1
|
Langlard A, Smida H, Chevalet R, Thobie-Gautier C, Boujtita M, Lebègue E. Computer-Assisted Processing of Current Step Signals in Single Blocking Impact Electrochemistry. ACS MEASUREMENT SCIENCE AU 2024; 4:585-592. [PMID: 39430961 PMCID: PMC11487761 DOI: 10.1021/acsmeasuresciau.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024]
Abstract
Current step signals related to single-entity collisions in blocking impact electrochemistry were analyzed by computer-assisted processing for estimating the size distributions of various particles. In this work, three different types of entities were studied by single blocking impact electrochemistry: polystyrene nanospheres (350 nm diameter) and microspheres (1 μm diameter), phospholipid liposomes (300 nm diameter) and two different strains of Gram-negative bacillus bacteria (Escherichia coli and Shewanella oneidensis). The size estimations of these different entities from the current step signal analysis were compared and discussed according to the shape and size of each entity. From the magnitude of the current step transient, the size distribution of each entity was calculated by a new computer program assisting in the detection and analysis of single impact events in chronoamperometry measurements. The data processing showed that the size distributions obtained from the electrochemical data agreed with the dynamic light scattering and atomic force microscopy data for nanospheres and liposomes. In contrast, the size estimation calculated from the electrochemical data was underestimated for microspheres and bacteria. We demonstrated that our computer program was efficient for detecting and analyzing the collision events in single blocking impact electrochemistry for various entities from spherical hard nanoparticles to micrometer-sized rod-shaped living bacteria.
Collapse
Affiliation(s)
- Arthur Langlard
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Hassiba Smida
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Romain Chevalet
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | | | - Estelle Lebègue
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
2
|
Tian H, Lin J, Wang Q, Xin Q, Zhang D. Enhancing low-concentration cell detection in single entity electrochemical systems through forced convection. Talanta 2024; 276:126266. [PMID: 38759360 DOI: 10.1016/j.talanta.2024.126266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
This study advances the detection of bacteria at low concentrations in single-entity electrochemistry (SEE) systems by integrating forced convection. Our results show that forced convection significantly improves the mass transfer rate of electrolyte, with the mass transfer coefficient demonstrating a proportional relationship to the flow rate to the power of 1.37. Notably, while the collision frequency of E. coli initially increases with the flow rate, a subsequent decrease is observed at higher rates. This pattern is attributed to the mechanics of cell collision under forced convection. Specifically, while forced convection propels cells towards the ultra-microelectrode (UME), it does not aid in their penetration through the boundary layer, leading to cells being driven away from the UME at higher flow rates. This hypothesis is supported by the statistical analysis of collision data, including signal heights and rise times. By optimizing the flow rate to 2 mL/min, we achieved enhanced detection of E. coli in concentrations ranging from 0.9 × 107 to 5.0 × 107 cells/mL. This approach significantly increased collision frequency by elevating the mass transfer of cells, with the mass transfer coefficient rising from 0.1 × 10-5 m/s to 0.9 × 10-5 m/s. It provides a viable solution to the challenges of detecting bacteria at low concentrations in SEE systems.
Collapse
Affiliation(s)
- Huike Tian
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Jun Lin
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| | - Qingwen Wang
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Qing Xin
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
3
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Krushinski LE, Vannoy KJ, Dick JE. Single Liquid Aerosol Microparticle Electrochemistry on a Suspended Ionic Liquid Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308637. [PMID: 38327152 DOI: 10.1002/smll.202308637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Liquid aerosols are ubiquitous in nature, and several tools exist to quantify their physicochemical properties. As a measurement science technique, electrochemistry has not played a large role in aerosol analysis because electrochemistry in air is rather difficult. Here, a remarkably simple method is demonstrated to capture and electroanalyze single liquid aerosol particles with radii on the order of single micrometers. An electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing a film of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) that is suspended within a wire loop (reference/counter electrode). An ionic liquid is chosen because the low vapor pressure preserves the film over weeks, vastly improving suspended film electroanalysis. The resultant high surface area allows the suspended ionic liquid cell to act as an aerosol net. Given the hydrophobic nature of the ionic liquid, aqueous aerosol particles do not coalesce into the film. When the liquid aerosols collide with the sufficiently biased microwire (creating a complex boundary: aerosol|wire|ionic liquid|air), the electrochemistry within a single liquid aerosol particle can be interrogated in real-time. The ability to achieve liquid aerosol size distributions for aerosols over 1 µm in radius is demonstrated.
Collapse
Affiliation(s)
- Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeffrey E Dick
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Zhou L, Yang C, Yang X, Zhang J, Wang C, Wang W, Li M, Lu X, Li K, Yang H, Zhou H, Chen J, Zhan D, Fal'ko VI, Cheng J, Tian Z, Geim AK, Cao Y, Hu S. Angstrom-Scale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species. Angew Chem Int Ed Engl 2023; 62:e202314537. [PMID: 37966039 DOI: 10.1002/anie.202314537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano- and angstrom-scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes' thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom-scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaohui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Cong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Mengyan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiangchao Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ke Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Huiping Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Han Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiajia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Vladimir I Fal'ko
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, the University of Manchester, Manchester, M13 9PL, UK
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Andre K Geim
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, the University of Manchester, Manchester, M13 9PL, UK
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
7
|
Ding Q, Sun Z, Ma W. Probing conformational kinetics of catalase with and without magnetic field by single-entity collision electrochemistry. Sci Bull (Beijing) 2023; 68:2564-2573. [PMID: 37718236 DOI: 10.1016/j.scib.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
The conformational motions of enzymes are crucial for their catalytic activities, but these fluctuations are usually spontaneous and unsynchronized and thus difficult to obtain from ensemble-averaged measurements. Here, we employ label-free single-entity electrochemical measurements to monitor in real time the fluctuating enzymatic behavior of single catalase molecules toward the degradation of hydrogen peroxide. By probing the electrochemical signals of single catalase molecules at a carbon nanoelectrode, we were able to observe three distinct current traces that could be attributed to conformational changes on the sub-millisecond timescale. Whereas, nearly uniform single long peaks were observed for single catalase molecules under a moderate magnetic field due to the restricted conformational changes of catalase. By combining high-resolution current signals with a multiphysics simulation model, we studied the catalytic kinetics of catalase with and without a magnetic field, and further estimated the maximum catalytic rate and conformational transition rate. This work introduces a new complementary approach to existing single-molecule enzymology, giving further insight into the enzymatic reaction mechanism.
