 PMCID: PMC6332955 DOI: 10.1155/2019/4827342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Shuang-Huang-Lian (SHL), an herbal formula of traditional Chinese medicine, is clinically used for bronchial asthma treatment. Our previous study found that SHL prevented basophil activation to suppress Th2 immunity and stabilized mast cells through activating its mitochondrial calcium uniporter. Sporadic clinical reports that SHL was used for the treatment of bronchial asthma can be found. Thus, in this study, we systematically investigated the effects of SHL on asthmatic responses using a shrimp protein (SP)- induced mouse model. SHL significantly inhibited airway inspiratory and expiratory resistance, and histological studies suggested it reduced thickness of airway smooth muscle and infiltration of inflammation cells. It also could alleviate eosinophilic airway inflammation (EAI), including reducing the number of eosinophils and decreasing eotaxin and eosinophil peroxidase levels in the bronchoalveolar lavage fluid (BALF). Further studies indicated that SHL suppressed SP-elevated mouse mast cell protease-1 and IgE levels, prevented Th2 differentiation in mediastinal lymph nodes, and lowered Th2 cytokine (e.g., IL-4, IL-5, and IL-13) production in BALF. In conclusion, SHL attenuates airway hyperresponsiveness and EAI mainly via the inhibition of mast cell activation and Th2 immunity, which may help to elucidate the underlying mechanism of SHL on asthma treatment and support its clinical use.
Collapse
|
23
|
MicroRNA-21-Mediated Inhibition of Mast Cell Degranulation Involved in the Protective Effect of Berberine on 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis in Rats via p38 Pathway. Inflammation 2018; 41:689-699. [PMID: 29282578 DOI: 10.1007/s10753-017-0723-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of berberine on allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. Firstly, ACD model was established by sensitizing and challenging with 2,4-dinitrofluorobenzene (DNFB) topically, and the rats were treated with berberine. Ear swelling was assessed, and cytokine, IgE, and histamine productions were measured. The ear biopsies were obtained for histology analysis. Additionally, rat peritoneal mast cells (RPMCs) were isolated for detection of microRNA-21 (miR-21) expression, mitogen-activated protein kinase (MAPK) signaling, and MC degranulation. Lastly, RPMCs were transfected with miR-21 mimic or miR-21 inhibitor to investigate the relationship between miR-21 and p38 pathway in MC. Our results showed that berberine significantly attenuated ear swelling in DNFB-induced ACD (ACD vs high dose of berberine 0.48 ± 0.03 vs. 0.33 ± 0.03 mm, P < 0.01), inhibited inflammatory cell infiltration (86 ± 5.16 vs. 58 ± 4.32 cells/mm2, P < 0.01), reduced MC recruitment (61 ± 4.07 vs. 39 ± 3.42 mast cells/mm2, P < 0.01), as well as decreased inflammatory cytokine, IgE, and histamine productions (all P < 0.05). Berberine treatment inhibited miR-21 expression, suppressed β-hexosaminidase and histamine release, and prevented p38 phosphorylation (all P < 0.05), which was abrogated by pretreatment with miR-21 overexpression. These findings indicate that miR-21-mediated inhibition of MC degranulation is involved in the anti-ACD effect of berberine via inhibiting p38 pathway, which provide a new insight into the immunopharmacological role of berberine and suggest its potential application for the treatment of allergic inflammation, such as ACD.
Collapse
|
24
|
Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol 2018; 142:1618-1627.e9. [PMID: 29678746 DOI: 10.1016/j.jaci.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thirdhand smoke (THS) represents the accumulation of secondhand smoke on indoor surfaces and in dust, which, over time, can become more toxic than secondhand smoke. Although it is well known that children of smokers are at increased risk for asthma or asthma exacerbation if the disease is already present, how exposure to THS can influence the development or exacerbation of asthma remains unknown. OBJECTIVE We investigated whether epicutaneous exposure to an important component of THS, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), can influence asthma pathology in a mouse model elicited by means of repeated intranasal challenge with cockroach antigen (CRA). METHODS Wild-type mice, α7 nicotinic acetylcholine receptor (nAChR)- or mast cell (MC)-deficient mice, and mice with MCs that lacked α7 nAChRs or were the host's sole source of α7 nAChRs were subjected to epicutaneous NNK exposure, intranasal CRA challenge, or both, and the severity of features of asthma pathology, including airway hyperreactivity, airway inflammation, and airway remodeling, was assessed. RESULTS We found that α7 nAChRs were required to observe adverse effects of epicutaneous NNK exposure on multiple features of CRA-induced asthma pathology. Moreover, MC expression of α7 nAChRs contributed significantly to the ability of epicutaneous NNK exposure to exacerbate airway hyperreactivity to methacholine, airway inflammation, and airway remodeling in this model. CONCLUSION Our results show that skin exposure to NNK, a component of THS, can exacerbate multiple features of a CRA-induced model of asthma in mice and define MCs as key contributors to these adverse effects of NNK.
Collapse
Affiliation(s)
- Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
25
|
Yang Y, Kong B, Jung Y, Park JB, Oh JM, Hwang J, Cho JY, Kweon DH. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. Front Immunol 2018; 9:725. [PMID: 29696021 PMCID: PMC5904360 DOI: 10.3389/fimmu.2018.00725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/23/2018] [Indexed: 01/09/2023] Open
Abstract
Vesicle-associated V-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans-SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, South Korea
| | - Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Younghoon Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Joon-Bum Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jung-Mi Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jaesung Hwang
- Department of Genetic Engineering, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
26
|
Wittenberg M, Nassiri M, Francuzik W, Lehmann K, Babina M, Worm M. Serum levels of 9α,11β-PGF 2 and apolipoprotein A1 achieve high predictive power as biomarkers of anaphylaxis. Allergy 2017; 72:1801-1805. [PMID: 28378321 DOI: 10.1111/all.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 02/02/2023]
Abstract
Anaphylaxis is a life-threatening hypersensitivity reaction. To identify biomarkers for the condition, we assessed serum levels of apolipoprotein (Apo)A and ApoE. We found a reduction of both lipoproteins in anaphylactic mice as well as in orally challenged food allergic patients. We then compared patients after acute anaphylaxis with several control groups (nonallergic, history of allergen-triggered anaphylaxis, acute cardiovascular/febrile reactions). In this unpaired setting, ApoE levels were unaltered, while ApoA1 was reduced in the anaphylactic group. Although unable to discriminate between anaphylaxis and cardiovascular/febrile reactions, ROC curve analysis revealed a reasonably high area under the curve (AUC) of 0.91 for ApoA1. Serum 9α,11ß-PGF2 , recently identified as a suitable biomarker for anaphylaxis, outperformed ApoA1 with AUC=0.95. Intriguingly however its power further increased upon combination of both mediators reaching AUC=1. Our data suggest that ApoA1 combined with 9α,11ß-PGF2 represents a useful composite biomarker of anaphylaxis, achieving superior diagnostic power over either factor alone.
Collapse
Affiliation(s)
- M. Wittenberg
- Department of Dermatology and Allergy Allergy Center Charité, CCM Charité‐Universitätsmedizin Berlin Berlin Germany
| | - M. Nassiri
- Department of Dermatology and Allergy Allergy Center Charité, CCM Charité‐Universitätsmedizin Berlin Berlin Germany
| | - W. Francuzik
- Department of Dermatology and Allergy Allergy Center Charité, CCM Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - M. Babina
- Department of Dermatology and Allergy Allergy Center Charité, CCM Charité‐Universitätsmedizin Berlin Berlin Germany
| | - M. Worm
- Department of Dermatology and Allergy Allergy Center Charité, CCM Charité‐Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
27
|
Chen YC, Chang YC, Chang HA, Lin YS, Tsao CW, Shen MR, Chiu WT. Differential Ca 2+ mobilization and mast cell degranulation by FcεRI- and GPCR-mediated signaling. Cell Calcium 2017; 67:31-39. [PMID: 29029788 DOI: 10.1016/j.ceca.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Mast cells play a primary role in allergic diseases. During an allergic reaction, mast cell activation is initiated by cross-linking IgE-FcεRI complex by multivalent antigen resulting in degranulation. Additionally, G protein-coupled receptors also induce degranulation upon activation. However, the spatio-temporal relationship between Ca2+ mobilization and mast cell degranulation is not well understood. We investigated the relationship between oscillations in Ca2+ level and mast cell degranulation upon stimulation in rat RBL-2H3 cells. Nile red and Fluo-4 were used as probes for monitoring histamine and intracellular Ca2+ levels, respectively. Histamine release and Ca2+ oscillations in real-time were monitored using total internal reflection fluorescence microscopy (TIRFM). Mast cell degranulation followed immediately after FcεRI and GPCR-mediated Ca2+ increase. FcεRI-induced Ca2+ increase was higher and more sustained than that induced by GPCRs. However, no significant difference in mast cell degranulation rates was observed. Although intracellular Ca2+ release was both necessary and sufficient for mast cell degranulation, extracellular Ca2+ influx enhanced the process. Furthermore, cytosolic Ca2+ levels and mast cell degranulation were significantly decreased by downregulation of store-operated Ca2+ entry (SOCE) via Orai1 knockdown, 2-aminoethyl diphenylborinate (2-APB) or tubastatin A (TSA) treatment. Collectively, this study has demonstrated the role of Ca2+ signaling in regulating histamine degranulation.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chung Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Shan Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Meng-Ru Shen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