Collapse
Affiliation(s)
- Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Liu L, Peng M, Liang Z, Wu H, Yan H, Zhou YG. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection. Anal Chim Acta 2023; 1276:341638. [PMID: 37573116 DOI: 10.1016/j.aca.2023.341638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Nanoparticle impact electrochemistry (NIE) is an emerging electroanalytical technique that has been utilized to the sensitive detection of a wide range of biological species. So far, the NIE based trace ion detection is largely unexplored due to the lack of effective signal amplification strategies. We herein develop an NIE-based electrochemical sensing platform that utilizes T-Hg2+-T coordination induced AgNP aggregation to detect Hg2+ in aqueous solution. The proposed aggregation-collision strategy enables highly sensitive and selective detection. A dual-mode analysis based on the change in impact frequency and oxidative charge of the anodic oxidation of the AgNPs in NIE allows for more accurate self-validated quantification. Furthermore, the current NIE-based sensor demonstrates reliable analysis of Hg2+ of real water samples, showing great potential for practical environmental monitoring and point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Lizhen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Meihong Peng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Zerong Liang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Hong Wu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Hailong Yan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China.
| |
Collapse
|
9
|
Moazzenzade T, Huskens J, Lemay SG. Utilizing the Oxygen Reduction Reaction in Particle Impact Electrochemistry: A Step toward Mediator-Free Digital Electrochemical Sensors. ACS OMEGA 2023; 8:31265-31270. [PMID: 37663480 PMCID: PMC10468766 DOI: 10.1021/acsomega.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The current blockade particle impact method opens a route toward highly parallelized single-entity electrochemical assays. An important limitation is, however, that a redox mediator must be present in the sample, which can detrimentally interfere with molecular recognition processes. Dissolved O2 that is naturally present in aqueous solutions under ambient conditions can in principle serve as a suitable mediator via the oxygen reduction reaction (ORR). Here, we demonstrate the validity of this concept by performing current blockade experiments to capture and detect individual microparticles at Pt microelectrodes using solely the ORR. The readout modality is independent of the absolute O2 concentration, allowing operation under varying conditions. We further determine how the trajectories of individual microparticles are influenced by the combination of electrophoresis and electroosmotic flows and how these can be utilized to provide continuous detection of cationic particles in water for environmental monitoring.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G. Lemay
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
10
|
Su T, Guo J, He ZK, Zhao J, Gao Z, Song YY. Single-Nanoparticle-Level Understanding of Oxidase-like Activity of Au Nanoparticles on Polymer Nanobrush-Based Proton Reservoirs. Anal Chem 2023; 95:11807-11814. [PMID: 37497564 DOI: 10.1021/acs.analchem.3c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Enzyme-mimicking nanoparticles play a key role in important catalytic processes, from biosensing to energy conversion. Therefore, understanding and tuning their performance is crucial for making further progress in biological applications. We developed an efficient and sensitive electrochemical method for the real-time monitoring of the glucose oxidase (GOD)-like activity of single nanoparticle through collision events. Using brush-like sulfonate (-SO3-)-doped polyaniline (PANI) decorated on TiO2 nanotube arrays (TiNTs-SPANI) as the electrode, we fabricated a proton reservoir with excellent response and high proton-storage capacity for evaluating the oxidase-like activity of individual Au nanoparticles (AuNPs) via instantaneous collision processes. Using glucose electrocatalysis as a model reaction system, the GOD-like activity of individual AuNPs could be directly monitored via electrochemical tests through the nanoparticle collision-induced proton generation. Furthermore, based on the perturbation of the electrical double layer of SPANI induced by proton injection, we investigated the relationship between the measured GOD-like activities of the plasmonic nanoparticles (NPs) and the localized surface plasmon resonance (LSPR) as well as the environment temperature. This work introduces an efficient platform for understanding and characterizing the catalytic activities of nanozymes at the single-nanoparticle level.
Collapse
Affiliation(s)
- Tiantian Su
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhen-Kun He
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| |
Collapse
|
11
|
Chung J, Plaxco KW, Sepunaru L. Precise Electrochemical Sizing of Individual Electro-Inactive Particles. J Vis Exp 2023:10.3791/65116. [PMID: 37590554 PMCID: PMC11332252 DOI: 10.3791/65116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nanoimpact electrochemistry enables the time-resolved in situ characterization (e.g., size, catalytic activity) of single nanomaterial units, providing a means of elucidating heterogeneities that would be masked in ensemble studies. To implement this technique with redox inactive particles, a solution-phase redox reaction is used to produce a steady-state background current on a disk ultramicroelectrode. When a particle adsorbs onto the electrode, it produces a stepwise reduction in the exposed electrode area, which produces, in turn, a stepwise decrease in the current commensurate with the size of the adsorbing species. Historically, however, nanoimpact electrochemistry has suffered from "edge effects," in which the radial diffusion layer formed at the circumference of the ultramicroelectrodes renders the step size dependent not only on the size of the particle but also on where it lands on the electrode. The introduction of electrocatalytic current generation, however, mitigates the heterogeneity caused by edge effects, thus improving the measurement precision. In this approach, termed "electrocatalytic interruption," a substrate that regenerates the redox probe at the diffusion layer is introduced. This shifts the rate-limiting step of the current generation from diffusion to the homogeneous reaction rate constant, thus reducing flux heterogeneity and increasing the precision of particle sizing by an order of magnitude. The protocol described here explains the set-up and data collection employed in nanoimpact experiments implementing this effect for improved precision in the sizing of redox in-active materials.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara
| | - Kevin W Plaxco
- Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara; Department of Chemistry and Biochemistry, University of California at Santa Barbara
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara;
| |
Collapse
|
12
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Na J, Park K, Kwon SJ. Single-Entity Electrochemistry in the Agarose Hydrogel: Observation of Enhanced Signal Uniformity and Signal-to-Noise Ratio. Gels 2023; 9:537. [PMID: 37504416 PMCID: PMC10379969 DOI: 10.3390/gels9070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
For the first time, single-entity electrochemistry (SEE) was demonstrated in a hydrogel matrix. SEE involves the investigation of the electrochemical characteristics of individual nanoparticles (NPs) by observing the signal generated when a single NP, suspended in an aqueous solution, collides with an electrode and triggers catalytic reactions. Challenges associated with SEE in electrolyte-containing solutions such as signal variation due to NP aggregation and noise fluctuation caused by convection phenomena can be addressed by employing a hydrogel matrix. The polymeric hydrogel matrix acts as a molecular sieve, effectively filtering out unexpected signals generated by aggregated NPs, resulting in more uniform signal observations compared to the case in a solution. Additionally, the hydrogel environment can reduce the background current fluctuations caused by natural convection and other factors such as impurities, facilitating easier signal analysis. Specifically, we performed SEE of platinum (Pt) NPs for hydrazine oxidation within the agarose hydrogel to observe the electrocatalytic reaction at a single NP level. The consistent porous structure of the agarose hydrogel leads to differential diffusion rates between individual NPs and reactants, resulting in variations in signal magnitude, shape, and frequency. The changes in the signal were analyzed in response to gel concentration variations.