28
|
Duong M, Botchway A, dela Cruz J, Austin R, McDaniel K, Jaeger C. Skin to Intramuscular Compartment Thigh Measurement by Ultrasound in Pediatric Population. West J Emerg Med 2017; 18:479-486. [PMID: 28435500 PMCID: PMC5391899 DOI: 10.5811/westjem.2016.12.32279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/10/2016] [Accepted: 12/30/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Pediatric obesity threatens the efficacy of medications given intramuscularly. In anaphylactic patients, epinephrine auto-injector needle lengths are potentially too short to reach the muscle compartment in patients with elevated body habitus. The objective of the study was to determine needle-length requirements for intramuscular injections in pediatric patients. METHODS We used ultrasound to measure the distance from skin to muscle compartment of the thigh in 200 pediatric patients of various weight and body mass index who presented to the emergency department. RESULTS Patients with higher body mass index had an increased distance to muscle and bone. If current recommendations were followed, 5% of patients within the EpiPen adult weight category and 11% of patients within the Centers for Disease Control and Prevention weight category would have potentially used a needle inadequate in length for intramuscular injections. CONCLUSION With the increase in childhood obesity, needle lengths may be too short to effectively deliver medications to the intramuscular compartment. Needle length should be evaluated to accommodate pediatric patients with increased skin to muscle distance.
Collapse
Affiliation(s)
- Myto Duong
- Southern Illinois University School of Medicine, Department of Surgery, Division of Emergency Medicine, Springfield, Illinois
- Memorial Medical Center, Department of Emergency Medicine, Springfield, Illinois
| | - Albert Botchway
- Southern Illinois University, School of Medicine, Center for Clinical Research, Springfield, Illinois
| | - Jonathan dela Cruz
- Southern Illinois University School of Medicine, Department of Surgery, Division of Emergency Medicine, Springfield, Illinois
- Memorial Medical Center, Department of Emergency Medicine, Springfield, Illinois
| | - Richard Austin
- Southern Illinois University School of Medicine, Department of Surgery, Division of Emergency Medicine, Springfield, Illinois
- Memorial Medical Center, Department of Emergency Medicine, Springfield, Illinois
| | - Kevin McDaniel
- Southern Illinois University School of Medicine, Department of Surgery, Division of Emergency Medicine, Springfield, Illinois
- Memorial Medical Center, Department of Emergency Medicine, Springfield, Illinois
| | - Cassie Jaeger
- Southern Illinois University, School of Medicine, Center for Clinical Research, Springfield, Illinois
| |
Collapse
|
29
|
Xu L, Cai Z, Yang F, Chen M. Activation‑induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol Med Rep 2017; 15:1759-1764. [PMID: 28259919 DOI: 10.3892/mmr.2017.6215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
Activated mast cells are involved in the pathogenesis of allergic rhinitis (AR). As a member of the matrix metalloproteinase (MMP) family, MMP9 has been previously demonstrated act in a pro‑inflammatory manner. Mast cells regulate the activity of MMP9, and mast cells themselves have been reported to produce MMP9. However, to the best of our knowledge, the involvement of MMP9 in mast cell activation remains to be elucidated. The present study demonstrated an upregulation of MMP9 protein and mRNA expression levels in mast cells activated by phorbol ester and ionomycin. Phosphorylated ERK and AKT protein levels also markedly increased in activated mast cells, and inhibition of the ERK and AKT signaling pathways prevented the increase of MMP9 in activated mast cells. MMP9 was demonstrated to be involved in mast cell activation, since inhibition of MMP9 activity or expression inhibited mast cell activation. Furthermore, IL‑4 treatment reduced MMP9 upregulation in activated mast cells, and interference with IL‑4 signaling with an IL‑4 neutralizing antibody promoted MMP9 upregulation in activated mast cells. These results revealed a novel MMP9‑mediated mechanism underlying mast cell activation, thus providing novel ideas for AR therapy.
Collapse
Affiliation(s)
- Lin Xu
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Fei Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ming Chen
- Department of Otolaryngology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
30
|
Verma AH, Bueter CL, Rothenberg ME, Deepe GS. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2 -/- mice. Mucosal Immunol 2017; 10:194-204. [PMID: 27049063 PMCID: PMC5053824 DOI: 10.1038/mi.2016.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2-/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2-/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.