Collapse
Affiliation(s)
- Jaedo Na
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju Nation University, Jeju 63243, Republic of Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Liu J, Jiang Y, Wen W, Zhang X, Wu Z, Wang S. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection. ACS Sens 2023; 8:2011-2020. [PMID: 37083364 PMCID: PMC10157629 DOI: 10.1021/acssensors.3c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease
Control and Prevention, Wuhan 430079, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| |
Collapse
|
15
|
Reyes-Morales J, Dick JE. Electrochemical-Shock Synthesis of Nanoparticles from Sub-femtoliter Nanodroplets. Acc Chem Res 2023; 56:1178-1189. [PMID: 37155578 DOI: 10.1021/acs.accounts.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ConspectusNanoparticles have witnessed immense development in the past several decades due to their intriguing physicochemical properties. The modern chemist is interested not only in methods of synthesizing nanoparticles with tunable properties but also in the chemistry that nanoparticles can drive. While several methods exist to synthesize nanoparticles, it is often advantageous to put nanoparticles on a variety of conductive substrates for multiple applications (such as energy storage and conversion). Despite enjoying over 200 years of development, electrodeposition of nanoparticles suffers from a lack of control over nanoparticle size and morphology. There have been heroic efforts to address these issues over time. With an understanding that structure-function studies are imperative to understand the chemistry of nanoparticles, new methods are necessary to electrodeposit a variety of nanoparticles with control over macromorphology and also microstructure.This Account details our group's efforts in overcoming challenges of classical nanoparticle electrodeposition by electrodepositing nanoparticles from water nanodroplets. When a nanodroplet full of metal salt precursor is incident on the electrode biased sufficiently negative to drive electroplating, nanoparticles form at a fast rate (on the order of microseconds to milliseconds). We start with the general nuts-and-bolts of the experiment (nanodroplet formation and methods for electrodeposition). The deposition of new nanomaterials often requires one to develop new methods of measurement, and we detail new measurement tools for quantifying nanoparticle porosity and nanopore tortuosity within single nanoparticles. We achieve nanopore characterization by using Focused Ion Beam milling and Scanning Electron Microscopy. Owing to the small size of the nanodroplets and fast mass transfer (the contents of a femtoliter droplet can be electrolyzed in only a few milliseconds), the use of nanodroplets also allows the electrodeposition of high entropy alloy nanoparticles at room temperature.We detail how a deep understanding of ion transfer mechanisms can be used to expand the library of possible metals that can be deposited. Furthermore, simple ion changes in the dispersed droplet phase can decrease the cost per experiment by orders of magnitude. Finally, electrodeposition in aqueous nanodroplets can also be combined with stochastic electrochemistry for a variety of interesting studies. We detail the quantification of the growth kinetics of single nanoparticles in single aqueous nanodroplets. Nanodroplets can also be used as tiny reactors to trap only a few molecules of a metal salt precursor. Upon reduction to the zerovalent metal, electrocatalysis at very small metal clusters can be probed and evaluated with time using steady-state electrochemical measurements. Overall, this burgeoning synthetic tool is providing unexpected avenues of tunability of metal nanoparticles on conductive substrates.