Collapse
Affiliation(s)
- Akash H. Verma
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Chelsea L. Bueter
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - George S. Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
- Veterans Affairs Hospital, Cincinnati, Ohio 45220, USA
| |
Collapse
|
31
|
Sibilano R, Gaudenzio N, DeGorter MK, Reber LL, Hernandez JD, Starkl PM, Zurek OW, Tsai M, Zahner S, Montgomery SB, Roers A, Kronenberg M, Yu M, Galli SJ. A TNFRSF14-FcɛRI-mast cell pathway contributes to development of multiple features of asthma pathology in mice. Nat Commun 2016; 7:13696. [PMID: 27982078 PMCID: PMC5171877 DOI: 10.1038/ncomms13696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023] Open
Abstract
Asthma has multiple features, including airway hyperreactivity, inflammation and remodelling. The TNF superfamily member TNFSF14 (LIGHT), via interactions with the receptor TNFRSF14 (HVEM), can support TH2 cell generation and longevity and promote airway remodelling in mouse models of asthma, but the mechanisms by which TNFSF14 functions in this setting are incompletely understood. Here we find that mouse and human mast cells (MCs) express TNFRSF14 and that TNFSF14:TNFRSF14 interactions can enhance IgE-mediated MC signalling and mediator production. In mouse models of asthma, TNFRSF14 blockade with a neutralizing antibody administered after antigen sensitization, or genetic deletion of Tnfrsf14, diminishes plasma levels of antigen-specific IgG1 and IgE antibodies, airway hyperreactivity, airway inflammation and airway remodelling. Finally, by analysing two types of genetically MC-deficient mice after engrafting MCs that either do or do not express TNFRSF14, we show that TNFRSF14 expression on MCs significantly contributes to the development of multiple features of asthma pathology.
Collapse
Affiliation(s)
- Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marianne K. DeGorter
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, INSERM U1222, Institut Pasteur, Paris 75015, France
| | - Joseph D. Hernandez
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp M. Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and Department of Medicine I, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Oliwia W. Zurek
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Axel Roers
- Institute for Immunology, Technische Universität Dresden, Dresden 01307, Germany
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
32
|
Zoltowska AM, Lei Y, Fuchs B, Rask C, Adner M, Nilsson GP. The interleukin-33 receptor ST2 is important for the development of peripheral airway hyperresponsiveness and inflammation in a house dust mite mouse model of asthma. Clin Exp Allergy 2016; 46:479-90. [PMID: 26609909 DOI: 10.1111/cea.12683] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several clinical and experimental studies have implicated IL-33 and its receptor ST2 in the development of asthma. However, the effect of IL-33/ST2 signalling on airway responses and inflammation in allergic asthma is not well established. OBJECTIVE To investigate the role of IL-33/ST2 signalling in promoting allergen-induced airway hyperresponsiveness (AHR), airway inflammation, antigen-specific IgE production and mast cell activity in a mouse model of asthma. METHODS ST2-deficient (ST2(-/-)) mice and control BALB/c mice were given house dust mite (HDM) extract over a 6-week period. Forty-eight hours after the final HDM administration, lung function and airway inflammation were evaluated. Airway responsiveness was determined in the central airways and peripheral lung. Cellular infiltration and mast cell protease mMCP-1 levels were quantified in bronchoalveolar lavage fluid (BALF). Recruitment of inflammatory cells and inflammatory cytokine profiles were assessed in pulmonary tissue, and HDM-specific IgE was measured in serum. RESULTS ST2 deficiency diminished HDM-induced AHR in the peripheral lung, while AHR in the central airways was unaffected. Inflammatory responses to HDM were also reduced in ST2(-/-) mice as reflected by the lower induction of HDM-specific serum IgE, inhibition of HDM-induced eosinophilia and reduced macrophage count in BALF, and a diminished influx of inflammatory cells and reduced goblet cell hyperplasia around the peripheral airways. Furthermore, the levels of the inflammatory cytokines IL-1β, IL-5, IL-13, IL-33, GM-CSF, thymic stromal lymphopoietin and mast cell protease mMCP-1 were reduced in HDM-treated ST2(-/-) mice compared with wild-type controls. CONCLUSIONS In addition to promoting Th2 inflammation, we now suggest a role for the IL-33/ST2 pathway for the induction of peripheral inflammation and mucus production that causes AHR in the peripheral lung. This mechanism for inducing AHR at distal parts of the lung may be of specific importance as asthma is considered as a small airway disease.