Collapse
Affiliation(s)
- Joshua Reyes-Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
16
|
Vannoy KJ, Renault C, Dick JE. The Microelectrode Insulator Influences Water Nanodroplet Collisions. Anal Chem 2023; 95:7286-7293. [PMID: 37092981 DOI: 10.1021/acs.analchem.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Studying chemical reactions in very small (attoliter to picoliter) volumes is important in understanding how chemistry proceeds at all relevant scales. Stochastic electrochemistry is a powerful tool to study the dynamics of single nanodroplets, one at a time. Perhaps the most conceptually simple experiment is that of the current blockade, where the collision of an insulating particle is observed electrochemically as a stepwise decrease in current. Here, we demonstrate that nanodroplet collisions on microelectrodes are not as simple as water droplets adsorbing to the electrode to block current and that the environment immediately around the microelectrode (glass insulator) plays a pivotal role in the electrochemical collision response. We use correlated opto-electrochemical measurements to understand a variety of electrochemical responses when water nanodroplets collide with a microelectrode during the heterogeneous oxidation of decamethylferrocene in oil. The amperometric current reports not only on current blockades but also on nanodroplet coalescence events and preferential wetting to the glass around the microelectrode. Treating the glass with dichlorodimethylsilane creates a hydrophobic environment around the working electrode, and the simple current blockade response expected from the absorption of insolating nanoparticles is observed. These results highlight the importance of the environment around the working electrode for nanodroplet collision studies.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Boika A. On Practical Aspects of Single-Entity Electrochemical Measurements with Hot Microelectrodes. Anal Chem 2023; 95:4577-4584. [PMID: 36862018 DOI: 10.1021/acs.analchem.2c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
When a 10s-100s MHz frequency alternating current (ac) waveform is applied to a disk ultramicroelectrode (UME) in an electrochemical cell, one achieves what is known as a hot microelectrode, or a hot UME. The electrical energy generates heat in an electrolyte solution surrounding the electrode, and the heat transfer leads to formation of a hot zone with the size comparable to the electrode diameter. In addition to heating, ac electrokinetic phenomena generated by the waveform include dielectrophoresis (DEP) and electrothermal fluid flow (ETF). These phenomena can be harvested to manipulate the motion of analyte species and achieve significant improvements in their single-entity electrochemical (SEE) detection. This work evaluates various microscale forces observable with hot UMEs in relation to their utility to improve the sensitivity and specificity of the SEE analysis. Considering only mild heating (with a UME temperature increase not exceeding 10 K), the sensitivity of the SEE detection of metal nanoparticles and bacterial (Staph. aureus) species is shown to be strongly affected by the DEP and ETF phenomena. The conditions have been identified, such as the ac frequency and supporting electrolyte concentration, that can lead to orders-of-magnitude enhancement of the frequency of analyte collisions with a hot UME. In addition, even mild heating is expected to result in up to four times increase in the magnitude of blocking collisions' current steps, with similar outcomes expected for electrocatalytic collisional systems. The findings presented here are thought to provide guidance to researchers wishing to adopt hot UME technology for SEE analysis. With many possibilities still open, the future of such a combined approach is expected to be bright.
Collapse
Affiliation(s)
- Aliaksei Boika
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
18
|
Trends in single-impact electrochemistry for bacteria analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04568-z. [PMID: 36754873 DOI: 10.1007/s00216-023-04568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Single-impact electrochemistry for the analysis of bacteria is a powerful technique for biosensing applications at the single-cell scale. The sensitivity of this electro-analytical method has been widely demonstrated based on chronoamperometric measurements at an ultramicroelectrode polarized at the appropriate potential of redox species in solution. Furthermore, the most recent studies display a continuous improvement in the ability of this sensitive electrochemical method to identify different bacterial strains with better selectivity. To achieve this, several strategies, such as the presence of a redox mediator, have been investigated for detecting and identifying the bacterial cell through its own electrochemical behavior. Both the blocking electrochemical impacts method and electrochemical collisions of single bacteria with a redox mediator are reported in this review and discussed through relevant examples. An original sensing strategy for virulence factors originating from pathogenic bacteria is also presented, based on a recent proof of concept dealing with redox liposome single-impact electrochemistry. The limitations, applications, perspectives, and challenges of single-impact electrochemistry for bacteria analysis are briefly discussed, based on the most significant published data.
Collapse
|
19
|
Zhang JH, Liu M, Zhou F, Yan HL, Zhou YG. Homogeneous Electrochemical Immunoassay Using an Aggregation-Collision Strategy for Alpha-Fetoprotein Detection. Anal Chem 2023; 95:3045-3053. [PMID: 36692355 DOI: 10.1021/acs.analchem.2c05193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity and high efficiency. Homogeneous electrochemical assays, however, are not commonly accessed due to the requirement of electrode immobilization of the recognition elements. Herein, we demonstrate a new homogeneous electrochemical immunoassay based on the aggregation-collision strategy for the quantification of tumor protein biomarker alpha-fetoprotein (AFP). The detection principle relies on the aggregation of AgNPs induced by the molecular biorecognition between AFP and AgNPs-anti-AFP probes, which leads to an increased AgNP size and decreased AgNP concentration, allowing an accurate self-validated dual-mode immunoassay by performing nanoimpact electrochemistry (NIE) of the oxidation of AgNPs. The intrinsic one-by-one analytical capability of NIE as well as the participation of all of the atoms of the AgNPs in signal transduction greatly elevates the detection sensitivity. Accordingly, the current sensor enables a limit of detection (LOD) of 5 pg/mL for AFP analysis with high specificity and efficiency. More importantly, reliable detection of AFP in diluted human sera of hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the NIE-based homogeneous immunoassay shows great potential in HCC liquid biopsy.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng Zhou
- Personalized Prescribing Inc., Suite 500, 150 Ferrand Dr, Toronto, Ontario M3C 3E5, Canada
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Smida H, Lefèvre F, Thobie‐Gautier C, Boujtita M, Paquete CM, Lebègue E. Single Electrochemical Impacts of
Shewanella oneidensis
MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface. ChemElectroChem 2022. [DOI: 10.1002/celc.202200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hassiba Smida
- Nantes Université CNRS CEISAM UMR 6230 F-44000 Nantes France
| | | | | | | | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-156 Oeiras Portugal
| | - Estelle Lebègue
- Nantes Université CNRS CEISAM UMR 6230 F-44000 Nantes France
| |
Collapse
|
21
|
Ahmed JU, Lutkenhaus JA, Tubbs A, Nag A, Christopher J, Alvarez JC. Estimating Average Velocities of Particle Arrival Using the Time Duration of the Current Signal in Stochastic Blocking Electrochemistry. Anal Chem 2022; 94:16560-16569. [DOI: 10.1021/acs.analchem.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Junaid U. Ahmed
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - John A. Lutkenhaus
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Ashley Tubbs
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Ashish Nag
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Jayani Christopher
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Julio C. Alvarez
- Chemistry Department, Virginia Commonwealth University, Richmond, Virginia23284, United States
| |
Collapse
|
22
|
Kanokkanchana K, Tschulik K. Electronic Circuit Simulations as a Tool to Understand Distorted Signals in Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:10120-10125. [PMID: 36269854 PMCID: PMC9639197 DOI: 10.1021/acs.jpclett.2c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical analysis relies on precise measurement of electrical signals, yet the distortions caused by potentiostat circuitry and filtering are rarely addressed. Elucidation of these effects is essential for gaining insights behind sensitive low-current and short-duration electrochemical signals, e.g., in single-entity electrochemistry. We present a simulation approach utilizing the Electrical Simulation Program with Integrated Circuit Emphasis (SPICE), which is extensively used in electronic circuit simulations. As a proof-of-concept, we develop a universal electrical circuit model for single nanoparticle impact experiments, incorporating potentiostat and electronic filter circuitry. Considering these alterations, the experimentally observed transients of silver nanoparticle oxidation were consistently shorter and differently shaped than those predicted by established models. This reveals the existence of additional processes, e.g., migration, partial or asymmetric oxidation. These results highlight the SPICE approach's ability to provide valuable insights into processes occurring during single-entity electrochemistry, which can be applied to various electrochemical experiments, where signal distortions are inevitable.