Collapse
Affiliation(s)
- A M Zoltowska
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Y Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - B Fuchs
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Rask
- ALK-Abelló, Hoersholm, Denmark
| | - M Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - G P Nilsson
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Kishi T, Kawana H, Sayama M, Makide K, Inoue A, Otani Y, Ohwada T, Aoki J. Identification of lysophosphatidylthreonine with an aromatic fatty acid surrogate as a potent inducer of mast cell degranulation. Biochem Biophys Rep 2016; 8:346-351. [PMID: 28955975 PMCID: PMC5613971 DOI: 10.1016/j.bbrep.2016.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/30/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022] Open
Abstract
Upon various stimulations, mast cells (MCs) release a wide variety of chemical mediators stored in their cytoplasmic granules, which then initiates subsequent allergic reactions. Lysophosphatidylserine (LysoPS), a kind of lysophospholipid, potentiates the histamine release from MCs triggered by antigen stimulation. We previously showed through structure-activity studies of LysoPS analogs that LysoPS with a methyl group at the carbon of the serine residue, i.e., lysophosphatidylthreonine (LysoPT), is extremely potent in stimulating the MC degranulation. In this study, as our continuing study to identify more potent LysoPS analogs, we developed LysoPS analogs with fatty acid surrogates. We found that the substitution of oleic acid to an aromatic fatty acid surrogate (C3-pH-p-O-C11) in 2-deoxy-1-LysoPS resulted in significant increase in the ability to induce MCs degranulation compared with 2-deoxy-1-LysoPS with oleic acid. Conversion of the serine residue into the threonine residue further increased the activity of MC degranulation both in vitro and in vivo. The resulting super agonist, 2-deoxy-LysoPT with C3-pH-p-O-C11, will be a useful tool to elucidate the mechanisms of stimulatory effect of LysoPS on MC degranulation. Lysophosphatidylserine (LysoPS) stimulates degranulation of mast cell (MC). We evaluated various LysoPS analogs for their MC degranulation-stimulating activity. We identified a threonine containing LysoPS analogs as a super agonist. The MC LysoPS receptor is different from the known LysoPS receptors. The super agonist helps to identify the putative MC LysoPS receptor.
Collapse
Affiliation(s)
- Takayuki Kishi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroki Kawana
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Misa Sayama
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kumiko Makide
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,PRESTO, Japan Science and Technology Agency, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,PRESTO, Japan Science and Technology Agency, Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Japan
| |
Collapse
|
34
|
He XF, Pan WD, Yao YL, Zhang HM. Recent highlights of Chinese herbs in treatment of allergic disease: Acting via mitogen-activated protein kinase signal pathway. Chin J Integr Med 2016; 23:570-573. [PMID: 27460493 DOI: 10.1007/s11655-016-2526-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/29/2022]
Abstract
The histamine receptor antagonists in the treatment of allergic disease have limitations. The treatments of Chinese herbs have some curative effects on allergic skin lesions. Present research indicates that the mitogen-activated protein kinase (MAPK) signaling pathway might be equally important in allergic reactions. It was found that the inhibition of MAPK signaling pathways might relieve allergy symptoms, and some herbs can inhibit the MAPK pathway, which yields anti-allergy effects. Chinese medicines (CMs) have immense potential in the development of treatments for allergic disease.
Collapse
Affiliation(s)
- Xu-Feng He
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Pan
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Li Yao
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Min Zhang
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
35
|
Kim JH, Yoon MG, Seo DH, Kim BS, Ban GY, Ye YM, Shin YS, Park HS. Detection of Allergen Specific Antibodies From Nasal Secretion of Allergic Rhinitis Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:329-37. [PMID: 27126726 PMCID: PMC4853510 DOI: 10.4168/aair.2016.8.4.329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Purpose Allergic rhinitis (AR) is a common and increasing disease in which Dermatophagoides (D.) farinae is one of the most common causative allergens. The aims of this study were to confirm the presence of locally produced antibodies to D. farinae in nasal secretions between nasal provocation test (NPT)-positive and -negative groups of AR patients, to evaluate their relationships with the levels of inflammatory