Collapse
Affiliation(s)
- Kannasoot Kanokkanchana
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry,
ZEMOS 1.45, Ruhr University Bochum, Universitätsstraße 150, D-44780Bochum, Germany
| | - Kristina Tschulik
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry,
ZEMOS 1.45, Ruhr University Bochum, Universitätsstraße 150, D-44780Bochum, Germany
- Max-Planck-Institut
für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf40237, Germany
| |
Collapse
|
23
|
Li J, Liang X, Zhong R, Liu M, Liu X, Yan HL, Zhou YG. Clinically Applicable Homogeneous Assay for Serological Diagnosis of Alpha-Fetoprotein by Impact Electrochemistry. ACS Sens 2022; 7:3216-3222. [PMID: 36240195 DOI: 10.1021/acssensors.2c01887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein quantification with high specificity, sensitivity, and efficiency is of great significance to enable early diagnosis and effective treatment. The existing methods for protein analysis usually suffer from high cost, time-consuming operation, and insufficient sensitivity, making them not clinically friendly. In this work, a label-free homogeneous sensor based on the nano-impact electroanalytic (NIE) technique was proposed for the detection of tumor protein marker alpha-fetoprotein (AFP). The detection principle is based on the recovery of current of single PtNP catalyzed hydrazine oxidation due to the release of the pre-adsorbed passivating aptamers on PtNPs from the competition of the stronger binding between the specific interaction of the AFP aptamer and AFP. The intrinsic one-by-one analytical ability of NIE allows highly sensitive detection, which can be further improved by reducing the reaction/incubation volume. Meanwhile, the current sensor avoids a laborious labeling procedure as well as the separation and washing steps due to the in situ characteristic of NIE. Accordingly, the current sensor enables efficient, highly sensitive, and specific AFP analysis. More importantly, the reliable detection of AFP in diluted real sera from hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the impact electrochemistry-based sensing platform has great potential to be applied in point-of-care devices for HCC liquid biopsy.
Collapse
Affiliation(s)
- Jiebin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China.,College of Biology, Hunan University, Changsha410082, P. R. China
| | - Xianghui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha410008, P. R. China
| | - Rui Zhong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Xuan Liu
- Research Center, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing210003, P. R. China
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
24
|
Moazzenzade T, Walstra T, Yang X, Huskens J, Lemay SG. Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry. Anal Chem 2022; 94:10168-10174. [PMID: 35792954 PMCID: PMC9310007 DOI: 10.1021/acs.analchem.2c01503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Tieme Walstra
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Xiaojun Yang
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G Lemay
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution. Int J Mol Sci 2022; 23:ijms23137472. [PMID: 35806475 PMCID: PMC9267213 DOI: 10.3390/ijms23137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
A single silver (Ag) nanoparticle (NP) collision was observed and analyzed in an alkaline solution using the electrocatalytic amplification (EA) method. Previously, the observation of a single Ag NP collision was only possible through limited methods based on a self-oxidation of Ag NPs or a blocking strategy. However, it is difficult to characterize the electrocatalytic activity of Ag NPs at a single NP level using a method based on the self-oxidation of Ag NPs. When using a blocking strategy, size analysis is difficult owing to the edge effect in the current signal. The fast oxidative dissolution of Ag NPs has been a problem for observing the staircase response of a single Ag NP collision signal using the EA method. In alkaline electrolyte conditions, Ag oxides are stable, and the oxidative dissolution of Ag NPs is sluggish. Therefore, in this study, the enhanced magnitude and frequency of the current response for single Ag NP collisions were obtained using the EA method in an alkaline electrolyte solution. The peak height and frequency of single Ag NP collisions were analyzed and compared with the theoretical estimation.
Collapse
|
26
|
Park JH, Ahn H, Ahn HS. Single Entity Electrochemistry and Its Application to Nanomaterial Synthesis. Isr J Chem 2022. [DOI: 10.1002/ijch.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joon Ho Park
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Hyokyum Ahn
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Hyun S. Ahn
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
27
|
Yang YJ, Bai YY, Huangfu YY, Yang XY, Tian YS, Zhang ZL. Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Anal Chem 2022; 94:8392-8398. [DOI: 10.1021/acs.analchem.2c00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Shen Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
28
|
Gao T, Xu C, Chen ML, Wang JH, Mao L, Yu P. Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Anal Chem 2022; 94:8187-8193. [DOI: 10.1021/acs.analchem.1c05579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tienan Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Kim SD, Park JH, Ahn H, Lee J, Shin CH, Jang WD, Kim BK, Ahn HS. The discrete single-entity electrochemistry of Pickering emulsions. NANOSCALE 2022; 14:6981-6989. [PMID: 35470845 DOI: 10.1039/d2nr01098d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-entity analysis is an important research topic in electrochemistry. To date, electrode collisions and subsequent electrode-particle interactions have been studied for many types of nano-objects, including metals, polymers, and micelles. Here we extend this nano-object electrochemistry analysis to Pickering emulsions for the first time. The electrochemistry of Pickering emulsions is important because the internal space of a Pickering emulsion can serve as a reactor or template; this leads to myriad possible applications, all the while maintaining mechanical stability far superior to what is exhibited by conventional emulsions. This work showed that Pickering emulsions exhibit similar hydrodynamic behavior to other nano-objects, despite the complex structure involving hard nanoparticle surfactants, and the electron-transport mechanism into the internal volume of Pickering emulsions was elucidated. The Pickering emulsion electrochemistry platform developed here can be applied to electrochemical nanomaterial synthesis, surmounting the challenges faced by conventional synthetic strategies involving normal emulsions.