mediators, and to determine adaptive and innate immune responses in nasal mucosa. Methods Sixty AR patients sensitive to house dust mites confirmed by skin prick test or serum specific IgE to D. farinae underwent NPT for D. farinae. Nasal packs were placed in both nasal cavities of the patients for 5 minutes to obtain nasal secretions after NPT. The levels of total IgE, specific IgE to D. farinae, eosinophil cationic protein (ECP), and tryptase in nasal secretions were detected by using ImmunoCAP. The levels of specific IgE, IgA, and secretory IgA antibodies to D. farinae in nasal secretions were measured by using ELISA. The levels of IL-8, VEGF, IL-25, and IL-33 were also measured by using ELISA. Results High levels of total IgE, specific IgE, specific IgA, and secretory IgA to D. farinae, as well as inflammatory mediators, such as ECP, IL-8, VEGF and tryptase, were detected in nasal secretions, although the differences were not statistically significant between the NPT-positive and NPT-negative groups. Levels of all immunoglobulins measured in this study significantly correlated with ECP, IL-8, and VEGF (P<0.05), but not with tryptase (P>0.05). IL-33 and IL-25 were also detected, and IL-25 level significantly correlated with IL-8 (r=0.625, P<0.001). Conclusions These findings confirmed the presence of locally produced specific antibodies, including D. farinae-specific IgE and IgA, in nasal secretions collected from D. farinae-sensitive AR patients in both the NPT-positive and NPT-negative groups, and close correlations were noted between antibodies and nasal inflammatory mediators, including such as ECP, IL-8 and VEGF, indicating that locally produced antibodies may be involved in the nasal inflammation of AR.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Moon Gyeong Yoon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dae Hong Seo
- Division of Allergy, Choongmoo Hospital, Cheonan, Korea
| | - Bong Sun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga Young Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
36
|
Kazama I, Saito K, Baba A, Mori T, Abe N, Endo Y, Toyama H, Ejima Y, Matsubara M, Yamauchi M. Clarithromycin Dose-Dependently Stabilizes Rat Peritoneal Mast Cells. Chemotherapy 2016; 61:295-303. [PMID: 27088971 DOI: 10.1159/000445023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Macrolides, such as clarithromycin, have antiallergic properties. Since exocytosis in mast cells is detected electrophysiologically via changes in membrane capacitance (Cm), the absence of such changes due to the drug indicates its mast cell-stabilizing effect. METHODS Employing the whole-cell patch clamp technique in rat peritoneal mast cells, we examined the effects of clarithromycin on Cm during exocytosis. Using a water-soluble fluorescent dye, we also examined its effect on deformation of the plasma membrane. RESULTS Clarithromycin (10 and 100 μM) significantly inhibited degranulation from mast cells and almost totally suppressed the GTP-x03B3;-S-induced increase in Cm. It washed out the trapping of the dye on the surface of mast cells. CONCLUSIONS This study provides for the first time electrophysiological evidence that clarithromycin dose-dependently inhibits the process of exocytosis. The mast cell-stabilizing action of clarithromycin may be attributable to its counteractive effect on plasma membrane deformation induced by exocytosis.
Collapse
|
37
|
Eskandari N, Tashrifi F, Bastan R, Andalib A, Yousefi Z, Peachell PT. Cyclic nucleotide phosphodiesterase isoforms in human basophils and mast cells. Int J Immunopathol Pharmacol 2016; 29:654-665. [PMID: 26781461 DOI: 10.1177/0394632015626150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) exists as multiple molecular forms. Of the 11 families of PDE identified so far, PDE4, a cAMP-specific PDE, has been identified as the major isoform regulating inflammatory activity. The principle aim of the present study was to determine whether human basophils and human lung mast cells express PDE4. Four sub-classes of PDE4 (A, B, C, and D) have been identified and expression of these was determined by RT-CPR and by western blotting. In basophils, prominent expression of mRNA for PDE4A and PDE4D was observed whereas little if any expression of PDE4B and PDE4C was detected. These findings were paralleled by immunoblotting experiments as human basophils were found to express PDE4A and PDE4D with little evidence for the presence of either PDE4B or PDE4C. By contrast, human lung mast cells expressed very little, if any, mRNA for PDE4 sub-classes although, in some preparations, some modest levels of mRNA for PDE4D were detected. However, there was no evidence, at the protein level, that mast cells express PE4. Overall, these data indicate that basophils express PDE4 (4A and 4D) whereas human lung mast cells do not.
Collapse
Affiliation(s)
- Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran .,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Tashrifi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Bastan
- Department of Human Vaccines, Razi Serum and Vaccine Research Institute, Karaj, Iran
| | - Alrieza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Yousefi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peter T Peachell
- Department of Immunology, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Sala-Cunill A, Guilarte M. The Role of Mast Cells Mediators in Angioedema Without Wheals. CURRENT TREATMENT OPTIONS IN ALLERGY 2015. [DOI: 10.1007/s40521-015-0067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Nakamura T, Maeda S, Horiguchi K, Maehara T, Aritake K, Choi BI, Iwakura Y, Urade Y, Murata T. PGD2 deficiency exacerbates food antigen-induced mast cell hyperplasia. Nat Commun 2015; 6:7514. [DOI: 10.1038/ncomms8514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/15/2015] [Indexed: 01/11/2023] Open
|
40
|
Abdala-Valencia H, Bryce PJ, Schleimer RP, Wechsler JB, Loffredo LF, Cook-Mills JM, Hsu CL, Berdnikovs S. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1377-87. [PMID: 26136426 DOI: 10.4049/jimmunol.1302874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
Abstract
Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Paul J Bryce
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joan M Cook-Mills
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Chia-Lin Hsu
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
41
|
TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol 2015; 136:433-40.e1. [PMID: 25746972 DOI: 10.1016/j.jaci.2015.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND IL-9 is important for the growth and survival of mast cells. IL-9 is produced by T cells, natural killer T cells, mast cells, eosinophils, and innate lymphoid cells, although the cells required for mast cell accumulation during allergic inflammation remain undefined. OBJECTIVE We sought to elucidate the role of TH9 cells in promoting mast cell accumulation in models of allergic lung inflammation. METHODS Adoptive transfer of ovalbumin-specific TH2 and TH9 cells was used to assess the ability of each subset to mediate mast cell accumulation in tissues. Mast cell accumulation was assessed in wild-type mice and mice with PU.1-deficient T cells subjected to acute and chronic models of allergic inflammation. RESULTS Adoptive transfer experiments demonstrated that recipients of TH9 cells had significantly higher mast cell accumulation and expression of mast cell proteases compared with control or TH2 recipients. Mast cell accumulation was dependent on IL-9, but not IL-13, a cytokine required for many aspects of allergic inflammation. In models of acute and chronic allergic inflammation, decreased IL-9 levels in mice with PU.1-deficient T cells corresponded to diminished tissue mast cell numbers and expression of mast cell proteases. Mice with PU.1-deficient T cells have defects in IL-9 production from CD4(+) T cells, but not natural killer T cells or innate lymphoid cells, suggesting a TH cell-dependent phenotype. Rag1(-/-) mice subjected to a chronic model of allergic inflammation displayed reduced mast cell infiltration comparable with accumulation in mice with PU.1-deficient T cells, emphasizing the importance of IL-9 produced by T cells in mast cell recruitment. CONCLUSION TH9 cells are a major source of IL-9 in models of allergic inflammation and play an important role in mast cell accumulation and activation.
Collapse
|
42
|
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015; 35:1253-75. [PMID: 25721445 DOI: 10.1159/000373949] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P₃) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P₃ is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P₃ signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P₃ signaling in obesity, diabetes, and their associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
43
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 2014; 135:1008-1018.e1. [PMID: 25512083 DOI: 10.1016/j.jaci.2014.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.
Collapse
|
45
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
46
|
Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol Cell Biol 2014; 34:4285-300. [PMID: 25246632 DOI: 10.1128/mcb.00983-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved.
Collapse
|
47
|
Stone SF, Bosco A, Jones A, Cotterell CL, van Eeden PE, Arendts G, Fatovich DM, Brown SGA. Genomic responses during acute human anaphylaxis are characterized by upregulation of innate inflammatory gene networks. PLoS One 2014; 9:e101409. [PMID: 24983946 PMCID: PMC4077795 DOI: 10.1371/journal.pone.0101409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
Background Systemic spread of immune activation and mediator release is required for the development of anaphylaxis in humans. We hypothesized that peripheral blood leukocyte (PBL) activation plays a key role. Objective To characterize PBL genomic responses during acute anaphylaxis. Methods PBL samples were collected at three timepoints from six patients presenting to the Emergency Department (ED) with acute anaphylaxis and six healthy controls. Gene expression patterns were profiled on microarrays, differentially expressed genes were identified, and network analysis was employed to explore underlying mechanisms. Results Patients presented with moderately severe anaphylaxis after oral aspirin (2), peanut (2), bee sting (1) and unknown cause (1). Two genes were differentially expressed in patients compared to controls at ED arrival, 67 genes at 1 hour post-arrival and 2,801 genes at 3 hours post-arrival. Network analysis demonstrated that three inflammatory modules were upregulated during anaphylaxis. Notably, these modules contained multiple hub genes, which are known to play a central role in the regulation of innate inflammatory responses. Bioinformatics analyses showed that the data were enriched for LPS-like and TNF activation signatures. Conclusion PBL genomic responses during human anaphylaxis are characterized by dynamic expression of innate inflammatory modules. Upregulation of these modules was observed in patients with different reaction triggers. Our findings indicate a role for innate immune pathways in the pathogenesis of human anaphylaxis, and the hub genes identified in this study represent logical candidates for follow-up studies.