Collapse
Affiliation(s)
- So Dam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Joon Ho Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hyokyum Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jeeho Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chan-Ho Shin
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
30
|
Wu L, Li X, Miao H, Xu J, Pan G. State of the art in development of molecularly imprinted biosensors. VIEW 2022. [DOI: 10.1002/viw.20200170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Licheng Wu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Xiaolei Li
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jingjing Xu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
31
|
Wu Y, Jamali S, Tilley RD, Gooding JJ. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discuss 2022; 233:10-32. [PMID: 34874385 DOI: 10.1039/d1fd00088h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Sina Jamali
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
32
|
Jaugstetter M, Blanc N, Kratz M, Tschulik K. Electrochemistry under confinement. Chem Soc Rev 2022; 51:2491-2543. [PMID: 35274639 DOI: 10.1039/d1cs00789k] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the term 'confinement' regularly appears in electrochemical literature, elevated by continuous progression in the research of nanomaterials and nanostructures, up until today the various aspects of confinement considered in electrochemistry are rather scattered individual contributions outside the established disciplines in this field. Thanks to a number of highly original publications and the growing appreciation of confinement as an overarching link between different exciting new research strategies, 'electrochemistry under confinement' is the process of forming a research discipline of its own. To aid the development a coherent terminology and joint basic concepts, as crucial factors for this transformation, this review provides an overview on the different effects on electrochemical processes known to date that can be caused by confinement. It also suggests where boundaries to other effects, such as nano-effects could be drawn. To conceptualize the vast amount of research activities revolving around the main concepts of confinement, we define six types of confinement and select two of them to discuss the state of the art and anticipated future developments in more detail. The first type concerns nanochannel environments and their applications for electrodeposition and for electrochemical sensing. The second type covers the rather newly emerging field of colloidal single entity confinement in electrochemistry. In these contexts, we will for instance address the influence of confinement on the mass transport and electric field distributions and will link the associated changes in local species concentration or in the local driving force to altered reaction kinetics and product selectivity. Highlighting pioneering works and exciting recent developments, this educational review does not only aim at surveying and categorizing the state-of-the-art, but seeks to specifically point out future perspectives in the field of confinement-controlled electrochemistry.
Collapse
Affiliation(s)
- Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus Kratz
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
33
|
Bognár Z, de Jonge MI, Gyurcsányi RE. In situ silver nanoparticle coating of virions for quantification at single virus level. NANOSCALE 2022; 14:2296-2303. [PMID: 35081610 DOI: 10.1039/d1nr07607h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ labelling and encapsulation of biological entities, such as of single viruses, may provide a versatile approach to modulate their functionality and facilitate their detection at single particle level. Here, we introduce a novel virus metallization approach based on in situ coating of viruses in solution with silver nanoparticles (AgNP) in a two-step synthetic process, i.e. surface activation with a tannic acid - Sn(II) coordination complex, which subsequently induces silver ion (I) reduction. The metalic coating on the virus surface opens the opportunity for electrochemical quantification of the AgNP-tagged viruses by nano-impact electrochemistry on a microelectrode with single particle sensitivity, i.e. enable the detection of particles oherwise undetectable. We show that the silver coating of the virus particles impacting the electrode can be oxidized to produce distinct current peaks the frequency of which show a linear correlation with the virus count. The proof of the concept was done with inactivated Influenza A (H3N2) viruses resulting in their quantitation down to the femtomolar concentrations (ca. 5 × 107 particles per mL) using 50 s counting sequences.
Collapse
Affiliation(s)
- Zsófia Bognár
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
34
|
Luy J, Ameline D, Thobie‐Gautier C, Boujtita M, Lebègue E. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justine Luy
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| | - Dorine Ameline
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| | | | | | - Estelle Lebègue
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| |
Collapse
|
35
|
Bai YY, Feng ZT, Yang YJ, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Anal Chem 2021; 94:1302-1307. [PMID: 34957818 DOI: 10.1021/acs.analchem.1c04502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate size analysis of nanoparticles (NPs) is vital for nanotechnology. However, this cannot be realized based on conventional single-nanoparticle collision (SNC) because the current intensity, a thermodynamic parameter of SNC for sizing NPs, is always smaller than the theoretical value due to the effect of NP movements on the electrode surface. Herein, a size-dependent dynamic parameter of SNC, current lifetime, which refers to the time that the current intensity decays to 1/e of the original value, was originally utilized to distinguish differently sized NPs. Results showed that the current lifetime increased with NP size. After taking the current lifetime into account rather than the current intensity, the overlap rates for the peak-type current transients of differently sized Pt NPs (10 and 15 nm) and Au NPs (18 and 35 nm) reduced from 73 and 7% to 45 and 0%, respectively, which were closer to the theoretical values (29 and 0%). Hence, the proposed SNC dynamics-based method holds great potential for developing reliable electrochemical approaches to evaluate NP sizes accurately.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
36
|
Alpuche‐Aviles MA. Particle Impact Electrochemistry. ENCYCLOPEDIA OF ELECTROCHEMISTRY 2021:1-30. [DOI: 10.1002/9783527610426.bard030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Experiments involving collisions between a single entity and the electrode surface have become an active area of research. The electrochemical contribution of individual nanoparticles (NPs), enzymes, and other entities, such as aggregates or agglomerates, can be determined using particle impact experiments. Destructive nanoimpact experiments of materials, such as Ag, and the electrocatalytic amplification (ECA) are used to detect the NP/electrode interactions. This review covers the seminal work, critical theoretical studies, and some recent applications. The applications to electrocatalysis include measurements of electron transfer rate constants on individual nanoparticles. Applications in analytical chemistry have allowed the detection of nonelectroactive species by detecting the collisions of soft materials, e.g. micellar suspensions and proteins have increased the technique's analytical possibilities. With ECA, NPs can be used as tags for the electrochemical detection of bioanalytes such as DNA, proteins, and liposomes. The theory of ECA collisions, including frequency of collision and the size of the electrochemical current transients, are also covered. For nanoimpacts, the charge measured during a NP electrolysis, such as Ag NP, is used to detect the NP. Measurements of NP diameter are possible, but limitations to this analysis are covered. The electron transfer studies to the electrolysis of Ag and of metal oxides are discussed. Finally, key experimental instrumentations are discussed, including instrumentation techniques for the small currents inherent to single NP measurement. The effect of filtering, instrumentations rise time, and sampling frequency are also covered.