Collapse
Affiliation(s)
- Shelley F. Stone
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
- * E-mail:
| | - Anthony Bosco
- Telethon Kids Institute and the Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Anya Jones
- Telethon Kids Institute and the Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Claire L. Cotterell
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Pauline E. van Eeden
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Daniel M. Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Simon G. A. Brown
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
48
|
The PGE2-EP2-mast cell axis: an antiasthma mechanism. Mol Immunol 2014; 63:61-8. [PMID: 24768319 DOI: 10.1016/j.molimm.2014.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
Despite the fact that cyclooxygenase and its products, prostaglandins, have been traditionally associated with the development of inflammation, PGE2 was implicated early on as potentially beneficial in asthma. During the 1970s and 1980s, several studies reported the bronchodilator effect of PGE2 in asthma patients. In parallel, it was being shown to exert an inhibitory effect on mast cells in vitro. In spite of this, data supporting the beneficial role for PGE2 in asthma were scarce and sometimes controversial. Many years later, in vitro and in vivo studies suggested a range of biological activities attributable to PGE2, others than the ability to relax smooth muscle, that potentially explained some of the observed positive effects in asthma. The identification and cloning of the four PGE2 receptors made available new tools with which to fine-tune investigation of the anti-inflammatory, pro-inflammatory, immunoregulatory, and bronchodilation mechanisms of PGE2. Among these, several suggested involvement of mast cells, a cell population known to play a fundamental role in acute and chronic asthma. Indeed, it has been shown that PGE2 prevents human and murine MC activity in vitro through activation of the EP2 receptor, and also that both exogenously administered and endogenous PGE2 inhibit airway MC activity in vivo in mouse models of asthma (likely through an EP2-mediated mechanism as well). In the last few years, we have furthered into the functional connection between PGE2-induced mast cells inhibition and attenuated damage, in asthma and allergy models. The validity of the findings supporting a beneficial effect of PGE2 in different asthma phases, the direct effect of PGE2 on mast cells populations, and the functional implications of the PGE2-MC interaction on airway function are some of the topics addressed in this review, under the assumption that increased understanding of the PGE2-EP2-mast cell axis will likely lead to the discovery of novel antiasthma targets.
Collapse
|
49
|
McGovern KE, Wilson EH. Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections. ACTA ACUST UNITED AC 2014; 9:157-168. [PMID: 25383073 DOI: 10.2174/1573395509666131217000000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parasites are diverse eukaryotic pathogens that can have complex life cycles. Their clearance, or control within a mammalian host requires the coordinated effort of the immune system. The cell types recruited to areas of infection can combat the disease, promote parasite replication and survival, or contribute to disease pathology. Location and timing of cell recruitment can be crucial. In this review, we explore the role chemokines play in orchestrating and balancing the immune response to achieve optimal control of parasite replication without promoting pathology.
Collapse
Affiliation(s)
- Kathryn E McGovern
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| |
Collapse
|
50
|
Anaphylaxis: clinical patterns, mediator release, and severity. J Allergy Clin Immunol 2013; 132:1141-1149.e5. [PMID: 23915715 DOI: 10.1016/j.jaci.2013.06.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prospective human studies of anaphylaxis and its mechanisms have been limited, with few severe cases or examining only 1 or 2 mediators. OBJECTIVES We wanted to define the clinical patterns of anaphylaxis and relationships between mediators and severity. METHODS Data were collected during treatment and before discharge. Serial blood samples were taken for assays of mast cell tryptase, histamine, anaphylatoxins (C3a, C4a, C5a), cytokines (IL-2, IL-6, IL-10), soluble tumor necrosis factor receptor I, and platelet activating factor acetyl hydrolase. Principal component analysis defined mediator patterns, and logistic regression identified risk factors and mediator patterns associated with reaction severity and delayed reactions. RESULTS Of 412 reactions in 402 people, 315 met the definition for anaphylaxis by the National Institute of Allergy and Infectious Diseases/Food Allergy and Anaphylaxis Network. Of 97 severe reactions 45 (46%) were hypotensive, 23 (24%) were hypoxemic, and 29 (30%) were mixed. One patient died. Severe reactions were associated with older age, pre-existing lung disease, and drug causation. Delayed deteriorations treated with epinephrine occurred in 29 of 315 anaphylaxis cases (9.2%) and were more common after hypotensive reactions and with pre-existing lung disease. Twenty-two of the 29 delayed deteriorations (76%) occurred within 4 hours of initial epinephrine treatment. Of the remaining 7 cases, 2 were severe and occurred after initially severe reactions, within 10 hours. All mediators were associated with severity, and 1 group (mast cell tryptase, histamine, IL-6, IL-10, and tumor necrosis factor receptor I) was also associated with delayed deteriorations. Low platelet activating factor acetyl hydrolase activity was associated with severe reactions. CONCLUSION The results suggest that multiple inflammatory pathways drive reaction severity and support recommendations for safe observation periods after initial treatment.
Collapse
|