Collapse
|
37
|
Luy J, Ameline D, Thobie-Gautier C, Boujtita M, Lebègue E. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry. Angew Chem Int Ed Engl 2021; 61:e202111416. [PMID: 34816575 DOI: 10.1002/anie.202111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 01/05/2023]
Abstract
The detection of Rhamnolipid virulence factor produced by Pseudomonas aeruginosa involved in nosocomial infections is reported by using the redox liposome single impact electrochemistry. Redox liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a pure phospholipid and potassium ferrocyanide as an encapsulated redox content are designed for using the interaction of the target toxin with the lipid membrane as a sensing strategy. The electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with Rhamnolipid toxin which leads upon impact at an ultramicroelectrode to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe. We present as a proof of concept the sensitive and fast sensing of a submicromolar concentration of Rhamnolipid which is detected after less than 30 minutes of incubation with the liposomes, by the appearing of current spikes in the chronoamperometry measurement.
Collapse
Affiliation(s)
- Justine Luy
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Dorine Ameline
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | | | | | - Estelle Lebègue
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| |
Collapse
|
38
|
Chung J, Hertler P, Plaxco KW, Sepunaru L. Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. J Am Chem Soc 2021; 143:18888-18898. [PMID: 34735140 DOI: 10.1021/jacs.1c04971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blocking electrochemistry, a subfield of nanochemistry, enables nondestructive, in situ measurement of the concentration, size, and size heterogeneity of highly dilute, nanometer-scale materials. This approach, in which the adsorptive impact of individual particles on a microelectrode prevents charge exchange with a freely diffusing electroactive redox mediator, has expanded the scope of electrochemistry to the study of redox-inert materials. A limitation, however, remains: inhomogeneous current fluxes associated with enhanced mass transfer occurring at the edges of planar microelectrodes confound the relationship between the size of the impacting particle and the signal it generates. These "edge effects" lead to the overestimation of size heterogeneity and, thus, poor sample characterization. In response, we demonstrate here the ability of catalytic current amplification (EC') to reduce this problem, an effect we term "electrocatalytic interruption". Specifically, we show that the increase in mass transport produced by a coupled chemical reaction significantly mitigates edge effects, returning estimated particle size distributions much closer to those observed using ex situ electron microscopy. In parallel, electrocatalytic interruption enhances the signal observed from individual particles, enabling the detection of particles significantly smaller than is possible via conventional blocking electrochemistry. Finite element simulations indicate that the rapid chemical kinetics created by this approach contributes to the amplification of the electronic signal to restore analytical precision and reliably detect and characterize the heterogeneity of nanoscale electro-inactive materials.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Phoebe Hertler
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
39
|
Sánchez-Álvarez AO, Dick JE, Larios E, Cabrera CR. Anodic coulometry of zero-valent iron nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Clark RB, Dick JE. Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS). Chem Commun (Camb) 2021; 57:8121-8130. [PMID: 34323258 DOI: 10.1039/d1cc02641k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are an emerging class of pervasive and harmful environmental micropollutant with negative health effects on humans. Therefore, there has been extensive research into the remediation (i.e., the detection, extraction, and destruction) of these chemicals. For efficient extraction and destruction, PFAS contamination must be detected at its onset; however, conventional PFAS detection methods rely on sample collection and transport to a centralized facility for testing, which is expensive and time-consuming. Electrochemistry offers a robust, inexpensive, and deployable sensing strategy that could detect pollution at its onset; however, the electrochemical inactivity of PFAS necessitates the use of a surface functionalization strategy. Molecularly imprinted polymers (MIPs), which are a popular surface functionalization strategy, have been around since the 1980s for specific electrochemical detection and have expanded electrochemical detection to analytes that are not electrochemically active. MIPs have been more recently demonstrated for the detection of a variety of PFAS species, but additional advances must be made for realization of a deployable, electrochemical MIP-based sensor. This Feature highlights the history of MIPs for PFAS detection and our group's recent advances that are essential to enable the creation of a deployable electrochemical PFAS sensor: development of rigorous analytical standards to quantify interferent effects, miniaturization of the detection platform for quantification in river water, the use of ambient O2 as the mediator molecule for detection, and the development of hardware for in-field multiplexed electrochemical sensing.
Collapse
Affiliation(s)
- Rebecca B Clark
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
41
|
Zhao H, Ma J, Zuo X, Li F. Electrochemical Analysis for Multiscale Single Entities on the Confined Interface
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinliang Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
42
|
Bai YY, Yang YJ, Wu Z, Yang XY, Lin M, Pang DW, Zhang ZL. Size-Resolved Single Entity Collision Biosensing for Dual Quantification of MicroRNAs in a Single Run. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22254-22261. [PMID: 33966389 DOI: 10.1021/acsami.1c04747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Limited to the accuracy of size resolution, single entity collision biosensing (SECBS) for multiplex immunoassays remains challenging, because it is difficult to get the true value of nanoparticle (NP) sizes based on the current intensity due to the complex movement of NPs on the electrode surface. Considering that the size-dependent movement of NPs meanwhile will generate a characteristic current shape, in this work, the huge difference in the current rise time of 5 and 15 nm Pt NPs colliding on an Au ultramicroelectrode (d = 30 μm) was originally used to develop a size-resolved SECBS for multiplex immunoassays of miRNAs. The limit concentration that can be detected was 0.5 fM. Compared with conventional electrochemical biosensors for multiplex immunoassays, for the size-resolved SECBS, one does not need to worry about potential overlapping. Therefore, the proposed method demonstrates a promising potential for the application of SECBS in multiplex immunoassays.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhen Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Miao Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
43
|
Lee J, Lee J, Song S, Kim B. Single Microcystis Detection Through Electrochemical Collision Events on Ultramicroelectrodes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeeho Lee
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Jungeun Lee
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Sua Song
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Byung‐Kwon Kim
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| |
Collapse
|
44
|
Liu C, Ma Y, Nan J, Wang L. Ion Transfer-Resolved Fusion Impacts of Single Droplets Probed at the Liquid/Liquid Interface. Anal Chem 2020; 92:15394-15402. [DOI: 10.1021/acs.analchem.0c02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ya Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junmin Nan
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
45
|
Bolat G, Yaman YT, Kuralay F, Abaci S. Ultrathin polypyrrole films on
self‐assembled
monolayers as an efficient ultramicroelectrode assay. J Appl Polym Sci 2020. [DOI: 10.1002/app.49313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gulcin Bolat
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
| | - Yesim T. Yaman
- Advanced Technologies Application and Research CenterHacettepe University Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
| | - Serdar Abaci
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
- Advanced Technologies Application and Research CenterHacettepe University Ankara Turkey
| |
Collapse
|
46
|
Takemura K, Satoh J, Boonyakida J, Park S, Chowdhury AD, Park EY. Electrochemical detection of white spot syndrome virus with a silicone rubber disposable electrode composed of graphene quantum dots and gold nanoparticle-embedded polyaniline nanowires. J Nanobiotechnology 2020; 18:152. [PMID: 33109213 PMCID: PMC7590724 DOI: 10.1186/s12951-020-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. Results Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. Conclusion The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry. ![]()
Collapse
Affiliation(s)
- Kenshin Takemura
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jun Satoh
- Division of Pathology, Department of Aquaculture Research, Fisheries Technology Institute of Japan Fisheries Research and Education Agency, National Research and Development Agency, Tamaki Field Station, 224-1 Hiruta, Tamaki, Watarai, Mie, 519-0423, Japan
| | - Jirayu Boonyakida
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sungjo Park
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ankan Dutta Chowdhury
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
47
|
Chung HJ, Lee J, Hwang J, Seol KH, Kim KM, Song J, Chang J. Stochastic Particle Approach Electrochemistry (SPAE): Estimating Size, Drift Velocity, and Electric Force of Insulating Particles. Anal Chem 2020; 92:12226-12234. [PMID: 32786447 DOI: 10.1021/acs.analchem.0c01532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stochastic particle impact electrochemistry (SPIE) is considered one of the most important electro-analytical methods to understand the physicochemical properties of single entities. SPIE of individual insulating particles (IPs) has been particularly crucial for analyses of bioparticles. In this article, we introduce stochastic particle approach electrochemistry (SPAE) for electrochemical analyses of IPs, which is the advanced version of SPIE; SPAE is analogous to SPIE but focuses on deciphering a sudden current drop (SCD) by an IP-approach toward the edge of an ultramicroelectrode (UME). Polystyrene particles (PSPs) with and without different surface functionalities (-COOH and - NH3) as well as fixed human platelets (F-HPs) were used as model IPs. From theory based on finite element analysis, a sudden current drop (SCD) induced by an IP during electro-oxidation (or reduction) of a redox mediator on a UME can represent the rapid approach of an IP toward an edge of a UME, where a strong electric field is generated. It is also found that the amount of current drop, idrop, of an SCD depends strongly on both the size of an IP and the concentration of redox electrolyte. From simulations based on the SPAE model that fit the experimentally obtained SCDs of three types of PSPs or F-HP dispersed in solutions with two redox electrolytes, their size distribution histograms are estimated, from which their average radii determined by SPAE are compared to those from scanning electron microscopic images. In addition, the drift velocity and corresponding electric force of the PSPs and F-HPs during their approach toward an edge of a Pt UME are estimated, which cannot be addressed currently with SPIE. We further learned that the estimated drift velocity and the corresponding electric force could provide a relative order of the number of excess surface charges on the IPs.
Collapse
Affiliation(s)
- Hee Jung Chung
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jihye Lee
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jiseon Hwang
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Kang Hee Seol
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Kyung Mi Kim
- Department of Chemistry, Sungshin W. University, 55 Dobong-ro, 76ga-gil, Gangbuk-gu, Seoul 01133, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinho Chang
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
48
|
Wang YW, Nan LJ, Jiang YR, Fan MF, Chen J, Yuan PX, Wang AJ, Feng JJ. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection. Analyst 2020; 145:2758-2766. [PMID: 32091034 DOI: 10.1039/c9an02442e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The robust and strong electrochemiluminescence (ECL) emission of organic emitters in an aqueous solution is crucial for expanding their applications in early diagnosis. Herein, a Zn porphyrin-based metal-organic framework ((Zn)porphMOF) was facilely obtained by chelating Zn(ii)meso-tetra (4-sulfonatophenyl) porphine (Zn-TSPP) with Zn ions, showing substantially enhanced ECL radiation with K2S2O8 as the coreactant via the "reduction-oxidation" route in aqueous media. In contrast with Zn-TSPP, (Zn)porphMOF displayed 22-fold increase in the ECL intensity because of the agglomeration effect. By virtue of the dramatic confinement towards the energy and electron transfer of ascorbic acid (AA) during the ECL process, an ultrasensitive biosensor was developed with a wide linear range (3.77 to 26.4 μM) and ultra-low detection limit of 0.29 μM at 3 times of the signal-to-noise ratio (3S/N). This work offers a feasible avenue to harvest the steady and boosted ECL responses of organic molecules in aqueous media, also greatly expanding the MOF applications in bioanalysis.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nguyen THT, Lee J, Kim HY, Nam KM, Kim BK. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Biosens Bioelectron 2020; 151:111999. [DOI: 10.1016/j.bios.2019.111999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
50
|
|